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ABSTRACT 

 Employee promotion represents a strategic function within human resource 

management, bearing significant implications for workforce motivation, organizational 

advancement, and career development. However, conventional promotional decisions 

often rely on subjective judgment, which can lead to inconsistencies and potential bias. 

Therefore, to address these challenges, this research introduces a comprehensive 

machine learning framework that incorporates both supervised and unsupervised 

learning techniques to enhance the identification of promotable employees. The 

proposed framework consists of three essential components. The first component is 

feature augmentation, which is performed through the construction of a novel 

engineered variable termed the Generated Promotion Feature (GPF), derived from 

performance-driven indicators such as key performance index (KPI) scores, award 

history, and average training performance. The second component is feature extraction, 

performed through Principal Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (t-SNE) to reduce data dimensionality, identify critical structures, 

and improve computational efficiency while preserving informative patterns. The last 

component is the Synthetic Minority Oversampling Technique (SMOTE), employed to 

address class imbalance and enhance the model’s ability to recognize underrepresented 

cases of promotion. In addition, two publicly available human resource datasets were 

utilized to validate the proposed methodology across six classification algorithms: 

Random Forest, Decision Tree, Support Vector Machine, K-Nearest Neighbor, Logistic 

Regression, and Neural Network, as well as two clustering techniques, known as  

K-means and Fuzzy C-means. Experimental results demonstrate that, in classification 

tasks, the application of SMOTE significantly improves model performance across all 

algorithms, particularly in handling class imbalance and enhancing recall and F1-score. 



 

In clustering tasks, the combination of GPF, PCA, and SMOTE yields the best results, 

producing more apparent cluster separations and greater consistency across different 

configurations. Among the dimensionality reduction methods, PCA outperforms t-SNE 

in both clustering quality and model stability. Additionally, the introduction of GPF,  

a domain-informed feature derived from high-correlation performance indicators, 

enhances model interpretability and discriminatory power. These findings suggest that 

the proposed framework offers a robust and generalizable approach for employee 

promotion modeling, adaptable to both supervised and unsupervised learning scenarios 

within diverse organizational contexts. 

Keywords: Employee Promotion, Feature Engineering, SMOTE, Clustering, 

Classification 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Employee promotion represents a fundamental aspect of human resource 

management (HRM), as it directly affects workforce motivation, career progression, 

and overall organizational growth. Promotion decisions serve not only as a means of 

recognizing individual achievement and assigning higher levels of responsibility but 

also as a strategic tool to improve employee engagement and maintain top talent. 

Traditionally, promotion decisions have been based on subjective judgment by 

supervisors. This practice in large organizations may lead to particularly significant 

inconsistencies, bias, and inefficiencies.  

 The advent of data-driven decision-making, which involves machine learning 

(ML) techniques, has made them practical tools for analyzing employee data to support 

decision-making about employee promotions. ML-based approaches provide the 

analysis of large volumes of human resource data, patterns, and predictive models that 

support fair and scalable decision-making processes. Within the ML domain, promotion 

modeling can be approached through supervised learning, which performs 

classification based on outcomes (i.e., promoted or not promoted), and unsupervised 

learning applies clustering techniques to discover natural groupings without relying on 

predefined labels. However, both methodologies face key challenges, including 

imbalanced data distribution, noise, and high-dimensional features, all of which can 

compromise the accuracy and generalizability of these models. 

 To address these challenges, this study proposes a comprehensive framework 

that integrates feature extraction, feature augmentation, and methods for handling 

imbalances. Feature extraction techniques such as Principal Component Analysis 

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are employed to 

transform high-dimensional data into lower-dimensional spaces, thereby improving 

computational efficiency while retaining meaningful variance and local structure. 
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These transformations benefit both classification and clustering models by reducing 

complexity.  

 In addition, the study also presents a feature augmentation strategy through the 

construction of the Generated Promotion Feature (GPF), an engineered variable derived 

from highly correlated performance-oriented attributes such as KPI achievements, 

award records, and training scores. The inclusion of GPF aims to enhance the model’s 

ability to distinguish between promotable and non-promotable employees by 

prioritizing relevant performance signals over less informative personal characteristics. 

This augmentation supports both supervised and unsupervised models by increasing the 

feature space with more representative indicators of promotion potential. 

 Furthermore, to address the imbalance issue where promotion cases are 

substantially more than non-promotion cases, the Synthetic Minority Oversampling 

Technique (SMOTE) is applied. SMOTE generates synthetic instances for the minority 

class to create a balanced dataset that enables classification models and to learn 

equitably from both classes, as well as improving the quality of clustering by ensuring 

better representation of underrepresented groups. 

 Through the integration of these components, the proposed framework aims to 

construct strong and generalizable promotion models that are applicable across diverse 

datasets and learning paradigms. The resulting models not only enhance predictive 

accuracy and clustering quality but also provide valuable insights for HR practitioners 

in identifying, developing, and promoting high-potential employees. To evaluate the 

practical utility of the proposed framework, extensive experiments were conducted 

across both classification and clustering tasks. For classification, the integration of 

SMOTE with various classifiers demonstrated a significant performance improvement, 

particularly in handling imbalanced datasets by enhancing recall and F1-scores without 

significantly compromising precision. However, for clustering, the optimal results were 

observed when SMOTE was used in combination with the Generated Promotion 

Feature (GPF) and Principal Component Analysis (PCA). This combination yielded the 

most stable and well-separated clusters, reflecting an enhanced ability to distinguish 

between promotable and non-promotable employees. These findings suggest that while 

SMOTE alone is sufficient to improve classification models, effective clustering in HR 
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contexts benefits significantly from a multi-faceted preprocessing strategy involving 

both feature engineering and dimensionality reduction. 

1.2 Objective 

1.2.1 To create a novel feature engineering called the Generated Promotion 

Feature (GPF), derived from key performance indicators. 

1.2.2 To create an analytical framework focusing on two primary feature 

categories: personal attributes and performance-oriented features for employee 

promotion modeling. 

1.2.3 To evaluate the effectiveness of the proposed analytical frameworks with 

classification and clustering models. 

1.3 Scope of Work 

1.3.1 This study is conducted using two publicly available HR datasets to 

evaluate the performance and generalizability of the proposed classification and 

clustering models. While the evaluation focuses on these specific datasets, the findings 

intend to demonstrate the broader applicability of the models to various HR contexts, 

such as employee promotion, training needs analysis, and talent development planning. 

1.3.2 The analysis emphasizes performance-oriented features within each 

dataset for the construction of the Generated Promotion Feature (GPF). This approach 

ensures that the engineering feature emphasizes data-driven relevance and practical 

interpretability. 
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1.4 Definition of Terms 

1.4.1 Human Resource Management is a strategic approach to managing 

people in an organization, including recruitment, training, evaluation, compensation, 

and promotion to optimize organizational performance and employee development. 

1.4.2 Employee Promotion is the advancement of an employee to a higher job 

position within an organization, generally accompanied by increasing responsibilities, 

higher compensation, and improved benefits. 

1.4.3 Clustering is an unsupervised machine learning technique used to group 

similar data points based on feature similarity, without relying on predefined labels. 

1.4.4 Generated Promotion Feature (GPF) is a newly constructed feature that 

synthesizes performance-based indicators such as KPI, training scores, and awards to 

represent an employee's potential for promotion accurately. 

1.4.5 SMOTE (Synthetic Minority Oversampling Technique) is a technique to 

equalize class distribution in imbalanced datasets by creating synthetic instances of the 

minority class. 

1.4.6 PCA (Principal Component Analysis) is a statistical technique for 

dimensionality reduction by changing features into a set of linearly uncorrelated 

components that capture the maximum variance in the data. 

1.4.7 t-SNE (t-distributed Stochastic Neighbor Embedding) is a nonlinear 

dimensionality reduction technique, mainly used for data visualization, that maintains 

local similarities between data points. 

1.4.8 KPI (Key Performance Indicator) is a quantifiable measure in evaluating 

the success of an employee to meet objectives relevant to their role. 

1.4.9 Performance Feature is a type of feature in HR data that reflects an 

employee’s work-related achievements, outcomes, or measurable behavior. 

1.4.10 Personal Feature is a type of feature that records demographic or personal 

attributes of an employee, such as age, gender, marital status, or education level. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Literature Review 

2.1.1 Human Resource Research with IT Aspect 

 According to a review of human resource literature, the variety of classifications 

of HR datasets is typically performed to satisfy different research objectives. For 

example, some studies have proposed the determinations of professionals (Asim et al., 

2018) or experts (Hoon et al., 2015) within the organization (Kaewwiset et al., 2021). 

Some studies were related to talent (Stephanie & Sarno, 2019), competency (Guohao 

et al., 2019), or employee performance (Nedelcu et al., 2020). Some studies developed 

a model of employee engagement (Chen & Gong, 2013). Some works have proposed 

the determination of the position allocation (Ramdhani et al., 2016; Mathew et al., 

2018) or job seeker classification (Hartanto et al., 2019) for finding new employees. 

Some works have proposed the determination of risk assessment or feature focusing on 

staff turnover (Tarusov & Mitrofanova, 2019; Wang et al., 2009), or predicting 

employee turnover (Juvitayapun, 2021). Overall, the reviewed literature demonstrates 

a growing emphasis on leveraging machine learning and data analytics in various HR 

domains, such as talent identification, competency analysis, position allocation, and 

turnover prediction. The proposed study built upon these foundations by introducing a 

unified, data-driven model designed explicitly for predicting promotions. By 

integrating feature engineering, dimensionality reduction, and data balancing, this 

research not only addresses key methodological gaps observed in prior studies but also 

advances HR analytics through a more interpretable and performance-oriented 

decision-making approach.  

2.1.2 Performance Evaluation with IT Aspect 

 Many human resource studies in information technology fields provide the 

necessary performance evaluation in the human resource management process. The 

importance of human resource management lies in effectively managing human 
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resources within an organization to attract and retain high-quality manpower. 

Moreover, the quality and performance of practice can determine the company's fate. 

This research presents the goal of all human resource development theories referred to 

as “selecting the right people for the right positions” (Jing, 2009).  The key to success 

in the company was the ability to manage employees' capabilities effectively. Matching 

the right jobs with excellent employees was a complex process and poses a challenge 

for managers (Huang & Jiang, 2011). 

 Several recent studies have highlighted the significant connection between 

performance metrics and outcomes related to promotion. Jamil et al. (2021) carried out 

a comprehensive study involving professional football teams in Europe, aiming to 

identify the key performance indicators (KPIs) that significantly influence promotion 

to elite leagues. Their analysis encompassed over 11,000 matches and observations 

concluded that specific technical actions, such as scoring from set plays and effective 

passing, correlate strongly with promotion success. In particular, performance elements 

such as goals from corners, penalty goals, and assists were identified as major 

contributors to increasing the odds of promotion. Although this research is rooted in 

sports, it emphasizes the general principle that measurable performance indicators can 

predict upward mobility, a concept relevant in various professional contexts, including 

human resources. 

 Similarly, the concluding report on Responsible Research and Innovation (RRI) 

indicators (Strand et al., 2015) suggested that promotion and evaluation processes 

should be based on measurable outcomes and evidence-based indicators. The report 

recommended using sets of indicators that span across all RRI dimensions while 

focusing on both process and performance. This supports the idea that data-driven 

frameworks for performance assessment are critical not just for fairness and 

transparency, but also for improving organizational development strategies.

 These findings from various fields revealed a common understanding: that 

performance evaluation plays a crucial role in assessing eligibility for promotion. 

Nevertheless, while earlier research suggested that performance was a key factor, there 

was a lack of studies investigating how machine learning methods could systematically 

integrate performance data into promotion decisions. This study investigates filling that 

gap by introducing the Generated Promotion Feature (GPF) and incorporating it into 
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clustering and classification models, thereby offering a new dimension to performance-

based promotion analytics. 

2.1.3 Clustering in Human Resource Management 

 According to the literature review about clustering in human resource 

management, this research focuses on performance evaluation clustering. This research 

utilizes fuzzy data mining to cluster various employees' data, thereby improving the 

efficiency and effectiveness of human resource performance assessment to support 

managers’ decisions. Fuzzy clustering is used to classify similar connections or objects 

into the same groups. Fuzzy cluster formulas are used to calculate the relationship 

between records. The experiment is separated into four processes. The first process is 

the data standardization process, designed to calculate the mean and standard deviation. 

The second process is finding the correlation coefficient by using a fuzzy similar matrix 

R. The third process is clustering analysis, which adopts the maximal tree method. The 

last process is the prediction and determination of instances. The results of clustering 

were divided into four clusters, where A refers to ‘better’, B refers to ‘general’, C refers 

to ‘worse’, and D refers to ‘best’ (Jing, 2009). This research employs a combination 

technique, comprising gene expression programming (GEP) and iterative self-

organizing fuzzy clustering (fuzzy ISODATA clustering), to enhance the accuracy of 

clustering and the convergence speed in human resource management. Before 

implementing the clustering process, the input data was integrated, and any unnecessary 

data was removed. The data was then converted for implementation in the clustering 

process. After completing the clustering process, the results could be interpreted in 

sentence form, which explained the performance of each employee cluster (Huang & 

Jiang, 2011). The research focused on evaluating the quality of recruitment in college 

by using a novel grey clustering based on the standard triangular haptenization weight 

function. The clustering results divided each attribute related to the quality of human 

resources into four groups: Excellent, Good, Medium, and Bad (Qian, 2013). 

Additionally, the SOM algorithm was applied to cluster and identify the correct 

character and existing problems in human resource management within the college. In 

college, human resources were divided into five groups: service and other, 

administration and teaching assistant, teaching, research, and teaching and research. 



8 

 

The results could indicate whether colleges have sufficient human resources in each 

cluster or a lack thereof (Huang, 2009). 

 Previous studies have focused on applying machine learning in human resource 

fields, with related works in this area. Many related studies focused on finding the 

optimal or expert position allocation, as well as job seekers and staff turnover. 

Furthermore, this research focuses on selecting the right people in the training and 

development process. It is based on employee promotions, identifying employees with 

strong work performance, and developing them for higher positions. In addition, the 

performance evaluation process features used in the evaluation are significant. 

Therefore, feature selection is a necessary process for selecting features and applying 

them with machine learning to evaluate employee performance. Most of the 

performance evaluations in related works classify performance by focusing on 

individual information. On the other hand, this research focuses on the performance 

evaluation by using a clustering process. In summary, previous studies investigated 

clustering techniques in HRM to segment employee characteristics, assess recruitment 

quality, and analyze workforce distribution using fuzzy clustering, SOM, and grey 

clustering approaches. However, most of these studies primarily rely on domain-

specific or heuristic methods and lack integration with performance-oriented features 

using systematic feature engineering. This study builds upon previous studies by 

presenting a machine learning-driven clustering framework that integrates 

dimensionality reduction and a novel feature construction approach (GPF), thereby 

allowing for more precise and understandable performance-driven promotion 

clustering.  

2.1.4 Employee Promotion 

 Employee promotion serves as a significant mechanism for identifying high-

performing individuals and assigning them to positions with greater responsibility and 

authority. Promotion involved promoting employees to higher roles within the 

organization, which not only motivates staff but also supported stronger loyalty and 

increased productivity (Muhannad Ilwani et al., 2023; Alqahtani & Almaleh, 2022; 

Bagdadli et al., 2006). Additionally, effective promotion strategies have been related to 

higher levels of employee engagement, a key factor in organizational success. Ensuring 

fair and well-informed promotion decisions is crucial for enhancing the quality of future 
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leadership and management within an organization (Liu et al., 2019). Promotion 

decisions are related to several other HR functions, including compensation planning, 

performance evaluations, layoffs, and recruitment strategies. Poorly executed 

promotion practices or a lack of clear career pathways could lead to low organizational 

commitment, reduced job and career satisfaction, increased likelihood of turnover, 

absenteeism, and employee disengagement (Bagdadli et al., 2006). To address these 

challenges, HR professionals must be equipped with the skills and tools to develop and 

apply objective, data-driven promotion criteria that minimize the risk of bias (Gathungu 

et al., 2015). Considering professional categories and hierarchical structure was also 

necessary to reduce misclassification and ensure promotions were aligned with 

organizational needs (Dias da Silva & van der Klaauw, 2006). However, traditional 

promotion techniques often rely heavily on subjective evaluations by supervisors. 

These manual processes could be flawed due to human bias, favoritism, or incomplete 

performance assessments, which might unfairly hinder an employee’s advancement 

opportunities (Muhannad Ilwani et al., 2023; Alqahtani & Almaleh, 2022). In larger 

organizations, the volume and complexity of HR data can be overwhelming, making it 

difficult for HR staff to extract meaningful insights. Therefore, leveraging advanced 

data analytics technologies became crucial to support evidence-based decision-making, 

formulate strategic talent development plans, and ensure that promotion decisions are 

both fair and effective (Huang, 2009). The present study addresses the limitations of 

traditional, subjective promotion systems by leveraging data-driven machine learning 

techniques to support more transparent and consistent promotional decisions. By 

incorporating structured performance metrics and techniques, such as the Generated 

Promotion Feature (GPF), this research introduces a systematic framework designed to 

minimize bias and enhance the fairness and accuracy of promotion assessments in 

complex HR settings. 

