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             The detection of astronomical transient events—short-lived phenomena such 

as supernovae, gamma-ray bursts, and stellar flares—has become a major focus in 

contemporary astrophysical research. These events are often linked to extreme cosmic 

processes and provide essential insights into stellar evolution and the dynamic nature 

of the universe. However, identifying such events within the vast and rapidly expanding 

datasets generated by modern sky surveys presents significant challenges, especially as 

manual inspection becomes infeasible. The Gravitational-wave Optical Transient 

Observer (GOTO) project exemplifies this complexity. Designed to detect optical 

counterparts to gravitational-wave sources, GOTO produces hundreds of sky survey 

images per night, with each image containing tens of thousands of celestial objects. The 

scale and frequency of this data render traditional analysis methods—such as manual 

feature extraction and visual inspection—insufficient and inefficient, leading to missed 

opportunities in capturing rapidly fading events. This research proposes the use of Deep 

Learning techniques, particularly Convolutional Neural Networks (CNNs), to enhance 

the classification of transient objects. Unlike traditional methods, CNNs can 

automatically learn discriminative features directly from raw image data, making them 

well-suited for large-scale, high-dimensional image classification tasks. To improve 

model performance and robustness, the study employs Transfer Learning and Fine-
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

One of the most intensively studied topics in recent years is the detection of 

transient events, which are astronomical phenomena that exist only for a short period 

before rapidly fading away. Detecting these transients is critically important for 

understanding the extreme conditions of the universe, as they often result from high-

energy or high-mass astrophysical processes. Examples include the merger of neutron 

stars and black holes, which produce gravitational waves and gamma-ray bursts; the 

collapse of massive stars leading to Type II supernovae, marking the final stages of 

stellar evolution; and the occurrence of mega-flares on main-sequence stars, indicating 

sudden changes in stellar magnetic fields (Bailer-Jones et al., 2008; Djorgovski et al., 

2014). These phenomena not only broaden our understanding of stellar evolution and 

cosmic history but also hold the potential for discovering new laws of nature and testing 

physical theories that cannot be examined within terrestrial laboratories. 

However, the detection of transient events within massive astronomical datasets 

is far from straightforward. Each day, an enormous volume of sky survey images is 

collected at a scale that can no longer be manually analyzed by human effort alone. The 

exponentially increasing amount of data has introduced unprecedented challenges in 

data analysis and management in the history of astronomy. Consequently, astronomers 

are compelled to develop new approaches that can efficiently extract valuable 

information from these large-scale datasets. 

Moreover, the signals of these events are often obscured by noise and other 

interferences arising from technical limitations of observational instruments, such as 

sensor noise, atmospheric distortions, or processing artifacts introduced during initial 

data handling. In many cases, genuine transient signals closely resemble these artifacts, 

making it extremely difficult to distinguish between true and false detections through 

traditional analysis methods. Relying solely on human inspection to examine each event 
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is no longer feasible given the rapidly increasing data generation rate. Additionally, 

delays in processing may result in missed opportunities to track short-lived transient 

phenomena, which could disappear within just a few hours or days after their initial 

detection. 

The Gravitational-wave Optical Transient Observer (GOTO) project is one of 

the initiatives dedicated to the detection of transient events. GOTO is a telescope project 

specifically designed to identify optical counterparts to gravitational-wave events 

detected by instruments such as LIGO and VIRGO. It employs a system of multiple 

automated telescope mounts, equipped with 40-centimeter unit telescopes. A complete 

GOTO system can survey a total field of 40 square degrees and achieve a limiting 

magnitude of 20 within just three minutes of observation. The prototype GOTO facility 

began operations in 2017 at La Palma, initially with four telescopes, and later expanded 

to eight telescopes in 2020. Further expansion occurred in 2021, with plans underway 

to establish an additional observing station in southern Australia, enabling coverage of 

both the northern and southern hemispheres. This system is designed to rapidly detect 

and follow up on transient sources based on alerts from gravitational-wave detectors. 

GOTO generates an enormous number of astronomical images each night, with each 

image capturing approximately 20,000 celestial objects and producing around 400 

images per night. As a result, it faces the challenge of analyzing vast amounts of data, 

consistent with the difficulties outlined previously. 

The classification of image samples into predefined categories or classes is one 

of the fundamental issues in artificial intelligence and image processing research. In the 

existing literature, two principal approaches have been developed to address this 

problem, as illustrated in Figure 1.1 of the study, particularly in the context of 

distinguishing real transient sources from sky survey data. 

The first approach to astronomical image analysis typically follows a traditional 

pipeline, where raw image data is initially transformed into feature representations that 

can effectively support classification tasks. For instance, (Keerin & Boongoen, 2022) 

proposed the use of physics-based features to construct profiles for each image, 

capturing the appearance of newly emerged bright sources. These features are then used 

to develop classification models using conventional machine learning techniques, such 
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as Random Forest, Decision Tree, Artificial Neural Networks, K-Nearest Neighbors, 

and Support Vector Machines, as highlighted in the work of (Sarker, 2021). 

Meanwhile, several studies have utilized data from the Gravitational-wave 

Optical Transient Observer (GOTO), which is a key astronomical facility for observing 

transient phenomena. One of the most widely used methods for image subtraction in 

this context is HOTPANTS. This technique operates by taking two aligned images of 

the same sky region at different times, dividing them into multiple subregions, and 

computing convolutional kernels to match the point spread function (PSF) for each 

region. However, HOTPANTS uses only a single kernel across the entire image, which 

is insufficient for dealing with stars of varying sizes and may lead to incomplete 

subtraction results. 

To address this limitation, (Tabacolde et al., 2018) used transient images from 

GOTO for classification tasks by converting the images into feature vectors and 

applying various machine learning methods. One major challenge in their study was 

data imbalance—real transient images were significantly outnumbered by bogus 

ones—which led to poor model performance. In a follow-up experiment, they tackled 

the imbalance by applying undersampling and oversampling techniques on the original 

feature set, which led to improved results compared to the previous attempt. 

Later, (Liu et al., 2019) approached the imbalance problem differently. Instead 

of transforming the images into feature vectors, they used all available real images from 

GOTO and augmented the dataset by rotating each image in six different directions. 

This data augmentation technique effectively increased the number of real samples 

before training and resulted in improved classification performance, demonstrating that 

simple augmentation strategies can play a significant role in mitigating class imbalance 

in astronomical datasets. 

In contrast, the second approach involves the application of deep learning 

techniques, particularly Convolutional Neural Networks (CNNs), which have gained 

widespread attention over the past decade. CNNs are specifically designed to handle 

the variability of two-dimensional data patterns (Lecun et al., 1998; Li et al., 2022) and 

have been proven highly effective for large-scale image classification tasks, such as 

those encountered in the ImageNet competition (Krizhevsky et al., 2017). A key 

advantage of CNNs lies in their ability to learn distinctive features directly from the 
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raw pixel values of images, without requiring a separate feature extraction phase during 

data preprocessing, as is necessary in traditional approaches. 

Building upon the aforementioned studies, it has become evident that 

Convolutional Neural Networks (CNNs) offer significant potential for further 

development and refinement. The present research recognizes that CNNs can be 

extended to address certain challenges encountered in the GOTO project, such as the 

issue of data imbalance as well as improving the overall classification accuracy. These 

enhancements could lead to more robust and reliable identification of transient events 

within large-scale sky survey datasets. 

1.2 Challenges 

As discussed above, the Gravitational-wave Optical Transient Observer 

(GOTO) is one of the projects dedicated to the detection of transient events. However, 

the overall structure of the GOTO system is composed of several distinct components, 

each responsible for specific functions, as illustrated in Figure 1.1. 

 

Figure 1.1 A flowchart illustrating the comprehensive GOTO follow-up network 

 Figure 1.1 illustrates a flowchart outlining the complete GOTO follow-up 

network. Starting from the top left, gravitational wave signals are captured and 
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processed by the G-TeCS sentinel system. Following this, the scheduler issues 

positioning commands to the four telescopes, which are distributed across two separate 

locations. The images captured by these telescopes are then transmitted to the 

University of Warwick, where they are processed by comparison with reference images 

to identify potential transient sources. 

 This study focuses particularly on the image processing pipeline, which is 

emphasized within the solid frame in Figure 1.1. All images from the GOTO telescopes 

are transmitted via a dedicated fiber link to the central processing servers located at 

Warwick University, UK. Upon arrival, each image undergoes standard calibration 

procedures, including bias correction, dark frame subtraction, and flat-field adjustment. 

 Based on the observations and aforementioned discussion, a major challenge of 

this process lies in the necessity to initially distinguish between real and non-real 

images. This serves as one of the earliest stages of data filtering within the workflow. 

Given the vast volume of data received on a daily basis, it is imperative to implement 

a system with high precision to eliminate irrelevant or unnecessary information. Failure 

to accurately perform this initial filtration may result in increased complexity and 

difficulty in the subsequent stage, which involves classifying the nature of the detected 

events. 

1.3 Motivation  

As previously discussed, one of the fundamental challenges in image 

classification using Deep Learning techniques lies in enhancing model accuracy when 

facing highly imbalanced datasets. Several studies have proposed addressing this issue 

by employing oversampling strategies to increase the volume of samples in minority 

classes, thereby mitigating model bias arising from data imbalance. Additionally, Deep 

Learning methodologies such as Transfer Learning and Fine-Tuning play a crucial role 

in improving training efficiency, particularly in scenarios involving limited datasets 

that are not suitable for training from scratch. Other techniques, such as Dropout and 

varying batch sizes, are also widely adopted to regulate model learning behavior and 

reduce the risk of overfitting. 
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Motivated by these challenges, this study aims to investigate the following research 

questions: 

1. How does the use of Transfer Learning and Fine-Tuning influence image 

classification accuracy? 

2. Can neural networks learn distinct feature representations when different 

data augmentation techniques are applied? 

3. What is the effect of varying batch sizes during training on classification 

accuracy? 

4. Will neural networks acquire different representations when trained with 

different batch sizes? 

5. How does the application of Dropout during training affect the accuracy 

of image classification? 

6. How does the usage of different base architectures for ensembling affect 

classification accuracy? 

7. What are the most effective ensemble methods for combining multiple 

networks trained with different data augmentation strategies to achieve higher 

classification accuracy? 

1.4 Research Object 

 This research focuses on the application of Transfer Learning techniques, fine-

tuning of various hyperparameters such as batch size and the implementation of early 

stopping, as well as the use of data augmentation and Dropout methods to enhance the 

accuracy of astronomical image classification using data from the GOTO 

(Gravitational-wave Optical Transient Observer) telescope. Additionally, this study 

explores ensemble learning approaches, employing diverse base architectures to 

examine whether combining multiple models trained with various augmentation 

strategies can lead to improved classification performance. 

In accordance with the study's objectives, the research aims are as follows: 

1. To investigate the impact of applying Transfer Learning and Fine-Tuning 

techniques on the accuracy of image classification. 
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2. To evaluate the effect of different Convolutional Neural Network (CNN) 

architectures on model performance when trained with various data augmentation 

techniques. 

3. To analyze the advantages and limitations of employing pre-trained 

models—originally developed for everyday object recognition—in the context of 

astronomical image classification. 

4. To examine the influence of Dropout application during model training 

on classification accuracy. 

5. Studying how the use of different base architectures in ensemble learning 

affects the performance of image classification. 

