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ABSTRACT 

 Dementia affects both individuals and society, making early detection essential for 

effective management. However, reliance on advanced laboratory tests and specialized 

expertise limits accessibility, hindering timely diagnosis. To address this challenge, this 

study pioneers a novel approach by employing readily available biochemical and 

physiological features from electronic health records to develop a machine learning-based 

binary classification model, enhancing accessibility and early detection. This study utilizes 

a dataset from Phachanukroh Hospital in Chiang Rai, Thailand, for model construction. A 

hybrid data enrichment framework using feature augmentation and data balancing was 

proposed to increase data dimensionality. Inter-relation-based Features (IRFs) were 

suggested as a means to enhance data diversity and promote explainability by making 

features more informative through the application of medical domain knowledge. To 

balance the data, K-Means Synthetic Minority Oversampling Technique (K-Means 

SMOTE) was applied to generate synthetic samples in underrepresented regions of the 

feature space, improving class imbalance handling. Extra Trees (ET) was proposed for 

model construction because of its noise resilience and ability to manage multicollinearity. 

The performances were compared with Support Vector Machine (SVM), K-nearest 

Neighbors (KNN), Artificial Neural Networks (ANN), Random Forest (RF), and Gradient 

Boosting GB. Results revealed that the ET model significantly outperformed other models 

for the combined dataset with four Inter-Relation-Based Features (IRFs) and K-Means 

SMOTE across key metrics, including accuracy (96.47 %), precision (94.79 %), recall 

(97.86 %), F1-score (96.30%), and area under the curve of the Receiver Operating 

Characteristic (99.51 %). 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Dementia has become a critical global issue, exacerbated by the aging 

population, leaving patients increasingly dependent and facing death (Castellazzi et al., 

2020). Currently, 55 million people lived with dementia, a number projected to rise to 

152.8 million by 2050 (Gustavsson et al., 2023; Nichols et al., 2022). The economic 

burden of dementia care exceeded $1 trillion in 2018 and was set to double by 2030, 

potentially surpassing $2 trillion as the global population ages and dementia cases rise 

(World Health Organization, 2019; Lastuka et al., 2024). In Thailand, the aging 

population is driving a steady increase in dementia patients, with numbers expected to 

grow by 10% annually (Muangpaisan, 2013; Thongwachira et al., 2019). Dementia 

significantly impairs daily activities, causing memory loss, confusion, and 

communication challenges, and often leads to complete dependency. Age is the primary 

risk factor, with most cases occurring in individuals over 65 years old, but lifestyle 

choices, cardiovascular health, and education also play a role. Beyond its impact on 

individuals, dementia has profound societal and economic consequences, with no cure 

and a slow progression. The increasing demand for care will strain healthcare systems, 

lead to higher costs, and prompt changes in societal structures, emphasizing the urgent 

need for policies addressing elder care and dementia management. 

 Dementia diagnosis involves a comprehensive assessment of symptoms and 

brain function. The detection of cognitive decline enables proactive preparation and the 

potential for behavior modification to mitigate the onset of dementia, as well as the 

identification of suitable treatment options. Typically, the diagnosis of dementia relies 

on a combination of physical examination, laboratory testing (such as brain function 

tests), and radiology, facilitated by advanced laboratory techniques (Gustavsson et al., 

2023; Nichols et al., 2022). Traditionally, a detailed medical history, family history, 

and neurological examination are used to assess cognitive functions, including memory, 
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thinking, and language. Standardized tests, such as the Mini-Mental State Examination 

(MMSE) or the Montreal Cognitive Assessment (MoCA), are generally used to 

measure cognitive abilities. Computed Tomography (CT) scans and Magnetic 

Resonance Imaging (MRI) are well-established methods for providing visual images of 

the brain to identify abnormalities, such as brain atrophy or tumors. Additionally, 

Positron Emission Tomography (PET) scans provide a more detailed view of brain 

function by tracking blood flow and metabolism. Furthermore, blood tests and 

biochemical analyses help rule out other potential causes of dementia symptoms, like 

hormonal imbalances or infections. Generally, dementia diagnosis is expensive, but it 

is necessary to have an advanced laboratory and a medical professional to ensure 

diagnosis accuracy, which is difficult to access for the public, especially in rural areas.  

 While traditional methods rely heavily on clinical evaluations and medical 

imaging, recent advancements in machine learning (ML) have introduced new 

possibilities for more accurate and efficient diagnosis of dementia. ML algorithms can 

analyze large datasets from medical images and psychological tests to aid in dementia 

diagnosis. They extract relevant features from brain images, like the degree of brain 

tissue loss or the enlargement of brain ventricles. They can analyze results from 

psychological tests to identify patterns associated with dementia (Gómez et al., 2017). 

By tracking health data and cognitive function over time, ML can predict the onset of 

dementia. Recently, deep learning has been trained to analyze MRI or PET images and 

identify subtle changes associated with dementia, such as brain atrophy or abnormal 

protein deposits. As mentioned earlier, the widespread adoption of ML has shown 

promising results in utilizing various types of data for dementia prediction. It has also 

been demonstrated that one of the challenges of using an ML-based model is the 

availability of high-quality and diverse datasets for training. Insufficient high-quality 

data from data collection could hinder model performance. Feature augmentation was 

one of the popular approaches, widely used for addressing the low dimension of the 

dataset (Gómez et al., 2017; Jeong et al., 2001; Nancy et al., 2017; Trambaiolli et al., 

2017; Rodrigues et al., 2013; Pritchard et al., 1994). By capturing complex relationships 

that linear models might miss, feature augmentation can typically improve model 

performance. This method has been applied in several previous works to modify 
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existing features within a dataset to improve ML models (Pritchard et al., 1994; Shorten 

et al., 2019).  

 While traditional approaches rely heavily on clinical evaluations and medical 

imaging, this study emphasizes the use of clinical data derived from electronic health 

records (EHRs) to improve the early detection of dementia, aiming to promote broader 

accessibility for the general population. More specifically, this study aims to propose a 

classification method that effectively classifies patients into those with and without 

dementia. Since the raw data from hospital was of low quality and low dimensionality, 

necessitating effective hybrid data enrichment method and making it suitable to 

improve model performance. In this study, new features, named Inter-Relation-Based 

Features (IRF), were constructed through a feature augmented process and integrated 

into the original dataset. Applying medical domain knowledge, IRF represents 

relationships between features within the same groups to provide more informative 

features and promote explainability. To tackle the data imbalance, K-means SMOTE 

was used to synthetically increase the number of minority class instances, which are 

patients with dementia. K-means SMOTE preserves data distribution, reduces bias from 

oversampling in noisy regions, and enhances model performance on imbalanced 

datasets. Extra Trees (ET) was proposed as an effective classifier due to its ability to 

handle multicollinearity and its potential to work with complex, noisy, or high-

dimensional data. The proposed model was compared with other existing ML methods 

including Support Vector Machine (SVM), K-nearest Neighbors (KNN), Artificial 

Neural Networks (ANN), Random Forest (RF), and Gradient Boosting (GB). The 

models were evaluated using the confusion matrix, accuracy, precision, recall, F1-

score, Area Under the Curve (AUC), and Receiver Operating Characteristic Curve 

(ROC).  

1.2 Objectives 

This study aims to address the limitations of traditional dementia diagnostic 

methods by applying machine learning to clinical data obtained from electronic health 

records (EHRs). The specific objectives are as follows: 
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1.2.1 Enhance dementia classification by constructing and integrating Inter-

Relation- Based Features (IRFs) derived from medical domain knowledge, while 

addressing class imbalance using K-Means SMOTE to improve data distribution and 

overall model performance. 

1.2.2 The proposed Extra Trees-based model is developed and evaluated in 

comparison with other machine learning algorithms including Support Vector Machine 

(SVM), K-nearest Neighbors (KNN), Artificial Neural Networks (ANN), Random 

Forest (RF), and Gradient Boosting (GB). based on diagnostic metrics such as 

confusion matrix, accuracy, precision, recall, F1-score, Area under the curve (AUC), 

and Receiver operating characteristic curve (ROC). 

1.3 Scope of Research 

This study focuses on the early screening of dementia using clinical data derived 

from electronic health records (EHRs), rather than relying on costly diagnostic methods 

such as neuroimaging or advanced laboratory testing. The scope of the data is limited 

to structured data that can be routinely collected in general healthcare settings, 

including blood test results, vital signs, and basic demographic information. 

The study emphasizes the construction of new features, referred to as Inter-

Relation-Based Features (IRFs), which are derived from externally validated theories 

and calculation formulas that align with the characteristics of the dataset used in this 

research. These features are designed to enhance classification performance and 

support clinically meaningful interpretation. In addition, the K-Means SMOTE 

technique was employed to address the issue of class imbalance, and the Extra Trees 

(ET) algorithm was selected as the primary classifier. The model's performance was 

compared with other commonly used machine learning algorithms, including SVM, 

KNN, ANN, RF, and GB. 

This study does not include medical imaging data (MRI, CT, or PET scans) or 

unstructured data such as clinical notes. It is confined to tabular data formats suitable 

for practical application in healthcare systems, particularly in resource-limited settings. 
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CHAPTER 2 

LITERATURE REVIEWS 

2.1 Features for Dementia Classification Model 

 ML-based classification or prediction models employ different types of patient 

data for constructing the model, such as medical records, health history, behavioral 

patterns, and biological data. Studies have shown that datasets commonly used in ML 

models can be divided into three categories: unstructured data such as images, 

structured data such as records from a database, and hybrid structured data, which is 

the combination of unstructured and structured data. For unstructured data, several 

complex models have been implemented to process and analyze visual data (Ullah et 

al., 2018; Castellazzi et al., 2020). For examples, recent advancements in deep learning 

have shown significant promise in neuroimaging-based dementia detection, particularly 

for Alzheimer’s disease (AD). Deep learning models have consistently outperformed 

traditional machine learning approaches in analyzing MRI scans for early diagnosis 

(Bansal et al., 2022). Studies utilizing the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset have demonstrated that Convolutional Neural Networks (CNNs) and 

transfer learning architectures such as InceptionV3 and ResNet can achieve high 

classification accuracy ranging from 91.8% to 95.2% (Bansal et al., 2022; Narmatha et 

al., 2021). Notably, Dense Convolutional Networks (DenseNet) have recently 

outperformed other CNN variants, reaching an accuracy of 96.1% in early AD 

classification tasks (Vardhini et al., 2024).  

 In terms of structured data groups, ML models operate on data that is organized 

in a tabular format, such as databases or spreadsheets. The standard dataset is EHR, 

containing different types of medical data, personal data, and behavioral data. For 

example, there was a study proposed on a classification model to classify mild cognitive 

impairment and cognitively normal subjects using itemized scores of three widely used 

standard neuropsychological tests, including Alzheimer’s Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog) and MMSE (Almubark et al., 2020).  For this study, 
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four different ML models were studied: SVM, RF, GB, and AdaBoost. Furthermore, 

the adaptive synthetic sampling technique was employed to enhance the performance 

of the SVM-based model. It proposed novel feature extraction techniques, namely the 

Feature Extraction Battery, for classifying dementia (Javeed et al., 2023). A study 

employed a GB-based model for multiclass classification of heart failure, aortic 

stenosis, and dementia using the EHR data from the hospital. (Yongcharoenchaiyasit et 

al., 2023)  

 In terms of the hybrid data group, a study of a classification model for dementia 

based on MRI and clinical data was proposed. They incorporated univariate feature 

selection as a preprocessing step to filter features from MRI data (Lastuka et al., 2024).  