2.1.5 Employee Promotion Model with Machine Learning Methods 

 Machine learning (ML) is a branch of artificial intelligence (AI) that allows 

computers to learn patterns from data and make decisions or predictions without 

requiring specific programming instructions. In the context of human resource 

management, ML has been widely adopted to analyze employee data and support 

various HR-related tasks (Huang, 2009; Silva & Krohling, 2018). Typically, machine 
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learning applications for employee promotion modeling can be categorized into two 

main categories: supervised learning and unsupervised learning. Supervised learning is 

commonly used for classification tasks, where models are trained on labeled data to 

predict outcomes, such as promotions. Several previous studies have applied supervised 

algorithms such as Logistic Regression (Muhannad Ilwani et al., 2023), Random Forest 

(Liu et al., 2019; Sahinbas, 2022), Decision Tree (Kaewwiset & Temdee, 2022), and 

Gradient Boosting (Alqahtani & Almaleh, 2022) to develop predictive models for 

employee promotions. On the other hand, unsupervised learning is frequently applied 

for clustering tasks, where the goal is to identify inherent groupings within the data 

without relying on predefined labels. Unsupervised models are particularly valuable in 

HR analytics for identifying hidden patterns and segmenting employees based on 

shared characteristics. Notably, many studies have applied Fuzzy Clustering (Liu, 

2021; Ouyang & Ge, 2020; Dang et al., 2021; Sun et al., 2022; Wang, 2021) and  

K-means Clustering (Seyed Alireza Mousavian et al., 2021; Bruna Villa Todeschini et 

al., 2016; Liu et al., 2023; Sun & Li, 2019; Zhao, 2020; Sarker et al., 2018) for 

clustering HR-related data. Clustering approaches align closely with the objectives of 

promotion modeling, as they focus on grouping individuals based on similarity in 

characteristics or performance, regardless of their original roles or positions. This 

similarity-based grouping is beneficial for identifying employees who are promotable 

across different contexts. For these reasons, the present study applies an unsupervised 

learning approach to develop an employee promotion model. In particular, the study 

applies two widely used clustering algorithms: K-means clustering and Fuzzy 

clustering, both of which are well-suited to capture structural patterns within HR 

datasets. Moreover, the studies apply both supervised and unsupervised learning for 

employee promotion analysis. The present study contributes by integrating clustering 

techniques, specifically K-means and Fuzzy clustering, into a unified framework 

enriched with engineered performance features. This methodology improves the 

identification of employees eligible for promotion within unlabeled data, so extending 

current methods with greater interpretability and relevance across various HR contexts. 

2.1.6 Features for Promotion Model 

 In the development of promotion prediction models, two major types of features 

are commonly employed: personal features and performance-oriented features. 



11 

 

Personal features refer to background information about an employee, including aspects 

such as age, gender, educational background, marital status, state of origin, recruitment 

channel, region, foreign education status, and department affiliation. These attributes 

provide demographic and contextual insights into each employee’s profile. On the other 

hand, performance-oriented features focus on assessing an employee’s effectiveness 

and contributions in the workplace. These generally include Key Performance 

Indicators (KPIs), performance ratings from previous years, training scores, awards 

received, and a composite performance score that reflects overall achievement. Various 

studies emphasize different types of features when constructing promotion models. For 

example, some research has relied on personal attributes such as age, gender, and 

education to investigate promotion patterns (Liu et al., 2019). Other studies have 

focused exclusively on performance-based indicators, particularly performance and 

potential metrics, to inform promotion decisions (Bagdadli et al., 2006). Additionally, 

several studies combined both personal and performance-oriented features to provide a 

more holistic view (Alqahtani & Almaleh, 2022; Long et al., 2018). In this study, both 

personal and performance-oriented features are incorporated into the model to create a 

comprehensive framework for clustering. However, the design of the model provides a 

significant emphasis on performance-oriented features, based on the rationale that work 

performance should carry more weight in promotion decisions than demographic or 

background characteristics. This prioritization aligns with promoting fairness and 

merit-based advancement within the organization. This study expands on previous 

research by integrating both personal and performance-oriented features, with a 

particular emphasis on performance metrics to support merit-based promotion. By 

emphasizing measurable outcomes such as KPIs, training scores, and awards, the 

suggested framework aligns with modern HR strategies to improve the fairness and 

objectivity in promotion decisions within data-driven settings. 

2.1.7 Feature Engineering 

 Feature engineering is regarded as a fundamental step in the machine learning 

pipeline, with the primary objective of improving model performance by creating new, 

informative variables from the original dataset. These feature engineering techniques 

are integrated into learning algorithms to help reveal hidden patterns, thereby enhancing 

predictive accuracy and model reliability. Various studies have applied feature 
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engineering to both supervised and unsupervised learning tasks, demonstrating its 

impact across HR-related applications such as using data fusion for attendance 

monitoring (Wu & Shen, 2023), feature fusion for job matching (He et al., 2022), and 

data generation with GANs to enhance model accuracy (Hatanaka & Nishi, 2021). 

 Two notable techniques within feature engineering are feature extraction and 

feature augmentation, which gained significant attention in recent years due to their role 

in enhancing the manageability and quality of input data. Feature extraction focuses on 

reducing the dimensionality of datasets by selecting and transforming only the most 

relevant features. Among the most used techniques are Principal Component Analysis 

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), which represent 

linear and nonlinear dimensionality reduction approaches, respectively. 

 PCA is particularly effective in maintaining the overall variance of the data and 

transforming correlated variables into a set of uncorrelated components. This approach 

was applied in various HR-related contexts such as KPI weight analysis (Lai & Wei, 

2007), vendor evaluations (Xu, 2010), training assessment (Sun & Zhao, 2011), and 

enterprise performance analysis (Qi & Sun, 2011). Additionally, PCA was often 

employed as a preprocessing step in classification and clustering models (Kaewwiset 

& Temdee, 2022), including applications that combine PCA with K-means clustering 

(Sun & Li, 2019). It was performed by examining covariance matrices to assess the 

significance of variables and eliminate redundancy, resulting in objective, data-driven 

weights (Peng et al., 2023; Guo & Yi, 2010). 

 In contrast, t-SNE was responsible for maintaining local relationships by 

maintaining data points during projection to lower dimensions. It is beneficial in 

exploratory analysis, visualization, and discovering patterns within high-dimensional 

datasets. Its ability to reveal subtle clustering structures has been successfully applied 

in large-sample HR contexts (Chan et al., 2018; Yu et al., 2017; Feng et al., 2020). In 

this research, both PCA and t-SNE are explored and compared to identify the more 

effective dimensionality reduction method for enhancing clustering performance in 

employee promotion modeling. Another important aspect of feature engineering was 

the feature augmentation, which involved expanding the feature space by generating 

new variables derived from existing ones (Petkov et al., 2012; Duan et al., 2018). This 

technique enhances model robustness by generating additional training data through 
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systematic transformations of current features. Feature creation, a subcategory of 

augmentation, focuses on developing new variables that show a significant relationship 

with the target outcome. 

 In this research, a novel feature named Generated Promotion Feature (GPF) is 

introduced based on the assumption that performance-related variables play a more 

significant role in promotion decisions than demographic characteristics. GPF is 

developed by combining the top performance-oriented features that show the strongest 

correlation with promotion status. This additional variable is added to the dataset after 

feature extraction, with the expectation that it will enhance the clustering model's 

capability to identify employees who are eligible for promotion. 

 Although previous studies have explored employee promotion using 

classification techniques or multi-criteria decision-making (e.g., fuzzy DEMATEL, 

AHP), they often relied on expert judgment or qualitative assessments, which can 

introduce subjectivity and lack reproducibility. In addition, while recent studies have 

integrated ML techniques, they primarily focused on direct prediction from raw features 

without addressing data imbalance or the interpretability of performance metrics 

(Alqahtani & Almaleh, 2022).  This study extends previous work by introducing the 

Generated Promotion Feature (GPF), which is a derived feature based on top-correlated 

performance indicators that enhances both interpretability and clustering/classification 

performance. The GPF construction is informed by Pearson correlation, under the 

assumption that features highly correlated with promotion outcomes carry predictive 

importance. This is based on the filter method in feature selection theory, where 

statistical dependence between features and target variables is used as a selection 

criterion. Mathematically, GPF is a linear combination of binary decisions based on 

whether specific performance metrics meet defined thresholds. This connects to the 

idea of scoring functions in statistical learning, where a composite score is created to 

reflect hidden traits (e.g., qualification for promotion) from observable variables. 

2.1.8 Imbalanced Data Management 

 An imbalanced dataset refers to a scenario where the number of instances across 

different classes is not evenly distributed—typically, one class (the majority class) has 

a considerably larger number of instances compared to another (the minority class). 

This imbalance often results in biased classification models that demonstrate high 
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overall accuracy but fail to predict instances from the underrepresented class accurately. 

In such cases, the model typically prioritizes the majority class and overlooks the 

minority class, resulting in inadequate performance in practical applications where 

identifying minority instances is crucial. To address this challenge, two main categories 

of techniques are commonly employed: oversampling and undersampling (Tallo & 

Musdholifah, 2018). Over-sampling increases the representation of the minority class 

by generating additional instances, thereby preserving the original dataset's structure. 

In contrast, under-sampling reduces the number of instances in the majority class, 

which can help balance the dataset but may also result in the loss of valuable 

information if not applied carefully. A commonly used oversampling approach is the 

Synthetic Minority Oversampling Technique (SMOTE), which aims to enhance class 

balance by creating synthetic instances for the minority class (Li & Zhou, 2019). 

SMOTE works by interpolating between existing instances of the minority class and 

their nearest neighbors. This process creates new, artificial data points that represent 

plausible but unseen examples within the minority class. By expanding the 

representation of this class, SMOTE enhances the model’s ability to learn its 

characteristics, which in turn improves recall, precision, and the F1-score for 

predictions related to the minority class. SMOTE has been effectively applied in various 

fields, including employee promotion modeling (Liu et al., 2019) and clustering model 

construction (Xuan et al., 2013; Wang et al., 2020), demonstrating its adaptability and 

strength in managing imbalanced datasets. 

 In this study, SMOTE was selected as the primary strategy to address the class 

imbalance present in the two publicly available HR datasets. Since traditional accuracy 

metrics can be misleading when working with imbalanced data, it is crucial to focus on 

performance measures that more accurately reflect the model's capability on the 

minority class. SMOTE tackles class imbalance using a resampling-based approach, 

rather than cost-sensitive training. The technique adopted a K-nearest neighbors (KNN) 

algorithm to identify the nearest minority instances and interpolate new data points 

between them. The synthetic instances are then added to the dataset, thereby enlarging 

the minority class and enabling the classifier to generalize patterns from both classes 

better. As a result, classifiers trained on SMOTE-enhanced data typically achieve more 
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balanced performance, especially in recognizing instances from the underrepresented 

class (Tallo & Musdholifah, 2018). 

2.2 Background Theory 

In this study, the data preprocessing stage is given significant emphasis as a 

foundational component of the modeling pipeline. The theoretical background explored 

includes essential techniques in data preparation, particularly feature extraction 

methods such as Principal Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (t-SNE), which are utilized to reduce dimensionality and reveal 

latent structures in high-dimensional HR datasets. Furthermore, this research addresses 

the issue of class imbalance, a common challenge in promotion prediction tasks, by 

applying the Synthetic Minority Oversampling Technique (SMOTE). These 

preprocessing strategies are employed prior to model construction, which involves both 

supervised learning (classification) and unsupervised learning (clustering), to improve 

model performance and generalizability. 

2.2.1 Feature Extraction 

 To address the challenges posed by high-dimensional and complex HR datasets, 

this study incorporates feature extraction techniques as a crucial component of the data 

preprocessing pipeline. Specifically, Principal Component Analysis (PCA) and  

t-distributed Stochastic Neighbor Embedding (t-SNE) are employed to transform and 

reduce the dimensionality of the input space while maintaining meaningful structure. 

These two techniques represent fundamentally different approaches to dimensionality 

reduction: PCA is a linear projection method that emphasizes global variance, and  

t-SNE is a nonlinear method that focuses on preserving local neighborhood relationships. 

 The inclusion of both PCA and t-SNE in the experimental design enables a 

comprehensive evaluation of how linear versus nonlinear transformations impact the 

performance of clustering and classification models. By reducing redundancy and noise 

in the data, these techniques are expected to enhance model generalization, improve 

interpretability, and reveal the hidden patterns in employee performance data that are 

critical for promotion modeling. 
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2.2.1.1 Principal Component Analysis (PCA) 

 Principal Component Analysis (PCA) is a feature extraction method using 

an unsupervised algorithm. It is used to reduce the dimensionality of the data. Linear 

algebra and statistics are utilized in PCA calculations to identify highly variant and 

highly correlated outputs, and to rearrange the features through a linear transformation, 

thereby creating new variables in a simple matrix (Syafrudin et al., 2020). The first 

feature of PCA is characterized by high variance and captures the most information 

about the dataset. The second feature is more informative and has more considerable 

variance than the third, and so on. The steps of PCA are as follows: 

1. Normalized features by Standardize. 

2. Covariance matrix calculation. 

3. Finding the eigenvalues and eigenvectors for the covariance matrix. 

4. Plot the vectors on the scaled data. 

2.2.1.2 t-distributed Stochastic Neighbor Embedding (t-SNE) 

 t-SNE is a nonlinear dimensionality reduction technique, primarily designed 

to visualize high-dimensional data by mapping it into a lower-dimensional space 

(typically two or three dimensions). Created by van der Maaten and Hinton, t-SNE 

transforms the pairwise similarities of data points into joint probabilities and reduces 

the divergence between these probabilities in both high-dimensional and low-

dimensional spaces.  Unlike linear methods such as Principal Component Analysis 

(PCA), t-SNE effectively preserves local structures and captures intricate non-linear 

relationships among features, making it a powerful tool for exploratory data analysis 

and pattern discovery in complex datasets. In addition, t-SNE begins by calculating a 

conditional probability that a data point would select another data point as its neighbor 

within the high-dimensional space. It then strives to find a low-dimensional 

representation that retains these neighbor relationships by employing a student’s t-

distribution to assess similarity. This approach addresses the "crowding problem" and 

yields more meaningful visualizations resembling clusters. 

 t-SNE has been applied in various domains of human resource analytics. For 

example, it has been employed in clustering analysis on extensive HR datasets to 

maintain significant groupings and reveal hidden patterns (Chan et al., 2018; Feng et 

al., 2020; Yu et al., 2017). In these studies, t-SNE effectively revealed internal clusters 
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of employees or performance groups, which could be further used for promotion 

analysis, workforce segmentation, or anomaly detection. 

2.2.2 Data Unbalancing 

Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE (Synthetic Minority Oversampling Technique) (Chawla et al., 2002; 

Chawla, 2010) is a data preprocessing technique used to manage imbalanced data. 

Generally, the machine learning performance is challenged by the imbalanced data. The 

imbalanced data occurs because of an unequal distribution of classes in a dataset, 

leading to the incorrect choice of distribution when creating a model, as the majority 

class is more extensive than the minority class. The imbalanced data can be addressed 

in two ways. Firstly, it can be addressed by assigning distinct costs to training examples. 

Secondly, it can be addressed by resampling the original dataset. 

SMOTE processes by creating artificial objects of a minority class. The 

oversampling of the minority class requires the use of k-nearest neighbors (Tarusov & 

Mitrofanova, 2019) at random. The identification of a sample from the nearest neighbor 

of the minority class is calculated using Euclidean distance, as demonstrated in 

Equation (2.1). 

Euclidean distance equation 

𝑑(𝑥, 𝑦) =  √(𝑥1 − 𝑦1)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2                   (2.1) 

Where 

1. 𝑑(𝑥, 𝑦) is Euclidean distance between one minority data to another 

minority data. 

2. 𝑥 and 𝑦 is minority data. 

3. 𝑛  is the maximum number of attributes. 

 Then, sample data are generated between two minority data by using the linear 

interpolation formula. 

 Linear interpolation formula 

 𝑧 = 𝑥𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) × (𝑥𝑛 − 𝑦𝑛)   (2.2) 
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Where 

1. 𝑧 is synthetic data. 

2. 𝑥 and 𝑦 is minority data. 

3. 𝑛 is the maximum number of attributes. 

4. 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) is a random number between 0 and 1. 

2.2.3 Machine Learning Classification 

 To build reliable and interpretable models for predicting employee promotions, 

this research adopted six classification algorithms: Decision Tree, Random Forest, 

SVM, Logistic Regression, KNN, and Neural Network. These classifiers were 

intentionally chosen to encompass a wide variety of learning approaches. Additionally, 

each model has unique features, including rule-based learning (Decision Tree), 

ensemble methods (Random Forest), margin-based optimization (SVM), probabilistic 

models (Logistic Regression), instance-based learning (KNN), and deep learning 

strategies (Neural Network). With these varied algorithms, the study aims to 

comprehensively evaluate the effectiveness of the proposed preprocessing strategies 

and feature engineering techniques across different modeling philosophies, ensuring 

generalizability and robustness of the classification outcomes.  

2.2.3.1 Decision Tree 

 A Decision Tree is a predictive model represented as a flowchart in a tree 

format, utilized for establishing decision rules and classifying subjects into several 

groups.  The tree structure consists of a root node, branches, inner nodes, and leaf nodes. 