6. To identify the most effective ensemble methods for combining multiple 

neural networks trained with diverse data augmentation strategies in order to improve 

classification accuracy. 

1.5 Scope of Research 

The scope of this research is defined from two main perspectives: the 

fundamental experimental framework and its application to domain-specific challenges 

in astronomical image classification. These are detailed as follows. 

1.5.1 Framework 

This research focuses on the application of Deep Learning techniques, 

particularly Transfer Learning and Fine-Tuning, combined with the adjustment of key 

hyperparameters such as batch size, the implementation of early stopping, and the use 

of dropout to enhance model generalization and prevent overfitting. To improve 

learning efficiency, the study also applies data augmentation techniques to increase the 

diversity of training data and mitigate the effects of class imbalance. The research 

investigates the impact of various Convolutional Neural Network (CNN) 

architectures—such as MobileNet, Xception, ResNet, and DenseNet—under both 

transfer learning and fine-tuning approaches, to evaluate how architectural differences 

influence classification performance. 
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Furthermore, this study explores the use of ensemble learning methods by 

integrating base models with different architectures that are trained on augmented 

datasets. The objective is to determine how the ensemble of multiple models, trained 

under varying conditions, can improve classification accuracy. This involves 

comparing different ensemble strategies and identifying the most effective methods for 

combining model outputs. 

1.5.2 Application 

The practical application of this research is centered on the classification of 

astronomical images from the Gravitational-wave Optical Transient Observer (GOTO) 

telescope. These images present unique challenges such as background noise, low 

signal-to-noise ratios, class imbalance, and ambiguous object morphologies. The study 

utilizes real observational data, including light curve images and labeled astronomical 

sources, to train and evaluate the performance of the proposed models. The 

classification task specifically focuses on distinguishing between “real” and “bogus” 

detections, an essential step in automating the process of transient discovery in 

astronomical surveys. The goal is to develop a highly accurate classification system 

that can be integrated into an automated detection pipeline. Future applications of this 

research may include extending the model to classify more complex object types, such 

as supernovae, quasars, or kilo novae, as the system is further refined and trained on 

expanded datasets. 
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CHAPTER 2 

LITERATURE REVIEW 

To establish a strong foundation for this research on astronomical transient 

detection, Chapter 2 explores the body of knowledge and technological advancements 

relevant to time-domain astronomy and image analysis. This chapter highlights how the 

rise of large-scale sky surveys—such as ZTF, Pan-STARRS, and the LSST—has 

created significant challenges in managing and interpreting the massive volumes of 

observational data collected each night. In response, Machine Learning (ML) and Deep 

Learning (DL) techniques have emerged as critical tools in automating the detection 

and classification of transient events with high accuracy and efficiency. The chapter 

begins by discussing approaches for supernova classification and real–bogus 

discrimination, with a focus on Convolutional Neural Networks (CNNs) such as 

VGGNet, Xception, ResNet, and DenseNet. These models have shown strong 

performance in various astronomical tasks by leveraging spatial patterns within image 

data. Furthermore, the review introduces essential strategies to improve model 

robustness and generalization, including Transfer Learning, Data Augmentation, and 

techniques for addressing Class Imbalance. Regularization methods like Dropout are 

also explored for reducing overfitting in CNNs. The chapter concludes with an 

overview of Deep Learning Ensemble methods, which integrate multiple models to 

improve prediction reliability and adaptability under real-world astronomical 

conditions. Altogether, this literature review aims to provide a comprehensive 

background that supports the design of an effective methodology for transient detection 

in the subsequent chapters. 

2.1 Generation of Sky Survey Data 

In this proof-of-concept study, simulated images from the GOTO 

(Gravitational-wave Optical Transient Observer) telescope were employed instead of
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 real observational data to evaluate the performance of machine learning (ML) 

algorithms in detecting astronomical transients. The key advantage of using simulated 

data lies in the ability to predefine and control the ground truth—namely, the identity, 

position, and brightness of transient sources. This makes simulated images ideal for 

supervised learning, as the outputs of the algorithm can be directly compared with 

known labels (Baron, 2019; Ishida & de Souza, 2013). In addition, simulation allows 

the generation of a wide variety of sky conditions—such as different levels of 

background noise, atmospheric seeing, and PSF shapes—without relying on costly or 

inconsistent observational campaigns. 

Despite these benefits, simulated data may not capture the full complexity and 

noise characteristics of real sky images. This leads to what is known as the reality gap—

a discrepancy between the clean, controlled nature of simulations and the unpredictable 

artifacts found in actual telescope observations (Zhang et al., 2020; Gruen et al., 2014). 

To minimize this gap, the study utilized SkyMaker (Bertin, 2009), a sophisticated 

astronomical image simulation tool widely used in the astrophysics community. 

SkyMaker supports the creation of highly realistic images, incorporating stellar and 

galactic sources, photometric noise, and customizable PSFs in forms such as Gaussian 

and Moffat profiles (Melchior et al., 2009). For this study, source lists were generated 

by merging two major sky catalogs: UCAC, which offers reliable data for bright stars, 

and SDSS, which provides deep coverage for faint stars and galaxies (Drlica-Wagner 

et al., 2018). 

Each celestial source’s sky coordinates (RA/Dec) were converted to image-

plane pixel coordinates based on the GOTO system’s 1.24 arcseconds/pixel scale. 

Brightness values were assigned using V-band magnitudes for UCAC sources and G-

band magnitudes for SDSS entries. Galaxies were modeled using disk-only profiles to 

reduce parameter complexity, which is acceptable given the study’s focus on transient 

detection rather than morphological analysis (Henrion et al., 2011). Two images were 

generated per sky region to simulate transient events; the second image included 

randomly injected transients with magnitudes ranging from 14 to 19. These image pairs 

were then processed using the LSST Science Pipelines (Juric, 2015), adapted to accept 

SkyMaker data, with the output difference images serving as the input to the ML 

models. This simulation pipeline enables controlled training under realistic conditions 
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and supports reproducible model evaluation, consistent with standard practices in time-

domain astronomy (Bloom et al., 2012; Korycansky et al., 2009). 

2.2 Convolutional Neural Networks in Astronomy: Transient Detection 

In recent years, Convolutional Neural Networks (CNNs) have become a 

cornerstone in astronomical transient detection, offering significant advantages over 

traditional machine learning methods. The use of CNNs allows astronomers to process 

large volumes of image data efficiently and with high accuracy, making them ideal for 

time-domain surveys such as the Zwicky Transient Facility (ZTF) and the upcoming 

Vera C. Rubin Observatory's LSST. One of the prominent applications of CNNs in this 

domain is real–bogus classification, which distinguishes genuine astrophysical events 

from noise or processing artifacts. For instance, (Wardęga et al., 2021) proposed a CNN 

model that directly compares science and reference image cutouts without using image 

subtraction. This approach achieved an F1-score of 0.989, outperforming simpler 

dense-layer networks. Similarly, (Killestein et al., 2021) implemented a Bayesian CNN 

using Monte Carlo dropout, enabling both classification and uncertainty estimation. 

Their model, trained on GOTO telescope data, achieved a false negative rate of 

approximately 0.5% at a 1% false positive rate, demonstrating superior performance in 

high-confidence real-time vetting. More generalizable frameworks such as O’TRAIN, 

developed by (Makhlouf et al., 2022), showed robust performance (93–98% accuracy) 

across various telescopes using conventional CNN architectures. (Liu et al., 

2025a)further introduced active and semi-supervised learning approaches to reduce 

labeling effort. Starting with only ~900 labeled samples from ZTF, their model 

achieved over 96% accuracy and over 95% recall by iteratively expanding the training 

set. Beyond static image classification, (Gómez et al., 2020) developed TAO-Net, a 

hybrid CNN-RNN model capable of learning temporal patterns from sequences of 

transient images. The model improved classification F1-scores by ~10 percentage 

points compared to random forest classifiers based on light-curve features. Recent 

efforts have also focused on benchmarking and standardization. (Dave et al., 2020) 

published the Deep-TAO dataset, which includes over 1.25 million CRTS image 



12 

 

sequences for training and evaluation. Their work confirmed that even basic CNNs 

trained directly on image sequences can outperform traditional methods reliant on 

photometric curves. Incorporating auxiliary data with CNNs also shows promise. 

(Rehemtulla et al., 2024) introduced BTSbot, a multi-modal classifier that combines 

ZTF image stamps with engineered features (e.g., light-curve statistics). BTSbot 

achieved a 93% purity rate and recovered 100% of spectroscopically confirmed bright 

transients in their validation set. Across all these studies, CNNs consistently outperform 

traditional machine learning models such as Random Forests and Support Vector 

Machines in accuracy, F1-score, and robustness. These deep learning methods are now 

being embedded into real-time alert pipelines, significantly reducing human workload 

and enabling rapid discovery in modern surveys (Gómez et al., 2020; Killestein et al., 

2021; Liu et al., 2025; Rehemtulla et al., 2023; Wardęga et al., 2021)  

2.2.1 VGGNet 

VGGNet, originally proposed by Simonyan and Zisserman (2015), is a 

convolutional neural network (CNN) architecture known for its use of small 3×3 

convolutional filters, deep hierarchical layers, and a simple, uniform design. Although 

initially developed for large-scale image classification tasks like ImageNet, VGGNet 

has proven highly effective in a variety of astronomical applications. In time-domain 

astronomy, one key application is real–bogus classification, where VGGNet helps filter 

out false positives from transient surveys. For example, Killestein et al. (2021) 

employed a downsized VGG16 model to classify transient candidates in the GOTO 

survey using 55×55-pixel image stamps (including science, reference, difference, and 

PSF-matched residuals), achieving a false negative rate of ~0.5% at a 1% false positive 

rate—outperforming traditional random forest classifiers. VGGNet has also been used 

for galaxy morphology classification, as demonstrated by Aniyan and Thorat (2017), 

who achieved high accuracy in categorizing galaxies based on SDSS data, capturing 

fine details like spiral arms, bars, and ellipticity. Furthermore, it is widely applied in 

star–galaxy classification and source segmentation tasks, especially in crowded or low 

signal-to-noise environments. Zhou et al. (2021), for instance, adapted VGGNet for 

pixel-level segmentation in infrared images, showing improvements over classical 

methods like thresholding or SExtractor. Due to its success in computer vision, 

VGGNet is also frequently used in transfer learning and domain adaptation. Pretrained 
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on ImageNet and fine-tuned on astronomical datasets, VGGNet has demonstrated faster 

convergence and better generalization, especially when labeled data is limited. Zhou et 

al. (2021) further showed that fine-tuned VGG models can outperform shallow custom-

built networks on small but high-quality datasets.  

2.2.2 Xception 

Xception replaces traditional Inception modules with depthwise separable 

convolutions, enabling the model to decouple spatial and cross-channel correlations, 

thereby reducing parameter count while maintaining strong representational capacity. 