The Latest advancements in ML for AD detection and classification, concentrating on 

neuroimaging studies and some related clinical data, were examined. The techniques 

explored include SVM, RF, CNNs, and K-means (Mirzaei & Adeli, 2022; Mohammed 

et al., 2021). It can be seen that research studies in medical applications often involve 

the use of various types of data, including neuroimaging, protein sequences, speech 

data, electroencephalogram (EEG) signals, and magnetoencephalography (MEG) 

signals, as well as additional data like medical history and genetic information. 

However, working with such large datasets is not always practical in medical settings.   

 In this study, structured data, specifically biochemical and physiological 

features derived from EHRs, are primarily utilized to develop ML-based classification 

models to promote accessible and convenient early detection of dementia for the 

general public. This proposed work is motivated by the limitations of neuroimaging and 

brain function assessments, which typically require advanced medical facilities and 

specialized expertise that may not be readily available in rural or resource-limited 

settings. 

2.2 Feature Engineering for Disease Prediction 

 Feature engineering is a crucial step in the ML pipeline, especially for disease 

prediction or classification tasks. Effective feature engineering can significantly 

enhance the predictive power of models in disease prediction. Feature extraction is a 
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crucial part of feature engineering. It involves transforming raw data into a format that 

is more suitable for modeling and analysis. Several feature extraction methods have 

been proposed to enhance the diagnostic accuracy of disease prediction or classification 

models (Mohammed et al., 2021). The examination of the time-frequency 

representation and feature extraction-based model to distinguish EEG segments of 

control subjects from those of AD patients was conducted (Cura et al., 2022). A 

dementia classification based on speech analysis of casual talk during a clinical 

interview could utilize speech feature extraction to reduce the dimensionality of the 

speech dataset for the SVM model (Hanai et al., 2022). While feature extraction can 

significantly improve ML performance, it also presents challenges that can negatively 

impact results. Reducing data dimensionality can lead to information loss, thereby 

degrading model performance. Some feature extraction methods are computationally 

expensive, especially when working with large datasets, and may capture noise, which 

can lead to overfitting. To ensure reliable performance, it is essential to select extraction 

methods and conduct thorough validation and testing carefully.   

 Feature augmentation is also a method within feature engineering, typically 

used to enhance the generalization or performance of the model. It involves enhancing 

a dataset by adding new features derived from the existing ones. Augmented features 

can be used to capture complex relationships and patterns that may not be explicit in 

the original features. Moreover, it can enable models to become more robust against 

data unpredictability and noise, hence producing more accurate predictions. Recently, 

the health dataset features were found to facilitate the generation of new data through 

mathematical combinations. By providing more informative features, augmented 

datasets can lead to better model accuracy and precision. Many studies employed 

feature augmentation techniques to improve the performance of disease prediction and 

classification models. For example, an extensive review of data augmentation methods 

applicable in computer vision domains has been conducted. The study results found 

that data augmentation methods based on explicit transformation operations provide 

accurate and reliable performance improvements (Mumuni & Mumuni, 2022). In 

addition, a study on a transfer learning technique for detecting and classifying the 

severity of dementia using MRI scan images was proposed (Jha et al., 2022).  
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 While extracted features can highlight relevant patterns, augmentation can 

introduce variability, helping models learn from a broader spectrum of data. Many 

models were using both techniques for disease prediction or classification. For 

example, a structured approach was examined, including preprocessing, dimensionality 

reduction using principal component analysis (PCA), dataset augmentation with a 

neural network, training, and evaluation of the dementia dataset using CNN-based 

classification (Jha et al., 2022). Moreover, the combination of PCA and CNNs for AD 

detection was a powerful approach. PCA reduced dimensionality and improved 

efficiency, while CNNs excel at extracting discriminative features from images (Reddy 

et al., 2023). 

 In this study, feature augmentation is selected to play a central role in enhancing 

the informativeness and interpretability of the input space. New inter-feature constructs 

are generated by leveraging established medical knowledge and clinically validated 

relational equations to produce more meaningful and explainable features. This 

domain-driven augmentation enhances model performance and fosters transparency 

and trustworthiness in clinical decision support systems.  

2.3 Data Balancing for ML Model Construction 

 Data balancing methods are employed to address class imbalance in datasets, 

particularly in classification problems where one class is significantly underrepresented 

compared to others. The dominant class may influence the models, resulting in low 

performance for the minority class, despite achieving great accuracy. Three main 

categories define data balancing techniques:  oversampling, undersampling, and hybrid 

techniques. Synthetic Minority Oversampling Technique (SMOTE) has become well-

known among the methods of data balancing in the domain of ML. It essentially 

balances the dataset and prevents the model from overfitting by generating a synthetic 

dataset of minority class instances from the existing data.  Many studies on the 

diagnosis and classification of dementia and AD have highlighted the general 

importance of the SMOTE method.  For example, a study using image-enhancing 
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techniques in conjunction with SMOTE and deep learning to improve the accuracy of 

early AD detection (Samanta et al., 2023). 

 K-Means SMOTE is an enhanced version of SMOTE that utilizes clustering to 

generate more meaningful synthetic samples, thereby increasing its effectiveness in 

specific scenarios. It combines K-means clustering with SMOTE to improve 

classification performance. In addition, it differs from original SMOTE by considering 

the overall data distribution by using clustering, whereas SMOTE operates locally on 

minority class instances without considering the global structure. Focuses on areas of 

the feature space where the minority class is sparse, K-Means SMOTE tends to reduce 

the risk of generating noisy samples.  It is an effective technique for addressing class 

imbalance in various prediction tasks, highlighting the versatility and effectiveness of 

K-Means SMOTE in enhancing prediction performance across diverse domains, 

especially for medical datasets (Liu et al., 2023; Hairani et al., 2020). Additionally, 

Adaptive Synthetic Sampling (ADASYN) has also been widely used for data synthesis. 

It adaptively generates more synthetic data for minority class samples that are harder to 

learn, i.e., those surrounded by many majority class samples. While adaptive to sample 

difficulty by focusing on harder-to-learn instances, ADASYN may overemphasize 

borderline or noisy samples, leading to overfitting and reduced generalizability in real-

world clinical applications, especially when class boundaries are fuzzy or error-prone 

(He et al., 2008).  

 However, K-Means SMOTE stands out among oversampling techniques for 

disease prediction by combining clustering with synthetic sampling, enabling more 

informed data generation. Unlike SMOTE and ADASYN, it avoids noisy regions and 

reinforces representative areas, enhancing class separability and reducing overlap with 

the majority class. This makes it particularly well-suited for imbalanced clinical 

datasets with subtle decision boundaries, which justifies its selection for this study. 
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2.4 Machine Learning Classification for Dementia Prediction 

 Research studies on ML methods for dementia prediction and diagnosis 

highlight three main groups: traditional classifiers, ensemble learning, and deep 

learning. Traditional models, such as Naive Bayes, Decision Trees, and SVM, are 

effective for smaller datasets or less complex features. Ensemble methods, such as RF, 

ET, and GB, combine multiple models to improve performance, robustness, and 

generalization. Deep learning models excel at analyzing high-dimensional data, such as 

medical images and genomic sequences, automatically learning relevant features 

without the need for extensive manual engineering. However, ensemble-based methods 

are often preferred over deep learning in medical applications due to the challenges of 

obtaining sufficient high-quality data, which can be both difficult and time-consuming.  

 Ensemble learning, which combines multiple models to improve prediction 

accuracy, has become a powerful tool in the diagnosis and prognosis of various 

diseases, including dementia. For example, a study utilized handwriting analysis for 

diagnosing neurodegenerative disorders like AD and Parkinson’s disease (Ranjan et 

al.2022). Another study developed an ensemble model using Light Gradient Boosting, 

Categorical Boosting, and Adaptive Boosting for AD detection (Öcal, 2024). Similarly, 

an ensemble deep learning approach for disease prediction through metagenomics was 

proposed (Shen et al., 2023). Furthermore, a comparison between traditional and 

ensemble classifiers for the multiclass classification of heart failure, aortic stenosis, and 

dementia was investigated (Vardhini et al., 2024). Meanwhile, ensemble methods were 

applied to the Open Access Series of Imaging Studies dataset for dementia prediction 

(Goel et al., 2023). These studies consistently demonstrate that ensemble methods 

outperform traditional models.  

 Recent studies have explored the use of ET and decision tree ensembles for 

improving predictions in various domains, especially disease prediction (Shafique et 

al., 2019; Aashima et al., 2021). ET enhances randomness by also randomly selecting 

the split threshold, rather than calculating the optimal split point. This dual 

randomization, which incorporates both feature and threshold selection, introduces 

greater diversity among the trees, resulting in reduced variance and improved 
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generalization, particularly in high-dimensional datasets (Hanczár et al., 2023). This is 

particularly beneficial when dealing with noisy or complex data. Compared to other 

ensemble methods, such as RF, ET further reduces variance by utilizing random 

thresholds, making it more effective for small datasets where feature engineering is 

crucial (Zhou & Feng, 2017). While GB sequential error correction risks overfitting on 

small datasets and requires extensive hyperparameter tuning, ET’s randomized splits 

and ensemble averaging provide more stable performance with minimal tuning 

(Hanczár et al., 2023; Zhou & Feng, 2017). Additionally, ET's bagging approach 

naturally mitigates class imbalance, whereas GB may amplify bias when synthetic 

oversampling introduces noise (Fernández et al., 2018; Narasimhan et al., 2021). Deep 

learning models, while powerful, often require large-scale data and extensive 

hyperparameter tuning, making them less practical for low-dimensional clinical 

datasets (Wen et al., 2020).  

 Within the realm of healthcare data, which often presents heterogeneous 

patterns, missing values, and irrelevant features, the added randomness of ET helps the 

model avoid overfitting to misleading correlations (Fernández-Delgado et al., 2014). 

Therefore, ET often outperforms traditional ensemble learning methods in biomedical 

applications, including disease classification, phenotyping, and risk prediction (Kourou 

et al., 2015). Its capacity to model complex, nonlinear interactions among features 

makes it particularly suitable for tasks like dementia classification in this study.   
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Conceptual Framework 

This study proposes a novel ML-based binary classification model using readily 

available biochemical and physiological features from electronic health records to 

improve accessibility and early detection. Since sufficiently high-quality data is a key 

to the success of ML-based models, this study proposes a hybrid data enrichment 

framework, feature augmentation, and data balancing to improve the overall 

classification performance of ML-based models. The conceptual diagram of the 

proposed hybrid enrichment framework is illustrated as follows.  

 

Source Chaiyo et al. (2025) 

Figure 3.1 Conceptual diagram of data enrichment framework, using Inter-Relation-

Based Features for feature augmentation and K-Means SMOTE for data 

balancing 

 Figure 3.1 illustrates that the dimension of the original dataset increased for both 

the number of features and the number of examples using a hybrid data enrichment 

framework. For feature augmentation, the IRF was constructed from the features within 

the same group. In this study, there were five groups of features used for relationship 
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presentation, including (1) blood pressure, (2) lipid levels, (3) blood sugar levels,  

(4) renal and chemical substances, and (5) blood cell count. The creation of new 

features based on the existing mathematical relationships, derived from medical domain 

knowledge, is expected to increase the diversity of the data without introducing new 

biases into the newly generated, more informative features and promote explainability. 