The root node is an attribute selection at the top node. The branch is an object that meets 

the node condition. The leaf node is a class or a prediction result of an object. 

Additionally, it can be presented in two types. The first one presents discrete values, 

known as a classification tree, and the second one presents continuous values, known 

as a regression tree. The Decision Tree is widely used in human resource management, 

such as information security risk analysis of human resources (Eminagaoglu & Eren, 

2010), and VARK learning style analysis with physiological signals (Dutsinma & 

Temdee, 2020). 

2.2.3.2 Random Forest 

 Random Forest is a widely used classifier that operates on the principle of 

decision trees by combining multiple trees instead of relying on a single tree for 
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classification. Each tree is constructed from the original training sample randomly and 

reversibly. The majority of the votes of the decision tree are selected as a Random 

Forest model. The random forest is used in many classification applications, such as 

learner and professional development (Asim et al., 2018; Guohao et al., 2019), skilled 

job position replacements (Mathew, Chacko, & Udhayakumar, 2018), and evaluating 

the risk of employee turnover (Tarusov & Mitrofanova, 2019). 

2.2.3.3 Support Vector Machine 

 Support Vector Machine (SVM) is a classification method that assigns 

classes by separating each class through a decision boundary where the data points are 

separated by a line, called linear SVM, and a hyperplane, called non-linear SVM. Two 

sides of a hyperplane separate the dataset into two classes. When new input data is 

predicted for either of the two, the margin between the hyperplane and the support 

vector will be significant in reducing the error in the classification model. For example, 

replacement in skilled job positions (Mathew et al., 2018), text classification of 

competency and professional learning (Aottiwerch & Kokaew, 2018; Adnan et al., 

2020), improving performance of learners (Guohao et al., 2019), feature selection for 

human resources management (Wang, Li, & Hu, 2009). 

2.2.3.4 Logistic Regression 

 Logistic Regression is a widely used statistical model for binary 

classification tasks, which estimates the probability that a given input belongs to a 

specific category. It is particularly suitable for scenarios where the dependent variable 

is dichotomous (e.g., promoted vs. not promoted). The model operates by applying the 

logistic (sigmoid) function to a linear combination of input features, resulting in an 

output bounded between 0 and 1. The threshold (commonly 0.5) is then used to 

determine the final class label. Logistic Regression is valued for its simplicity, 

interpretability, and efficiency, making it a preferred baseline model in many human 

resource analytics applications. 

 In HRM contexts, Logistic Regression has been applied to analyze factors 

influencing promotion decisions (Ilwani et al., 2023), predict employee turnover, and 

examine job satisfaction levels. It has also been used in workforce planning and 

identifying high-potential employees based on performance indicators and 

demographic variables. For example, Ilwani et al. (2023) conducted a study using 
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Logistic Regression to assess promotion trends within organizational data, emphasizing 

the significance of using balanced datasets and performance-related features to enhance 

the accuracy of predictions. Though it has a linear framework, Logistic Regression 

continues to be an effective tool when paired with feature engineering and balancing 

methods like SMOTE to address class imbalance and improve generalizability. 

2.2.3.5 K-Nearest Neighbor (KNN) 

 K-Nearest Neighbor (KNN) is a non-parametric, instance-based learning 

algorithm used for both classification and regression tasks. In classification, the 

algorithm assigns a class label to a new data point based on the majority class among 

its k nearest neighbors in the feature space. The distance between points is typically 

measured using the Euclidean distance, although other metrics, such as Manhattan or 

Minkowski distance, may also be applied depending on the context. The selection of 

the value for k plays a crucial role in the model's effectiveness—a minimal k may result 

in overfitting, whereas a k that is too large may lead to underfitting. 

 KNN does not build an explicit model during training, which makes it 

computationally efficient for small datasets but potentially expensive during prediction 

for large datasets. Its simplicity and effectiveness make it suitable for HR analytics, 

particularly in tasks involving similarity-based reasoning, such as employee clustering 

or predicting the possibility of promotion. 

 In human resource contexts, KNN has been applied in various settings, 

including job seeker classification using Twitter data (Hartanto et al., 2019) and skill 

or competency matching based on behavioral profiles. Its ability to model decision 

boundaries based on historical similarity enables HR managers to make data-driven 

decisions without assuming any prior distribution of features. Although sensitive to data 

imbalance, KNN’s performance can be significantly improved when combined with 

data preprocessing techniques such as SMOTE for balancing and PCA or t-SNE for 

dimensionality reduction. 

2.2.3.6 Neural Network 

 Artificial Neural Network (ANN) is a computational model inspired by the 

structure and functioning of biological neural networks. It consists of interconnected 

layers of nodes, referred to as neurons, including an input layer, one or more hidden 

layers, and an output layer. Each neuron processes weighted input and passes the result 
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through an activation function, enabling the network to learn complex, non-linear 

relationships between input features and target outputs. 

 In classification tasks, artificial neural networks (ANNs) learn to 

differentiate between classes through a training method called backpropagation, where 

discrepancies between predicted and actual values are propagated backward through 

the network to modify the weights. The ability of ANN to model intricate decision 

boundaries makes it particularly useful in domains involving high-dimensional and 

noisy data, such as human resource analytics. 

 In human resource management, Neural Networks have been used for 

various tasks, including job recommendations through feature fusion (He et al., 2022), 

employee performance prediction (Liu et al., 2021), and enhancement of employee 

classification accuracy using deep learning (Muhammad et al., 2020). These studies 

have demonstrated the effectiveness of ANN in identifying hidden patterns within 

performance-related data, thus aiding decisions regarding employee growth and 

advancement. 

 Although Neural Networks have significant capabilities, they demand a 

large amount of training data and can be affected by factors such as class imbalance. 

As a result, they are frequently used alongside data augmentation or balancing strategies 

like SMOTE, as well as dimensionality reduction techniques such as PCA or t-SNE to 

enhance stability and understanding in real-world HR applications. 

2.2.4 Machine Learning Clustering 

 To investigate unsupervised learning approaches for identifying promotable 

employees, this study employs clustering techniques that group individuals based on 

similarities in feature space without relying on labeled outcomes. Clustering is 

particularly useful in human resource analytics for discovering latent patterns, 

segmenting employee populations, and supporting data-driven decision-making where 

class labels may not be predefined or consistently available. Moreover, two prominent 

clustering methods are adopted: K-Means Clustering and Fuzzy Clustering. These 

techniques are selected to capture both hard and soft clustering paradigms. K-Means 

assigns each data point to a single cluster based on distance minimization, and Fuzzy 

Clustering allows partial membership in multiple clusters, better reflecting the 

complexity and overlap inherent in human characteristics. By evaluating both methods 
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on enhanced HR datasets improved through feature engineering and data balancing, 

this research aims to assess the effectiveness of clustering models in supporting 

promotion analysis and segmentation within organizational environments. 

2.2.4.1 K-Means Clustering 

 K-Means is an unsupervised learning algorithm that divides a dataset into  

K unique, non-overlapping groups based on similarities in features.  It aims to minimize 

the within-cluster variance by assigning each data point to the cluster with the nearest 

mean (centroid). The algorithm operates iteratively by initializing K centroids, 

assigning data points to the nearest centroid, and recalculating the centroids until 

convergence is achieved. 

 K-Means is particularly effective for discovering hidden structures in large 

datasets without prior labeling. Despite its simplicity and efficiency, it is influenced by 

the initial selection of centroids and the predetermined number of clusters (K). 

Therefore, techniques such as PCA are often used to reduce dimensionality before 

applying K-Means, which improves clustering performance and visualization. 

 In the field of human resource management, K-Means clustering has been 

extensively used for categorizing employee profiles, evaluating performance metrics, and 

supporting strategic decision-making. For example, Zhao (2020) applied K-Means to 

improve informatization in HR datasets, while Sun and Li (2019) used PCA in 

conjunction with K-Means to enhance talent clustering in enterprise contexts. 

Furthermore, Sarker et al. (2018) demonstrated the effectiveness of K-Means in 

identifying performance patterns that assist in promotion and training decisions. These 

studies confirm the utility of K-Means in extracting actionable insights from 

multidimensional HR data, making it a valuable tool in data-driven promotion modeling. 

2.2.4.2 Fuzzy Clustering 

 Fuzzy Clustering is an unsupervised machine learning technique that allows 

each data point to belong to more than one cluster, with varying degrees of membership. 

Unlike hard clustering algorithms, K-Means, which assign each observation to a single 

cluster, fuzzy clustering provides a more flexible approach that reflects the uncertainty or 

overlap often present in real-world data. The most widely used fuzzy clustering method 

is the Fuzzy C-Means (FCM) algorithm, which optimizes a membership function to 

minimize intra-cluster variation while allowing partial membership across clusters. 
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 The algorithm operates by iteratively updating the membership degrees and 

the cluster centroids until convergence is reached. This approach is particularly 

valuable in human resource contexts, where employee characteristics frequently 

encompass various roles, competencies, or performance levels. By assigning 

probabilistic membership to different groups, fuzzy clustering captures the nuanced 

relationships among HR variables more effectively than crisp classification. 

 Fuzzy clustering has been applied to various HR analytics tasks, including 

performance evaluation, workforce segmentation, and skill assessment. For example, 

Jing (2009) applied fuzzy data mining to categorize employee performance into different 

quality tiers, while Huang and Jiang (2011) developed a fuzzy ISODATA clustering 

framework using gene expression programming to enhance convergence speed in HR 

analysis. Additionally, Qian (2013) proposed a fuzzy-based assessment using triangular 

Whitenization weight functions to classify HR data into levels of excellence. These works 

demonstrate the suitability of fuzzy clustering in modeling ambiguous and overlapping 

characteristics within human resource datasets, providing a more realistic representation 

of employee profiles for tasks such as promotion modeling. 

2.3 The Proposed Work 

 This study proposes a comprehensive and structured machine learning 

framework to support employee promotion analysis, addressing critical limitations in 

traditional promotion decision-making, including subjectivity, data imbalance, and 

high-dimensional feature spaces. The proposed approach incorporates both supervised 

and unsupervised learning techniques to enable predictive modeling and pattern 

discovery from HR datasets. 

 The core of this framework lies in three components. Firstly, the feature 

augmentation is applied through the development of a novel domain-informed variable 

called the Generated Promotion Feature (GPF). GPF is constructed by aggregating 

multiple high-correlation performance-related attributes such as key performance index 

(KPI) scores, award history, and average training results into a single interpretable 
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numerical value. This feature aims to provide greater clarity on an employee's 

promotability than individual metrics alone. 

 Secondly, feature extraction is conducted to reduce the dataset's dimensionality 

while preserving its meaningful structures. Both Principal Component Analysis (PCA) 

and t-distributed Stochastic Neighbor Embedding (t-SNE) are utilized to evaluate their 

effectiveness in improving model performance. PCA is expected to reveal global 

variance structures, while t-SNE is anticipated to enhance local data relationships. 

 Lastly, to mitigate the challenge of class imbalance inherent in promotion 

datasets, the Synthetic Minority Oversampling Technique (SMOTE) is employed. 

SMOTE generates synthetic data points for the underrepresented class (i.e., promoted 

employees) based on interpolation, thereby balancing the class distribution and 

enhancing the model’s generalizability. 

 The enriched datasets—combinations of original features, GPF, PCA/t-SNE, 

and SMOTE—are used to train and evaluate both clustering models (K-means and 

Fuzzy C-means) and classification models (Random Forest, Decision Tree, Support 

Vector Machine, K-Nearest Neighbor, Logistic Regression, and Neural Network). The 

performance of each model is assessed using appropriate metrics, including the Rand 

Index (RI), Mutual Information (MI), V-measure, and Fowlkes-Mallows Index (FMI) 

for clustering, as well as Accuracy, Precision, Recall, and F1-score for classification. 

 This proposed work is expected to enhance the fairness, interpretability, and 

predictive capabilities of promotion decision systems, enabling HR professionals to 

make more data-driven and transparent decisions across various organizational settings.  
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CHAPTER 3 

METHODOLOGY 

3.1 Method Overview 

 This research comprises six key methodological stages, as illustrated in Figure 

3.1: Data Collection, Data Preprocessing, Feature Engineering, Feature Scaling, Model 

Construction, and Result Evaluation. Each stage is designed to systematically prepare, 

transform, and evaluate HR datasets to construct effective models for employee 

promotion analysis.  

 

Figure 3.1 Overall Methodology 
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Figure 3.1 (continued) 

The details of each stage are as follows: 

 The Data Collection Stage introduces the two publicly available HR datasets 

that were selected as the basis for evaluating the effectiveness of the proposed clustering 

approach for employee promotion analysis. The datasets are described in terms of the 

total number of records, the distribution of promotion and non-promotion classes, and 

a detailed explanation of all available fields. The features are categorized into two 

groups: personal features (e.g., age, education, region) and performance-oriented 

features (e.g., KPI scores, awards, training scores). The correlation between each 

feature and promotion status is also examined to understand their relevance. 

 During the data preprocessing stage, irrelevant fields, such as employee 

identification numbers, are removed due to their lack of analytical significance. Missing 

values in both datasets are handled using mode imputation, ensuring that the data is 

complete and ready for further processing. 
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The Feature Engineering phase stands out as the key aspect of the proposed 

methodology. Feature Engineering consists of two main techniques: feature 

augmentation and feature extraction. A novel feature, called the Generated Promotion 

Feature (GPF), is created using performance-oriented variables that exhibit a high 

correlation with promotion status. To determine which variables are most closely linked 

to promotion outcomes, a correlation heatmap was created. Features that exhibited high 

correlation with the promotion label were selected to construct a new feature set known 

as the Generated Promotion Feature (GPF). In addition, two dimensionality reduction 

techniques, which are Principal Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (t-SNE), are applied to extract informative features that prepare the 

datasets for more effective model construction. These techniques helped simplify the data 

while maintaining its most informative patterns. The transformed data from the extraction 

process was then combined with GPF to form an enhanced dataset. 

 The Feature Scaling (Imbalanced Data Handling) addresses the severe 

imbalance present in HR promotion data, where the number of promoted employees is 

significantly lower than that of non-promoted ones. To handle this, Synthetic Minority 

Oversampling Technique (SMOTE) is applied to generate synthetic instances of the 

minority class, thereby balancing the dataset and reducing bias in model training. 

 Model Construction focuses on evaluating the suitability of various models on 

the enriched datasets. Both classification models (such as Random Forest, SVM, and 

Logistic Regression) and clustering models (such as K-means and Fuzzy Clustering) 

are developed and evaluated to identify the most effective method for predicting 

employee promotions and clustering. 

 The final stage (Result Evaluation) evaluates the performance of the constructed 

models. For classification models, standard metrics such as Accuracy, Precision, 

Recall, and F1-score are used. For clustering models, evaluation is conducted using 

clustering-specific metrics, including Rand Index (RI), Mutual Information (MI), V-

measure, and Fowlkes–Mallows Index (FMI), to assess the quality and consistency of 

the clusters formed. The overall methodology is illustrated in Figure 3.1. 

  



28 

 

3.2 Data Collection 

 Two datasets from Kaggle, containing information on human resources and 

employee promotions, were analyzed in this study: Dataset 1, HR Analysis Case Study 

Dataset (Kumar, 2020), and Dataset 2, Data Science Staff Promotion Prediction 

(Sulaiman, 2019). These HR datasets were used to evaluate the generalization of the 

proposed features and the employee promotion clustering model. 

3.2.1 HR Analysis Case Study Dataset 

 This dataset is an open data Human Resource Analysis Case Study dataset from 

Kaggle. The dataset comprises 54,808 records and 14 columns, as follows. 

 The dataset contains 12 inputs and 1 output for classification. One of them is 

eliminated because it is unnecessary for classification, which is the employee ID. The 

input data included department, region, education, gender, recruitment channel, number 

of trainings, age, previous year rating, length of service, KPI, awards, and average 

training score. The output data indicates the promotion status. The promotion status is a 

data field with two possible statuses, including 0 for non-promotion and 1 for promotion. 

Table 3.1 Attribute Description of HR Analysis Case Study Dataset 

Features Category Description 

Employee ID Personal Employee ID ranges: 1–78298 

Department Personal Company department: analytics, finance, HR, legal, 

operations, procurement, R&D, sales & marketing, technology  

Region Personal Region ranges: region_1–region_34. 

Education Personal Education level: bachelor, below secondary, master & above 

Gender Personal Gender: male, female 

Recruitment channel Personal Recruitment channel: referred, sourcing, other 

No of trainings Performance Number of trainings: 1–9 

Age Personal Age of employee: 20–60 

Previous year rating Performance Previous year rating: 1–5 

Length of service Performance Time spent by a worker: 1–34 

KPI  Performance KPI score: more than 80% (1), less than 80% (0) 

Awards won Performance Award winning:  

received awards (1), did not receive awards (0)  

Average training score Performance Average training score: 0–100 
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3.2.2 Data Science Staff Promotion Prediction Dataset 

 The Data Science Staff Promotion Prediction dataset is open data from Kaggle. 

The dataset has 38,312 records and 19 columns as follows. 