This architecture is particularly advantageous in astronomy, where real-time inference 

is crucial for time-domain applications. Compared to models like VGGNet and ResNet, 

Xception often achieves higher accuracy with fewer parameters, making it suitable for 

telescope pipelines with limited computational resources. In transient detection, Liu et 

al. (2022) demonstrated that Xception achieved F1-scores of ≈0.98 on ZTF data, 

outperforming traditional CNNs and random forest classifiers while processing 64×64 

science and difference image cutouts robustly under varying noise and seeing 

conditions. For galaxy morphology classification, Xception fine-tuned on SDSS and 

DECaLS data outperformed InceptionV3 and ResNet50, particularly excelling in 

identifying edge-on spirals and irregular galaxies due to its capacity for capturing fine 

spatial structures. It was also used to predict galaxy spectral types from images alone—

without spectroscopy—achieving over 90% accuracy, highlighting its promise for 

large-scale photometric surveys. In anomaly detection, Xception’s generalization 

ability was leveraged by Yoon and Kang (2024), who employed an autoencoder-based 

variant to identify unclassified variable sources in the ATLAS survey, successfully 

detecting rare transients overlooked by traditional methods. Given the scarcity of 

labeled astronomical data, Xception is widely used in transfer learning, with pre-trained 

weights from ImageNet and fine-tuning of top layers reducing training time and data 

requirements. Domain adaptation techniques such as layer reweighting and color 

augmentation further enhance model transferability from natural to astronomical 

imagery. 
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2.2.3 ResNet 

In order to maintain computational efficiency, ResNet, a deep neural network 

architecture created by (He et al., 2015) primarily uses 3 × 3 convolutional filters while 

maintaining a consistent number of filters across layers. Stride-2 convolutional layers 

perform downsampling, and a global average pooling layer completes the network. 

Shortcut connections are then incorporated to allow for residual learning. The 

preprocessing methods applied to the input are taken from Simonyan and (Krizhevsky 

et al., 2017; Simonyan & Zisserman, 2015). To reduce internal covariate shift, Batch 

Normalization (BN) (Ioffe & Szegedy, 2015) is used both before and just after each 

convolutional layer. In this design, dropout layers are unnecessary since regularization 

is provided via batch normalization. Using stochastic gradient descent (SGD), the 

model is trained with a batch size of 256, a weight decay of 0.0001, and a momentum 

of 0.9. Training plateaus reduce the initial learning rate, which is set at 0.01 and is 

reduced by a factor of 10. Convergence is ensured by training for up to 60 × 10⁴ 

iterations. 

2.2.4 DenseNet 

In order to promote effective feature reuse and improved gradient propagation, 

(Huang et al., 2018) presented the Dense Convolutional Network (DenseNet), a neural 

network design in which each layer uses all previous feature maps as input. DenseNet 

may combine knowledge from all previous layers thanks to its connectedness structure, 

which increases learning efficiency. DenseNet significantly improves information flow 

as it has L(L+1)/2 connections, if L is the number of layers. Every layer applies a non-

linear transformation Hₗ(∙), which consists of a 3 × 3 convolution, Batch Normalization 

(BN), and ReLU activation. In order to reduce dimensionality while preserving 

important learnt properties, the network's closely connected blocks are separated by 

transition layers that include Batch Normalization, a 1 x 1 convolutional layer, and  

a 2 × 2 average pooling layer. 

 

 

 

 



15 

 

2.3 Transfer Learning 

Transfer Learning is a powerful paradigm in machine learning that leverages 

knowledge gained from solving one task to enhance the learning performance of 

another, often related but distinct task. Instead of training models from scratch, which 

can be computationally expensive and require vast labeled datasets, Transfer Learning 

enables the reuse of feature representations from pre-trained models typically trained 

on large-scale image datasets such as ImageNet (Deng et al., 2009). These pre-trained 

networks, such as VGGNet (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), 

Inception (Szegedy et al., 2015), and Xception (Chollet, 2017), have demonstrated 

significant success across a range of visual tasks by capturing robust hierarchical 

features, which can generalize well to new domains with limited data. 

A critical advantage of Transfer Learning is its ability to reduce the need for extensive 

labeled training data by transferring low- and mid-level features from general-purpose 

datasets to domain-specific applications. In practice, this involves replacing or fine-

tuning the classification head of the model while optionally unfreezing deeper 

convolutional layers, a process known as fine-tuning. Studies have shown that 

combining Transfer Learning with data augmentation techniques and domain 

adaptation strategies significantly enhances model robustness and generalization 

(Charnock & Moss, 2017). Despite its advantages, Transfer Learning in scientific 

imaging is not without challenges. The domain gap between natural images (used for 

pre-training) and scientific images (such as astronomical data) can sometimes limit 

performance. Hence, researchers must carefully choose which layers to retrain and 

which to freeze based on the similarity between source and target domains (Zhuang et 

al., 2020). 

2.4 Transfer Learning in Astronomical Image Analysis 

In the domain of astronomy, Transfer Learning has gained popularity due to its 

effectiveness in handling limited and imbalanced datasets, which are common in 

astrophysical observations (Sánchez et al., 2018). For example, (Cavanagh et al., 2021) 
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demonstrated the success of a fine-tuned Xception model in classifying galaxy 

morphologies, outperforming other deep learning architectures including InceptionV3 

and ResNet50. Similarly, models pre-trained on ImageNet have been repurposed for 

tasks such as real-bogus classification of transient detections (Cabrera-Vives et al., 

2017), galaxy morphological classification (Dieleman et al., 2015), and even 

gravitational wave event analysis (George & Huerta, 2018). 

2.5 Deep Learning Ensemble 

 Ensemble learning in deep learning refers to the process of combining 

predictions from multiple models to improve accuracy, robustness, and generalization. 

While a single neural network may be prone to overfitting or sensitive to specific data 

perturbations, ensemble methods exploit the diversity among multiple models to reduce 

variance and increase predictive reliability. In the context of deep learning, ensemble 

strategies typically include techniques such as bagging, boosting, and model averaging, 

but more commonly involve approaches like soft voting, hard voting, and weighted 

voting, where outputs from different models—often trained with varying architectures, 

hyperparameters, or data augmentations—are aggregated to form a consensus 

prediction (Dietterich, 2000; Hansen & Salamon, 1990). In astronomical image 

classification, ensemble methods have proven particularly useful in improving 

classification reliability for rare or ambiguous events, such as the real-bogus 

classification of transient detections. For example, ensembles combining convolutional 

neural networks like ResNet, Xception, and MobileNet have been shown to outperform 

individual models by balancing the trade-offs between precision and recall (Möller & 

de Boissière, 2020). Additionally, ensemble techniques are valuable in mitigating the 

effects of domain shift and observational noise, which are common in data collected 

from different telescopes or under varying sky conditions. When combined with 

transfer learning and data augmentation, deep ensemble methods enable more stable 

and trustworthy decision-making in high-stakes scientific applications such as 

supernova detection, galaxy morphology classification, and gravitational wave follow-

up observations (Carrasco-Davis et al., 2019) 
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Table 2.1 Summarization including detail of literature review 

Year Technology Interesting Points Limitation 

1. Previous work in Generation of Sky Survey Data 

 Extract feature Extract feature from GOTO 

Sky Survey Image 

Some information loss while 

extracting feature. 

 Extract feature and 

Imbalance 

Extract feature from GOTO 

Sky Survey Image that 

imbalance and used 

machine learning for 

observe 

Some in formation loss while 

extract feature and low 

accuracy because 

 Image, CNN and 

Imbalance (Rotation) 

Using image with CNN and 

using rotation training data 

to improve imbalance 

Proof of concept that GOTO 

sky image can be using with 

CNN and rotation image can 

 HOTPANTS One of the most widely 

used method for 

astronomical image 

subtraction which works by 

taking two aligned images 

of the same filed and in 

different time, dividing 

them into several regions 

and calculating 

convolutional kernels to 

math point spread functions 

(PSF) for each region 

HOTPANTS is an effective 

method for image subtraction 

and has been used for a long 

period of time but it also has 

some disadvantages. Frist, we 

checked the remaining on the 

image produced by 

HOTPANTS and found over 

50% remaining stars are of 

small sizes 

 SExtractor SExtractor is a program that 

vuilds acatalogue of objects 

from an astronomical 

image. Although it is 

particularly oriented 

towards reduction of large-

scale galaxy-survey data, it 

can perform reasonably 

well on moderately crowed 

star fields 
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Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

2. Convolutional Neural Networks in Astronomy: Transient Detection 

2021 CNN Proposed a CNN model that 

directly compares science 

and reference image cutouts 

without using image 

subtraction; achieved an F1-

score of 0.989, 

outperforming simpler 

dense-layer networks. 

May struggle with subtle 

transients or variations in 

image conditions without 

subtraction. 

2021 Bayesian CNN (Monte 

Carlo dropout) 

Implemented a Bayesian 

CNN using Monte Carlo 

dropout for classification 

and uncertainty estimation; 

achieved a false negative 

rate of approximately 0.5% 

at a 1% false positive rate 

on GOTO telescope data. 

Higher computational cost; 

generalizability to diverse 

telescope data may be limited. 

2022 Conventional CNN 

architectures 

(O’TRAIN) 

Showed robust performance 

(93–98% accuracy) across 

various telescopes using 

conventional CNN 

architectures. 

"Conventional" architecture 

may not fully exploit 

advanced deep learning; 

optimal performance might 

require some fine-tuning for 

specific telescopes. 

2025 Active and semi-

supervised learning 

approaches with CNN 

Introduced active and semi-

supervised learning 

approaches to reduce 

labeling effort; achieved 

over 96% accuracy and over 

95% recall by iteratively 

expanding the training set, 

starting with only ~900 

labeled samples from ZTF. 

Initial small labeled dataset 

can introduce biases; active 

learning effectiveness depends 

on query strategy; may 

struggle with novel transient 

types. 
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Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

2020 Hybrid CNN-RNN 

(TAO-Net) 

Developed TAO-Net, a 

hybrid CNN-RNN model 

capable of learning temporal 

patterns from sequences of 

transient images; improved 

classification F1-scores by 

~10 percentage points 

compared to random forest 

classifiers. 

Requires sequential image 

data, which may not always be 

available; computationally 

intensive for long sequences. 

 

2020 Basic CNNs (Deep-

TAO dataset) 

Published the Deep-TAO 

dataset (over 1.25 million 

CRTS image sequences); 

confirmed that even basic 

CNNs trained directly on 

image sequences can 

outperform traditional 

methods reliant on 

photometric curves. 

Dataset specific to CRTS; 

basic CNNs might miss 

intricate features. 

2024 Multi-modal classifier 

(BTSbot) 

Introduced BTSbot, a multi-

modal classifier that 

combines ZTF image 

stamps with engineered 

features; achieved a 93% 

purity rate and recovered 

100% of spectroscopically 

confirmed bright transients 

in their validation set. 

Relies on handcrafted 

features; performance for 

fainter transients may vary. 

 

 

 



20 

 

Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

2015 VGGNet - Uses small 3x3 filters, 

deep layers, simple design.  

- Effective for astronomical 

image classification and 

segmentation tasks.  

- Performs well with 

Transfer Learning. 

- Resource Intensive: Has a 

large number of parameters 

(over 138 million), leading to 

high memory and disk usage. 

- Slow Training: Training the 

model is very time-consuming, 

even with high-performance 

GPUs. 

- Prone to Overfitting: The large 

number of parameters can make 

it prone to overfitting, 

especially with smaller datasets. 

2017 Xception - Uses Depthwise Separable 

Convolutions for efficiency 

and strong representation. 

- Achieves high accuracy 

with fewer parameters, 

suitable for limited 

resources. 

- Very useful in astronomy 

for transient detection, 

galaxy classification, and 

anomaly detection. 

- Works well with Transfer 

Learning. 

- Implementation Complexity: 

Despite efficiency, the specific 

architecture can be complex to 

implement. 

- Hyperparameter Tuning: 

Performance is sensitive to 

hyperparameter adjustments. 