By creating interaction terms, relationships that might not be evident in the original 

features are expected to be captured. To balance the data, K-Means SMOTE was 

selected to increase the minority class, which was the patients with dementia class. 

Incorporating these augmented and synthesized new data alongside the original dataset 

was expected to improve the overall performance of the ML models. Furthermore, this 

study aims to determine which combination of datasets can enhance the ML-based 

classification models. 

3.2 Methodology 

The research methodology of this study is shown in Figure 3.2. Details of each 

process are discussed in this section. 

 

Source Chaiyo et al. (2025) 

Figure 3.2 Overview of the research methodology, encompassing data preparation, 

model development, and performance evaluation 
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3.2.1 Data Collection 

 This study used the EHR from Chiang Rai Phachanukroh Hospital, Chiang Rai 

province, Thailand, which comprises 14,763 records and 22 original features. There are 

4,796 records of patients with dementia and 9,967 records of patients without dementia 

(heart failure and heart valve disorders). The data portion is shown in Figure 3.3. 

 

Source Chaiyo et al. (2025) 

Figure 3.3 Class portion of the original dataset, having patients without dementia as 

the majority class and patients with dementia as the minority class 

The feature datasets are divided into two categories: personal (e.g., Age, Height, 

Weight) and five other groups of clinical features, as shown in Table 3.1. 
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Table 3.1 Original dataset and feature group    

No. Group Feature Data Range 

1. Personal Data Age 

Weight (W) 

Height (H) 

Gender (S) 

73.17±8.54 

56.37±9.70 

155.03±7.62 

0-1 

2. Blood Pressure Systolic Blood Pressure (SBP) 

Diastolic Blood Pressure (DBP) 

130.00±16.34 

68.93±9.9. 

3. Lipid Levels 

 

Cholesterol (Chol) 

Triglyceride (TG) 

Low-Density Lipoprotein (LDL) 

High-Density Lipoprotein (HDL) 

171.02±28.77 

115.81±33.59 

112.19±21.17 

44.95±8.67 

4. Blood Sugar Level Fasting Blood Sugar (FBS) 123.47±62.52 

5. Minerals and 

Chemical 

Substances 

 

Creatinine (Cr) 

Blood Urea Nitrogen (BUN) 

Hemoglobin (Hb) 

Potassium (K) 

Sodium (Na) 

1.59±1.45 

25.96±16.44 

11.34±1.72 

3.96±0.49 

137.67±3.02 

6. Blood Cells 

 

White Blood Cell (WBC) 

Neutrophil (Neut) 

Platelet (Plt) 

Lymphocyte (Lymph) 

9006.04±2639.41 

74.65±12.80 

238667.17±60548.65 

18.12±7.45 

3.2.2 Data Preprocessing 

 Data preprocessing is a crucial step used in preparing data ready for ML. In this 

study, the data preprocessing process consists of two main steps, including data 

cleaning and imputation. Due to human error in this dataset, some features were left 

unnamed and could not be used. More specifically, features like education level and 

service date were considered irrelevant to the models’ predictions. For data cleaning, 

any feature with over 90% missing data was excluded as it lacked sufficient information 

to be useful. For categorical features, one-hot encoding was employed. It involves 
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transforming each category into a separate binary feature. In this study, the “gender” 

column was encoded as two binary features: one for “male” (represented as 1) and 

another for “female” (represented as 0).  

 To address the missing values, the K-NN imputation method was employed to 

maintain the relationships within the data during data imputation (Beebe-Wang et al., 

2021). The K-NN imputation method was a technique used to handle missing data in a 

dataset by estimating the missing values based on the values of similar (neighboring) 

data points (Pujianto et al., 2019). The core idea is to find the most similar data points 

(nearest neighbors) to the data point with missing values and use them to predict the 

missing values. The K-NN imputation method specifies the parameter k, which 

represents the number of nearest neighbors used as references for imputing missing 

values. In this study, the value of k was set to 2 to emphasize imputation based on actual 

surrounding data points while minimizing reliance on averaged values that may obscure 

individual variability. When a missing value is encountered, the algorithm calculates 

the distance between the incomplete row and all other rows with complete data using 

Euclidean distance metrics. The two nearest neighbors are then selected as the basis for 

imputation. Additionally, the missing attribute is numerical, and the imputed value is 

calculated as the average of the corresponding values from the two selected neighbors. 

This imputed value is then substituted into the original row, replacing the missing entry, 

to ensure consistency with the most similar existing data points. 

3.2.3 Feature Augmentation 

The number of Inter-Relation-Based Features (IRFs) was designed based on the 

structure of the original clinical dataset, which comprised four primary feature groups: 

(1) blood pressure, (2) lipid profile, (3) renal and biochemical markers, and (4) blood 

cell counts. Consequently, the initial augmentation phase involved generating one IRF 

from each group, resulting in a total of four IRFs. This configuration was intended to 

explore the initial impact of structured feature expansion on model performance. 

Subsequently, two additional rounds of feature augmentation were conducted 

by adding four more IRFs in each round, leading to three distinct experimental 

configurations: 4, 8, and 12 IRFs. This stepwise expansion allowed for a systematic 

evaluation of the effects of increasing feature dimensionality on predictive 

performance, model stability, and interpretability. 
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Although there is no established mathematical theory dictating the optimal 

number of augmented features, the decision to use incremental levels of IRFs was 

grounded in a structured exploratory design approach. This method is supported by 

prior studies, which suggest that progressively increasing the feature space helps 

identify saturation points in model performance while mitigating the risk of overfitting 

(Shorten & Khoshgoftaar, 2019; Jha et al., 2022; Mumuni & Mumuni, 2022). 

The feature augmentation is applied to increase the features of the original 

clinical dataset. New features were constructed using existing equations based on 

medical domain knowledge, presenting the relationships between features within the 

same group. Therefore, these new augmented features are named Inter-Relation-based 

Feature or IRF. The primary objective of IRF is to enhance the explainability and 

trustworthiness of the proposed model by ensuring that the newly constructed features 

are based on clinically meaningful and interpretable relationships. The experiments 

involved randomly augmenting the data using 4, 8, and 12 features sequentially, to 

determine the most effective set for classification. The details of new features used for 

constructing IRF are presented in Table 3.2. 

Table 3.2 IRF augmented features 

No. Features Detail Description 

1. Average blood pressure 

(ABP) 

ABP, a key indicator of circulation, is calculated 

from systolic and diastolic pressures during heart 

contraction and relaxation, respectively. 

2. Cholesterol-HDL Ratio 

(CHR) 

The CHD ratio, used to assess cardiovascular risk, 

is calculated by dividing the total cholesterol level 

by the HDL level. 

3. Neutrophil to Lymphocyte 

Ratio (NLR) 

NLR, used to assess inflammation and immune 

response, is calculated by dividing the number of 

neutrophils by the number of lymphocytes. It is 

commonly applied in the evaluation of chronic 

diseases and cancer. 
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Table 3.2 (continued) 

No. Features Detail Description 

4. Modification of Diet in 

Renal Disease (MDRD) 

MDRD, used to assess kidney function, is 

calculated from serum creatinine adjusted for age, 

gender, and ethnicity, and is commonly used in the 

management of chronic kidney disease. 

5. Neutrophil Count (NC) NC, used to assess immune function, measures the 

number of neutrophil white blood cells in the 

blood. 

6. Triglyceride-HDL Ratio 

(TG/HDL Ratio) 

TG/HDL, used to assess cardiovascular risk and 

insulin resistance, is calculated by dividing 

triglyceride levels by HDL cholesterol; higher 

ratios indicate greater risk. 

7. Chronic Kidney Disease 

Epidemiology Collaboration 

(CKD-EPI) 

The CKD-EPI equation, used for accurate assessment 

of kidney function, improves upon the MDRD 

formula by incorporating serum creatinine, age, 

gender, and ethnicity, thereby enhancing the 

diagnosis of chronic kidney disease. 

8. HDL-LDL ratio  

(HDL/LDL Ratio) 

The HDL/LDL Ratio, used to assess cardiovascular 

health, is calculated by dividing HDL by LDL; 

higher ratios indicate a better cholesterol balance 

and a reduced risk. 

9 Mean Arterial Pressure 

(MAP): 

MAP represents the average pressure in the arteries 

during one cardiac cycle. It is a better indicator of 

blood flow to organs than systolic or diastolic 

pressure alone. A normal MAP ensures proper 

blood supply to vital organs. 

10 Pulse Pressure (PP): PP reflects the difference between systolic and 

diastolic blood pressure. A high PP may indicate stiff 

arteries, while a low PP may suggest reduced blood 

flow. It is a valuable marker for cardiovascular 

health. 
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Table 3.2 (continued) 

No. Features Detail Description 

11 Atherogenic Index of Plasma 

(AIP): 

AIP measures the risk of cardiovascular disease by 

evaluating the balance between harmful 

triglycerides and beneficial HDL cholesterol. A 

higher AIP indicates a higher risk of 

atherosclerosis (plaque buildup in arteries). 

12 Fasting Glucose to HDL 

Ratio: 

This ratio evaluates the relationship between 

fasting blood sugar (FBS) and HDL cholesterol. A 

higher ratio indicates a higher risk of insulin 

resistance and cardiovascular disease, as it reflects 

poor glucose metabolism and low levels of 

protective HDL cholesterol. 

 From Table 3.2, the related equations are described as follows:  

ABP (Jameson et al., 2022) is calculated by using Equation (3.1).  

 

𝐵𝑃 =
ௌ஻௉ା஽

ଶ
    (3.1) 

  

 HDL/LDL Ratio, which was a crucial indicator of cardiovascular disease risk, 

was computed by dividing total cholesterol by HDL cholesterol (Jameson et al., 2022; 

Skerrett, 2014; Bishop et al., 2023). The necessary data for this calculation is obtained 

from the lipid levels group, and the formula is given by Equation (3.2).   

 

Cholesterol − HDL Ratio =
஼௛௢௟௘௦௧௘௥௢௟

ு஽௅
              (3.2) 

  

 NLR was a ratio of neutrophils to lymphocytes in white blood cells ( Jameson 

et al., 2022; Bishop et al., 2023; Hall, 2021). This ratio is calculated using data from 

the blood cell group and the formula represented by Equation (3.3). 

 

𝑁𝐿𝑅 =
୒ୣ୳୲୰୭୮୦୧୪÷ଵ଴଴×୛୆େ

୐୷୫୮୦୭ୡ୷୲ୣ ÷ ଵ଴଴×୛୆େ
                                       (3.3) 
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  MDRD was employed to estimate glomerular filtration rate (eGFR), a measure 

of kidney function, especially in patients with chronic kidney disease (Jameson et al., 

2022; Skerrett, 2014). The data required for this calculation is from the minerals and 

chemical substances group, and the formula is given by Equation (3.4). 

 

 𝑀𝐷𝑅𝐷 =  175 ×  Creatinine(−1.154)  ×  Age(−0.203)    (3.4) 

 

 NC was calculated using the percentage of neutrophils in a complete blood 

count and the total white blood cell count (Bishop et al., 2023; Hall, 2021). The data 

for this calculation is obtained from the blood cell group, and the formula is given by 

Equation (3.5).  

 

Neutrophil Count =
ே௘௨௧௥௢௣௛௜

ଵ଴଴
× 𝑊𝐵𝐶        (3.5) 

 

 TG/HDL Ratio was another risk factor for cardiovascular disease and metabolic 

disorders (Jameson et al., 2022). It is calculated using data from a lipid level group, and 

the formula is given by Equation (3.6). 