 The dataset contains 17 inputs and 1 output for classification, and one of them 

is eliminated because it is unnecessary for classification, which is the employee 

number. The input data includes division, qualification, gender, channel of recruitment, 

training attended, year of birth, last performance score, year of recruitment, targets met, 

previous award, training score average, state of origin, foreign schooled, marital status, 

past disciplinary action, previous intradepartmental movement, and no of previous 

employers. The output data indicates the promotion status. The promotion status 

includes two possible statuses: 0 for non-promotion and 1 for promotion. 

Table 3.2 Attribute Description of Data Science Staff Promotion Prediction Dataset 

Features Category Description 

Employee No Personal Employee no ranges: YAK/S/00001–YAK/S/54761 

Division Personal Company Division: business finance operations, etc. 

Qualification  Personal Qualification level: non-university education, first 

degree or HND, MSc, MBA, and PhD 

Gender Personal Gender: male, female 

Channel of recruitment Personal Recruitment channel: direct internal process, agency 

and others, referral and special candidates 

Trainings attended Performance Training attended: 2–11 

Year of birth Personal Year of birth: 1950–2001 

Last performance score Performance Last performance score: 0, 2.5, 5, 7.5, 10, 12.5 

Year of recruitment Personal Year of recruitment: 1982–2018 

Targets met Performance KPI Target:  

meet the target (1), did not meet the target (0) 

Previous award Performance Award winning:  

received awards (1), did not receive awards (0) 

Training score average Performance Training score: 31–91 

State of origin Personal State of origin: KADUNA, PLATEAU, BORNO, etc. 

Foreign school Personal Foreign school: yes, no 

Marital status Personal Marital status: single, married, not sure 

Past disciplinary action Performance Past disciplinary action: yes, no 

Previous Intradepartmental 

movement 

Performance Previous intradepartmental movement: yes, no 

No of previous employers Performance No of previous employers: 0–5, and more than 5 
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 Dataset 1 consists of 54,808 records and 13 features, with a promotion rate of 

8.52% (4,668 records) and 91.48% (50,140 records) classified as not promoted. The 

proportion of promotion and non-promotion classes is illustrated in Figure 3.2. Dataset 

2 contains 38,312 records and 18 features, with a promotion rate of 8.46% (3,241 

records) and 91.54% (35,071 records) classified as not promoted. The proportions of 

both classes are depicted in Figure 3.3. 

 

Figure 3.2 Data Proportion of Dataset 1 

 

Figure 3.3 Data Proportion of Dataset 2 
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3.3 Data Preprocessing 

 As part of the data preprocessing process, employee identification numbers and 

employee codes were removed because they do not contribute meaningful insights for 

analysis or model prediction. These fields serve only as unique identifiers and have no 

direct relationship with the outcome of the promotion. 

 The next step involved handling missing data, which was represented as null 

values in the datasets. In Dataset 1, two features, which are education and previous year 

rating, contained missing values. Specifically, the education feature had 2,409 missing 

records, while the previous year's rating had 4,124 missing records. To handle this, the 

most frequent value (mode) in each feature was used to fill the missing data, ensuring 

consistency without introducing bias. In Dataset 2, the qualification feature was found 

to have 1,679 missing values, which were filled with the mode value. This approach 

helps preserve the integrity of the data while avoiding the complications that may arise 

from data deletion or arbitrary imputation. An example of a dataset before and after 

processing in the data pre-processing step, as shown in Figure 3.4 and Figure 3.5, 

respectively. 

 

Figure 3.4 Example Dataset Before the Data Pre-processing Step 
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Figure 3.5 Example Dataset After the Data Pre-processing Step 

3.4 Feature Engineering 

 This step enhances feature dimensions to prepare the dataset for improved 

modeling performance. The focus of this study is to use GPF. GPF is created based on 

the strong relationship between performance indicators and promotion outcomes. This 

method helps simplify the dataset while preserving the most meaningful information, 

as it combines feature extraction techniques such as PCA and t-SNE to transform the 

data structure, aiming to improve the overall performance of the models. The following 

sections provide a detailed explanation of how each process contributes to enriching 

and optimizing the data for analysis. The conceptual diagram is shown in Figure 3.6. 
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Figure 3.6 Conceptual Diagram of Proposed Framework 

3.4.1 Feature Augmentation 

 The primary objective of this study is to develop a new feature, known as the 

Generated Promotion Feature (GPF), designed to enhance the effectiveness of models 

used in employee promotion analysis. The core idea behind GPF is to enrich the dataset 

with more meaningful, performance-based information that could support machine 

learning algorithms in both learning and prediction tasks. GPF is carefully designed 

using a combination of domain expertise and data-driven insights, with an emphasis on 

prioritizing performance-related attributes over personal characteristics when 

identifying employees with potential for promotion. To identify the most relevant 

performance indicators for constructing GPF, a correlation heatmap is generated to 

measure the strength of the relationship between each feature and the promotion status. 

The three features with the highest correlation scores limited to performance-oriented 

dimensions were selected to form the GPF.  

 In Dataset 1, the selected features include “KPI”, “Awards won”, and “Average 

training score”, as illustrated in Figure 3.7. In Dataset 2, the top features corresponding 

to the targets are “Targets met,” “Previous award,” and “Training score average,” as 
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shown in Figure 3.8. These features serve as the foundation for generating GPF, which 

is integrated into the dataset to support more insightful clustering analysis. 

 

Figure 3.7 Performance-Oriented Feature Correlation Dataset 1 

 

Figure 3.8 Performance-Oriented Feature Correlation Dataset 2 
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The construction of GPF is detailed in Algorithm 1, as follows. 

Algorithm 1: GPF Creation  

Input:  

1. dataset = list of data records (each record is a dictionary of features)  

2. performance_features = list of feature names selected based on high 

correlation 

3. target_values = list of target values corresponding to performance_features  

Output:  

dataset_with_gpf = dataset augmented with GPF score for each record 

Process: 

Set num_features = length(performance_features) 

Set score_per_match = 100 / num_features 

For each record in dataset: 

Set gpf_score = 0 

For i from 0 to num_features - 1: 

Set feature_name = performance_features[i] 

Set target_value = target_values[i] 

If record[feature_name] == target_value: 

gpf_score = gpf_score + score_per_match 

Set record['gpf'] = round(gpf_score, 2) #2 decimal places setting 

Return dataset_with_gpf 

Example Algorithm 1: GPF Creation of dataset1 

This example illustrates the calculation of the GPF for dataset1, which utilizes 

the top three performance-related features with the highest correlation to promotion: 

KPI, Awards Won, and Average Training Score. 

Input:  

1. dataset = list of data records (each record is a dictionary of features)  

2. performance_features = (KPI, Awards won, Average training score) 

3. target_values = (KPI >= 80%, Awards won = 1, Average training score 

>= 90)  

Output:  

dataset_with_gpf = dataset augmented with GPF score for each record 
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Process: 

Set num_features = length(KPI, Awards won, Average training score) 

Set score_per_match = 100 / 3 

For each record in dataset: 

Set gpf_score = 0 

For i from 0 to 3 - 1: 

Set feature_name = KPI 

Set target_value = (KPI >= 80%) 

If record[KPI = 85] compare with (target_value) is true: 

gpf_score = 0 + 33.33 

#New Loop 

Set feature_name = Awards won 

Set target_value = 1 

If record[Awards won =1] == (target_value = 1): 

gpf_score = 33.33 + 33.33 

#New Loop 

Set feature_name = Average training score 

Set target_value = (Average training score >= 90) 

If record[Average training score = 80] compare with (target_value) is 

false: 

gpf_score = 66.66 + 0 

Set record['gpf'] = round(66.66, 2)  #2 decimal places setting 

Return dataset_with_gpf 

3.4.2 Feature Extraction 

 In this study, dimension reduction techniques, Principal Component Analysis 

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), were applied during 

the feature extraction phase. These methods were selected because they represent two 

complementary approaches; PCA is a linear technique, while t-SNE is a nonlinear 

method. 

 PCA operates by transforming the original variables into a new set of linearly 

uncorrelated components, known as principal components, which capture the directions 

of maximum variance in the data, which helps reduce the number of features while still 
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preserving essential patterns and relationships within the dataset (Liu et al., 2020; Pal 

& Sharma, 2020). In addition, 20% of the most variable PCA features with the strongest 

relationship to promotion status were selected for further analysis. As a result, features 

were chosen from Dataset 1 and Dataset 2, as shown in Figures 3.9 and 3.10, 

respectively. 

 

Figure 3.9 Twenty Percent of PCA Features That Contribute the Most Variance to 

The Promotion of Dataset 1 

 

Figure 3.10 Twenty Percent of PCA Features That Contribute the Most Variance to 

The Promotion of Dataset2 
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 In contrast to PCA, which is designed to preserve overall variance within the 

dataset, t-distributed Stochastic Neighbor Embedding (t-SNE) is more focused on 

capturing local relationships between data points in high-dimensional space. This 

technique works by comparing the probability distributions of data point similarities in 

both the original high-dimensional space and a lower-dimensional embedded space. t-

SNE in visualizing complex, high-dimensional data by projecting it into two or three 

dimensions, where patterns and groupings become easier to interpret. Unlike linear 

methods, t-SNE uses a nonlinear approach that converts pairwise similarities into 

probabilities by applying Gaussian distributions in the high-dimensional space and t-

distributions in the reduced space. The algorithm minimizes the Kullback–Leibler 

divergence between the two probability distributions using gradient descent, effectively 

maintaining the local structure of the data during the dimensionality reduction process. 

This makes t-SNE especially well-suited for tasks such as clustering, pattern 

recognition, and data exploration. In this study, the t-SNE was applied to reduce the 

original dataset into three dimensions, allowing for clearer clustering patterns and a 

better understanding of the underlying data structure. 

 After feature extraction and GPF construction, the data combination process 

was carried out. Two combination sets were created for each dataset. The combination 

of datasets is shown in Tables 3.3–3.6 

Table 3.3 Examples of the Combined Data Sets (PCA and GPF) for Dataset 1 

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 GPF Promotion 

5.798384 1.635531 -2.77267 -3.113 11.88974 -7.24371 100 1 

-5.02838 0.066464 -1.96308 2.155092 4.206181 -4.86832 66.66 1 

-1.50148 4.037889 -3.04857 -4.61725 1.192841 -24.9768 33.33 0 

2.183395 -7.05445 0.498713 2.519167 2.657033 -7.38592 0 0 

Table 3.4 Examples of the Combined Data Sets (t-SNE and GPF) for Dataset 1 

tSNE1 tSNE2 tSNE3 GPF Promotion 

22.52338 26.86526 16.61523 100 1 

-18.422 -7.82231 -32.4508 66.66 0 

-33.0769 8.412391 9.332352 33.33 1 

12.17863 28.64398 -21.2067 0 1 
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Table 3.5 Examples of the Combined Data Sets (PCA and GPF) for Dataset 2  

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 PCA8 GPF Promotion 

277.8713 -153.4450 38.1881 4.4691 0.7346 -28.2834 8.8606 -14.0338 100 1 

268.5994 -157.4280 42.7372 8.0960 0.4309 -24.8680 15.1353 -9.8614 66.66 1 

268.9623 -152.4660 51.3508 -3.7866 -9.8511 -25.5350 22.7737 -17.6720 33.33 0 

269.4408 -154.6630 50.8622 7.2342 -1.2787 -27.0241 15.9708 -10.5125 0 1 

Table 3.6 Examples of the Combined Data Sets (t-SNE and GPF) for Dataset 2  

tSNE1 tSNE2 tSNE3 GPF Promotion 

-10.9324 13.72186 13.63332 100 1 

-2.59696 -9.47629 -6.67375 66.66 1 

-5.97983 12.36096 -9.26217 33.33 0 

9.776347 11.01716 21.40389 0 0 

3.5 Data Balancing 

 To handle the issue of class imbalance, this study applied the Synthetic Minority 

Over-sampling Technique (SMOTE). This method was chosen to improve the 

performance of models without directly incorporating the promotion label into the 

training process. Instead of relying on the original class distribution, which typically 

includes far fewer promoted employees, SMOTE generates new, synthetic data points 

for the minority class to achieve a balanced dataset. The goal was to create an equal 

number of records for both promoted and non-promoted classes, enabling the model to 

treat both groups with equal importance during training.  

 In Dataset 1, the application of SMOTE resulted in the creation of 45,472 

additional promotion records, effectively balancing the dataset. Similarly, for Dataset 

2, SMOTE generated 31,830 synthetic promotion records to match the majority class. 

These balanced datasets provided a more stable foundation for unsupervised learning, 

thereby improving the interpretability of clustering results. Figures 3.11 and 3.12 

illustrate the number of records before and after applying SMOTE for Dataset 1 and 

Dataset 2, respectively, following PCA feature extraction. 
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Figure 3.11 PCA Combined Dataset 1 before and after SMOTE 

 

Figure 3.12 PCA Combined Dataset 2 before and after SMOTE 

Table 3.7 Comparison of Selected Features of Dataset 1 before and after Applying 

SMOTE 

Features Before SMOTE After SMOTE 

KPI  (kpi > = 80%) = 19,291 

(kpi < 80%) =   35,517 

(kpi >= 80%) = 50,361 

(kpi < 80%) = 49,919 

Awards won received = 1,270 

not received = 53,538 

received = 4,801 

not received = 95,479 

Average training score (score >= 90) = 764 

(score < 90) = 54,044 

(score >= 90) = 6,253 

(score < 90) = 94,027 
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Table 3.8 Comparison of Selected Features of Dataset 2 before and after Applying 

SMOTE 

Features Before SMOTE After SMOTE 

Targets met meet = 13,524 

not meet = 24,788 

meet = 35,051 

not meet = 35,091 

Previous award received = 887 

not received = 37,425 

received = 3,434 

not received = 66,708 

Training score average (score >= 90) = 55 

(score < 90) = 38,257 

(score >= 90) = 466 

(score < 90) = 69,676 

3.6 Model Construction 

3.6.1 Classification 

 In this study, six widely recognized classification models were employed to 

construct predictive models for employee promotion. These include Random Forest (RF), 

Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 

Logistic Regression (LR), and Neural Network (NN). These models were selected based 

on their diversity in underlying algorithmic approaches, which encompass tree-based (RF 

and DT), margin-based (SVM), instance-based (KNN), statistical (LR), and deep 

learning (NN) techniques. This diversity enables a comprehensive evaluation of the 

effectiveness and adaptability of the proposed features of engineering techniques across 

various learning paradigms. 

 Before constructing the model, the datasets underwent extensive preprocessing. 

This process involved integrating the proposed Generated Promotion Feature (GPF), a 

feature engineering derived from performance-related indicators, as well as 

dimensionality reduction using Principal Component Analysis (PCA) and t-distributed 

Stochastic Neighbor Embedding (t-SNE). Additionally, class imbalance issues were 

addressed using the Synthetic Minority Oversampling Technique (SMOTE), ensuring 

that the minority class (promoted employees) was sufficiently represented during model 

training. 

 To ensure the robustness and generalizability of the classification models, a 

stratified 10-fold cross-validation technique was applied. In this approach, the dataset 
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was randomly divided into 10 equal-sized folds while preserving the original class 

distribution within each fold. During each iteration, one fold was held out for validation 

while the remaining nine were used for model training. This process was repeated ten 

times, with each fold serving as the validation set once. The final performance metrics 

were computed as the average of the results across all folds. 

 The model evaluation was conducted using four primary metrics: Accuracy, 

Precision, Recall, and F1-score. These metrics provide a balanced view of each model's 

performance, particularly in the context of class-imbalanced data, where reliance on 

accuracy alone can be misleading. The evaluation focused on assessing each model's 

ability to accurately identify promotable employees while minimizing false positives 

and false negatives. Hyperparameter tuning for each classifier was performed using grid 

search methods within the cross-validation framework to optimize model performance. 

 This systematic modeling and validation framework was designed to assess how 

effectively each classification algorithm leveraged the enhanced features derived from 

GPF and dimensionality reduction techniques. The results obtained from this process 

were later compared and analyzed to identify the most suitable model configurations 

for predicting employee promotions in human resource analytics. 

3.6.2 Clustering 

 K-means clustering was a partition-based algorithm that assigns each data point 

to the cluster with the nearest centroid, which represented the average position of all 

data points within that cluster. The process began by initializing a predefined number 

of clusters (k) and then calculating the centroids. Each data point was grouped with the 

cluster whose centroid was closest, typically measured using Euclidean distance. Then, 

the centroids were recalculated based on the updated cluster members, and this process 

of assignment and update continued iteratively until the cluster assignments stabilized 

or reached convergence. Furthermore, K-means worked well on datasets where the data 

naturally form well-separated groups, such as circular, elliptical, or linearly distributed 

patterns. Its effectiveness was enhanced when the number of clusters was known in 

advance, as this helped ensure that the grouping process was structured and consistent 

with the data’s underlying patterns. 

 Fuzzy clustering, also known as fuzzy c-means, enabled each data point to have 

partial membership across multiple clusters rather than being strictly assigned to just 
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one. This could be achieved by assigning membership values ranging from 0 to 1, which 

reflected the degree to which a data point belonged to a given cluster. Points that were 

closer to a cluster’s centroid received higher membership values, while those farther 

away were assigned lower values. This technique was beneficial when the boundaries 

between clusters were unclear or overlapping, making it suitable for datasets with 

ambiguous or gradual transitions between groups. Fuzzy clustering differed 

fundamentally from K-means, which forced each point into a single cluster. Such 

challenging assignments in K-means could lead to misclassification when a data point 

lies between two or more clusters and does not distinctly belong to just one. By allowing 

flexible memberships, fuzzy clustering provided a more nuanced and realistic 

interpretation of data groupings, especially in complex, real-world scenarios where 

strict cluster separation was not always present. 