- Data Requirement: Still 

requires substantial labeled data 

for specialized tasks, even with 

Transfer Learning. 

- Interpretability: Like most 

neural networks, understanding 

its decisions can be challenging. 

2015 ResNet - Uses 3x3 filters & shortcut 

connections for efficient 

deep learning.  

- Batch Normalization helps 

with regularization.  

- Robust training setup. 

- High computational cost: 

Can be demanding to 

train/deploy. 

- Interpretability: Hard to 

understand internal decision-

making. 

- Hyperparameter sensitivity: 

Requires careful tuning. 
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Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

2018 DenseNet - Layers connect to all 

previous feature maps for 

reuse and better gradient 

flow. 

- High information flow. 

- Uses standard 

convolution, BN, ReLU, 

and transition layers. 

- High Memory Consumption: 

Requires significant memory 

due to dense connections. 

- Computational Overhead: 

Numerous connections lead to 

increased computational load. 

- Implementation Complexity: 

More complex to implement 

from scratch. 

3. Transfer Learning 

2009 ImageNet A large-scale image dataset 

commonly used for pre-

training models in Transfer 

Learning. 

May require extensive fine-

tuning for specialized 

domains. 

2015 VGGNet, Inception Pre-trained networks that 

demonstrated significant 

success across various 

visual tasks by capturing 

robust hierarchical features. 

VGGNet: High 

memory/computational cost. 

2016 ResNet A pre-trained network that 

demonstrated significant 

success across various 

visual tasks by capturing 

robust hierarchical features. 

Deep models still resource-

intensive for fine-tuning. 

2017 Xception A pre-trained network that 

demonstrated significant 

success across various 

visual tasks by capturing 

robust hierarchical features. 

May slightly limit complex 

inter-channel learning. 

2017 Transfer Learning 

with Data 

Augmentation & 

Domain Adaptation 

(Charnock & Moss) 

Combining Transfer 

Learning with these 

techniques significantly 

enhances model robustness 

and generalization. 

Augmentation requires 

domain expertise. 
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Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

2020 Transfer Learning  Researchers must carefully 

choose which layers to 

retrain and which to freeze 

based on the similarity 

between source and target 

domains. 

Major Domain Gap: 

Significant performance drop 

with highly dissimilar 

domains (e.g., natural vs. 

scientific images). 

4. Transfer Learning in Astronomical Image Analysis 

2018 Transfer Learning Gained popularity in 

astronomy due to 

effectiveness in handling 

limited and imbalanced 

datasets, common in 

astrophysical observations. 

Performance sensitive to 

domain gap (natural vs. 

astronomy images). 

2021 Fine-tuned Xception 

model (vs. 

InceptionV3, 

ResNet50) 

Successfully classified 

galaxy morphologies, 

outperforming other deep 

learning architectures. 

May struggle with highly 

irregular/faint galaxies. 

2017 ImageNet (pre-trained 

models) 

Repurposed for "real-

bogus" classification of 

transient detections. 

High data imbalance makes 

reducing false 

positives/negatives challenging. 

2015 ImageNet (pre-trained 

models) 

Repurposed for galaxy 

morphological 

classification. 

Potential for human labeling 

bias to be amplified. 

2018 ImageNet (pre-trained 

models) 

Repurposed for 

gravitational wave event 

analysis. 

Extreme faintness of signals 

and high noise make detection 

difficult. 
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Table 2.1 (continued) 

Year Technology Interesting Points Limitation 

5. Deep Learning Ensemble 

 Ensemble Learning 

(Core Concept) 

Combines predictions from 

multiple models to improve 

accuracy, robustness, and 

generalization; exploits 

diversity to reduce variance 

and increase predictive 

reliability. 

Increased computational cost 

and complexity. 

2000, 

1990 

Ensemble Strategies: 

Bagging, Boosting, 

Model Averaging, Soft 

Voting, Hard Voting, 

Weighted Voting 

Aggregates outputs from 

different models (often with 

varying architectures, 

hyperparameters, or data 

augmentations) to form a 

consensus prediction. 

Non-trivial optimization for 

combining strategies. 

2020 Ensemble Methods in 

Astronomical Image 

Classification (e.g., 

combining ResNet, 

Xception, MobileNet) 

Proven useful in improving 

classification reliability for 

rare or ambiguous events; 

outperforms individual 

models by balancing 

precision and recall. 

Reduced model 

interpretability due to 

increased complexity. 

2019 Deep Ensemble 

Methods (combined 

with Transfer 

Learning and Data 

Augmentation) 

Valuable in mitigating 

effects of domain shift and 

observational noise; enables 

more stable and trustworthy 

decision-making in high-

stakes scientific 

applications. 

Very high computational 

demands (training & 

inference). 
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter outlines a systematically designed research framework aimed at 

evaluating the effectiveness of deep learning models in classifying astronomical objects 

captured through telescope imaging. The classification task is particularly challenging 

due to the extreme class imbalance between real objects (e.g., supernovae, kilonovae) 

and bogus detections caused by sensor noise, cosmic rays, or image processing artifacts. 

To address this, the methodology incorporates a comprehensive pipeline, beginning 

with dataset preparation and image format conversion, followed by advanced data 

augmentation techniques to increase training diversity. Subsequently, a suite of 

Convolutional Neural Network (CNN) architectures is trained using both transfer 

learning and fine-tuning strategies. Model performance is rigorously assessed using 

multiple evaluation metrics, and ensemble learning techniques are finally employed to 

enhance classification robustness. This chapter provides a detailed account of each 

methodological component, ensuring the reproducibility and reliability of the 

experimental results within the context of astronomical transient detection. 

3.1 Method Overview 

The workflow illustrated in Figure 3.1 represents a systematically designed 

research framework aimed at evaluating the capabilities of deep learning models in 

classifying astronomical objects captured in telescope images. These objects are 

typically categorized into two main classes: real objects such as supernovae and other 

transient phenomena that genuinely exist in the cosmos and bogus objects, which often 

result from camera errors, background noise, or processing artifacts. Distinguishing 

between these two categories poses a significant challenge, especially due to the 

extreme class imbalance inherent in raw astronomical datasets, where bogus instances 

far outnumber real ones. This imbalance can hinder model accuracy and lead to 

statistical bias. To address this issue, the initial stage of the research involves enhancing 
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dataset diversity through data augmentation techniques, including the use of original 

images, noise injection, image rotation, vertical flipping (VFlip), and horizontal 

flipping (HFlip). These augmentations aim to increase the variability of training data 

and improve model generalization in the face of complex and distorted inputs. 

The next phase of the workflow focuses on training Convolutional Neural 

Network (CNN) architectures, which are highly effective for image analysis tasks. This 

research utilizes nine well-known CNN models: DenseNet121, VGG16, VGG19, 

ResNet50, ResNet101, MobileNet, MobileNetV2, InceptionV3, and Xception each 

with distinct architectural strengths. For example, ResNet incorporates residual 

learning to mitigate vanishing gradient issues, MobileNet is lightweight and suitable 

for real-time inference, while Xception offers high performance through the use of 

depthwise separable convolutions. The training strategies are divided into two 

approaches: training from scratch (without pre-initialized weights) and utilizing pre-

trained models from ImageNet. The latter approach includes both traditional transfer 

learning (where pretrained layers are kept fixed) and fine-tuning (where selected layers 

are retrained to adapt to domain-specific astronomical data). 

During training, key hyperparameters known to affect model performance are 

systematically varied, including dropout rates (0.2, 0.3, and 0.5) a regularization 

technique to prevent overfitting by randomly disabling neurons during training and 

batch sizes (32, 64, 128, and 256), which influence learning stability and computational 

efficiency. These parameters are evaluated across all models and augmentation settings 

to identify the optimal configuration for each scenario. Upon completion of model 

training, the results are analyzed and compared using standard performance metrics 

accuracy, precision, recall, and F1-score across both the real and bogus classes. The 

best-performing models for each type of augmentation are then selected for ensemble 

integration. By combining these models, the ensemble approach aims to leverage their 

individual strengths and mitigate their weaknesses. This is achieved through soft 

voting, where class probabilities are averaged, and weighted voting, where models 

contribute based on their relative performance. 
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Figure 3.1 Overall methodology 
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3.2 Dataset 

The dataset employed in this study originates from the GOTO (Gravitational-

wave Optical Transient Observer) survey project, which is designed to detect optical 

counterparts of gravitational-wave events (Steeghs et al., 2022) Specifically, we use 

different images, which are generated by subtracting a static reference image from a 

new observation to isolate transient sources. 

Each sample in the dataset is a grayscale image of size 21×21 pixels, centered 

on a potential transient source. These compact cutouts are sufficient to capture the local 

point spread function (PSF) and relevant background context, allowing for 

classification based on pixel-level intensity distributions. 

All images have been manually labeled by expert astronomers into two 

categories: 

1. Real: Confirmed transient detections, such as supernovae or kilonovae, 

showing clear astrophysical characteristics. 

2. Bogus: False positives arising from various sources such as cosmic rays, 

CCD defects, or imperfect image subtraction. 

Table 3.1 Number of samples 

Class Number of Samples 

Real 523 

Bogus 3,598 

This highly imbalanced dataset mirrors real-world conditions in transient 

detection pipelines, where most candidate detections are spurious. Such imbalance 

presents a significant challenge for classification models and motivates the use of data 

augmentation, custom loss functions, or oversampling strategies in model training 

(Buda et al., 2018; Krawczyk, 2016). 



28 

 

 

Figure 3.2 The example of dataset 

3.2.1 Data Preprocessing 

In the original format, the astronomical images in this dataset are stored as FITS 

files (fits), a standard format widely used in astronomy that contains multi-dimensional 

arrays and metadata headers (Pence et al., 2010). While FITS is suitable for scientific 

storage and analysis, it is not directly compatible with most deep learning frameworks 

and image processing libraries that expect conventional image formats such as JPEG or 

PNG. To streamline the modeling process and facilitate integration with popular 

computer vision pipelines (e.g., TensorFlow or PyTorch), we converted the FITS files 

into JPEG (.jpg) format. This step simplifies data loading, visualization, and 

augmentation, while preserving the key pixel-level features needed for classification. 

The conversion was carefully conducted using normalization and stretching techniques 

to ensure that astrophysical features remained distinguishable. 

3.2.2 Data Augmentation 

Data augmentation is a well-established technique in deep learning, commonly 

used to artificially expand the training dataset by applying various transformations to 

existing images. This process helps improve the generalization capability of the model 

by exposing it to diverse variations of the data, thereby reducing the risk of overfitting 

and enhancing final classification accuracy (García-Jara et al., 2022). In line with 

findings from previous studies, we incorporate data augmentation into our training 

Real image Bogus 
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pipeline to increase robustness and improve performance on unseen data. 

Augmentations such as horizontal flips, rotations, and noise injection are applied to 

simulate real-world distortions and observational variability. This strategy aims to help 

the network learn invariant features and become more resilient to subtle differences in 

transient images.  

The use of data augmentation in this study aims to enhance the performance of 

deep learning models under the constraints of limited and highly imbalanced datasets—

particularly in the context of transient object classification, where “real” instances are 

significantly outnumbered by “bogus” detections. Data augmentation increases training 

diversity by applying various transformations to the original images, such as rotations, 

flipping, and noise injection, to simulate real-world variability in object position, 

camera angle, and image quality. These techniques enable the model to learn invariant 

features that are robust to positional and observational distortions, thereby reducing 

biases from repetitive image patterns and improving generalization to unseen data. 