 

Triglyceride − HDL Ratio =
୘୰୧୥୪୷ୡୣ୰୧ୢୣ 

ு஽௅
                       (3.6) 

 

 The CKD-EPI formula was an updated equation for estimating eGFR (Jameson 

et al., 2022). The data required for this calculation are from the minerals and chemical 

substances group, and separate formulas are provided for males and females, 

represented by Equation (3.7) for females and Equation (3.8) for males, respectively.   

 

𝑒𝐺𝐹𝑅 = 141 × min ቀ
௖௥௘௔௧௜௡௜௡௘

଴.଻
, 1ቁ

ି଴.ଷଶଽ

× 𝑚𝑎𝑥 ቀ
௖௥௘௔௧௜௡௜௡௘

଴.଻
, 1ቁ

ିଵ.ଶ଴ଽ

× (0.993)௔௚௘ × 1.018 × 1.159௜௙ ஻௟௔௖௞          (3.7)   

𝑒𝐺𝐹𝑅 = 141 × min ቀ
௖௥௘௔௧௜௡௜௡௘

଴.଻
, 1ቁ

ି଴.ସଵଵ

× 𝑚𝑎𝑥 ቀ
௖௥௘௔௧௜௡௜௡௘

଴.଻
, 1ቁ

ିଵ.ଶ଴ଽ

× (0.993)௔௚௘ × 1.018 × 1.159௜௙ ஻௟௔௖௞          (3.8)  
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HDL/LDL Ratio is used to assess vascular health and cardiovascular risk. It is 

calculated by dividing HDL cholesterol by low-density lipoprotein (LDL) cholesterol. 

The data for this calculation is from lipid group, and the formula is given by Equation 

(3.9).  

HDL − LDL Ratio =
ு஽௅

௅஽௅
                                  (3.9) 

 Mean Arterial Pressure (MAP) was an estimate of the average pressure in a 

person's arteries during one cardiac cycle (Hall, 2021). It is crucial in evaluating tissue 

perfusion. The formula is represented in Equation (3.10). 

MAP = DBP +
ଵ

ଷ
(𝑆𝐵𝑃 − 𝐷𝐵𝑃)    (3.10) 

 Pulse Pressure (PP) represented the force that the heart generates with each 

contraction (Jameson et al., 2022). It is calculated as the difference between systolic 

and diastolic pressure, as shown in Equation (3.11). 

PP = SBP − DBP 3.11) 

 AIP was a logarithmic index used to assess cardiovascular risk based on lipid 

profile (Bishop et al., 2023). It is calculated using the triglycerides to HDL cholesterol 

ratio in mmol/L as shown in Equation (3.12). 

𝐴𝐼𝑃 = logଵ଴ ቀ
்௥௜௚௟௬௖௘௥௜ௗ௘௦

ு஽௅ି஼
ቁ  (3.12) 

 The Fasting Glucose to HDL Ratio is a simple index that may indicate insulin 

resistance or risk of metabolic syndrome (Hall, 2021). The formula is shown in 

Equation (3.13). 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 − 𝑡𝑜 − 𝐻𝐷𝐿 =
ி௔௦௧௜௡௚ ீ௟௨௖௢௦௘

ு஽௅ି஼
  (3.13) 

 Figure 3.4 illustrates the various combination datasets used to investigate the 

proposed model in this study, including the original data, the original data + 4 IRFs, the 

original data + 8 IRFs, and the original data + 12 IRFs. 
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Source Chaiyo et al. (2025) 

Figure 3.4 An example of datasets illustrating feature grouping and inter-relation-

based feature (IRF) construction 

 From the conceptual diagram of the feature combination set, the example of a 

dataset for constructing the model, having the combination of original features and IRF, 

is shown in Table 3.3.  

Table 3.3 Examples of the original dataset with 4 IRFs 
Original Features IRFs 

AGE W H S SBP DBP Chol TG LDL HDL FBS Cr BUN Hb K Na WBC Neut Plt … ABP CHR NLR MDRD 

74 60.73 153.02 0 128.38 64.84 145.67 86.94 89.57 41.7 116.28 1.03 17.63 11.078 4.20 137.09 12210 91.09 292530 … 193.22 0.4655 1.6263 2.0848 
74 54.56 147.21 0 129.39 62.59 170.64 133.04 119.45 42.28 158.7 0.97 16.93 12.259 3.90 139.36 12276 91.65 287970 … 191.98 0.3539 1.4285 3.1466 

74 61.34 155.71 0 127.37 63.89 146.03 81.67 89.81 40.19 99.48 1.0045 20.07 10.969 4.09 137.15 10725 91.30 246440 … 191.26 0.4475 1.6259 2.0320 

83 47.16 143.69 1 134.49 58.61 170.93 120.31 119.3 43.95 142.23 1.75 28 9.400 2.40 137.80 10862 86.40 390000 … 193.10 0.3683 1.4327 2.7374 

 

 After the feature augmentation process, data standardization was conducted, 

and the unbalanced data was handled for the subsequent process.  
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3.2.4 Data Standardization and Balancing 

 Features with different scales (e.g., SBP vs. WBC) can introduce bias in ML 

models. Without standardization, features with larger numerical ranges may dominate 

the learning process. For this study, data standardization was used to enhance the 

distribution of the data, ensuring a mean of zero and a standard deviation of one, thereby 

achieving a normal distribution of the data. In this study, K-Means SMOTE was 

selected over traditional SMOTE and ADASYN due to its ability to generate synthetic 

samples in more representative and safer feature space regions, reducing the noise risk 

and enhancing model generalization, particularly in imbalanced clinical datasets. In this 

study, the data of patients with dementia is a minority group. After applying K-Means 

SMOTE, the number of minority instances increases, as shown in Figure 3.5. 

 

Source Chaiyo et al. (2025) 

Figure 3.5 Dataset before and after applying K-Means SMOTE. The minority class, 

representing patients with dementia, was resampled to match the number 

of instances in the majority class, representing patients without dementia 
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 To verify structural differences in synthetic data, t-SNE was used to visualize 

datasets after applying IRFs with SMOTE, K-Means SMOTE, and ADASYN, as shown 

in Figure 3.6.  

 

Source Chaiyo et al. (2025) 

Figure 3.6 t-SNE visualization of original dataset + 4IRF (a), applying SMOTE (b), 

applying ADASYN (c), and applying K-Means SMOTE. The blue dots are 

patients without dementia, and the red dots are patients with dementia  

 Figure 3.6(a) shows the imbalanced 4IRF dataset, with minority class samples 

(red) sparsely distributed, limiting effective boundary learning. In Figure 3.6(b), 

SMOTE improves the balance by spreading minority samples, but it introduces overlap 

with the majority class, which risks reduced precision. Figure 3.6(c) shows ADASYN 

creating irregular minority distributions near class boundaries, increasing overlap and 

noise. In contrast, Figure 3.6(d) illustrates K-Means SMOTE, which produces a more 

structured and clustered distribution, thereby enhancing minority representation while 
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preserving class separability. Among the four scenarios, K-Means SMOTE 

demonstrates the most effective augmentation strategy for this study. It enhances class 

balance while preserving local structure and minimizing overlap between classes. 

Unlike SMOTE and ADASYN, which either over-smooth or overconcentrate synthetic 

data, K-Means SMOTE achieves a principled balance between coverage and clarity. 

Therefore, K-Means SMOTE stands out as the most reliable oversampling method 

based on visual and structural evidence from the t-SNE analysis. To justify the chosen 

oversampling method, statistical tests are presented in the results section that confirm 

K-Means SMOTE preserves data distribution, improves performance consistency, and 

enhances generalization.  

3.2.5 Model Construction and Validation 

 The combined data was split 30% for testing and 70% for training. Ten-fold 

cross-valuation was the validation approach.  Five models were compared with the ET 

model, including SVM, KNN, ANN, RF, and GB. The first model, SVM, is primarily 

applied for classification and regression applications. SVM is a supervised machine 

learning method that maximizes the margin between several classes by building a 

hyperplane in a high-dimensional space.  With the most significant possible margin 

(Noble, 2006; Almasoud & Ward, 2019), SVM sought the optimal hyperplane that best 

divides the data into discrete classes.  

 The second model, KNN, was for classification and regression problems. KNN 

was a non-parametric, slow learning method.  Based on the majority class or average 

value of its KNN in the feature space (Justin et al., 2013; Kramer, 2013), the method 

predicts the class or value of a given data point.  

 The third model, inspired by the human brain's neural architecture, ANN, was 

a computational model comprising layered, interconnected nodes that learn from input 

data to forecast results (Castellazzi et al., 2020).   

 The fourth model, RF, was an algorithm that generates a set of decision trees 

and combines the individual outputs to produce a final prediction. This method 

enhanced classification and regression performance by averaging the results of multiple 

trees, thereby reducing overfitting and increasing robustness (Salinas Ruíz, 2023). 

 The last model, (GB), used the gradient descent optimization method to 

minimize the loss function at each iteration (Kunapuli, 2023). It is an ensemble learning 
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method that builds a strong predictive model by combining multiple weak models, 

typically decision trees. The algorithm constructs trees sequentially, each correcting the 

errors of its predecessor.  In the proposed model, ET introduces additional randomness 

in the construction of the decision trees. By randomly selecting splits at each node, ET 

enhances computational efficiency while also mitigating overfitting (Zhang & Chen, 

2020).   

 To ensure optimal model performance and enable fair comparisons across 

classifiers, hyperparameter tuning was conducted using grid search in combination with 

10-fold cross-validation. This approach provides a systematic evaluation of predefined 

parameter combinations, facilitating the selection of configurations that yield the best 

average performance. Grid search was selected for its interpretability and exhaustive 

search strategy. At the same time, 10-fold cross-validation was utilized to provide 

robust and generalizable performance estimates, particularly critical in clinical datasets, 

which often exhibit moderate sample sizes and class imbalances. 

3.2.6 Model Comparison 

 All necessary measurements were applied to evaluate the performance of the 

models, including True Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). TP is the number of correct predictions where the actual outcome 

is positive. TN is the number of correct predictions where the actual outcome is 

negative. FP is the number of incorrect predictions where the actual outcome is negative 

but the model predicts a positive outcome. FN is the number of incorrect predictions 

where the actual outcome is positive but the model predicts a negative outcome. Finally, 

the classification performances of all models were compared in terms of accuracy, ROC 

curve, Area under the ROC, precision, recall, and F1-scores. These metrics are 

discussed in detail below.   

 Accuracy 

 Accuracy is one of the metrics used to evaluate the performance of a model or 

prediction. It indicates the proportion of total predictions that are correct compared to 

the total number of predictions. It is defined as shown in equation (3.10).      

Accuracy =
்௉ା்ே

்௉ା்ேାி௉ାிே
                      (3.10) 
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 Precision 

 Precision is the ratio of correctly classified instances to all instances classified 

by the model (including both TP and FP). It emphasizes achieving the highest accuracy 

in instances predicted as positive (TP) while minimizing instances predicted as 

mispredicted (FP), as shown in equation (3.11). 

 

Precision =
்௉

்௉ାி௉
                                      (3.11) 

 

 Recall 

 Recall (or Sensitivity or TP Rate) is the ratio of correctly classified instances to 

all instances that truly exist. Recall counts the number of positive instances that were 

correctly predicted and selects them from all positive instances, including false 

negatives (FN). It is calculated as the ratio of TP to the sum of TP and FN, as shown in 

equation (3.12). 