 In this study, K-means clustering was configured to use two clusters (n_clusters 

= 2, K = 2). Moreover, fuzzy clustering was configured to use three clusters (n_clusters 

= 3). This setup was designed to facilitate the identification and separation of employees 

based on their promotion status. As previously stated, multiple versions of combined 

datasets were prepared for both Dataset 1 and Dataset 2, incorporating different 

combinations of original features, GPF, PCA, and t-SNE. These dataset variations were 

used to explore which combination would deliver the most effective clustering results 

in representing employee promotion potential. Through the application of various 

clustering methods to a range of dataset configurations, this research aimed to evaluate 

the advantages of each technique and determine the most suitable set of features for 

effectively categorizing employees into promotable and non-promotable groups. 

3.7 Result Evaluation 

3.7.1 Classification Evaluation 

 In this study, four commonly used evaluation metrics, including accuracy, 

precision, recall, and F1-score, were employed to assess the performance of 

classification models. These metrics were selected to provide a comprehensive 
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understanding of each model’s effectiveness, especially in the context of imbalanced 

datasets commonly found in human resource data. 

 Accuracy was measured by the proportion of correct predictions over the total 

number of instances. It was a straightforward metric and valuable when the class 

distribution was relatively balanced. However, it may be misleading when the data is 

imbalanced, as high accuracy can be achieved by predicting only the majority class.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (3.1) 

 Precision evaluates how many of the predicted positive instances are positive. 

It is significant in the context of employee promotion prediction, where false positives 

(predicting promotion for a non-promotable employee) may result in wasted resources 

or unfair decisions.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (3.2) 

 Recall, also known as sensitivity, measures the model's ability to identify all 

actual positive instances correctly. A high recall was crucial in this study, as it reflected 

the model’s ability to identify promotable employees, a key objective in HR decision-

making.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3.3) 

 F1-Score is the harmonic mean of precision and recall. It balanced the trade-off 

between these two metrics and was especially useful when the dataset was imbalanced. 

A high F1-score indicated that the model had both high precision and high recall, which 

was ideal in promotion decision-making.  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (3.4) 

 By combining these four metrics, this study provided a more comprehensive 

evaluation of classification performance across various datasets and model 

configurations. This approach facilitated the selection of the most suitable model for 

making predictions related to promotions in human resource analytics. 
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3.7.2 Clustering Evaluation 

 To assess the quality of the promotion clustering results, four evaluation metrics 

were used: Rand Index (RI), Mutual Information (MI), V-measure (V), and Fowlkes–

Mallows Index (FMI). Each of these indices provided a different perspective on how 

closely the clustering output matched the actual promotion labels. 

 The Rand Index (RI) evaluated the similarity between the clustering results and 

the ground truth by considering pairs of data points. Specifically, it measured the 

proportion of data point pairs that were either correctly grouped in the same cluster or 

correctly separated into different clusters. A higher RI value indicated a greater degree 

of alignment between the predicted clusters and the actual labels. In this study, the RI 

was calculated using the formula shown in Equation (3.5) and served as one of the 

primary indicators of clustering accuracy and consistency. 

𝑅𝐼 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (3.5) 

 In the context of clustering evaluation, the classification of pairwise data points 

can be described using four standard terms: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN).  

1. True Positive (TP) occurs when a pair of data points is correctly grouped 

into the same cluster by the algorithm and is also classified together in the ground truth.  

2. True Negative (TN) refers to a pair of points that are correctly identified 

as belonging to different clusters, both by the algorithm and the ground truth.  

3. False Positive (FP) happens when the algorithm incorrectly places a pair 

of data points into the same cluster, even though they are not grouped based on the 

ground truth.  

4. False Negative (FN) occurs when the algorithm fails to assign a pair of 

related data points to the same cluster, despite them being grouped in the ground truth.  

 These four values form the basis for computing clustering evaluation metrics, 

such as the Rand Index, which helps assess how closely the clustering results match the 

actual class labels. 

 Mutual Information (MI) is used to evaluate the amount of information shared 

between the clustering results and the actual labels. It reflects the degree of mutual 

dependence between the predicted clusters and the ground truth categories. A higher 
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MI value indicates that the clustering output captures a greater portion of the underlying 

data structure and aligns more closely with the actual labels. In other words, the more 

the predicted clusters can explain or represent the actual classification, the higher the 

MI score will be. In this study, MI is computed using Equation (3.6) and serves as a 

key indicator for assessing the alignment and effectiveness of clustering outcomes. 

𝑀𝐼(𝑌; 𝐶) =  𝐻(𝑌) − 𝐻(𝑌|𝐶)    (3.6) 

 In the context of clustering evaluation, MI (Y; C) denotes the Mutual Information 

score. 

1. Y refers to the actual class labels  

2. C represents the cluster assignments produced by the algorithm.   

3. H(Y) indicates the entropy of the actual class labels, reflecting the overall 

uncertainty or unpredictability in the label distribution.  

4. H(Y|C) represents the conditional entropy of Y given C, which measures 

the remaining uncertainty about class labels when the cluster assignments are known.  

 Essentially, the difference between H(Y) and H(Y|C) quantifies how much 

information the clustering results provide about the actual labels. A lower conditional 

entropy implies that the clustering effectively captures the actual class structure. 

 V-measure is a clustering evaluation metric that assesses the agreement between 

two independent label assignments, such as the predicted cluster labels and the actual 

class labels, when applied to the same dataset. This metric combines two important 

aspects including homogeneity and completeness, into a single balanced score. 

Homogeneity evaluates whether each cluster contains only data points that belong to a 

single class, ensuring internal consistency within clusters. On the other hand, 

completeness ensures that all data points from the same class are assigned to the same 

cluster, thereby promoting consistency across class labels. A high V-measure score 

indicates that the clustering structure aligns well with the ground truth, both in terms of 

internal purity and overall class coverage. In this study, the V-measure was computed 

using Equation (3.7) and served as a key metric to assess the quality and reliability of 

the clustering results. 

𝑣 = 2(
(ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦)(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦+𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 
)    (3.7) 



47 

 

 In this context, “v” denotes the V-measure score, which serves as a balanced 

evaluation of clustering performance. The score is derived from two core components: 

homogeneity and completeness.  

1. Homogeneity ensures that each cluster is composed of data points that 

belong to only one actual class, indicating that the clustering process maintains internal 

consistency within each group.  

2. Completeness assesses whether all data points that belong to the same 

class are grouped into a single cluster, reflecting the algorithm’s ability to preserve class 

integrity across clusters.  

 When both homogeneity and completeness are high, the V-measure score 

increases, signifying that the clustering solution closely matches the actual class 

distribution. 

 The Fowlkes–Mallows Index (FMI) is a clustering evaluation metric that 

assesses how well the predicted clusters align with the actual class labels by comparing 

the distribution of data points within clusters to the overall distribution across classes. 

Specifically, FMI measures the ratio of variance within clusters relative to the total 

variance observed between the predicted clusters and the actual class labels. Lower FMI 

values suggest that the clusters are more compact and tightly grouped, which generally 

indicates better clustering performance. Unlike other metrics such as Rand Index (RI) 

or Mutual Information (MI), FMI is less sensitive to differences in cluster sizes, making 

it a more robust option in cases of class imbalance. A high FMI value, particularly one 

that approaches 1, implies a strong correspondence between the predicted clustering 

and the ground truth classification. In this study, FMI was calculated using Equation 

(3.8) as part of the comprehensive evaluation of clustering quality. 

𝐹𝑀𝐼 =  
𝑇𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)
    (3.8) 

 In the context of clustering evaluation, the classification of data points can be 

understood using four key terms: True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN).  

1. True Positive (TP) occurs when a data point is correctly grouped into a 

cluster by the algorithm and is also classified within the same cluster in the ground 

truth.  
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2. True Negative (TN) refers to a data point that is correctly identified as 

not belonging to a particular cluster by both the algorithm and the ground truth.  

3. False Positive (FP) is recorded when the algorithm incorrectly assigns a 

data point to a cluster, despite the ground truth indicating that it does not belong to that 

cluster.  

4. False Negative (FN) increases when the algorithm fails to assign a data 

point to a cluster, even though it should have been included based on the ground truth 

labels.  

 These four components are fundamental in computing clustering evaluation 

metrics such as Fowlkes–Mallows Index (FMI), as they provide a basis for measuring 

the correctness and consistency of the clustering results. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 In this study, the experimental design is divided into two major groups based 

on learning type: Supervised Learning and Unsupervised Learning. Starting with 

Supervised Learning, the experiments are further divided into two subgroups: Models 

trained on the original imbalanced datasets (without any balancing techniques), and 

Models trained on datasets that have been balanced using SMOTE (Synthetic Minority 

Oversampling Technique). Similarly, in the Unsupervised Learning group, clustering 

experiments are conducted in two groups: Clustering with the original imbalanced 

datasets, and Clustering with datasets that have been preprocessed using SMOTE for 

class balance. 

The main objective of this structure is to evaluate the impact of GPF and PCA 

on model performance across both learning paradigms. Additionally, the experiments 

are conducted using two distinct HR datasets to validate the generalizability and 

robustness of the proposed framework in different organizational contexts.  

4.1 Classification Results  

Classification applied six algorithms: Random Forest (RF), Decision Tree (DT), 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Logistic Regression 

(LR), Neural Network (NN). 

4.1.1 Random Forest Classification 
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Table 4.1 Performance Comparison of Random Forest for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.5360 0.0787 0.1921 0.0610 

2 Dataset with GPF 0.4705 0.0524 0.1981 0.0509 

3 Dataset with PCA 0.5703 0.0971 0.1852 0.0643 

4 Dataset with t-SNE 0.5606 0.1007 0.1852 0.0618 

5 Dataset with GPF and PCA 0.6024 0.3007 0.1673 0.0665 

6 Dataset with GPF and t-SNE 0.5008 0.0655 0.1981 0.0527 

7 PCA 0.7283 0.2226 0.0846 0.0281 

8 t-SNE  0.7559 0.1466 0.0548 0.0281 

9 PCA and GPF 0.6859 0.0204 0.1351 0.0324 

10 t-SNE and GPF 0.6738 0.2244 0.1398 0.0371 

The results of the Random Forest classification without applying SMOTE 

indicate that while accuracy was highest when using PCA or t-SNE alone, these 

configurations received poor recall and F1-scores due to class imbalance. Notably, the 

integration of GPF and PCA in the original dataset (without dimensionality reduction) 

yields the most balanced result, significantly improving precision while maintaining 

acceptable accuracy. This suggests that GPF, when combines with PCA in a feature-

augmentation role rather than feature-reduction, enhances the model's ability to identify 

promotable employees. 

Table 4.2 Performance Comparison of Random Forest for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.7272 0.7103 0.9744 0.8053 

2 Dataset with GPF and SMOTE 0.7246 0.7099 0.9734 0.8043 

3 Dataset with PCA and SMOTE 0.7239 0.7061 0.9780 0.8033 

4 Dataset with t-SNE and SMOTE 0.7162 0.6947 0.9755 0.7960 

5 Dataset with GPF, PCA, and SMOTE 0.7262 0.7099 0.9789 0.8058 

6 Dataset with GPF, t-SNE, and SMOTE 0.7289 0.7115 0.9778 0.8068 

7 PCA and SMOTE 0.7731 0.7368 0.9268 0.8140 

8 t-SNE and SMOTE 0.7486 0.7183 0.8858 0.7869 

9 PCA, GPF and SMOTE 0.7692 0.7349 0.9277 0.8125 

10 t-SNE, GPF and SMOTE 0.7463 0.7186 0.8981 0.7904 
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The results of the Random Forest classification on Dataset 1 after applying 

SMOTE demonstrated a significant overall improvement across all evaluation metrics. 

While the highest accuracy was achieved with the PCA-only configuration (0.7731), 

this setup showed slightly reduced recall compared to other combinations. Notably, 

configurations combining GPF with PCA or t-SNE, such as Dataset with GPF, t-SNE, 

and SMOTE (Accuracy = 0.7289, F1 = 0.8068) and Dataset with GPF, PCA, and 

SMOTE (Accuracy = 0.7262, F1 = 0.8058), offered a better balance of precision and 

recall, resulting in strong and stable F1-scores. 

The integration of GPF with dimensionality reduction and balanced data 

allowed the model to identify promotable employees more effectively, as reflected in 

recall values consistently above 0.96. Although PCA and t-SNE alone yielded slightly 

higher accuracy, their overall performance was less balanced compared to GPF-

enhanced configurations. 

These findings confirmed that while accuracy remained an important indicator, 

combining GPF with SMOTE and PCA or t-SNE yielded more consistent performance 

across all metrics. This emphasized the benefit of domain-informed features and data 

balancing techniques in real-world HR promotion prediction tasks. 

Table 4.3 Performance Comparison of Random Forest for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.5701 0.1069 0.1751 0.0563 

2 Dataset with GPF 0.5195 0.0844 0.1969 0.0523 

3 Dataset with PCA 0.5984 0.1496 0.1751 0.0654 

4 Dataset with t-SNE 0.8780 0.0596 0.0151 0.0204 

5 Dataset with GPF and PCA 0.5211 0.0837 0.1945 0.0507 

6 Dataset with GPF and t-SNE 0.5094 0.0712 0.1954 0.0502 

7 PCA 0.8231 0.1285 0.0481 0.0258 

8 t-SNE  0.8780 0.0596 0.0151 0.0204 

9 PCA and GPF 0.6950 0.1253 0.1402 0.0333 

10 t-SNE and GPF 0.7529 0.0266 0.0752 0.0270 

The results of Random Forest classification on Dataset 2 without applying 

SMOTE showed significant performance variation across different feature 

combinations. While the highest accuracy was achieved with t-SNE transformations 
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(87.80%), the recall and F1-score are extremely low, indicating a failure to identify 

promotable employees. The most balanced result among all combinations was observed 

when PCA was applied to the original dataset (F1 = 0.0654), though performance 

remained weak due to the unresolved class imbalance. These findings reinforced the 

need to apply data balancing techniques, SMOTE, to enhance model generalizability 

and fairness. 

Table 4.4 Performance Comparison of Random Forest for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.7727 0.7464 0.9662 0.8294 

2 Dataset with GPF and SMOTE 0.7507 0.7308 0.9681 0.8182 

3 Dataset with PCA and SMOTE 0.7508 0.7281 0.9799 0.8198 

4 Dataset with t-SNE and SMOTE 0.7778 0.7491 0.9636 0.8312 

5 Dataset with GPF, PCA, and SMOTE 0.7390 0.7215 0.9808 0.8145 

6 Dataset with GPF, t-SNE, and SMOTE 0.7478 0.7289 0.9660 0.8162 

7 PCA and SMOTE 0.7776 0.7352 0.9197 0.8121 

8 t-SNE and SMOTE 0.7649 0.7372 0.8302 0.7802 

9 PCA, GPF and SMOTE 0.7524 0.7195 0.9234 0.8008 

10 t-SNE, GPF and SMOTE 0.7340 0.7129 0.8663 0.7750 

After applying SMOTE to Dataset 2, the classification performance of the 

Random Forest model significantly improved across all metrics. The best overall result 

was obtained when combining t-SNE with SMOTE (F1 = 0.8312), followed closely by 

the baseline SMOTE-only dataset and the combination of PCA with SMOTE. Models 

incorporating GPF also achieved competitive results, particularly in recall, with several 

configurations exceeding a 96% recall rate. These findings confirmed the effectiveness 

of SMOTE in addressing class imbalance and demonstrated the complementary 

strengths of dimensionality reduction and feature engineering in enhancing the 

performance of supervised learning. 
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4.1.2 Decision Tree Classification 

Table 4.5 Performance Comparison of Decision Tree for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.3214 0.0221 0.2129 0.0398 

2 Dataset with GPF 0.3156 0.0181 0.1983 0.0338 

3 Dataset with PCA 0.3240 0.0221 0.2133 0.0394 

4 Dataset with t-SNE 0.3224 0.0224 0.2150 0.0404 

5 Dataset with GPF and PCA 0.3202 0.0186 0.1908 0.0341 

6 Dataset with GPF and t-SNE 0.3191 0.0187 0.1914 0.0332 

7 PCA 0.6645 0.0574 0.1456 0.0552 

8 t-SNE  0.6910 0.0631 0.1386 0.0611 

9 PCA and GPF 0.6405 0.1792 0.1760 0.0528 

10 t-SNE and GPF 0.6480 0.1120 0.1752 0.0557 

The performance of the Decision Tree classifier on Dataset 1 without any 

balancing techniques was consistently poor across all feature combinations. Although 

combinations such as PCA or t-SNE alone yielded relatively high accuracy, the recall 

and F1-score remained critically low due to the underlying class imbalance. The 

combination of GPF with either PCA or t-SNE yielded slight improvements in precision 

but did not significantly impact overall model effectiveness. These results emphasized 

the importance of applying data balancing methods, such as SMOTE, before training 

classifiers in imbalanced HR datasets. 