Altogether, this strategy plays a vital role in improving the accuracy, stability, and 

reliability of the model when applied to real-world astronomical imaging. 

 

Figure 3.3 The example of data augmentation 

3.3 Modeling 

 In deep learning for image classification, Convolutional Neural Networks 

(CNNs) have proven to be powerful tools due to their ability to learn hierarchical spatial 

features, making them especially suitable for analyzing astronomical images where 

spatial structure and light distribution are critical for identifying celestial phenomena. 

Over the past decade, numerous CNN architectures have been developed, each offering 

distinct strengths in terms of depth, parameter count, and computational efficiency.  

In this study, we selected nine representative CNN models—DenseNet121, 

Original Noise Rotation VFlip HFlip 
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InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and 

Xception—to evaluate their effectiveness in classifying transient astronomical events. 

These models were chosen based on their widespread use in previous image 

classification research leveraging transfer learning from ImageNet, a large-scale dataset 

commonly used to pre-train CNNs. Each model used in this study incorporates pre-

trained ImageNet weights, allowing for effective feature transfer from general visual 

patterns to the specific domain of astronomical imaging. In the following sections, we 

provide a detailed overview of each model's architecture, advantages, and its relevance 

to this task. 

3.3.1 DenseNet121  

DenseNet121 (Densely Connected Convolutional Networks) is a CNN 

architecture that introduces dense connectivity between layers, where each layer 

receives inputs from all preceding layers and passes its own feature maps to all 

subsequent layers. This design helps improve feature propagation, encourages feature 

reuse, and mitigates the vanishing gradient problem commonly found in deep networks. 

DenseNet121 is particularly efficient in terms of parameter usage, making it suitable 

for deep learning tasks with limited computational resources. In astronomical image 

classification, the dense connections allow the model to retain fine-grained spatial 

information critical for distinguishing subtle features in transient events. When pre-

trained on ImageNet, DenseNet121 benefits from a strong initialization that accelerates 

convergence and improves generalization, especially when applied to datasets with 

fewer labeled samples, as often found in astronomy (Huang et al., 2017). 

3.3.2 InceptionV3 

InceptionV3 is a highly optimized convolutional neural network architecture 

that builds upon the earlier Inception models by introducing several enhancements to 

improve both computational efficiency and accuracy. The key innovation in Inception 

networks lies in their use of Inception modules, which perform parallel convolutions of 

different kernel sizes (e.g., 1×1, 3×3, and 5×5) within the same layer. This design allows 

the network to capture features at multiple scales simultaneously, enabling it to handle 

complex spatial patterns commonly found in astronomical images. InceptionV3 further 

improves upon its predecessors by incorporating techniques such as factorized 

convolutions, asymmetric kernels, and label smoothing, which reduce computational 
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cost while maintaining high representational power. In the context of transient 

astronomical event classification, InceptionV3 is particularly well-suited due to its 

ability to extract diverse feature representations, making it robust to variations in object 

size, orientation, and brightness. When pre-trained on ImageNet, the model inherits a 

rich set of visual features that can be effectively transferred to astronomical data, even 

with limited labeled samples. Its deep and modular design also helps prevent overfitting 

and facilitates efficient training, making it a popular choice in many image-based 

scientific applications (Szegedy et al., 2016). 

3.3.3 MobileNet  

MobileNet is a lightweight and efficient convolutional neural network 

architecture designed specifically for mobile and embedded vision applications.  

It achieves computational efficiency by replacing standard convolutions with depthwise 

separable convolutions, which factorize a conventional convolution into two simpler 

operations: a depthwise convolution (which applies a single filter per input channel) 

followed by a pointwise convolution (a 1×1 convolution that combines the outputs). 

This significantly reduces the number of parameters and computational cost, making 

MobileNet ideal for devices with limited resources. In the context of astronomical 

transient classification, MobileNet’s compact structure allows for fast inference while 

still capturing essential spatial features. Although it is shallower and less complex than 

other deep CNNs, MobileNet remains effective when pre-trained on ImageNet and fine-

tuned on domain-specific datasets. Its efficiency and adaptability make it particularly 

suitable for real-time or resource-constrained astronomical applications, such as edge 

computing in observatories or satellite-based image analysis (Howard et al., 2017). 

3.3.4 MobileNetV2  

MobileNetV2 is an improved version of the original MobileNet architecture, 

designed to enhance efficiency and accuracy for mobile and embedded applications. 

The core innovation of MobileNetV2 lies in the introduction of inverted residual blocks 

and linear bottlenecks. Unlike traditional residual connections, the inverted residual 

block expands the input to a higher-dimensional space, applies depthwise separable 

convolutions, and then projects the features back to a low-dimensional output. This 

structure allows for better information flow and reduces the risk of losing critical 

features during transformation. In astronomical image classification, especially in tasks 
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involving subtle differences in brightness or shape (as seen in transient detection), 

MobileNetV2 offers a good balance between speed and performance. Pre-trained on 

ImageNet and fine-tuned for domain-specific data, MobileNetV2 is capable of 

generalizing well even with limited data. Its lightweight nature and enhanced 

representational capacity make it a practical choice for real-time, edge-based inference 

in astronomy applications (Sandler et al., 2018). 

3.3.5 ResNet50 and ResNet101  

ResNet50 and ResNet101 are both part of the Residual Network (ResNet) 

family, which introduced the concept of residual learning to effectively train very deep 

neural networks. The key architectural feature in ResNet models is the shortcut (or skip) 

connection, which allows the network to bypass certain layers by adding the input of a 

layer directly to its output. This mechanism addresses the degradation problem and 

helps maintain the strength of gradients during backpropagation, enabling the training 

of extremely deep models without sacrificing performance. ResNet50 contains 50 

layers, while ResNet101 extends the architecture to 101 layers, offering increased depth 

and feature learning capacity. The added depth in ResNet101 allows it to learn more 

abstract and complex representations, which can be particularly useful for 

distinguishing subtle variations in astronomical images. However, this comes with 

increased computational cost compared to ResNet50. In practice, both models perform 

strongly when pre-trained on ImageNet and fine-tuned on domain-specific data. 

ResNet50 offers a solid balance between accuracy and efficiency, while ResNet101 

provides a deeper structure suited for more complex classification tasks—such as 

identifying transient astronomical events where fine-grained detail matters (He et al., 

2016). 

3.3.6 VGG16 and VGG19  

VGG16 and VGG19 are convolutional neural network architectures developed 

by the Visual Geometry Group (VGG) at the University of Oxford. They are known for 

their simplicity and uniform architecture, where the entire network is composed 

primarily of 3×3 convolutional layers stacked on top of each other with ReLU 

activations, followed by max pooling and fully connected layers. The difference 

between the two lies in their depth: VGG16 has 16 weight layers, while VGG19 has 19, 

making VGG19 slightly deeper and potentially more expressive. Despite their relatively 
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simple design, both VGG16 and VGG19 are powerful feature extractors, especially 

when pre-trained on large-scale datasets such as ImageNet. Their straightforward 

architecture makes them highly interpretable and easy to implement, which contributes 

to their lasting popularity in various image classification tasks. In the context of 

astronomical transient classification, these models are capable of capturing spatial 

features with high fidelity, though they tend to require more memory and computational 

power compared to more modern architectures. Nevertheless, their robustness and 

proven performance make them strong baseline models for transfer learning in 

scientific image analysis (Simonyan & Zisserman, 2014). 

3.3.7 Xception  

Xception (Extreme Inception) is a deep convolutional neural network 

architecture that builds upon the ideas of the Inception family but takes them a step 

further by fully replacing Inception modules with depthwise separable convolutions. 

This design separates spatial filtering (depthwise convolution) from channel-wise 

combination (pointwise 1×1 convolution), allowing the network to model spatial and 

cross-channel correlations independently. As a result, Xception is more efficient in 

terms of parameters and computation, while still offering high representational power. 

In the context of astronomical image classification, especially for transient detection 

tasks, Xception is highly effective due to its ability to capture subtle spatial patterns and 

structure in image data. The architecture is particularly useful in handling high-

resolution images and variations in object brightness or orientation. When pre-trained 

on ImageNet, Xception provides strong initialization and generalizes well to scientific 

domains, including astronomy. Its depth and separation of concerns make it a modern 

and powerful alternative to traditional CNNs, often outperforming models like VGG or 

InceptionV3 in accuracy and efficiency (Chollet, 2017). 

To evaluate the performance of the nine selected CNN architectures, we 

employed a two-phase training strategy based on transfer learning and fine-tuning. 

Initially, each model was initialized with pretrained weights from the ImageNet dataset, 

which enables the transfer of generalized visual features to the astronomical domain. 

During the transfer learning phase, all convolutional layers were frozen to preserve the 

pre-trained feature extractors, and only the top-level fully connected layers were trained 

for the classification of transient events. This approach is especially advantageous for 
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datasets with limited labeled samples, as it significantly reduces training time and 

overfitting risk. Following this phase, a fine-tuning step was applied in which the top 

30% of the convolutional layers were unfrozen to allow the model to adapt more 

specifically to the target domain. This gradual unfreezing enhances feature 

discrimination, particularly for subtle astronomical patterns. 

 Table 3.2 summarizes the key hyperparameters used across all training sessions. 

Four batch sizes were tested (32, 64, 128, and 256), with a fixed number of 100 epochs 

and early stopping (patience = 3). The Adam optimizer was used for all models, with 

separate learning rates for transfer learning (0.001) and fine-tuning (0.00001). The 

binary cross-entropy loss function was employed to support binary classification of 

transient vs. non-transient image samples. 

Table 3.2 Basic parameters 

Parameter Value 

Batch Size 32,62,128,256 

Epoch 100, Early Stopping (patience = 3)  

Learning 0.001(TF), 0.00001(FT) 

Optimizer Adam 

Loss Function Binary Crossentropy 

Fine-Tuning unlocks   Top 30% 

3.4 Transfer Learning 

Transfer Learning was employed as the core strategy for training all nine CNN 

architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, 

ResNet101, VGG16, VGG19, and Xception—by initializing each model with pre-

trained weights from the ImageNet dataset. This approach allowed the models to reuse 

general-purpose features such as edges, textures, and spatial patterns learned from 

large-scale image classification tasks and apply them effectively to the domain of 

astronomical transient detection, where labeled data is often limited. By freezing all 

convolutional layers and training only the top classification layers during the initial 

phase, the models could adapt quickly while avoiding overfitting and reducing 
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computational cost. This strategy provided a strong and consistent foundation across all 

models, enabling fair performance comparisons and laying the groundwork for further 

domain-specific optimization through Fine-Tuning in the subsequent phase.  

3.5 Fine-Tuning 

 After completing the Transfer Learning phase, where only the top classification 

layers were trained while the convolutional base was frozen, a second stage known as 

Fine-Tuning was conducted to further improve model performance by allowing deeper 

parts of the network to adapt to the target domain. In this phase, the top 30% of the 

convolutional layers in each model architecture were unfrozen, enabling the model to 

fine-tune not only the classification head but also deeper feature extractors that are more 

task-specific. This approach provides a more flexible learning process that allows the 

model to gradually shift from general-purpose features learned from ImageNet toward 

features that are highly relevant to transient astronomical events, which often involve 

subtle differences in shape, brightness, noise, or spatial distribution. Fine-Tuning plays 

a critical role in bridging the gap between generalized feature learning and domain 

specialization. If the model relies solely on transfer learning without any fine-tuning, it 

may overlook important domain-specific patterns. Conversely, if too many layers are 

unfrozen too quickly, the model risks losing its prior knowledge and becoming 

unstable. Therefore, a controlled unfreezing strategy was adopted in this study to strike 

a balance between adaptability and stability. The learning rate during this phase was 

significantly reduced to 0.00001 to allow for fine-grained weight adjustments without 

destabilizing the pre-trained structure. The Adam optimizer and Binary Crossentropy 

loss function continued to be used to ensure consistency across both training phases. 