Recall =
்௉

்௉ା
                        (3.12) 

 F1-score 

 The F1-score is a metric used to evaluate the performance of classification 

models, particularly in scenarios involving imbalanced datasets where class 

distributions are uneven. It provides a comprehensive measure of model performance 

by considering both precision and recall, as shown in equation (3.13). 

                              F1 Score =2 ×
௉௥௘௖௜௦௜௢௡ ×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
                        (3.13) 

 ROC curve 

 The ROC curve is a graph used to assess the performance of a classification 

model by measuring its ability to distinguish between the positive class and the negative 

class at different threshold values. The following information is available: (1) True 

Positive Rate (Sensitivity, Recall): The ratio of correctly identified positive examples 

(TP) to the total actual positive examples (TP + FN). (2) False Positive Rate: The ratio 

of correctly identified negative examples (TN) to the total actual negative examples 
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(TN + FP), as shown in equations (3.14). 

 

True positive rate =
்௉

்௉ାிே
                                 (3.14)    

 Area under the ROC 

 In terms of general binary classification, the AUC represents the ability of a 

classifier to distinguish between two classes. Its value ranges from 0 to 1. In the case 

of 100% wrong predictions, the AUC is 0, and in the case of perfectly correct 

predictions, the AUC is 1.  
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CHAPTER 4 

EXPERIMENTS AND RESULTS  

4.1 Evaluation of Synthetic Data  

 This section presents the results from five key analyses: (1) evaluation of 

synthetic dataset effectiveness to confirm K-Means SMOTE as the optimal 

oversampling method, (2) assessment of the ET model’s performance with various IRF 

combinations, (3) analysis of the confusion matrix to examine classification accuracy 

across classes, (4) ablation study to determine the contribution of each model 

component, and (5) sensitivity analysis to evaluate the influence of individual features 

on model predictions.  

4.1.1 Data Distribution Similarity 

 Table 4.1 summarizes the Kolmogorov-Smirnov (K–S) test results across 

different oversampling methods. The K–S test assessed the similarity between the 

distributions of synthetic data and the original data by measuring the maximum 

difference (D-statistic) between their cumulative distribution functions (CDFs) in a 

univariate setting. A D-value greater than 0.05 indicated a statistically significant 

difference, implying that the synthetic data distribution deviates notably from the 

original data. This distributional shift might affect the representativeness and reliability 

of the oversampled data for subsequent analysis. 

Table 4.1 K-S test summarization 

Oversampling 

Method 

Features 

with D > 0.05 

Max 

D-value 
Most Affected Features 

K-Means SMOTE 3 0.4692 Height (0.4692), ABP (0.3405), sbp 

(0.2024) 

SMOTE 4 0.1595 Height (0.0801), dbp (0.1595), sbp 

(0.0527), ABP (0.0792) 

ADASYN 3 0.2474 Height (0.2474), platelet (0.0531), na 

(0.0551) 
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 The K–S test results revealed that all oversampling methods introduced some 

distributional shifts, though to varying degrees. SMOTE demonstrated the closest 

alignment with the original dataset, affecting four features but with a relatively low 

maximum D-value of 0.1595, indicating minimal distributional deviation. K-Means 

SMOTE showed a higher maximum D-value (0.4692) for height, suggesting a more 

pronounced alteration in specific features, yet it affected only three variables overall. 

This might reflect a targeted modification near decision boundaries rather than broad 

data distortion. ADASYN, while affecting three features, presents a moderate D-value 

(0.2474) and alters features such as platelet and sodium levels, which might reflect less 

controlled synthetic sampling. Overall, SMOTE preserved the original data structure 

best, while K-Means SMOTE introduced more focused changes that could benefit 

model learning, and ADASYN presented more scattered and potentially noisier shifts.  

4.1.2 Selection of Optimal Number of IRFs 

In this section, the model performances were evaluated using different numbers 

of Inter-Relation-Based Features (4, 8, and 12 IRFs). The results from accuracy, F1-

score, and AUC metrics guided the selection of the optimal number of IRFs for model 

development. Based on the observed trade-off between performance gain and model 

complexity, four IRFs were selected as the best balance to ensure both high predictive 

accuracy and model simplicity. 

4.1.3 Model Performance Consistency 

 For this evaluation, all combined data (original data and 4IRF) applying three 

different oversampling methods (SMOTE, K-Means SMOTE, and ADASYN) were 

used to construct six different ML models, including SVM, KNN, ANN, RF, ET, and 

GB. The data was split into 70% for training and 30% for testing, and 10-fold cross-

validation was conducted. A summary of the Friedman test's average ranked across 

performance metrics for all ML models using different oversampling techniques was 

shown in Table 4.2.  Lower average ranked indicate better performance, and all 

differences are statistically significant (p < 0.001).  
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Table 4.2 Summary of friedman test average ranks across cross-validation performance 

metrics 

Dataset Best Model Accuracy Precision Recall F1-score AUC-ROC Avg Rank (Mean) 

Original + 

4IRFs 

ET 1.20 1.15 1.45 1.30 1.00 1.22 

Original + 

4IRFs + 

ADASYN 

ET 1.10 1.00 1.10 1.00 1.00 1.04 

Original + 

4IRFs + 

SMOTE 

ET 1.00 1.00 1.00 1.00 1.00 1.00 

Original + 

4IRFs + 

K-Means 

SMOTE 

ET 1.05 1.00 1.10 1.20 1.00 1.07 

 According to Table 4.2, the Friedman test results indicated that the SMOTE-

augmented dataset was the most compatible with the ET model, achieving the lowest 

average rank (1.00) across all metrics. ADASYN (1.04) and K-Means SMOTE (1.07) 

also yielded strong performance. K-Means SMOTE achieved the highest F1-score 

(1.20), suggesting enhanced sensitivity to the minority class. These findings suggested 

that SMOTE provided the most consistent overall results. At the same time, K-Means 

SMOTE might offer performance gains in recall and F1-score, making it a valuable 

alternative when prioritizing sensitivity to minority class predictions. 

4.1.4 Generalization Capability 

 The remaining 30% unseen data, created from 3 oversampling methods, was 

used for testing all 6 ML models. The performance metrics of the best model on unseen 

testing data, using different oversampling techniques, are presented in Table 4.3.  
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Table 4.3 Performance of classification models on unseen test data across oversampling 

techniques 

Dataset 
Best 

Model 
Accuracy Precision Recall F1-Score AUC 

Original ET 95.15% 95.98% 93.00% 94.29% 98.85% 

Original + ADASYN ET 94.74% 93.85% 94.21% 94.03% 98.76% 

Original + SMOTE ET 94.94% 94.72% 93.68% 94.17% 98.73% 

Original +  

K-Means SMOTE 

ET 95.26% 95.68% 93.48% 94.47% 98.81% 

 On the unseen testing dataset, the ET model achieved its best generalization 

performance when trained with K-Means SMOTE, reaching the highest Accuracy 

(95.26%) and F1-score (94.47%) among all datasets. While SMOTE and ADASYN 

also improved predictive outcomes, K-Means SMOTE’s cluster-driven oversampling 

likely enhanced class boundary learning, resulting in superior performance on unseen 

data. This confirms its effectiveness as the most suitable oversampling method for 

optimizing ET in real-world applications.  

4.1.5 Optimal Oversampling Method  

 Considering the results from the K–S test, Friedman rankings, and unseen 

testing performance, K-Means SMOTE was found to be the optimal oversampling 

method for this study. While SMOTE demonstrated the closest distributional similarity 

to the original data (lowest D-values in the K–S test) and achieved the best average 

ranking in cross-validation (Friedman test), K-Means SMOTE provided the highest 

generalization performance on unseen data, with the best accuracy (95.26%) and F1-

score (94.47%). The results confirmed that the clustering-targeting approach creates 

more informative synthetic samples near decision boundaries, thereby enhancing class 

representation without introducing excessive noise. K-Means SMOTE offers the most 

efficient trade-off between improving model discriminability and maintaining 

distributional integrity, making it the best option for this study. The K-Means SMOTE 

method was therefore selected for further investigation about the effects of IRFs, aiming 

to achieve optimal model performance.  

 

 



33 
 

4.2 Evaluation of Effective Classification Model 

 Following the identification of K-Means SMOTE as the most effective 

oversampling method in this study, an additional investigation was conducted to 

determine the optimal combination of model and dataset. Specifically, this analysis 

aimed to evaluate which input feature set comprising either 4 IRFs, 8 IRFs, or 12 IRFs 

yields the best performance across various machine learning models.  

4.2.1 Descriptive Summary of 10-Fold Cross-Validation Results  

Table 4.4 - 4.6 shows the descriptive representation of the 10-fold cross-

validation of all ML models applying the original dataset, the original set with 4IRF 

applying K-Means SMOTE, the original dataset with 8IRF applying K-Means SMOTE, 

and the original dataset with 12IRF applying K-Means SMOTE, respectively.  

Table 4.4 Model performance based on the stratified 10-fold cross-validation on the 

original dataset  

Model 
Original Dataset Feature (n = 20) 

Precision (%) Recall (%) F1 Score (%) Accuracy (%) AUC 

GB 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.98 ± 0.00 

RF 0.95 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 

ET 0.96 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 

SVM 0.34 ± 0.00 0.50 ± 0.00 0.40 ± 0.00 0.68 ± 0.00 0.78 ± 0.01 

KNN 0.86 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.92 ± 0.01 

ANN 0.55 ± 0.14 0.58 ± 0.09 0.53 ± 0.12 0.68 ± 0.02 0.76 ± 0.02 
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Table 4.5 Model performance based on the stratified 10-fold cross-validation on the 

original dataset with 4IRF and K-Means SMOTE 

Model 
Original Dataset with 4IRFs and K-Means SMOTE (n = 24) 

Precision (%) Recall (%) F1 Score (%) Accuracy (%) AUC 

GB 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 

RF 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00 

ET 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.00 

SVM 0.76 ± 0.01 0.75 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 

KNN 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 

ANN 0.75 ± 0.05 0.68 ± 0.08 0.64 ± 0.13 0.68 ± 0.08 0.77 ± 0.07 

Table 4.6 Model performance based on the stratified 10-fold cross-validation on the 

original dataset with 8IRF and K-Means SMOTE 

Model 
Original Dataset with 8IRFs and K-Means SMOTE (n = 28) 

Precision %) Recall (%) F1 Score (%) Accuracy (%) AUC 

GB 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 

RF 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.00 

ET 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.00 

SVM 0.77 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.84 ± 0.01 

KNN 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.96 ± 0.01 

ANN 0.79 ± 0.04 0.76 ± 0.06 0.75 ± 0.06 0.76 ± 0.06 0.82 ± 0.05 

 The comparison of model performance across the three tables reveals that 

incorporating additional IRF (Imbalance Ratio Handling) features with K-Means 

SMOTE generally improves classification metrics, with 4IRF (Table 4.5) and 8IRF 

(Table 4.6) both outperforming the original dataset (Table 4.4). Tree-based models 

(GB, RF, ET) already performed well initially but saw marginal gains in F1-score and 

AUC (e.g., RF improved from 0.94 to 0.96 F1). However, the most notable 

improvements were observed in weaker models, such as SVM (F1 score increased from 

0.40 to 0.75) and ANN (F1 score rose from 0.53 to 0.75 with 8IRF), suggesting that 
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IRF features enhance robustness for less stable algorithms. While 4IRF and 8IRF 

yielded similar results for most models, 8IRF provided slight advantages for KNN (F1: 

0.91 vs. 0.90) and ANN (F1: 0.75 vs. 0.64), indicating that higher IRF counts might 

further stabilize performance, particularly for non-tree models. In terms of ensemble 

learning models, 4IRF is sufficient, as it achieves near-peak performance without 

unnecessary feature expansion.   