Table 4.6 Performance Comparison of Decision Tree for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.7272 0.7103 0.9744 0.8053 

2 Dataset with GPF and SMOTE 0.7246 0.7099 0.9734 0.8043 

3 Dataset with PCA and SMOTE 0.7239 0.7061 0.9780 0.8033 

4 Dataset with t-SNE and SMOTE 0.7162 0.6947 0.9755 0.7960 

5 Dataset with GPF, PCA, and SMOTE 0.7262 0.7099 0.9789 0.8058 

6 Dataset with GPF, t-SNE, and SMOTE 0.7289 0.7115 0.9778 0.8068 

7 PCA and SMOTE 0.7731 0.7368 0.9268 0.8140 

8 t-SNE and SMOTE 0.7486 0.7183 0.8858 0.7869 

9 PCA, GPF and SMOTE 0.7692 0.7349 0.9277 0.8125 

10 t-SNE, GPF and SMOTE 0.7463 0.7186 0.8981 0.7904 
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The Decision Tree model exhibited extremely low performance on Dataset 1 

without SMOTE, with F1-scores of less than 0.06 across all feature configurations. 

However, after applying SMOTE, F1-scores increased dramatically, often exceeding 

0.80. Among all combinations, PCA and SMOTE (F1 = 0.8140) and PCA, GPF, and 

SMOTE (F1 = 0.8125) yielded the best results, suggesting that dimensionality 

reduction with PCA, especially when supplemented by domain-informed feature 

engineering via GPF, plays a crucial role in model performance. These findings 

emphasize the importance of applying data balancing techniques, such as SMOTE, 

when working with imbalanced HR datasets. 

Table 4.7 Performance Comparison of Decision Tree for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.4008 0.0338 0.2127 0.0521 

2 Dataset with GPF 0.3986 0.0228 0.2056 0.0388 

3 Dataset with PCA 0.4019 0.0327 0.2112 0.0511 

4 Dataset with t-SNE 0.7996 0.0588 0.0907 0.0699 

5 Dataset with GPF and PCA 0.3989 0.0229 0.2056 0.0389 

6 Dataset with GPF and t-SNE 0.3978 0.0229 0.2059 0.0392 

7 PCA 0.7179 0.0531 0.1206 0.0596 

8 t-SNE  0.7995 0.0619 0.0882 0.0703 

9 PCA and GPF 0.6342 0.0467 0.1933 0.0559 

10 t-SNE and GPF 0.7025 0.0686 0.1307 0.0568 

On Dataset 2, the Decision Tree classifier performed poorly across all 

configurations without the use of SMOTE. The highest F1-score observed was 0.0703 

from the t-SNE transformation alone, which was marginally better than other 

configurations but still insufficient for identifying promotable employees. The use of 

GPF in combination with PCA or t-SNE showed little to no improvement, indicating 

that class imbalance severely hindered model learning. These results reinforce the 

necessity of applying balancing techniques prior to training when working with 

imbalanced HR data. 
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Table 4.8 Performance Comparison of Decision Tree for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.7275 0.7094 0.9729 0.8047 

2 Dataset with GPF and SMOTE 0.7277 0.7084 0.9745 0.8041 

3 Dataset with PCA and SMOTE 0.6941 0.6802 0.9660 0.7824 

4 Dataset with t-SNE and SMOTE 0.6688 0.6428 0.9674 0.7599 

5 Dataset with GPF, PCA, and SMOTE 0.6983 0.6791 0.9682 0.7834 

6 Dataset with GPF, t-SNE, and SMOTE 0.7143 0.6895 0.9728 0.7933 

7 PCA and SMOTE 0.6998 0.6723 0.8279 0.7398 

8 t-SNE and SMOTE 0.7321 0.7107 0.7857 0.7449 

9 PCA, GPF and SMOTE 0.6985 0.6740 0.8491 0.7466 

10 t-SNE, GPF and SMOTE 0.6992 0.6802 0.8160 0.7370 

After applying SMOTE to Dataset 2, the Decision Tree classifier demonstrated 

consistent and balanced performance across all evaluation metrics. The baseline 

configuration with SMOTE achieved the highest overall scores, with Accuracy = 

0.7275, Precision = 0.7094, Recall = 0.9729, and F1-score = 0.8047, indicating a strong 

ability to identify promotable employees while maintaining low false positives 

correctly. Feature combinations such as Dataset with GPF, t-SNE, and SMOTE, as well 

as Dataset with GPF, PCA, and SMOTE, also worked well, with F1-scores above 0.79 

and strong recall (above 0.96). This demonstrated their suitability for tasks that 

prioritize sensitivity to promotable employees. Although t-SNE and SMOTE alone 

achieved the highest accuracy (0.7321), they delivered lower recall and F1 compared 

to the top configurations. In addition, the results confirmed that SMOTE significantly 

improved model balance across all metrics, and that integrating GPF with 

dimensionality reduction methods further stabilized performance without losing 

precision. The combination of high recall and reasonably high precision indicated that 

the Decision Tree, when supported by SMOTE and informed by relevant features, was 

effective and reliable for promotion prediction in imbalanced HR datasets. 
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4.1.3 SVM Classification 

Table 4.9 Performance Comparison of SVM for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.7426 0.0585 0.3085 0.0983 

2 Dataset with GPF 0.5252 0.0448 0.5000 0.0823 

3 Dataset with PCA 0.7477 0.5600 0.3162 0.1116 

4 Dataset with t-SNE 0.7470 0.5584 0.3014 0.0999 

5 Dataset with GPF and PCA 0.5348 0.0458 0.5000 0.0839 

6 Dataset with GPF and t-SNE 0.5244 0.0448 0.5000 0.0822 

7 PCA 0.8360 0.0421 0.0936 0.0580 

8 t-SNE  0.8543 0.0388 0.0653 0.0487 

9 PCA and GPF 0.6320 0.0447 0.3616 0.0796 

10 t-SNE and GPF 0.6183 0.0558 0.5000 0.1004 

Without applying SMOTE, the SVM model on Dataset 1 exhibited a typical 

imbalance-driven performance pattern, characterized by high accuracy but low recall 

and F1-score. While the datasets with PCA and t-SNE yielded the best F1-scores 

(0.1116 and 0.0999, respectively), these values remained too low for practical 

applicability. Configurations involving GPF achieved high recall but poor precision, 

indicating sensitivity to promotable instances without reliable discrimination. These 

results suggest that the model’s ability to identify the minority class (i.e., promotable 

employees) remains limited without the use of a balancing technique such as SMOTE. 

Table 4.10 Performance Comparison of SVM for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.6485 0.6620 0.8577 0.7254 

2 Dataset with GPF and SMOTE 0.4460 0.4678 0.8322 0.5982 

3 Dataset with PCA and SMOTE 0.5302 0.5260 0.8073 0.6308 

4 Dataset with t-SNE and SMOTE 0.5408 0.5432 0.7747 0.6250 

5 Dataset with GPF, PCA, and SMOTE 0.4652 0.4777 0.8390 0.6075 

6 Dataset with GPF, t-SNE, and SMOTE 0.4464 0.4671 0.8314 0.5971 

7 PCA and SMOTE 0.5121 0.5078 0.7907 0.6184 

8 t-SNE and SMOTE 0.4569 0.4674 0.6021 0.5252 

9 PCA, GPF and SMOTE 0.4967 0.4982 0.8053 0.6155 

10 t-SNE, GPF and SMOTE 0.4906 0.4931 0.7527 0.5954 
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After applying SMOTE to Dataset 1, the SVM classifier demonstrated 

substantial improvements across all performance metrics. The baseline SMOTE 

configuration yielded a strong balance, with Accuracy = 0.6485, Precision = 0.6620, 

Recall = 0.8577, and an F1-score of 0.7254, indicating that the model could effectively 

identify promotable employees while maintaining an acceptable false positive rate. 

Configurations involving dimensionality reduction techniques such as PCA and 

t-SNE combined with SMOTE also performed well. For instance, the Dataset with PCA 

and SMOTE achieved an F1-score of 0.6308, while the Dataset with t-SNE and 

SMOTE followed closely with 0.6250. These setups tended to lose some recall in 

exchange for improved precision, suggesting a more conservative decision boundary. 

Meanwhile, the inclusion of GPF with either PCA or t-SNE yielded additional gains in 

recall (often above 0.80), though this sometimes came at the expense of lower precision. 

Overall, the results indicated that SMOTE played a crucial role in allowing 

SVM to function effectively in imbalanced settings. While PCA and GPF combinations 

provided flexibility and tuning options, the base SMOTE configuration alone already 

delivered a strong and reliable outcome for HR promotion prediction tasks. 

Table 4.11 Performance Comparison of SVM for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.9154 0.0000 0.0000 0.0000 

2 Dataset with GPF 0.9154 0.0000 0.0000 0.0000 

3 Dataset with PCA 0.9154 0.0000 0.0000 0.0000 

4 Dataset with t-SNE 0.9154 0.0000 0.0000 0.0000 

5 Dataset with GPF and PCA 0.9154 0.0000 0.0000 0.0000 

6 Dataset with GPF and t-SNE 0.9154 0.0000 0.0000 0.0000 

7 PCA 0.9154 0.0000 0.0000 0.0000 

8 t-SNE  0.9154 0.0000 0.0000 0.0000 

9 PCA and GPF 0.6615 0.0622 0.4972 0.1106 

10 t-SNE and GPF 0.6604 0.0619 0.4963 0.1101 

Without applying SMOTE, the SVM classifier completely failed to identify 

promotable employees across almost all configurations. Despite a high accuracy of 

0.9154, the model achieved zero precision, recall, and F1-score in most setups, clearly 
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indicating that it predicted only the majority class. This misleadingly high accuracy was 

a classic condition of class imbalance, where the minority class is entirely ignored. 

Only the configurations involving PCA and GPF, as well as t-SNE and GPF, 

showed any meaningful detection, with recall values near 0.50 and modest F1-scores 

of around 0.11. However, precision remained low, 0.06, suggesting a high number of 

false positives among limited true positives. These combinations slightly improved 

balance but remained far from practically usable. 

These results emphasized the significance of addressing class imbalance when 

using SVM in promotion prediction tasks. While the model achieved superficially high 

accuracy, its complete inability to generalize to the minority class without SMOTE 

made it ineffective for real-world HR applications. 

Table 4.12 Performance Comparison of SVM for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.4940 0.4947 0.7734 0.5916 

2 Dataset with GPF and SMOTE 0.5494 0.7706 0.4231 0.3919 

3 Dataset with PCA and SMOTE 0.4939 0.4946 0.7757 0.5926 

4 Dataset with t-SNE and SMOTE 0.4931 0.4939 0.7741 0.5914 

5 Dataset with GPF, PCA, and SMOTE 0.5507 0.7710 0.4258 0.3952 

6 Dataset with GPF, t-SNE, and SMOTE 0.6377 0.7705 0.5999 0.6200 

7 PCA and SMOTE 0.4151 0.4443 0.6601 0.5281 

8 t-SNE and SMOTE 0.4873 0.4883 0.5233 0.5044 

9 PCA, GPF and SMOTE 0.7153 0.7685 0.7569 0.7441 

10 t-SNE, GPF and SMOTE 0.6785 0.6770 0.7733 0.7151 

After applying SMOTE to Dataset 2, the SVM model showed a dramatic 

improvement across all configurations. Unlike the pre-SMOTE results, where recall 

and F1-scores were zero, the balanced data allowed the model to learn from the minority 

class and generalize more effectively. The most balanced and high-performing 

configurations were PCA, GPF, and SMOTE, which achieved an Accuracy of 0.7153, 

a Precision of 0.7685, a Recall of 0.7569, and an impressive F1-score of 0.7441. This 

suggests excellent overall performance in correctly identifying promotable employees 

while minimizing false positives. 
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Interestingly, the Dataset with GPF, PCA, and SMOTE led to a high precision 

of 0.77 but a significantly lower recall of 0.42, suggesting a more conservative model 

that may miss positive cases. This highlighted the trade-off between capturing all 

promotable individuals and reducing false positives, depending on the feature set. 

Overall, the results confirmed that combining GPF with dimensionality 

reduction techniques and applying SMOTE offered the best balance between accuracy, 

precision, and recall. These configurations significantly enhanced the effectiveness of 

SVM for promotion prediction in HR analytics. 

4.1.4 K-Nearest Neighbor Classification 

Table 4.13 Performance Comparison of KNN for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.8737 0.1502 0.1028 0.0951 

2 Dataset with GPF 0.4330 0.0152 0.1525 0.0275 

3 Dataset with PCA 0.9028 0.2687 0.1150 0.1252 

4 Dataset with t-SNE 0.8844 0.3550 0.0900 0.0979 

5 Dataset with GPF and PCA 0.6055 0.0328 0.1694 0.0414 

6 Dataset with GPF and t-SNE 0.6876 0.1899 0.1777 0.0553 

7 PCA 0.7880 0.0186 0.0683 0.0275 

8 t-SNE  0.8174 0.0233 0.0306 0.0184 

9 PCA and GPF 0.7309 0.0200 0.1043 0.0290 

10 t-SNE and GPF 0.7199 0.0178 0.0929 0.0260 

Without applying SMOTE, the KNN classifier on Dataset 1 produced 

inconsistent and overall weak performance across most configurations. Although 

certain combinations, such as Dataset with PCA and Dataset with t-SNE, yielded high 

accuracy (0.9028 and 0.8844, respectively), their F1-scores remained low (0.1252 and 

0.0979) due to poor recall. This indicated that KNN predominantly predicted the 

majority class and failed to identify effectively the promotable employees, like other 

models under imbalanced data conditions.  

The configuration using PCA as additional features (Dataset with PCA) yielded 

the highest F1-score overall (0.1252), and the original dataset and t-SNE also 

demonstrated a relatively better balance compared to the others. However, setups 
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involving GPF either alone or in combination generally resulted in lower precision and 

F1-scores, possibly due to sensitivity to minority samples in the absence of balancing. 

These results highlighted that if KNN relied solely on high accuracy, it could be 

misleading in imbalanced classification problems. To make the model suitable for HR 

promotion prediction, where minority class identification was crucial, class balancing 

methods such as SMOTE were essential to improve recall and overall performance. 

Table 4.14 Performance Comparison of KNN for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.8198 0.7404 0.9937 0.8477 

2 Dataset with GPF and SMOTE 0.6797 0.6486 0.9959 0.7724 

3 Dataset with PCA and SMOTE 0.7612 0.6818 0.9923 0.8074 

4 Dataset with t-SNE and SMOTE 0.7885 0.7182 0.9778 0.8255 

5 Dataset with GPF, PCA, and SMOTE 0.7213 0.6871 0.9940 0.7988 

6 Dataset with GPF, t-SNE, and SMOTE 0.7614 0.7331 0.9832 0.8244 

7 PCA and SMOTE 0.6858 0.6725 0.8127 0.7294 

8 t-SNE and SMOTE 0.6914 0.6740 0.8094 0.7301 

9 PCA, GPF and SMOTE 0.6825 0.6686 0.8263 0.7316 

10 t-SNE, GPF and SMOTE 0.6782 0.6611 0.8356 0.7308 

After applying SMOTE, the performance of the KNN model on Dataset 1 

improved substantially across all configurations. The baseline SMOTE configuration 

achieved the highest F1-score (0.8477), with a strong balance in all metrics: Accuracy 

= 0.8198, Precision = 0.7404, and an exceptionally high Recall = 0.9937, indicating the 

model could correctly identify nearly all promotable employees. 

Other configurations, such as the Dataset with t-SNE and SMOTE (F1 = 0.8255) 

and the Dataset with GPF, t-SNE, and SMOTE (F1 = 0.8244), also performed very 

effectively, demonstrating that dimensionality reduction techniques, when combined 

with SMOTE, could enhance model sensitivity while maintaining high precision. The 

inclusion of GPF slightly reduced precision in some cases; however, it maintained 

extremely high recall across the board (often above 0.98), making it suitable for cases 

where missing a promotable candidate was significant. 

Although some Dataset setups with GPF, PCA, and SMOTE showed slightly 

lower accuracy, they still yielded strong F1-scores above 0.79, reinforcing the model’s 
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reliability when addressing minority class imbalance. This confirmed that KNN, when 

paired with both data balancing and meaningful feature engineering, can serve as a 

highly effective classifier in predicting employee promotions. 

Table 4.15 Performance Comparison of KNN for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.8844 0.2158 0.0983 0.0923 

2 Dataset with GPF 0.5039 0.0191 0.1827 0.0342 

3 Dataset with PCA 0.9119 0.3181 0.0836 0.1169 

4 Dataset with t-SNE 0.9093 0.2374 0.0043 0.0079 

5 Dataset with GPF and PCA 0.6365 0.0419 0.1803 0.0416 

6 Dataset with GPF and t-SNE 0.7237 0.2214 0.1732 0.0430 

7 PCA 0.8549 0.0334 0.0450 0.0300 

8 t-SNE  0.9093 0.2374 0.0043 0.0079 

9 PCA and GPF 0.7108 0.0178 0.1267 0.0312 

10 t-SNE and GPF 0.7888 0.0115 0.0555 0.0190 

Without applying SMOTE, the KNN classifier on Dataset 2 showed limited 

effectiveness in identifying promotable employees. While some configurations 

achieved high accuracy, such as the Dataset with PCA (0.9119) and the Dataset with t-

SNE, these setups demonstrated very low recall and F1-scores, with F1 as low as 0.0079 

in t-SNE, confirming that the model essentially predicted only the majority class. 