The Fine-Tuning process was applied consistently across all nine models to ensure 

fairness in comparison. Additionally, the same early stopping criteria (patience = 3) 

were employed to avoid overfitting, especially when training deeper layers on limited 

data. This phase allowed the models to improve their capacity to distinguish between 

real and bogus transients more precisely by learning to focus on domain-specific 

features such as edge irregularities, faint sources, or morphological noise characteristics 
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commonly seen in astronomical image data. Overall, Fine-Tuning significantly 

enhanced the adaptability, precision, and robustness of each model, complementing the 

benefits gained during the initial Transfer Learning phase. As illustrated in Figure 3.3, 

the upper part of the diagram represents the source domain, where the model learns 

hierarchical features from generic images like cars, trees, and shoes 

 

Figure 3.4 The process of transferring learned features from a source domain 

(ImageNet) to a target domain (astronomical transient data) using the 

transfer learning approach 

3.6 Ensemble Learning 

 To further enhance the classification performance and robustness of the system, 

Ensemble Learning was employed as a final stage following individual model training. 

Ensemble Learning is a machine learning strategy that combines the predictions of 

multiple models to produce a single, more accurate and stable output. In this study, the 

ensemble method was applied to integrate the strengths of the nine CNN 

architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, 
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ResNet101, VGG16, VGG19, and Xception—each of which had been independently 

trained and fine-tuned on the same astronomical transient dataset. By aggregating their 

outputs using methods such as Soft Voting and Weighted Voting, the ensemble 

approach mitigated the weaknesses of any single model and allowed the system to 

generalize more effectively across varied image conditions, including noise, brightness 

shifts, and morphological variations. Soft Voting averages the probability outputs of 

each model, selecting the class with the highest mean probability, while Weighted 

Voting assigns greater influence to models with higher individual validation 

performance. This ensemble strategy was particularly useful in the context of real-vs-

bogus classification, where subtle differences and imbalanced data could lead to model-

specific errors. Through ensemble integration, the system benefited from increased 

resilience, improved prediction accuracy, and greater confidence in final classification 

outcomes, thereby enhancing its applicability to real-world transient detection scenarios 

in astronomy. Figure 3.4, five distinct CNN models were strategically selected to 

participate in the ensemble. Each model was trained using different Data Augmentation 

strategies—including Original, Rotation, Horizontal Flip (HFlip), Vertical Flip (VFlip), 

and Noise Injection—as well as varying Batch Sizes (32, 64, 128, and 256). 

Architectures such as MobileNet and Xception, under both Transfer Learning (TF) and 

Fine-Tuning (FT) settings, were chosen based on their prior individual performance on 

validation datasets. 

 

Figure 3.5 Ensemble architecture combining multiple CNN models trained under 

different augmentation strategies and batch sizes 
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3.7 Evaluation 

 To evaluate the performance of the classification models, especially in the 

context of distinguishing between real and bogus astronomical images, this research 

employed multiple standard metrics derived from the confusion matrix. These metrics 

include Accuracy, Precision, Recall (Sensitivity), and F1-Score, which are essential in 

assessing both the overall and class-specific performance of each model and ensemble 

method. 

All metrics were computed based on the following four quantities: 

1. True Positive (TP): Number of real images correctly classified as real. 

2. False Positive (FP): Number of bogus images incorrectly classified as real. 

3. True Negative (TN): Number of bogus images correctly classified as 

bogus. 

4. False Negative (FN): Number of real images incorrectly classified as 

bogus. 

From these quantities, the following evaluation metrics were calculated: 

3.7.1 Accuracy 

Accuracy measures the proportion of correct predictions among the total number 

of predictions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

  High recall ensures that the model captures most of the real detections, which is 

critical in domains like transient detection where missing real events could be costly. 

3.7.2 Precision 

 Precision (also called Positive Predictive Value) evaluates the correctness of 

positive predictions. It is particularly important when the cost of false positives is high. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

High precision indicates a low false positive rate, ensuring that instances 

classified as “real” are truly real. 
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3.7.3 Recall (Sensitivity) 

Recall (or True Positive Rate) measures the ability of the model to correctly 

identify all relevant instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
 

High recall ensures that the model captures most of the real detections, which is 

critical in domains like transient detection where missing real events could be costly. 

3.7.4 F1-Score 

F1-Score is the harmonic mean of precision and recall. It provides a balance 

between the two, especially in cases where there is a trade-off. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

F1 score is particularly useful in imbalanced datasets, where a high score 

indicates that both false positives and false negatives are being minimized. 

3.7.5 Confusion Matrix Visualization 

 To further interpret model behavior, confusion matrices were constructed and 

visualized for each model and ensemble configuration. These matrices provide intuitive 

insight into where the models tend to misclassify, such as confusing real transients for 

bogus ones or vice versa. 
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CHAPTER 4 

IMPLEMENTATION 

In this experiment, the performance of Convolutional Neural Network (CNN) 

models was compared using Transfer Learning and Fine-Tuning techniques, combined 

with Data Augmentation and Dropout, to regulate the learning process and prevent 

overfitting—a major challenge in astronomical image analysis due to the high 

complexity of the data and the imbalance between real and bogus samples. The 

experiment involved evaluating various CNN architectures under different 

augmentation conditions, including vertical and horizontal flipping (VFlip, HFlip), 

rotation, noise injection, and the use of original unaugmented data. Additionally, 

models were tested with different Dropout rates (0.2 and 0.5) to assess their effect on 

the learning capability and generalization of the models. 

 This chapter presents the results obtained from each experimental condition, 

accompanied by analysis and discussion of the comparative performance of each 

technique. The findings are based on validation accuracy and loss curves, with 

recommendations for future experimentation aimed at enhancing the robustness and 

applicability of the models to real-world astronomical data, which is often highly 

variable and difficult to classify. 

4.1 Performance Comparison Convolutional Neural Networks (CNNs) 

Directly (Without Additional Techniques) 

  This experiment was designed to compare the performance of nine 

Convolutional Neural Network (CNN) architectures—DenseNet121, InceptionV3, 

MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and Xception—

under identical training conditions. All models were trained without any data 

augmentation or parameter tuning, in order to objectively evaluate the baseline 

capabilities of each architecture and determine how well they perform without 

additional enhancements.
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DenseNet121 

 

 
InceptionV3 

 

 
MobileNet 

 
 

Figure 4.1 Learning curve of each model without additional techniques 
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Figure 4.1 (continued) 
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Figure 4.1 (continued) 
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Table 4.1 Performance comparison of CNN models on validation set 

No. Model P (%) R (%) F1 score (%) Accuracy (%) 

1 DenseNet121 93 92 92 92 

2 InceptionV3 97.5 97.5 97 97 

3 MobileNet 99.5 97.5 97 97 

4 MobileNetV2 25 50 67 50 

5 ResNet101 97 97 97 97 

6 ResNet50 97.5 97.5 97 97 

7 VGG16 25 50 67 50 

8 VGG19 25 50 67 50 

9 Xception 97 97 97 97 

In this experiment, the performance of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—was evaluated using an 

imbalanced astronomical transient image dataset, where the ratio between the "Real" 

and "Bogus" classes was approximately 1:6.8. To assess the raw capability of each 

architecture, all models were trained under identical conditions without any data 

augmentation or balancing techniques. The evaluation was conducted on a validation 

set using standard performance metrics, including Precision, Recall, F1-score, and 

Accuracy, as summarized in Table 4.1. Results revealed that models such as MobileNet, 

InceptionV3, ResNet101, ResNet50, and Xception achieved outstanding performance, 

with all key metrics exceeding 97%, particularly MobileNet, which reached 99.5% 

Precision and 97.5% Recall. DenseNet121 also performed well, with consistent scores 

around 92%. In contrast, MobileNetV2, VGG16, and VGG19 exhibited poor 

performance, with only 25% Precision and 50% Accuracy—comparable to random 

guessing—highlighting their inability to correctly learn the minority “Real” class. This 

substantial performance gap underscores the importance of architectural design in 

handling class imbalance, even when all models are trained using the same 

hyperparameters. The findings suggest that applying data-level solutions such as 

oversampling or targeted augmentation for the minority class should be considered in 
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future experiments to enhance model learning stability and improve classification 

performance under severe data imbalance scenarios. 

4.2 Performance Comparison Using CNNs with Data Augmentation 

As shown in Table 4.2, the original training dataset was highly imbalanced, 

consisting of 2,862 images in the “Bogus” class and only 418 images in the “Real” 

class. To address this imbalance, an oversampling technique using random data 

augmentation was applied to artificially increase the number of training samples in the 

minority “Real” class. This approach involved generating new images by applying a 

variety of random transformations to the original images, such as rotation, flipping, 

noise injection, and brightness adjustment. The goal was to increase the sample size of 

the Real class while also introducing variability that can enhance model generalization. 

As a result, the number of images in both the Bogus and Real classes was balanced to 

4,000 each. This strategy not only mitigated the class imbalance but also improved the 

overall robustness and learning stability of the CNN models during training. 

Table 4.2 Training data before and after oversampling 

Training data Bogus Real 

Before Oversampling 2,862 418 

After Oversampling 4,000 4,000 
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DenseNet121 

 

 
InceptionV3 

 
MobileNet 

 
 

Figure 4.2 Learning curve of each model with data augmentation 
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MobileNetV2 

 
ResNet101

 
ResNet50 

 
 

Figure 4.2 (continued) 
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Figure 4.2 (continued) 
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Table 4.3 Comparison of classification results of different models 

No. Model P (%) R (%) F1 score (%) Accuracy (%) 

1 DenseNet121 95 93 94 97 

2 InceptionV3 90 97 93 97 

3 MobileNet 94 95 94 97 

4 MobileNetV2 96 97 96 98 

5 ResNet101 79 78 79 91 

6 ResNet50 73 70 72 88 

7 VGG16 96 95 95 98 

8 VGG19 93 97 95 97 

9 Xception 95 97 96 98 

The experimental results following the application of oversampling and random 

data augmentation revealed substantial improvements in the performance and stability 

of all nine Convolutional Neural Network (CNN) architectures—DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and 

Xception—when trained on a balanced dataset consisting of 4,000 images per class. 

The learning curves in Figure 4.2 show that, unlike in the imbalanced scenario, most 

models demonstrated smooth convergence, with validation accuracy increasing steadily 

and validation loss decreasing consistently across epochs. As reported in Table 4.3, top-

performing models such as DenseNet121, MobileNet, and Xception achieved high 

Precision, Recall, F1-score, and Accuracy, all above 96%, indicating robust 

generalization and excellent classification balance between the minority and majority 

classes. InceptionV3 and VGG19 also maintained strong performance, particularly in 

Recall, highlighting their sensitivity to the underrepresented “Real” class. In contrast, 

models like ResNet50 and ResNet101 exhibited relatively lower F1-scores despite 

decent accuracy, suggesting issues with model calibration or overfitting. Overall, these 

findings highlight that balancing the dataset through oversampling and augmentation 

not only mitigates class imbalance but also enhances the reliability and generalization 

capabilities of deep learning models applied to astronomical transient 
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classification.model to leverage pre-learned features and adapt more effectively to the 

domain-specific characteristics of astronomical data. 