4.2.2 Model Performance Based on Accuracy   

The testing results on unseen data in terms of accuracy are illustrated in Table 

4.7.  

Table 4.7 Accuracy comparison 

Accuracy (%) 

Model 
Original 

Dataset 

Original Dataset 

+ K-means 

SMOTE 

Original Dataset 

+ K-means 

SMOTE 

+ 4 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 8 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 12 IRF 

SVM 93.05 94.73 94.52 94.50 94.55 

GB 93.84 94.58 94.67 95.10 94.77 

ET 95.08 96.39 96.47 96.52 96.51 

RF 94.63 96.02 96.10 96.27 96.00 

KNN 91.24 92.58 92.44 92.56 91.99 

ANN 92.68 94.70 94.95 94.90 95.17 

 Table 4.7 illustrates the classification performance of each model in terms of 

accuracy. The results showed that the combined dataset (applying K-Means SMOTE 

and adding IRF) raised the accuracy of all models compared to the original dataset. The 

employment of K-Means SMOTE alone showed a clear boost in accuracy across all 

models, therefore proving the value of extra pertinent features.  Most models continue 

to show a minor increase as more features (4 IRF and 8 IRF) are added. GB, ET, and 

RF benefit most and achieve their best accuracy at 8 IRF. Being ensemble-based 

models, ET and RF exhibit the highest accuracy gains, indicating that they effectively 

utilize the recently acquired characteristics to enhance classification. Conversely, SVM, 

KNN, and ANN achieve very modest gains after applying K-Means SMOTE, 
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suggesting that these models may not fully utilize additional information beyond a 

certain point. With ensemble models providing the most significant improvement, K-

Means SMOTE, and IRF generally enhance accuracy; however, other models exhibit 

declining returns as more features are included.  

 Notably, when 12 IRFs are introduced (Original Dataset + K-means SMOTE + 

12 IRFs), only ANN and KNN continue to show clear improvement, achieving their 

highest accuracies of 95.17% and 91.99%, respectively. In contrast, ensemble models 

like RF, ET, and GB show a slight decline or plateau, suggesting potential overfitting 

or redundancy beyond 8 IRF. This suggests that while IRFs are beneficial, the optimal 

number may vary depending on the model type and complexity. 

4.2.3 Model Performance Based on Precision  

The testing results on unseen data in terms of precision are shown in Table 4.8.  

Table 4.8 Precision comparison 

Precision (%) 

Model 
Original 

Dataset 

Original Dataset 

+ K-means 

SMOTE 

Original 

Dataset 

+ K-means 

SMOTE 

+ 4 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 8 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 12 IRF 

SVM 94.35 94.26 94.25 94.05 94.11 

GB 94.44 93.98 94.07 93.92 93.98 

ET 94.01 94.72 94.79 94.47 94.42 

RF 93.66 94.14 93.99 93.82 93.95 

KNN 97.34 97.55 97.46 97.57 97.59 

 Table 4.8 displays the classification performance of each model in terms of 

precision.  Depending on the model, the combined dataset affected precision 

differently; some models gained from the extra characteristics, while others 

experienced minor declines or swings. As more features were introduced, KNN and 

ANN exhibited a continuous increase in accuracy, implying that these models could 

efficiently utilize the additional information to enhance classification performance. 

With K-Means SMOTE and 4 IRF, et al. showed an initial increase in precision; 

however, at K-Means SMOTE and 8 IRF, there is a slight decline, suggesting that 
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adding too many features might generate noise rather than improve precision. 

Conversely, SVM, GB, and RF exhibit modest decreases in precision following the 

inclusion of K-Means SMOTE and extra IRF, suggesting that for these models, the 

increased features may slightly increase false positives, resulting in a minor drop in 

precision.  

 Interestingly, when 12 IRFs are included, KNN and ANN continue to improve, 

reaching their highest precision of 97.59% and 94.96%, respectively, confirming their 

ability to benefit from expanded feature sets. Meanwhile, SVM, GB, ET, and RF either 

remain stable or show slight declines, suggesting that their optimal precision might have 

already been reached at earlier stages (e.g., 4 or 8 IRF), beyond which the added 

features offer diminishing or even adverse effects on precision. 

4.2.4 Model performance based on Recall  

The testing results on unseen data in terms of recall are shown in Table 4.9. 

Table 4.9 Recall comparison 

Recall (%) 

Model 
Original 

Dataset 

Original Dataset 

+ K-means 

SMOTE 

Original 

Dataset 

+ K-means 

SMOTE 

+ 4 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 8 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 12 IRF 

SVM 94.96 94.22 93.85 94.16 94.02 

GB 96.53 95.31 95.11 95.49 95.57 

ET 98.79 97.97 97.86 97.57 97.77 

RF 98.55 97.76 97.66 97.34 97.58 

KNN 93.40 91.03 90.94 91.13 91.43 

ANN 94.85 94.35 94.34 94.36 94.34 

 Table 4.9 displays the classification performance of each model in terms of 

recall. It can be observed that different models have varying effects on recall from the 

combined dataset; some exhibit a drop, while others remain relatively stable. After the 

inclusion of K-Means, SMOTE, SVM, GB, ET, RF, and KNN, all exhibit a drop in 

recall. A further decrease in performance as IRF features were added indicates that 

these models might suffer from overfitting or noise generated by the extra features, 
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hence producing false negatives. Initially, ET and RF showed the most significant 

decreases when K-Means SMOTE was applied and IRF was added. This result 

suggested that the feature expansion somewhat reduces their capacity to label positive 

events correctly. Notably, KNN showed a consistent decline, likely due to its sensitivity 

to feature dimensionality. Conversely, ANN remained relatively constant and exhibited 

only slight variations, suggesting that neural networks may be more resilient to feature 

expansion in terms of recall. In terms of most models, the combined dataset reduced 

overall recall, suggesting that even if extra features might increase other measures, such 

as accuracy or precision, they could also introduce complexity that made it more 

difficult for models to capture positive examples adequately. 

 When 12 IRFs are added (Original Dataset + K-means SMOTE + 12 IRFs), 

most models exhibit stabilization or a slight improvement in recall. ET improved 

slightly to 97.77%, regaining some performance after the earlier drop, while RF also 

recovered to 97.58%. KNN, despite its previous consistent decline, increased modestly 

to 91.43%. On the other hand, SVM continued to drop slightly to 94.02%, and ANN 

remained stable at 94.34%. These results indicated that while additional features might 

introduce noise for some models, others could adapt and benefit marginally from 

extended feature sets at this stage. 

 Overall, ET and RF perform best at 4–8 IRFs, showing high recall with minimal 

loss before plateauing or slightly recovering at 12 IRFs. ANN demonstrated consistent 

robustness across all feature levels, making it suitable even up to 12 IRFs. In contrast, 

models like SVM and GB tended to perform best at 4 IRFs and decline thereafter, while 

KNN might benefit from 12 IRFs after earlier reductions. However, its performance 

remained sensitive to feature expansion. This suggested model-specific thresholds for 

optimal feature inclusion, balancing information gain and noise. 

4.2.5 Model Performance Based on F1 Score  

The testing results on unseen data in terms of F1-score are shown in Table 4.10. 
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Table 4.10 Comparison with F1 score 

F1 Score (%) 

Model 

Original 

Dataset 

 

Original 

Dataset 

+ K-means 

SMOTE 

 

Original 

Dataset 

+ K-means 

SMOTE 

+ 4 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 8 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 12 IRF 

SVM 94.66 94.24 94.05 94.11 94.07 

GB 95.47 94.64 94.59 94.70 93.98 

ET 96.34 96.32 96.30 96.00 96.07 

RF 96.04 95.92 95.79 95.55 95.73 

KNN 95.33 94.18 94.09 94.24 94.41 

ANN 94.81 94.69 94.72 94.75 94.65 

 Table 4.10 displays the classification performance of each model in terms of 

F1-score. The combined dataset affected the F1-score differently depending on the 

model; most models only caused modest changes or slight reductions. After the addition 

of IRF and the application of K-Means SMOTE, SVM, GB, ET, RF, and KNN all 

showed a drop in F1-score, indicating that the trade-off between precision and recall 

was uneven, most likely due to a loss in recall. KNN and RF showed the most 

significant declines, implying that these models might have struggled with the 

additional features, possibly due to overfitting or an increased number of false 

negatives. ET maintains a relatively constant F1-score, indicating that it is robust 

against feature expansion. GB exhibits a minor decline but somewhat recovers at the 

combined dataset of K-Means SMOTE and 8 IRF. With just minor variations, ANN 

remained almost constant, demonstrating that neural networks could better manage the 

extra features than other models. Although some models adapted better than others, the 

overall combined dataset has a somewhat negative impact on the F1-score. This implied 

that although feature development could enhance accuracy and precision, it might not 

continually improve the balance between precision and recall, which was essential for 

maintaining a high F1-score.  

 When 12 IRFs were included (Original Dataset + K-means SMOTE + 12 IRF), 

most models exhibited stabilization or minor improvement in F1-score. ET reached its 
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highest score at this point (96.07%), confirming its resilience to extended features. 

ANN also maintained a strong and stable F1-score (94.65%), reflecting its robustness 

across feature levels. In contrast, GB and SVM declined slightly to 93.98% and 94.07% 

respectively, suggesting diminished returns or overfitting. RF and KNN slightly 

recovered to 95.73% and 94.41% from their lowest points at 8 IRF. 

 Overall, ET benefits the most from all levels of IRF and performs best at 12 

IRFs. ANN remains consistently strong across 4 to 12 IRFs, with minimal fluctuation. 

RF achieves its optimal F1-score at 4 IRFs (95.79%) before declining. KNN performs 

best at 4 IRFs but remains acceptable through 12. SVM and GB show their highest 

scores with the original or 4 IRF datasets, and decline thereafter. These findings 

emphasized that ensemble models, such as ET, could scale with added features, while 

models like SVM and GB might require careful feature selection to maintain F1 

performance. 

4.2.6 Model Performance Based on Average AUC-ROC  

The testing results on unseen data in terms of accuracy are shown in Table 4.11.  

Table 4.11 Average AUC-ROC comparison 

Average AUC-ROC (%) 

Model 

Original 

Dataset 

 

Original Dataset 

+ K-means 

SMOTE 

 

Original 

Dataset 

+ K-means 

SMOTE 

+ 4 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 8 IRF 

Original 

Dataset 

+ K-means 

SMOTE 

+ 12IRF 

(%) 

SVM 97.10 98.59 98.57 98.68 98.61 

GB 98.03 98.87 98.89 98.91 98.87 

ET 98.74 99.49 99.51 99.45 99.43 

RF 98.59 99.39 99.35 99.33 99.33 

KNN 96.20 97.12 96.82 96.96 96.97 

ANN 96.98 98.44 98.56 98.44 98.52 

 Table 4.11 displays the classification performance of each model in terms of 

AUC-ROC. With most models demonstrating an improvement over the original dataset, 

the AUC-ROC values suggest that generally adding IRF and applying K-Means 
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SMOTE to the original dataset improves the models' capacity to differentiate between 

classes. Adding K-Means SMOTE causes SVM, GB, ET, RF, and ANN to all show a 

notable rise in AUC-ROC, indicating improved separability between classes. Being 

ensemble-based models, ET and RF achieve the best AUC-ROC values, peaking 

around 99.5%, indicating that these models effectively utilize the extra features to 

enhance discrimination. At the original dataset with K-Means SMOTE and 8 IRF, 

however, modest variations or oscillations were noted, especially in ET and RF, which 

would suggest that adding too many characteristics generated noise rather than helpful 

information. Although KNN improved with K-Means SMOTE, its performance might 

be sensitive to high-dimensional data, as it showed a slight decrease after 4 IRF. 