The configuration with the highest F1-score was the Dataset with PCA as an 

added feature (F1 = 0.1169), showing a slight improvement in balance, but still 

insufficient for practical application. Combinations involving GPF generally increased 

recall (up to ~0.18) but caused severe drops in precision, indicating that GPF alone 

cannot compensate for imbalance in the dataset. This trend was consistent across most 

variations, where precision-recall trade-offs were unnecessary. 

These results demonstrated that high accuracy on its own was misleading in the 

presence of class imbalance. The model failed to predict the minority promotion class 

with meaningful accuracy, which was significant in HR contexts. As seen in Dataset 1, 

SMOTE or other balancing techniques will be essential for enabling KNN to perform 

reliably in promotion prediction tasks. 
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Table 4.16 Performance Comparison of KNN for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.8357 0.7578 0.9951 0.8595 

2 Dataset with GPF and SMOTE 0.6991 0.6627 0.9967 0.7835 

3 Dataset with PCA and SMOTE 0.7790 0.6979 0.9922 0.8188 

4 Dataset with t-SNE and SMOTE 0.7717 0.6922 0.9852 0.8126 

5 Dataset with GPF, PCA, and SMOTE 0.7257 0.6881 0.9951 0.8007 

6 Dataset with GPF, t-SNE, and SMOTE 0.7495 0.7119 0.9908 0.8154 

7 PCA and SMOTE 0.6965 0.6579 0.8684 0.7452 

8 t-SNE and SMOTE 0.6888 0.6681 0.7581 0.7096 

9 PCA, GPF and SMOTE 0.6777 0.6464 0.8784 0.7394 

10 t-SNE, GPF and SMOTE 0.6671 0.6495 0.8259 0.7206 

The use of SMOTE significantly enhanced the performance of the KNN 

classifier on Dataset 2. The baseline configuration (SMOTE only) achieved the best 

balance across all metrics, with an accuracy of 0.8357, precision of 0.7578, recall of 

0.9951, and an F1-score of 0.8595, demonstrating the model’s strong ability to identify 

promotable employees while minimizing false positives. 

Several other configurations also delivered high performance. For example, the 

Dataset with GPF, t-SNE, and SMOTE and the Dataset with PCA and SMOTE 

achieved F1-scores of 0.8154 and 0.8188, respectively, with substantial precision and 

recall values, indicating consistent prediction stability. GPF-inclusive setups often 

increased recall (frequently above 0.99), but in some cases, this was accompanied by a 

slight drop in precision. 

While dimensionality reduction techniques like PCA and t-SNE slightly 

reduced accuracy in some combinations, their inclusion with GPF consistently yielded 

robust F1-scores in the range of 0.72–0.80. These results suggest that SMOTE alone 

can dramatically improve KNN performance. However, optimal results are achieved 

when SMOTE is combined with GPF and dimensionality reduction for feature 

enhancement and noise mitigation. 

Overall, the findings confirm that KNN becomes a highly reliable model for 

promotion prediction when data imbalance is addressed and relevant performance 

features are effectively engineered. 
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4.1.5 Logistic Regression Classification 

Table 4.17 Performance Comparison of LR for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.8040 0.2379 0.1529 0.0644 

2 Dataset with GPF 0.8023 0.2428 0.2221 0.1034 

3 Dataset with PCA 0.7757 0.2286 0.1595 0.0676 

4 Dataset with t-SNE 0.8122 0.2269 0.1368 0.0533 

5 Dataset with GPF and PCA 0.8169 0.2850 0.2105 0.1016 

6 Dataset with GPF and t-SNE 0.8120 0.2428 0.2152 0.0985 

7 PCA 0.9142 0.0484 0.0032 0.0060 

8 t-SNE  0.9148 0.0000 0.0000 0.0000 

9 PCA and GPF 0.8605 0.0343 0.1655 0.0568 

10 t-SNE and GPF 0.8717 0.0367 0.1471 0.0588 

Without applying SMOTE, the Logistic Regression model on Dataset 1 showed 

moderate accuracy across several configurations but struggled to detect promotable 

employees effectively due to class imbalance. The configuration that yielded the best 

F1-score (0.1034) was the Dataset with GPF, with a reasonable trade-off between 

Precision (0.2428) and Recall (0.2221), indicating that domain-informed features 

helped improve class sensitivity to some extent. 

Combining GPF with PCA (Dataset with GPF and PCA) also produced a 

competitive performance (F1 = 0.1016), while retaining high accuracy (0.8169). On the 

other hand, configurations relying solely on dimensionality reduction, such as PCA 

only or t-SNE only, showed extremely poor recall and F1-scores, despite achieving the 

highest accuracy (~0.91). These results suggest that high accuracy was not necessarily 

indicative of actual model performance in imbalanced settings. 

Overall, the model’s low F1-scores and limited recall across most 

configurations demonstrate that Logistic Regression is particularly sensitive to 

imbalance. Although GPF improves performance marginally, balancing techniques like 

SMOTE are necessary to enable LR to generalize meaningfully in HR promotion 

prediction tasks. 
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Table 4.18 Performance Comparison of LR for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.8553 0.8517 0.8609 0.8537 

2 Dataset with GPF and SMOTE 0.8574 0.8510 0.8814 0.8641 

3 Dataset with PCA and SMOTE 0.7854 0.7923 0.8409 0.8088 

4 Dataset with t-SNE and SMOTE 0.7060 0.6892 0.7967 0.7357 

5 Dataset with GPF, PCA, and SMOTE 0.7645 0.7682 0.8312 0.7907 

6 Dataset with GPF, t-SNE, and SMOTE 0.7556 0.7577 0.8191 0.7801 

7 PCA and SMOTE 0.5655 0.5897 0.6247 0.5959 

8 t-SNE and SMOTE 0.5084 0.5163 0.5802 0.5432 

9 PCA, GPF and SMOTE 0.7232 0.7977 0.7728 0.7627 

10 t-SNE, GPF and SMOTE 0.7240 0.7986 0.7740 0.7636 

The application of SMOTE to Dataset 1 significantly enhanced the performance 

of the Logistic Regression model across all evaluation metrics. The best overall 

configuration was the Dataset with GPF and SMOTE, which achieved an F1-score of 

0.8641, with balanced performance in Accuracy = 0.8574, Precision = 0.8510, and 

Recall = 0.8814. This suggests that the model was both precise and sensitive in 

identifying employees who are promotable. 

Similarly, the baseline SMOTE configuration (without GPF) also performed 

well, with F1 = 0.8537, indicating that class balancing alone already produced a 

substantial improvement. Configurations combining SMOTE with PCA or t-SNE 

yielded slightly lower performance but still maintained strong F1-scores in the range of 

0.73-0.81, particularly when combined with GPF. 

Lower performance was observed in PCA or t-SNE-only configurations (e.g., 

F1 ≈ 0.59-0.54), despite achieving decent accuracy, indicating that dimensionality 

reduction alone was insufficient for robust classification. The inclusion of GPF 

consistently improved recall and precision in these cases, restoring model effectiveness. 

Overall, the results demonstrate that Logistic Regression can be a valuable and 

interpretable model for promotion prediction when supported by SMOTE and domain-

informed features, such as GPF. The combination of GPF and SMOTE stands out as 

the most reliable configuration for achieving high recall without losing precision. 
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Table 4.19 Performance Comparison of LR for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.7929 0.4639 0.1455 0.0511 

2 Dataset with GPF 0.8012 0.3344 0.2167 0.0767 

3 Dataset with PCA 0.9050 0.8571 0.1335 0.1299 

4 Dataset with t-SNE 0.9154 0.0000 0.0000 0.0000 

5 Dataset with GPF and PCA 0.8033 0.4521 0.2195 0.0914 

6 Dataset with GPF and t-SNE 0.7943 0.4214 0.1966 0.0428 

7 PCA 0.9154 0.0000 0.0000 0.0000 

8 t-SNE  0.9154 0.0000 0.0000 0.0000 

9 PCA and GPF 0.8401 0.0238 0.1387 0.0406 

10 t-SNE and GPF 0.9130 0.0847 0.0786 0.0815 

Without the use of SMOTE, the Logistic Regression model on Dataset 2 

demonstrated moderate to high accuracy across most configurations but failed to 

provide meaningful recall or F1-scores. Notably, the PCA-only and t-SNE-only 

configurations yielded the highest accuracy (both 0.9154), but produced zero precision, 

recall, and F1-score, indicating that the model ignored the minority class entirely. 

The best F1-score (0.1299) was achieved by the Dataset with PCA, which also 

exhibited a very high precision (0.8571) but an extremely low recall (0.1335), 

indicating a highly conservative model that identified a small number of promotable 

employees correctly. Configurations using GPF, particularly the Dataset with GPF and 

PCA (F1 = 0.0914), improved balance slightly, but were still insufficient to handle the 

imbalance without oversampling. 

These results emphasized the limitation of relying on accuracy alone in class-

imbalanced HR datasets. Although some configurations showed promise in terms of 

precision, the consistently low recall and F1-scores across the board highlighted the 

need for techniques like SMOTE to enable the model to generalize effectively in 

promoting employees. 
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Table 4.20 Performance Comparison of LR for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.8515 0.8503 0.8899 0.8658 

2 Dataset with GPF and SMOTE 0.8829 0.8834 0.9063 0.8925 

3 Dataset with PCA and SMOTE 0.6820 0.6990 0.7393 0.7099 

4 Dataset with t-SNE and SMOTE 0.7852 0.7871 0.8521 0.8117 

5 Dataset with GPF, PCA, and SMOTE 0.7719 0.8175 0.8317 0.8051 

6 Dataset with GPF, t-SNE, and SMOTE 0.8435 0.8546 0.8904 0.8650 

7 PCA and SMOTE 0.5396 0.5822 0.5724 0.5642 

8 t-SNE and SMOTE 0.4884 0.4887 0.5007 0.4945 

9 PCA, GPF and SMOTE 0.7193 0.7974 0.7630 0.7575 

10 t-SNE, GPF and SMOTE 0.7207 0.7969 0.7658 0.7596 

After applying SMOTE, the Logistic Regression model on Dataset 2 showed a 

substantial improvement across all evaluation metrics. The most effective configuration 

was the Dataset with GPF and SMOTE, which achieved the highest overall 

performance with Accuracy = 0.8829, Precision = 0.8834, Recall = 0.9063, and F1-

score = 0.8925. This indicated a well-balanced model with excellent generalization and 

low misclassification for both majority and minority classes. 

Other top-performing configurations included a Dataset with GPF, t-SNE, and 

SMOTE (F1 = 0.8650) and the baseline SMOTE setup (F1 = 0.8658), demonstrating 

that both dimensionality reduction and domain-informed features, such as GPF, can 

complement SMOTE to enhance model robustness further. Even combinations like  

t-SNE and SMOTE, as well as PCA and SMOTE, while yielding lower accuracy, still 

showed reasonable F1-scores (~0.49–0.56), confirming the overall benefit of balancing. 

In contrast, although configurations without GPF performed reasonably well, 

adding GPF consistently improved recall and stabilized F1-scores across variations. 

This emphasizes that GPF, when combined with SMOTE and optionally PCA or t-SNE, 

can yield a stable classification pipeline for predicting HR promotions. 

Overall, the findings confirm that Logistic Regression, despite its simplicity, 

performs excellently when enhanced with GPF and SMOTE, offering an interpretable 

and accurate approach for modeling promotional decisions in imbalanced HR datasets. 
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4.1.6 Neural Network Classification 

Table 4.21 Performance Comparison of NN for Dataset 1 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.5301 0.5453 0.5026 0.1004 

2 Dataset with GPF 0.5222 0.5445 0.5165 0.1062 

3 Dataset with PCA 0.5284 0.5347 0.5219 0.0942 

4 Dataset with t-SNE 0.5247 0.5238 0.5114 0.1411 

5 Dataset with GPF and PCA 0.5052 0.1490 0.5221 0.1148 

6 Dataset with GPF and t-SNE 0.5248 0.4720 0.5165 0.1118 

7 PCA 0.7051 0.0470 0.3126 0.0865 

8 t-SNE  0.8147 0.0375 0.0844 0.0545 

9 PCA and GPF 0.5679 0.0499 0.4998 0.0899 

10 t-SNE and GPF 0.5913 0.0531 0.5000 0.0962 

Without SMOTE, the Neural Network model on Dataset 1 yielded inconsistent 

results across different feature configurations. Despite moderate accuracy scores 

(typically around 0.52–0.53), the F1-scores remained low in most cases due to poor 

balance between precision and recall. For example, t-SNE only provided the highest 

accuracy (0.8147), but had an extremely low F1-score (0.0545) due to inadequate recall. 

The most balanced configuration was t-SNE as an added feature (F1 = 0.1411), 

with more stable precision and recall. Combinations such as Dataset with GPF and PCA 

and Dataset with GPF and t-SNE offered slight improvements in recall, but F1-scores 

still hovered around 0.10–0.11, which was insufficient for practical use. While GPF 

inclusion did slightly boost model sensitivity to the minority class, it could not 

overcome the limitations imposed by imbalanced data. 

These results emphasize the importance of applying class-balancing techniques 

when using deep models, such as neural networks, on imbalanced datasets. Without 

SMOTE, even complex models tended to predict the majority class, resulting in 

misleading accuracy and ineffective promotion prediction in HR scenarios. 
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Table 4.22 Performance Comparison of NN for Dataset 1 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.5542 0.5187 0.9751 0.6788 

2 Dataset with GPF and SMOTE 0.5343 0.5199 0.9831 0.6789 

3 Dataset with PCA and SMOTE 0.5759 0.5522 0.9386 0.6889 

4 Dataset with t-SNE and SMOTE 0.5375 0.5280 0.9219 0.6617 

5 Dataset with GPF, PCA, and SMOTE 0.5195 0.5131 0.9522 0.6613 

6 Dataset with GPF, t-SNE, and SMOTE 0.5347 0.5103 0.9031 0.6565 

7 PCA and SMOTE 0.5187 0.5103 0.7937 0.6330 

8 t-SNE and SMOTE 0.4859 0.5035 0.7131 0.5774 

9 PCA, GPF and SMOTE 0.4458 0.4671 0.7794 0.5816 

10 t-SNE, GPF and SMOTE 0.4800 0.4783 0.7106 0.5542 

After applying SMOTE, the Neural Network model on Dataset 1 showed 

substantial improvements in its ability to detect promotable employees. While accuracy 

across configurations ranged from 0.48 to 0.57, the F1-scores improved dramatically 

compared to the pre-SMOTE results. The most balanced configuration was the Dataset 

with PCA and SMOTE, achieving an F1-score of 0.6889, with Precision = 0.5522 and 

Recall = 0.9386, indicating a well-balanced model that effectively minimized false 

negatives. 

Other strong configurations included a Dataset with GPF and SMOTE (F1 = 

0.6789) and Baseline SMOTE (F1 = 0.6788), with recall values approaching 0.98, 

showing high sensitivity to minority class instances. Although these combinations 

sacrificed some precision (~0.51–0.52), they maintained respectable F1-scores due to 

excellent recall. 

Dimensionality reduction with t-SNE and the inclusion of GPF tended to 

produce slightly lower F1-scores (~0.55–0.66) but still offered significantly better 

results than non-SMOTE counterparts. This suggests that while neural networks can 

overfit or become unstable with high-dimensional features, SMOTE remains a robust 

stabilizer, especially when paired with relevant performance-based features, such as 

GPF. 

Overall, SMOTE enables the Neural Network to shift from underperforming 

(F1 ≈ 0.1) to producing strong and generalizable promotion predictions. Feature 
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configurations involving PCA and/or GPF are the most effective in optimizing the 

trade-off between sensitivity and precision. 

Table 4.23 Performance Comparison of NN for Dataset 2 

No. Dataset Combination AC PS RC F1 

1 Original dataset 0.5193 0.5434 0.5059 0.1346 

2 Dataset with GPF 0.5152 0.0436 0.5000 0.0849 

3 Dataset with PCA 0.5175 0.5249 0.5062 0.0927 

4 Dataset with t-SNE 0.9154 0.0000 0.0000 0.0000 

5 Dataset with GPF and PCA 0.5105 0.5436 0.5120 0.0898 

6 Dataset with GPF and t-SNE 0.5152 0.5436 0.5000 0.0912 

7 PCA 0.8992 0.0335 0.1499 0.0230 

8 t-SNE  0.9154 0.0000 0.0012 0.0000 

9 PCA and GPF 0.6364 0.0605 0.5000 0.1061 

10 t-SNE and GPF 0.6564 0.0622 0.5000 0.1109 

Without the use of SMOTE, the Neural Network model on Dataset 2 struggled 

with class imbalance, resulting in unreliable performance despite achieving seemingly 

high accuracy in some configurations. Specifically, the t-SNE and PCA-only 

configurations achieved an accuracy of over 0.90, but their recall and F1-scores were 

close to zero, indicating that the model completely ignored the promotable class. 