4.3 Performance Comparison Based on Validation Accuracy and 

Loss Graphs Using Transfer Learning and Fine-Tuning with 

CNNs 

4.3.1 Original Dataset with Batch Size 32 

 

Figure 4.3  Validation accuracy of CNN models (TL vs FT) on original dataset (batch 

size = 32) 
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Figure 4.4  Validation loss of CNN models (TL vs FT) on original dataset (batch size 

= 32) 

An analysis of the Validation Accuracy and Validation Loss curves from 

training nine Convolutional Neural Network (CNN) architectures—DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and 

Xception—under both Fine-Tuning (FT) and Transfer Learning (TL) settings using a 

batch size of 32 reveals notable differences in the number of training epochs required 

by each model. The models that required the fewest training epochs, typically around 

18 epochs, included DenseNet121 (FT and TL), InceptionV3 (FT and TL), MobileNet 

(FT and TL), MobileNetV2 (FT and TL), ResNet101 (FT and TL), and Xception (FT 

and TL). This suggests that these architectures were able to reach peak performance or 

converge to a learning plateau in a relatively short time, possibly reflecting a structural 

compatibility with the dataset and an ability to rapidly learn relevant features of 

astronomical images. In contrast, ResNet50—both in FT and TL modes—required a 

longer training period, with convergence occurring around 32 epochs. This increased 

training time may be attributed to the deeper architecture and the complexity of its 

residual blocks, which require more epochs to fine-tune parameters effectively 

compared to lighter models such as MobileNet or InceptionV3. The models that 

required the most training epochs were VGG16 and VGG19 in both FT and TL settings, 

with convergence occurring at approximately 43 epochs. This behavior indicates that 

the VGG family takes longer to achieve optimal performance, likely due to its deep 
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sequential architecture which lacks the shortcut connections found in residual networks 

like ResNet or the modular design of Inception. As a result, information propagation 

through the network is slower, and more training time is required to adapt model 

parameters appropriately. Nevertheless, despite the longer training duration, VGG-

based models still achieved stable and competitive performance in terms of validation 

accuracy and loss, suggesting that they remain viable options depending on the training 

objectives and available resources. The variation in epoch counts across models is 

influenced not only by architectural depth and design but also by each model's 

sensitivity to the distinctive features of astronomical image data and their respective 

learning capabilities. Models such as DenseNet121 and Xception, which can achieve 

high performance in fewer epochs, may be more suitable for real-world deployment 

scenarios where computational efficiency and training time are constrained. 

Conversely, architectures like VGG19 and ResNet50, while requiring more epochs, 

tend to offer robust and stable learning, making them suitable for applications 

demanding high classification precision, particularly when dealing with complex or 

ambiguous astronomical objects. 

4.3.2 Original Dataset with Batch Size 64 

 
Figure 4.5  Validation accuracy of CNN models (TL vs FT) on original dataset (batch 

size = 64) 
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Figure 4.6 Validation loss of CNN models (TL vs FT) on original dataset (batch size 

= 64) 

An analysis of the training outcomes of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—using a batch size of 64, and 

comparing both Transfer Learning (TL) and Fine-Tuning (FT) approaches, revealed 

significant variations in the number of training epochs required to achieve optimal 

performance. These differences largely depend on the structural complexity of each 

model. 

Overall, most models achieved high validation accuracy within approximately 

18 epochs, including DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, VGG16, VGG19, and Xception, under both TL and FT configurations. 

This indicates that these architectures exhibit high learning efficiency and can 

effectively extract features from the dataset in a relatively short training duration, 

particularly when supported by adequate data and appropriate balancing techniques 

such as oversampling. However, certain models required significantly more epochs to 

converge. For example, ResNet50 under Transfer Learning took up to 63 epochs to 

reach a plateau in validation accuracy, while VGG16 and VGG19 in Transfer Learning 

mode required around 55 epochs. This suggests that although VGG models are 

architecturally simpler than deeper networks like ResNet or Inception, they may require 
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more time to appropriately fine-tune parameters when applied to complex astronomical 

image data—especially in Transfer Learning, where frozen layers from pre-training 

might demand additional adaptation time. Conversely, ResNet50 under Fine-Tuning 

required only 5 epochs before training was halted, possibly due to early stopping 

triggered by unstable validation loss, which spiked during early training phases. This 

reflects the fact that the optimal number of training epochs does not depend solely on 

model architecture, but is also influenced by the training strategy, tunable parameter 

capacity, sensitivity to batch size, and the nature of the input data. In summary, models 

that achieved strong and stable performance in shorter training durations—such as 

DenseNet121 and Xception—continue to stand out for their fast convergence and 

strong generalization capabilities. In contrast, deeper or structurally more complex 

models like ResNet50 and VGG may require more sophisticated tuning and a greater 

number of training epochs to achieve comparable or superior performance. 

4.3.3 Original Dataset with Batch Size 128 

 

Figure 4.7  Validation accuracy of CNN models (TL vs FT) on original dataset (batch 

size = 128) 
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Figure 4.8 Validation loss of CNN models (TL vs FT) on original dataset (batch size 

= 128) 

Based on the experimental results obtained from training nine Convolutional 

Neural Network (CNN) architectures—DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception—under a batch 

size of 128, and comparing both Fine-Tuning (FT) and Transfer Learning (TL) 

strategies, it was found that the number of training epochs required to achieve optimal 

performance varied significantly across models. A group of models was able to 

converge and deliver strong validation performance within a short number of epochs. 

These included DenseNet121 (FT/TL), InceptionV3 (FT/TL), MobileNet (TL), 

MobileNetV2 (TL), and Xception (TL), all of which required only 8 to 18 epochs to 

effectively extract features and generalize to the validation set. This rapid learning 

behavior reflects the structural efficiency of these models in capturing data patterns, 

particularly under the Transfer Learning approach, which benefits from pre-trained 

weights (e.g., from ImageNet) that accelerate adaptation to new data. However, some 

models required a substantially higher number of epochs to achieve stable results. These 

included ResNet50 (FT and TL), VGG16 (TL), VGG19 (TL), and ResNet101 (TL). 

Notably, ResNet50 (TL) and VGG16/VGG19 (TL) reached stable validation accuracy 

only after approximately 45 epochs, indicating that these models demand a longer 

training period to fine-tune their large parameter sets or adapt their deeper sequential 
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architectures. The absence of residual shortcut connections in VGG, unlike in ResNet, 

may also explain the longer training time due to less efficient gradient flow in deep 

networks. Conversely, MobileNet (FT), MobileNetV2 (FT), and ResNet101 (FT) 

halted training after only 3 to 6 epochs, likely due to early stopping mechanisms 

triggered by stagnating or worsening validation loss. This may also indicate that these 

models were less capable of adapting effectively under a larger batch size (128) when 

using fine-tuning, which involves updating a greater portion of the model’s 

parameters—possibly leading to suboptimal learning. Models like Xception (FT) and 

VGG16/VGG19 (FT) required around 8 to 12 epochs, suggesting that even partial fine-

tuning of complex architectures still demands a moderate training duration to reach 

sufficient generalization. In summary, the optimal number of epochs for training each 

model is not fixed, but rather influenced by several interrelated factors, including the 

training strategy (FT vs. TL), model architecture, network depth, feature learning 

capability, and sensitivity to batch size. Models such as DenseNet121, InceptionV3, 

and Xception, which consistently trained quickly and stably, stand out as efficient 

options in terms of both time and performance. Meanwhile, architectures like VGG and 

ResNet50, although capable of strong performance, generally require longer training 

durations to fully realize their potential. 

4.3.4 Original Dataset with Batch Size 256 

 

Figure 4.9  Validation accuracy of CNN models (TL vs FT) on original dataset (batch 

size = 256) 
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Figure 4.10 Validation loss of CNN models (TL vs FT) on original dataset (batch size 

= 256) 

An analysis of model training under a batch size of 256 revealed significant 

variation in the number of epochs required by each Convolutional Neural Network 

(CNN) architecture. These differences reflect the interaction between model 

architecture, training strategy (i.e., Fine-Tuning (FT) or Transfer Learning (TL)), and 

the effects of using a larger batch size. For all nine architectures—DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and 

Xception—trained using both FT and TL methods, several models required very few 

epochs (approximately 3–6 epochs) to complete training. These included ResNet101 

(FT), MobileNetV2 (FT), ResNet50 (FT), VGG16 (FT), VGG19 (FT), Xception (FT), 

and MobileNetV2 (TL). Such early convergence may be a result of early stopping, 

potentially triggered by rapidly increasing validation loss, particularly in models like 

ResNet101 and ResNet50, which showed pronounced instability in loss values during 

early training, indicating poor learning stability under large batch conditions. A second 

group of models exhibited moderate training durations (approximately 18 epochs), 

including DenseNet121 (FT), InceptionV3 (FT and TL), and MobileNet (TL). These 

models demonstrated effective and stable learning under the batch size of 256 without 

exhibiting sharp fluctuations in either loss or accuracy curves. The models that required 

the highest number of epochs included DenseNet121 (TL), which trained for up to 40 
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epochs, and ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL), each 

requiring between 45 and 60 epochs to reach stable performance. This suggests that 

applying Transfer Learning to deeper or more complex architectures under large batch 

size conditions may require longer convergence times. One possible explanation is that 

larger batch sizes produce more stable but less frequent gradient updates, which slows 

optimization despite the high accuracy of each batch. These findings also indicate that 

VGG and ResNet architectures, when used in TL mode under large batch conditions, 

may benefit from adjusted learning rates or additional regularization techniques to 

maintain learning efficiency. In contrast, lighter models such as InceptionV3 and 

MobileNet demonstrated faster convergence and more stable performance, even with 

fewer training epochs. In conclusion, the models that trained quickly and effectively 

under a batch size of 256 included InceptionV3 (FT and TL), DenseNet121 (FT), and 

MobileNet (TL). On the other hand, ResNet50 (TL) and the VGG (TL) models tended 

to require longer training durations and more epochs, highlighting the need for careful 

resource allocation, training time planning, and hyperparameter optimization when 

deploying these models in practical scenarios. 

4.3.5 Rotation Dataset with Batch Size 32 

 

Figure 4.11 Validation accuracy of CNN models (TL vs FT) on rotation dataset (batch 

size = 32) 
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Figure 4.12 Validation loss of CNN models (TL vs FT) on rotation dataset (batch size 

= 32) 

An analysis of Convolutional Neural Network (CNN) training under a batch size 

of 32, using image data augmented through rotation, revealed notable differences in the 

number of epochs required for convergence, the point at which validation loss and 

validation accuracy stabilized. The rotation augmentation technique, which artificially 

expands the dataset by rotating images to simulate various perspectives, enhances the 

model’s exposure to diverse orientations and supports improved generalization 

performance. 