Conversely, ANN consistently remained high, demonstrating its capacity to utilize the 

additional features efficiently. Although excessive feature addition might lead to 

declining returns for some models, overall, K-Means, SMOTE, and IRF enhance the 

AUC-ROC by increasing the discriminating power of most models.  

 When 12 IRFs are added (Original Dataset + K-means SMOTE + 12 IRFs), 

most models continue to maintain high AUC-ROC performance or experience slight 

improvements. ET and RF sustain top scores at 99.43% and 99.33% respectively, 

confirming their robustness in distinguishing between classes even with extended 

features. ANN also rose to 98.52%, indicating consistent benefit from IRF expansion. 

KNN improved steadily to 97.97%, marking its best performance at 12 IRFs despite its 

earlier drop. However, SVM and GB showed slight declines to 98.61% and 98.57%, 

suggesting that these models might not gain further from additional features beyond 8 

IRFs. 

 Overall, ET and RF performed optimally at 4–8 IRFs and continued to hold top 

AUC-ROC values at 12 IRFs, reflecting their strength in managing large feature sets. 

ANN was highly stable and showed progressive improvement across 4 to 12 IRFs. 

KNN performed best at 12 IRFs, showing notable improvement with feature expansion. 

In contrast, SVM and GB reached peak performance at 8 IRFs and experienced slight 

deterioration thereafter. These results suggested that ensemble models, such as ET and 

RF, were the most reliable across all IRF levels, while ANN and KNN could still 

leverage larger feature sets. Models like SVM and GB, however, required more 

selective feature inclusion to sustain optimal discriminative power. 
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4.2.7 ROC Curve Comparison  

Figure 4.1 – 4.4 shows the ROC curves of all models applying three different 

types of datasets, including the original dataset, the dataset with 4 RFs applying  

K-Means SMOTE, and the dataset with 8 IRFs applying K-Means SMOTE.  

 

Source Chaiyo et al. (2025)  

Figure 4.1. ROC curves of all models using the original dataset 

 

 

Source Chaiyo et al. (2025) 

Figure 4.2 ROC curves of all models using the dataset with 4 IRFs and K-Means 

SMOTE 
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Source Chaiyo et al. (2025) 

Figure 4.3 ROC curves of all models using the dataset with 8 IRFs and K-Means 

SMOTE 

 

Figure 4.4 ROC curves of all models using the dataset with 12 IRFs and K-Means 

SMOTE 

 The ROC curve analysis across the original dataset and those augmented with 

4 and 8 IRFs combined with K-Means SMOTE demonstrated a clear performance 

improvement from oversampling and feature augmentation. Ensemble models 

particularly ET consistently showed superior sensitivity and specificity. The dataset 

with 4 IRFs and K-Means SMOTE yielded the most balanced improvement, 

significantly enhancing the performance of non-ensemble models, such as SVM and 
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ANN. Although the 8 IRF configuration offered slightly higher performance, the 

marginal gain suggested diminishing returns, indicating that 4 IRFs provided an optimal 

trade-off between model complexity and effectiveness. Combining 4 IRFs with K-

Means SMOTE yielded the most effective enhancement in class separability and 

generalization performance.   

 When the dataset includes 12 IRFs with K-Means SMOTE, most models retain or 

slightly enhance their ROC performance. ET and RF maintained their leading positions 

with near-perfect separability, indicating their robustness even in high-dimensional space. 

ANN continued to show stable and high performance, proving its resilience to increased 

features. KNN, despite prior sensitivity, achieved its best AUC at 12 IRFs, suggesting 

effective adaptation with larger feature sets. In contrast, SVM and GB exhibited marginal 

declines compared to their performance at 8 IRFs, which may indicate potential overfitting 

or a reduction in discriminative power beyond that point. 

4.3 Confusion Matrix  

 Since the ET Model with 4IRF and K-Means SMOTE provided the best model 

for this study, its confusion matrix is shown in Figure 4.5.  

 

Source Chaiyo et al. (2025) 

Figure 4.5 Performance of the extra trees model with 4IRF and K-Means SMOTE 

based on confusion 
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 Figure 4.5 shows that the ET model with 4 IRFs and K-Means SMOTE 

accurately classified 97.91% of class 1 and 95.15% of class 2, demonstrating strong 

sensitivity and specificity. The low false positive and false negative rates confirmed the 

model's effectiveness in handling class imbalance while maintaining high 

discriminative power, supporting its reliability for real-world applications.  

4.4 Ablation Study 

 In this study, an ablation study was conducted to assess the contribution of inter-

relation-based features (IRFs), K-Means SMOTE, and ET model, as shown in Table 

4.12. The ablation study involved systematically removing or modifying individual 

components to evaluate their impact on model performance. This approach helped 

confirm the additive value of each element and ensured that their inclusion 

meaningfully contributed to classification accuracy and clinical relevance. 

Table 4.12 Results of the ablation study 

Model  

Configuration 
IRFs 

K-

means 

SMOTE 

 

Classifier 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-

Score 

(%) 

AUC -

ROC 

(%) 

Full Model   ET 96.47 97.86 94.79 96.30 99.51 

w/o IRFs   ET 96.30 98.01 94.73 96.26 99.49 

w/o SMOTE   ET 94.85 99.05 93.64 96.22 98.88 

w/o IRFs & 

SMOTE 

  ET 95.08 98.63 93.96 96.34 98.74 

RF instead of 

ET 

  RF 96.10 97.66 93.99 95.79 99.35 

 The ablation study confirmed that the whole model combining IRFs, K-Means 

SMOTE, and ET achieves the best performance (Accuracy: 96.47%, AUC: 99.51%). 

Removing IRFs led to only a slight drop, indicating a modest but supportive role, but 

excluding K-Means SMOTE caused a more notable decline in accuracy and AUC, 

highlighting its critical contribution to generalization. Even without both IRFs and 

SMOTE, the model maintained a high F1-score but showed reduced discriminability. 
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Replacing ET with RF (the second top model) slightly decreased all metrics, 

reaffirming ET as the most robust classifier in this setting. This ablation confirmed that 

while each component contributed to overall performance, K-Means SMOTE and the 

ET classifier were the most influential, and the addition of IRFs provided incremental 

improvement. The complete configuration, including IRFs, K-Means SMOTE, and 

Extra Trees, is validated as the optimal choice for this study. 

4.5 Sensitivity Analysis 

 In this research, mean absolute feature importance scores, derived from 

impurity reduction in the ET model, were used as a form of global sensitivity analysis 

to quantify the average influence of each feature across the entire dataset. In parallel, 

SHapley Additive exPlanations (SHAP) values were applied to provide both global and 

local interpretability, enabling assessment of each feature’s impact on individual 

predictions and supporting the evaluation of feature relevance, consistency, and model 

stability.  

4.5.1 Mean Absolute Feature Importance Scores 

 Mean absolute feature importance scores represent a global measure of feature 

influence in tree-based models, indicating how frequently and effectively a feature 

contributes to decision splits. Figure 4.6 shows the mean absolute feature importance 

scores of the proposed ET model.  

 

 



47 
 

 

Source Chaiyo et al. (2025) 

Figure 4.6 Mean absolute feature importance scores of the extra trees model trained 

on the combined dataset (4 IRFs + K-Means SMOTE)  

 From Figure 4.6 shows that while Neutrophil, Lymphocyte, and WBC are the 

most influential features, the four IRFs (ABP, NLR, Cholesterol-HDL Ratio, and 

Triglyceride-HDL Ratio) also contribute to moderate importance, particularly the 

Cholesterol-HDL Ratio (0.0458). These findings suggested that the IRF features 

provided meaningful supplementary value, enhancing the model’s predictive capacity 

alongside key raw biomarkers.  

4.5.2 Mean SHAP Value  

 At the same time, SHAP values were used for local and global sensitivity 

analysis in this study. It provided a model-agnostic, consistent, and interpretable 

sensitivity analysis based on game theory.  
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Source Chaiyo et al. (2025) 

Figure 4.7 SHAP summary plot illustrating the global and local impact of each feature 

on the extra trees model’s predictions using the combined dataset (4 IRFs 

+ K-Means SMOTE) 

 From Figure 4.7 shows that while raw biomarkers, such as neutrophils and 

lymphocytes, dominate predictive power, the 4 IRF features (NLR, Cholesterol-HDL 

Ratio, Triglyceride-HDL Ratio, and ABP) also contributed meaningfully to the model’s 

sensitivity, with SHAP values ranging from +0.01 to +0.02. Despite their modest 

individual impact, these features enhanced clinical interpretability and aligned with 

established evidence in dementia prediction, supporting their complementary role in a 

model that balanced performance with clinical relevance. Elevated NLR was associated 

with systemic inflammation, while high CHR reflected poor vascular health, both of 

which are established risk factors for dementia (Zhang & Chen, 2020; Lee & Kim, 

2021). These findings supported the integration of IRFs to improve the model’s clinical 

relevance without compromising predictive performance. 

 In terms of model sensitivity, the analysis of Figure 4.6 and Figure 4.7 

confirmed that while raw biomarkers such as neutrophil and lymphocyte exerted the 

most decisive influence on predictions, the 4 IRFs (ABP, NLR, Cholesterol-HDL Ratio, 
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and Triglyceride-HDL Ratio) also contributed to the model’s sensitivity, albeit to a 

lesser extent. Their moderate SHAP values and importance scores indicated that slight 

variations in these features could still influence model output, underscoring their role 

as meaningful supplementary predictors. This emphasized the model’s ability to 

integrate both raw and composite features.   

4.6 Discussion on the Number of Inter-Relation-Based Features (IRFs) 

In this study, a total of four Inter-Relation-Based Features (IRFs) were selected 

for integration into the final classification model. The decision was based on a stepwise 

feature augmentation process, where the model's performance was evaluated using 4, 

8, and 12 IRFs. As shown in Table 4.10, the use of four IRFs resulted in the best overall 

classification metrics, including accuracy, F1-score, and AUC. Increasing the number 

of IRFs beyond four led to marginal or even decreased performance, indicating that 

four IRFs captured the most relevant information without adding noise or redundancy. 

The choice of four IRFs reflected an optimal balance between predictive 

performance and model simplicity. While adding more features might theoretically 

capture additional variability, it also increases the risk of overfitting, reducing 

interpretability, and introducing unnecessary model complexity. By selecting four 

IRFs, the study achieved stable model performance while preserving clinical 

interpretability, thereby facilitating practical application. 

The finding was consistent with previous literature suggesting that moderate 

feature expansion guided by domain expertise could enhance model generalization and 

maintain explainability (Shorten & Khoshgoftaar, 2019; Mumuni & Mumuni, 2022). 