The configuration with the most balanced output was the original dataset (F1 = 

0.1346), with precision and recall approximately 0.54 and 0.50, respectively. Other 

datasets, such as PCA and GPF, t-SNE and GPF, and the Dataset with GPF and t-SNE, 

maintained a recall near 0.50 but failed to convert this into meaningful F1-scores due 

to extremely low precision. 

These results demonstrated that Neural Networks, despite their modeling 

power, are highly sensitive to class imbalance. Even with GPF integration, which 

slightly improved sensitivity, the absence of SMOTE caused the model to favor the 

majority class heavily, rendering high accuracy misleading. 

Overall, without SMOTE, Neural Network models are unsuitable for promotion 

prediction tasks, as they fail to recognize minority instances even with feature 

engineering support. Proper balancing mechanisms were essential for leveraging the 

full potential of deep learning in HR analytics. 
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Table 4.24 Performance Comparison of NN for Dataset 2 with SMOTE 

No. Dataset Combination AC PS RC F1 

1 Dataset with SMOTE 0.7614 0.7552 0.9744 0.6025 

2 Dataset with GPF and SMOTE 0.7504 0.7528 0.9918 0.8208 

3 Dataset with PCA and SMOTE 0.5192 0.7546 0.9849 0.8144 

4 Dataset with t-SNE and SMOTE 0.7393 0.7529 0.8766 0.7693 

5 Dataset with GPF, PCA, and SMOTE 0.7257 0.7530 0.9909 0.8016 

6 Dataset with GPF, t-SNE, and SMOTE 0.7398 0.7402 0.9866 0.7634 

7 PCA and SMOTE 0.4302 0.2310 0.5552 0.6417 

8 t-SNE and SMOTE 0.4904 0.4920 0.5156 0.5328 

9 PCA, GPF and SMOTE 0.3510 0.4912 0.5224 0.4008 

10 t-SNE, GPF and SMOTE 0.5662 0.5070 0.7229 0.5757 

With the application of SMOTE, the Neural Network on Dataset 2 demonstrated 

significant performance improvements in both recall and F1-score. The best overall 

result was achieved by the Dataset with GPF and SMOTE, yielding an F1-score of 

0.8208, accuracy of 0.7504, precision of 0.7528, and recall of 0.9918. This balance 

suggests that the model was highly effective at detecting promotable employees with 

minimal loss in precision. 

Other top-performing configurations included Dataset with PCA and SMOTE 

(F1 = 0.8144) and Dataset with GPF, PCA, and SMOTE (F1 = 0.8016). These setups 

maintained high recall (above 0.98) while varying slightly in precision, demonstrating 

that even simple transformations, such as PCA, when combined with SMOTE, helped 

the model become more generalizable to the minority class.  

Overall, these findings confirm that SMOTE, especially when combined with 

GPF and dimensionality reduction, enables Neural Networks to become highly 

effective in detecting promotable employees. Among the various configurations, GPF-

enhanced models showed consistent recall and high F1-scores, affirming the strength 

of the proposed feature in HR promotion prediction. 

 

  



71 

 

4.2 Clustering Results 

 Clustering used 2 algorithms: K-Means clustering and Fuzzy clustering. 

Table 4.25 Performance Comparison of K-Means Clustering for Dataset 1 

No. Dataset Combination RI FMI MI VMS 

1 Without all components 0.4239 0.5495 0.0017 0.0025 

2 SMOTE 0.5016 0.4354 0.0164 0.0187 

3 GPF and SMOTE 0.5043 0.485 0.0842 0.0948 

4 PCA and SMOTE 0.5057 0.5121 0.012 0.0173 

5 t-SNE and SMOTE 0.5 0.4082 0 0 

6 GPF, PCA, and SMOTE 0.615 0.6156 0.1205 0.174 

7 GPF, t-SNE, and SMOTE 0.5803 0.5146 0.1127 0.1277 

Table 4.26 Performance Comparison of K-Means Clustering for Dataset 2 

No. Dataset Combination RI FMI MI VMS 

1 Without all components 0.5034 0.6413 0.0002 0.0005 

2 SMOTE 0.5075 0.4403 0.0192 0.0219 

3 GPF and SMOTE 0.5909 0.4643 0.0373 0.0442 

4 PCA and SMOTE 0.6215 0.6465 0.1565 0.2356 

5 t-SNE and SMOTE 0.5 0.4082 0 0 

6 GPF, PCA, and SMOTE 0.6839 0.683 0.1984 0.2834 

7 GPF, t-SNE, and SMOTE 0.5727 0.5077 0.1011 0.1149 

As illustrated in Tables 4.25 and 4.26, the datasets enriched with a combination 

of GPF, PCA, and SMOTE achieved the highest clustering performance when 

evaluated using the K-means algorithm. This configuration consistently outperformed 

all other combinations across both datasets. In general, incorporating any of the 

enhancement techniques, including GPF, PCA, or SMOTE, to investigate which 

technique could provide better clustering results compared to the use of the original 

dataset alone. However, one notable exception was the t-SNE and SMOTE 

combination, which did not yield significant performance improvements and, in some 

cases, slightly degraded clustering quality. These results suggest that PCA is a more 

effective dimensionality reduction method than t-SNE for the datasets used in this 
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study. The possible reason is related to PCA, which preserves global variance structures 

and provides a more stable feature representation for clustering algorithms. Moreover, 

the inclusion of GPF proved beneficial across all scenarios, as it helps enhance the 

quality of the feature space for both PCA and t-SNE combinations. Moreover, these 

results confirm that GPF played a valuable role in improving clustering performance, 

regardless of the dimensionality reduction method used. 

Table 4.27 Performance Comparison of Fuzzy Clustering for Dataset 1 

No. Dataset Combination RI FMI MI VMS 

1 Without all components 0.5006 0.6501 0.0002 0.0005 

2 SMOTE 0.5003 0.5048 0.0002 0.0002 

3 GPF and SMOTE 0.5165 0.5187 0.0167 0.0243 

4 PCA and SMOTE 0.5085 0.5085 0.0086 0.0124 

5 t-SNE and SMOTE 0.5001 0.5001 0.0001 0.0002 

6 GPF, PCA, and SMOTE 0.6221 0.6226 0.1281 0.1849 

7 GPF, t-SNE, and SMOTE 0.5591 0.5608 0.061 0.0883 

Table 4.28 Performance Comparison of Fuzzy Clustering for Dataset 2 

No. Dataset Combination RI FMI MI VMS 

1 Without all components 0.5142 0.6627 0.0006 0.0014 

2 SMOTE 0.543 0.5433 0.0437 0.0631 

3 GPF and SMOTE 0.6662 0.6667 0.1776 0.2565 

4 PCA and SMOTE 0.591 0.5911 0.094 0.1357 

5 t-SNE and SMOTE 0.5 0.5 0 0 

6 GPF, PCA, and SMOTE 0.6728 0.6729 0.1846 0.2663 

7 GPF, t-SNE, and SMOTE 0.596 0.5975 0.1003 0.1451 

As presented in Tables 4.27 and 4.28, the fuzzy clustering results revealed that 

the combination of GPF, PCA, and SMOTE delivered the best clustering performance 

across both datasets. This finding was consistent with the results observed from the K-

means clustering model, further validating the effectiveness of the proposed data 

enrichment approach. In general, all enhanced dataset configurations outperformed the 

original dataset, except for the t-SNE combined with SMOTE, which failed to produce 

meaningful improvements in clustering performance. For the fuzzy clustering model, 

PCA once again proved to be a more effective dimensionality reduction technique 
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compared to t-SNE. This supported the earlier observation that PCA’s ability to capture 

global variance provided a more reliable foundation for clustering, particularly when 

used in combination with data balancing. Notably, the results also confirm that 

incorporating the Generated Promotion Feature (GPF) consistently improves clustering 

quality, regardless of whether PCA or t-SNE is used. This emphasizes GPF’s value in 

enhancing feature representation and improving the model’s ability to form more 

meaningful clusters. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

5.1 Classification 

5.1.1 Discussion of Classification Results Without SMOTE 

In the absence of SMOTE, all classification models suffered from poor recall 

and F1-scores despite appearing to have high accuracy in some configurations. The 

imbalance in class distribution significantly influenced model behavior, resulting in the 

majority class dominating predictions. Among the six models tested, including Random 

Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Logistic Regression (LR), and Neural Network (NN), Logistic 

Regression proved to be the most valuable under imbalanced conditions. Specifically, 

the combination of GPF and PCA helped improve recall while maintaining moderate 

precision, resulting in the most balanced F1-score among all models in this group. The 

GPF feature, when used without SMOTE, provided some benefit by increasing recall 

in specific models (e.g., LR, NN). Although it often came at the cost of reduced 

precision. PCA, when used as an additional feature (rather than for dimensionality 

reduction), helped specific models, such as KNN and NN, gain slight improvements. 

On the other hand, t-SNE, while improving accuracy in some cases, generally failed to 

enhance predictive power and often led to instability or overfitting, especially in models 

such as SVM and NN. Overall, the experiments demonstrate that while GPF and PCA 

can marginally support model performance under imbalanced conditions, the lack of 

SMOTE causes most classifiers to be ineffective in reliably identifying promoted 

employees. Specifically, SVM and DT perform the worst across both datasets and 

should not be used without data balancing, regardless of the feature engineering. 
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5.1.2 Discussion of Classification Results with SMOTE 

After applying SMOTE to both datasets, all classification models showed 

significant improvements in their ability to identify promotable employees. Across 

almost all models, recall and F1-scores became substantially more balanced. This 

confirms the effectiveness of SMOTE in addressing class imbalance and enhancing 

model generalizability. Among the six models evaluated, LR and NN demonstrated the 

most consistent and well-balanced results across datasets. The inclusion of GPF was 

especially effective in these models, contributing to both high recall and stable 

precision. Combinations such as (GPF and SMOTE), or (GPF, PCA, and SMOTE), 

yielded top F1-scores, often above 0.85. PCA also proved valuable, especially when 

used as an additional feature rather than for dimensionality reduction. Models like 

KNN, NN, and LR benefited from PCA-enhanced representations, improving F1-scores 

in configurations like (PCA and SMOTE) or (GPF, PCA and SMOTE). However, PCA 

should be used with care in models such as RF or DT, where performance gains were 

marginal or inconsistent. t-SNE, on the other hand, yielded mixed results. While it 

improved recall in some models (e.g., KNN, NN), it did not consistently enhance the 

F1-score. It sometimes introduced instability, especially in models prone to overfitting, 

like NN or less robust ones like DT. t-SNE performed best when used together with 

GPF and SMOTE. However, it should not be relied upon as a standalone enhancer. In 

conclusion, GPF was the most universally beneficial feature, as it improved recall and 

overall interpretability in nearly every model. PCA is recommended especially for 

KNN, LR, and NN, while t-SNE should be used cautiously and only in supportive roles. 

When SMOTE is used in tandem with GPF and dimensionality-aware transformations, 

classification models become substantially more reliable for promotion prediction tasks 

in human resource analytics. 
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5.2 Clustering 

5.2.1 Effectiveness of Dimensionality Reduction Techniques 

The experimental results indicate that integrating Principal Component 

Analysis (PCA) into the clustering pipeline significantly improves performance 

compared to using the original dataset alone. PCA outperformed t-SNE in terms of 

cluster quality for both K-means and Fuzzy C-means models. This distinction can be 

attributed to the fundamental differences between the two techniques. PCA, as a linear 

dimensionality reduction method, captures large-scale patterns and maximizes variance 

across the dataset, which is particularly effective for identifying global structures. In 

contrast, t-SNE is a non-linear approach that preserves local similarity at the expense 

of distorting global relationships. 

To assess the underlying structure of the dataset, PCA was first applied to 

examine how variance was distributed among principal components. The results 

indicate that a small number of components explain the majority of the variance, 

suggesting that the dataset lies on a lower-dimensional linear subspace. This 

observation, paired with the superior clustering performance of PCA over t-SNE, 

provides strong evidence that the dataset predominantly exhibits linear characteristics. 

5.2.2 Role of Generated Promotion Feature (GPF) 

 The inclusion of the Generated Promotion Feature (GPF) significantly enhances 

clustering performance. GPF is designed as a composite performance-based variable 

derived from the top three performance-oriented features that exhibit the highest 

Pearson correlation with the promotion target variable. These features typically include 

KPI achievement, awards, and average training performance metrics commonly used 

in HR assessments. 

A trade-off between interpretability and model generalizability guided the 

decision to use only the top three features. This limited but informative set of features 

prevents redundancy and reduces the risk of overfitting. A sensitivity analysis 

confirmed that the addition of GPF improved performance metrics, particularly recall 

and F1-score, across multiple models, especially under class-imbalanced conditions. 
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This demonstrates the value of GPF in promoting more accurate identification of 

promotable employees. 

5.2.3 Enhancing Clustering with Balanced Data Using SMOTE 

 To further improve model stability and reduce bias, the Synthetic Minority 

Oversampling Technique (SMOTE) was applied to address the inherent class 

imbalance in the dataset. By generating synthetic instances of underrepresented 

promotion cases, SMOTE ensured that both majority and minority classes were 

adequately represented during clustering. 

The combined use of PCA, GPF, and SMOTE yielded a well-structured and 

enriched feature space, consistently improving clustering outcomes. This integrated 

approach not only enhances model accuracy but also improves interpretability and 

robustness, affirming its effectiveness for promotion analysis in human resource 

contexts. 

5.3 Conclusion 

 This study presents a comprehensive data enrichment framework designed to 

enhance the effectiveness of classification and clustering models in identifying 

promotable employees.  

 For classification tasks, the results demonstrate that handling class imbalance 

with SMOTE alone significantly improves model performance, particularly in terms of 

recall and F1-score. Therefore, the choice of SMOTE is strongly supported by its 

consistent effectiveness across models and datasets. The effectiveness of SMOTE was 

observed across both datasets, indicating that the success was not data-specific but 

rather a robust approach to imbalance. PCA and GPF may still be helpful in certain 

situations, but they are not required for achieving strong classification results in 

promotion prediction tasks. Although techniques like PCA or GPF were explored, they 

were not essential for improving classification outcomes in all cases. PCA offered 

limited additional value, and GPF was only helpful when further increasing recall was 

needed. 
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For clustering tasks, the proposed methodology was evaluated using K-means 

and Fuzzy clustering, known as clustering algorithms, applied to two publicly available 

HR datasets. A variety of dataset combinations were tested, involving different 

configurations of feature extraction (PCA/t-SNE), GPF augmentation, and SMOTE 

balancing. Experimental results show that the combination of GPF, PCA, and SMOTE 

consistently outperformed other configurations across both datasets. This combination 

leads to significant improvements in clustering quality, as measured by multiple 

evaluation metrics including the Rand Index (RI), Fowlkes–Mallows Index (FMI), 

Mutual Information (MI), and V-measure (V). Overall, the findings support the 

conclusion that combining performance-driven feature engineering with dimensionality 

reduction and class balancing strategies can substantially enhance the ability of 

clustering models to identify meaningful patterns in employee promotion data.  

5.4 Suggestions and Future Work 

This study provides practical implications for utilizing machine learning in 

human resource management, particularly in promotion analysis and decision support. 

The developed framework can be applied in two main approaches: classification and 

clustering. 

In the context of classification, the model can be employed to predict promotion 

outcomes, which requires a well-prepared training dataset containing historical 

promotion records and relevant performance features. Before applying, organizations 

should ensure that data preprocessing, feature selection, and model validation are 

conducted thoroughly to ensure reliable predictions. This application is especially 

beneficial for supporting fair and transparent promotion decisions. 

In the clustering context, the proposed model can be used without the need for 

labeled outcome data. Instead, organizations can structure input datasets using either 

performance features (e.g., KPI scores, awards, training results) or personal attributes 

(e.g., years of service, education, skills). By feeding these features into the clustering 

model, the algorithm will automatically group employees based on performance levels 

or similarity patterns. This unsupervised approach supports strategic workforce 
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planning, such as identifying high-potential employee clusters or segmenting training 

needs. 

The proposed model offers a promising decision-support tool for human 

resource analytics. With proper adaptation and integration into HR practices, it can 

support organizations in identifying promotable employees, promoting fairness, and 

optimizing talent management strategies. To mitigate potential biases in promotion 

decisions, the proposed model is designed with a strong emphasis on performance-

driven and explainable criteria. Specifically, the model integrates a domain-informed 

feature called the Generated Promotion Feature (GPF), which is derived solely from 

quantifiable performance-related attributes such as KPIs, training scores, and award 

recognition. These features are objectively measurable and are selected based on their 

statistical correlation with historical promotion outcomes, rather than personal or 

demographic factors. 

One notable limitation of this study is that the feature selection process for GPF 

construction was based on predefined correlation scores, which were derived through 

manual observation and analysis. Although this approach may not capture the full 

complexity of the data, it is still effective. Therefore, future research should explore 

automated, data-driven feature selection techniques to enhance the objectivity and 

adaptability of GPF creation. Additionally, extending the experimentation to include 

other HR datasets, different clustering algorithms, and alternative methods for handling 

imbalanced data would help validate and strengthen the generalizability of the proposed 

approach. 
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