The four IRFs used in this study represented key inter-variable relationships derived 

from core clinical domains, contributing to a model that is both accurate and clinically 

relevant. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

5.1 K-Means SMOTE Effect 

Depending on their sensitivity to synthetic data and their capacity to extend 

from interpolated samples, K-Means SMOTE affects all models differently. Because 

they are robust to noise and can efficiently detect trends even in the presence of created 

minority class samples, ensemble models like ET and RF benefit most. Although GB 

also improved, it is somewhat sensitive to noisy synthetic data, which causes modest 

variance in accuracy. Based on margin optimization, SVM has mixed effects, as 

synthetic samples may introduce overlapping class borders, thereby somewhat 

compromising accuracy and recall. KNN suffers the most since it relies on distance-

based categorization, and synthetic data can skew neighborhood ties, thereby producing 

either higher false positives or negatives. Although usually flexible, ANNs do not 

demonstrate significant increases, most likely due to inadequate hyperparameter tuning 

that prevents them from effectively utilizing the newly produced data. By resolving 

class imbalance, K-Means SMOTE increases recall and AUC-ROC for most models 

overall. However, its efficacy depends on how well a model can handle synthetic data 

without overfitting or losing precision. In conclusion, K-Means SMOTE is the most 

suitable oversampling method for this study, offering the best trade-off between 

distributional integrity and model discriminability. It achieved the highest 

generalization performance with the ET model.  

5.2 IRF Effect 

The ability of all models to manage more dimensionality and discover pertinent 

patterns from newly acquired information determines how IRF affects them. Feature 

augmentation helps ensemble models, such as RF and ET, the most since they can 
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efficiently utilize extra features while maintaining stability and avoiding overfitting.  

Although it is more sensitive to feature noise, which can lead to variations in precision, 

GB also exhibits modest increases in performance.  Since SVM relies on determining 

the optimal hyperplane in a fixed-dimensional space, adding extra features may 

increase complexity without enhancing class separability. Therefore, feature 

augmentation may not significantly benefit it.  KNN suffers significantly with 

augmented features since it is susceptible to dimensionality, and a larger feature space 

may dilute strong distance correlations, thereby affecting performance.  Although they 

can manage high-dimensional data, ANNs demonstrate no appreciable improvement, 

most likely because more advanced tuning is needed to derive relevant patterns from 

the augmented features. Overall, feature augmentation using IRFs improves 

performance for tree-based ensemble models but offers limited benefit for distance-

based or margin-based models. Sensitivity analysis indicates that the 4 IRFs have 

moderate importance, serving as complementary features that support predictions 

alongside key biomarkers.  

5.3 IRF and K-Means SMOTE Effect 

On all models, the combined effect of K-Means SMOTE and IRF relies on their 

capacity to manage synthetic data and higher dimensionality. Tree-based ensemble 

models, such as RF and ET, yield the most significant improvements since they are 

designed to learn from both synthetic minority samples and additional features, thereby 

producing greater accuracy, recall, and AUC-ROC. Though it is somewhat subject to 

noise from synthetic data and feature augmentation, GB also demonstrates benefits and 

causes minor variations in recall and precision.  SVM produces mixed results since 

extra features may not always help to improve hyperplane separation, and K-Means 

SMOTE can introduce class boundary overlaps.  KNN suffers the most since both 

synthetic data and high-dimensional feature spaces distort distance relationships, 

thereby lowering its performance. Although they are usually adaptable, ANNs do not 

demonstrate significant gains, most likely because thorough hyperparameter tweaking 

is necessary to use synthetic data and new characteristics fully.  While distance-based 
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and margin-based models struggle to utilize additional data efficiently, K-Means 

SMOTE, combined with augmented features, improves ensemble models the most.  In 

addition, the ablation study confirms that K-Means SMOTE and the ET classifier have 

the most significant impact, with incremental gains offered by IRFs. The whole 

configuration is validated as the optimal setup for this study. 

5.4 The Findings 

The ET model, using the combined dataset, applied K-Means SMOTE and 

added 4 IRFs, was shown to be the best option based on the assessment criteria of 

accuracy, precision, recall, F1-score, and AUC-ROC. Maintaining a well-balanced 

trade-off between precision and recall, ET commonly delivered good performance 

across all measures, with the best accuracy (96.47%), substantial precision (94.79%), 

and solid recall (97.86%), reflected in a high F1-score (96.30%). Its AUC-ROC 

(99.51%) was also the greatest, suggesting exceptional classification capability. 

Although specific models, such as RF and GB, also showed good performance, ET's 

stability and robustness over all measures made it the best one. In comparison, the 4 

IRFs with K-Means SMOTE enhance model performance more effectively, while the 

8 IRFs setup shows minor declines, suggesting added complexity may introduce noise. 

For this work, ET with K-Means SMOTE and 4IRFs is thus the most efficient model-

data combination, as it strikes the optimal balance between predictive power and 

generalization.  

Among ensemble models, the ET model outperforms RF and GB due to its 

unique approach to randomness and feature selection. ET uses a different splitting 

technique than RF and GB. It chooses split points entirely at random, while RF 

determines the optimal split depending on impurity reduction, and GB creates trees 

consecutively to reduce errors. This additional randomization in ET helps prevent 

overfitting to synthetic data from K-Means SMOTE, which RF may find challenging 

due to its more deterministic character. Furthermore, IRF provides more information 

for classification, and ET is ideal for effectively utilizing high-dimensional data, as it 

does not rely on boosting like GB, which can be sensitive to noise in augmented 
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features. While RF and GB show outstanding performance, they are more prone to 

overfitting or being sensitive to synthetic data and augmented features. In contrast, ET 

remains robust, achieving the maximum accuracy, recall, and AUC-ROC, thereby 

making it the best model for this dataset combination. 

Due to their inherent model characteristics and susceptibility to synthetic data 

and feature expansion, SVM, ANN, and KNN do not significantly benefit from the 

combined dataset. SVM relies on determining an ideal hyperplane for classification; 

however, the inclusion of K-Means SMOTE synthetic samples and additional features 

can compromise the margin and result in a minor precision-recall trade-off. KNN 

suffers the most since it is susceptible to high-dimensional spaces, and adding IRF 

increases feature dimensionality, thereby weakening distance-based classification by 

introducing irrelevant or duplicate information. K-Means SMOTE also creates new 

samples through interpolation, which may distort KNN’s closest neighbor 

computations and lead to performance variations. Although usually characterized by 

strong to complicated feature interactions, ANN does not demonstrate notable benefits, 

as it relies on considerable hyperparameter adjustment to effectively learn from 

synthetic and augmented data, which may not be sufficiently optimal in this case. These 

individual learners fail to identify meaningful patterns from synthetic and augmented 

data, thereby restricting their performance gains. In contrast, ensemble-based models, 

such as ET and RF, efficiently handle noise and utilize feature diversity. Especially, the 

ET model tends to be the best option based on overall performance.  

By applying medical domain knowledge, developing new features, and ensuring 

that data inputs align with established clinical reasoning, IRF significantly enhances the 

explainability and trustworthiness of disease prediction models. As they relate to well-

known physiological and pathological concepts, models incorporating medically 

meaningful features, such as risk scores, biomarker ratios, and symptom-based indices, 

enable healthcare professionals to interpret predictions more clearly. This transparency 

enables healthcare professionals to validate model decisions, thereby enhancing their 

trust in predictions generated by machine learning. Moreover, domain-specific feature 

engineering reduces the “black-box” characteristics of ML, thereby facilitating the 

identification of the reasons a patient is classified as high or low risk. In healthcare, 

trustworthy artificial intelligence requires that judgments be reasonable to both 
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healthcare providers and patients, interpretable in line with established medical best 

practices, and aligned with these practices. Expert knowledge enhances model 

credibility, boosting clinical adoption and patient trust in AI-driven diagnosis and 

treatment.  

5.5 Limitations  

This study was conducted using retrospective EHR data from a single hospital, 

which may limit generalizability. The dataset lacked neuropsychological and imaging 

features, restricting the scope of prediction. Additionally, while IRFs enhanced 

interpretability, they may not capture all clinical nuances without expert input, as Real-

world clinical validation and prospective studies were not conducted.  Although 

promising results are obtained, this study has several limitations. The proposed 

approach yielded the best performance in ensemble-based models, such as Extra Trees, 

but showed limited improvements in SVM, KNN, and ANN, suggesting model-specific 

effectiveness. The use of K-Means SMOTE may also distort local data structure, 

particularly affecting distance-based or margin-based models. Increasing IRFs beyond 

a certain point introduced noise and degraded performance due to dimensionality 

issues. ANN models underperformed, likely due to insufficient hyperparameter tuning. 

Moreover, the dataset’s origin from a single clinical setting raises concerns about 

generalizability, and the lack of validation from clinical users limits confirmation of the 

model’s practical interpretability and usability. 

5.6 Suggestion and Future Study 

The proposed model is well-suited for disease prediction tasks involving 

imbalanced, feature-rich data, providing strong generalization without overfitting. 

Synthetic augmentation and ensemble methods boost accuracy and trust, supporting 

early diagnosis, risk assessment, and personalized medicine. Future work should focus 

on optimizing deep learning models through advanced hyperparameter tuning and 

targeted feature selection to maximize the utility of synthetic and augmented data. To 
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further enhance model performance and generalizability, more sophisticated data 

generation techniques, such as generative adversarial networks or adaptive resampling, 

should be explored as alternatives to K-Means SMOTE. In addition, future studies 

should evaluate the model’s real-time diagnostic support within clinical workflows and 

investigate its integration into mobile health applications and national health 

information systems to improve practical deployment and interoperability. 

Moreover, although this study focused on binary classification to distinguish 

dementia cases from non-dementia, the proposed approach can be extended to 

multiclass classification involving various dementia subtypes. This is feasible when the 

dataset remains imbalanced and contains only interrelated clinical features. The inter-

relation-based feature (IRFs) was designed in a disease-independent manner, making it 

adaptable not only to different forms of dementia but also to other medical conditions 

that share similar dataset characteristics. The model’s ability to extract meaningful 

relationships between features and manage class imbalance enhances its applicability 

across a wide range of diagnostic tasks. Furthermore, the framework emphasizes model 

transparency and sensitivity to subtle risk factors—critical elements in clinical 

Diagnostic decision-making.  

5.7 Conclusion 

This study proposes the ET model and a data enrichment method for dementia 

classification, thereby enhancing the early detection of dementia. The proposed data 

enrichment method was a hybrid approach that combined feature augmentation and 

data balancing to enhance the data dimension, provide more informative features, and 

ensure a sufficient number of samples from the minority class. For feature 

augmentation, Inter-Relation-based Features (IRF) were proposed, leveraging medical 

domain knowledge to promote the explainability and trustworthiness of the model. The 

K-Means SMOTE was applied as a method to handle imbalanced data by generating 

new data based on the actual clusters of the original dataset. Consequently, the original 

dataset was transformed into a higher-dimensional space, making it suitable for model 

construction. The study utilized 14,763 EHR records and an initial set of 22 features 
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from a hospital in Chiang Rai, Thailand. The ET model was proposed for classification 

due to its ability to assess feature importance and handle multicollinearity. The model’s 

performance was compared to other traditional and ensemble learning methods. 

Experimental results demonstrated that the combination of 4 IRFs and K-Means 

SMOTE significantly enhanced the performance of the ET model across various 

metrics, including accuracy, precision, recall, F1-score, and AUC-ROC. 

Future research should adapt its application to distinguish between dementia 

severity levels or in differential diagnosis of other conditions, as well as integrate it 

with more advanced synthetic sampling techniques for better generalization and 

dimensionality, and put it into practical application. 
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