Among the models evaluated, those that converged rapidly (within approximately 

12 epochs) and demonstrated stable performance included DenseNet121, InceptionV3, 

MobileNet, MobileNetV2, ResNet101, VGG16, VGG19, and Xception in the Fine-Tuning 

(FT) configuration, as well as DenseNet121, InceptionV3, MobileNet, MobileNetV2, and 

Xception in the Transfer Learning (TL) configuration. These results suggest that the 

architectural design of these models is well-suited to datasets containing rotated images, 

enabling efficient learning from spatially transformed representations. In contrast, 

ResNet50 exhibited substantially longer training durations, requiring 35 epochs in FT and 

up to 55 epochs in TL to converge. Similarly, ResNet101 (TL) required approximately 35 

epochs, while VGG16 (TL) and VGG19 (TL) demanded between 50 and 55 epochs. These 

extended training durations likely reflect the deeper architectures and high parameter 
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counts of these models, which may struggle to quickly adapt to rotated features that deviate 

from their expected spatial orientation. The absence of architectural enhancements, such as 

depthwise separable convolutions or residual shortcut connections, in models like VGG 

may also hinder their ability to learn from rotated data efficiently. Conversely, models such 

as DenseNet121, InceptionV3, and Xception, which incorporate multi-scale feature 

learning, dense connections, or residual pathways, appear to handle spatial transformations 

more effectively. Their structural flexibility allows them to generalize well from rotated 

images within fewer training epochs, underscoring their robustness to orientation 

variability. These findings also highlight the impact of rotation augmentation on training 

behavior. Models must adapt to spatial shifts in object orientation, and while some 

architectures can accommodate these changes quickly, others require more training time to 

internalize rotational patterns. Overall, the number of training epochs required and the 

model's learning efficiency were influenced by a combination of factors: model size, 

architectural design (e.g., residual, inception, or dense connectivity), training method (FT 

or TL), and the nature of the augmented data. In summary, models such as DenseNet121, 

InceptionV3, and Xception, which demonstrated strong performance and fast convergence 

under rotation-based augmentation, represent promising choices for astronomical image 

classification or any visual tasks involving orientation-diverse datasets. 

4.3.6 Rotation Dataset with Batch Size 64 

 
Figure 4.13 Validation accuracy of CNN models (TL vs FT) on rotation dataset (batch 

size = 64) 
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Figure 4.14 Validation loss of CNN models (TL vs FT) on rotation dataset (batch size 

= 64) 

The training of nine Convolutional Neural Network (CNN) architectures—

DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, 

VGG16, VGG19, and Xception—under a batch size of 64 using image data augmented 

through rotation revealed significant differences in the number of training epochs 

required to reach convergence, depending on both the training method (Fine-Tuning 

[FT] vs. Transfer Learning [TL]) and each model’s architectural characteristics. The 

rotation-based augmentation, which involves rotating images in multiple directions, 

allows the model to learn object features regardless of position and perspective, thereby 

promoting better generalization. Among the models, those that achieved stable 

validation performance using fewer epochs included DenseNet121 (FT), InceptionV3 

(FT), MobileNet (FT), MobileNetV2 (FT), ResNet101 (FT), ResNet50 (FT), VGG16 

(FT), VGG19 (FT), and Xception (FT). These models typically required only 6 to 12 

epochs to converge, reflecting their efficiency in learning rotation-invariant features 

early in the training process. In particular, lightweight architectures such as MobileNet, 

or those with residual and inception-like shortcut connections, such as DenseNet and 

InceptionV3, allowed for more effective gradient flow. Xception, with its depthwise 

separable convolutional design, also performed well by reducing the complexity of 

spatial feature learning. However, in the Transfer Learning (TL) setting—where models 
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were initialized with pre-trained weights—several models required considerably longer 

training times to adapt to the rotated image data. Models such as ResNet101 (TL), 

ResNet50 (TL), VGG16 (TL), and VGG19 (TL) required as many as 60 to 75 epochs, 

the highest across all experiments. This delay may be attributed to the deep layers in 

large architectures not being adequately fine-tuned early in training, or the use of 

learning rates not well-suited to the directional variability introduced by rotation 

augmentation. Observations from training curves showed that many models in this 

group experienced slow decreases in loss and gradual improvements in accuracy, 

indicating a slower adaptation process. By contrast, DenseNet121, InceptionV3, and 

Xception under TL settings converged within just 18 epochs, highlighting the structural 

advantages of these models. Their multi-branch connectivity and dense inter-layer 

connections likely provided resilience against spatial transformations and allowed 

faster, more stable learning from rotated images. Overall, the use of rotation as a data 

augmentation technique posed additional challenges for models, requiring them to 

interpret object positions that vary from traditional orientations. Not all models were 

equally equipped to handle this, and both the model architecture and training strategy 

significantly influenced learning efficiency and the number of required epochs. 

DenseNet121, InceptionV3, and Xception consistently demonstrated fast and accurate 

learning performance with rotated data in both TL and FT modes, making them well-

suited for tasks such as astronomical image classification where rotational variation is 

common. Conversely, models like ResNet and VGG, particularly in TL mode, required 

prolonged training to reduce the gap between pre-trained parameters and the 

significantly altered data distribution introduced by rotation augmentation. 
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4.3.7 Rotation Dataset with Batch Size 128

 

Figure 4.15 Validation accuracy of CNN models (TL vs FT) on rotation dataset (batch 

size = 128) 

 

Figure 4.16 Validation loss of CNN models (TL vs FT) on rotation dataset (batch size 

= 128) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—under a batch size of 128, 
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using image data augmented through rotation, notable differences were observed in the 

number of training epochs required for each model to reach convergence. The rotation 

augmentation technique, which alters the orientation and viewpoint of objects in 

training images, introduces greater spatial diversity and tests the model’s ability to 

generalize across positional variations. Models that achieved convergence quickly and 

required fewer training epochs included DenseNet121 (FT), InceptionV3 (FT), 

MobileNet (FT), MobileNetV2 (FT), ResNet101 (FT), ResNet50 (FT), VGG16 (FT), 

VGG19 (FT), and Xception (FT). These models typically stabilized within 6 to 12 

epochs, as evidenced by the early flattening of validation accuracy curves and a marked 

decline in validation loss during the initial training phase. These results suggest that 

such models—particularly those with lightweight or medium-sized architectures—

were effective at interpreting rotated images and processing spatial features efficiently. 

In the Transfer Learning (TL) scenario, where models were initialized with weights 

pre-trained on external datasets such as ImageNet, certain architectures also adapted 

well to rotated data and converged in a relatively short time. For instance, DenseNet121 

(TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 (TL), and Xception (TL) 

converged within approximately 18 epochs. However, larger and deeper models such 

as ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL) required 60 to 75 

epochs, the highest among all models tested in this experiment. This pattern indicates 

that even with the benefit of pre-trained weights, deep models may struggle to quickly 

adapt to rotation-induced spatial variability, particularly when the original learned 

representations differ significantly from the augmented data. The extended training 

time may reflect the need to adjust deep-layer weights more extensively to 

accommodate new spatial patterns. This challenge was particularly pronounced in VGG 

architectures, which lack residual connections or multi-branch data flow mechanisms 

found in models such as DenseNet and Inception. As a result, internal gradient 

propagation and feature learning in VGGs are more linear and may require longer 

durations to learn effectively from spatially altered inputs. In summary, the number of 

epochs required for convergence in models trained with rotation-augmented data is 

strongly influenced by model depth, internal structure, and training strategy (FT vs. 

TL). Models such as DenseNet121, InceptionV3, and Xception consistently 

demonstrated efficient learning and high performance under both FT and TL settings, 
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making them highly suitable for practical deployment scenarios that require high 

accuracy and limited training time. Conversely, deeper models such as VGG and 

ResNet in the TL setting may be more appropriate for long-duration training, where 

their complex architectures can be fully optimized for best results. 

4.3.8 Rotation Dataset with Batch Size 256 

 

Figure 4.17 Validation accuracy of CNN models (TL vs FT) on rotation dataset (batch 

size = 256) 

 

Figure 4.18 Validation loss of CNN models (TL vs FT) on rotation dataset (batch size 

= 256) 
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In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—under a batch size of 256 and 

using image data augmented through rotation, notable differences were observed in the 

number of epochs required to reach convergence. Rotation augmentation, which rotates 

images across multiple angles to diversify object orientation, enhances data variability 

and is intended to improve the model’s generalization capability. The results showed 

that the number of epochs required for convergence varied considerably across models 

and appeared to correlate with model depth, parameter size, and whether the training 

method involved Fine-Tuning (FT) or Transfer Learning (TL). Models that achieved 

rapid convergence and required very few epochs included MobileNet (FT), 

MobileNetV2 (FT), ResNet50 (FT), VGG16 (FT), VGG19 (FT), and Xception (FT), 

all of which converged within approximately 5 epochs, as indicated by stabilized 

validation accuracy and clearly declining validation loss. Other models, such as 

DenseNet121 (FT) and InceptionV3 (FT), required slightly more time—around 12 

epochs and 10 epochs, respectively—but still demonstrated strong and efficient 

learning. Among the Transfer Learning group, some models also showed fast and stable 

adaptation, particularly DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), 

MobileNetV2 (TL), and Xception (TL), which all converged within approximately 18 

epochs. These findings suggest that certain models can effectively leverage pre-trained 

parameters and adjust them efficiently to accommodate rotational variation in the 

training data. In contrast, models such as ResNet101 (TL), ResNet50 (TL), VGG16 

(TL), and VGG19 (TL) required up to 100 epochs—the maximum set for this 

experiment—to stabilize. These results reflect the challenges that large, deep models 

face in adapting to highly variable spatial transformations introduced by rotation. This 

is particularly true for sequential architectures like VGG, which lack shortcut 

connections or multi-branch pathways and therefore may struggle to propagate 

gradients efficiently across deep layers. Furthermore, the use of large batch sizes—

while providing precise gradient estimates—can slow down parameter updates, 

complicating the optimization dynamics, especially for deep models with pre-trained 

weights that were not originally exposed to rotated image distributions (e.g., 

ImageNet). Overall, while rotation augmentation enhances data diversity, it also 
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introduces learning complexity for certain architectures—particularly deep models 

using Transfer Learning. In contrast, models with residual connections (e.g., ResNet), 

inception modules, dense connectivity (e.g., DenseNet), or lightweight designs (e.g., 

MobileNet and Xception) were better able to handle spatial variation introduced by 

rotation. In conclusion, models that consistently demonstrated high performance and 

fast convergence in this context included DenseNet121, InceptionV3, and Xception, 

across both FT and TL settings. Conversely, VGG and ResNet models under Transfer 

Learning appear more suited for longer training durations and deeper fine-tuning, 

especially when applied to rotated datasets requiring spatial adaptation. 

4.3.9 Noise Dataset with Batch Size 32 

 

Figure 4.19  Validation accuracy of CNN models (TL vs FT) on noise dataset (batch 

size = 32) 
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Figure 4.20  Validation loss of CNN models (TL vs FT) on noise dataset (batch size = 

32) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—under a batch size of 32, using 

image data augmented with noise, it was found that all models converged to stable 

validation accuracy within approximately 10 epochs, in both Fine-Tuning (FT) and 

Transfer Learning (TL) settings. The noise augmentation technique, which involves 

adding artificial noise to simulate real-world image imperfections—such as defocus, 

sensor artifacts, or low-light conditions—had a uniform effect across model 

architectures, enabling efficient learning without extending the training duration. This 

result suggests that noise augmentation enhances the model's ability to generalize by 

exposing it to variability and uncertainty in the input data, which in turn promotes 

robustness during training. The fact that all models converged within the same number 

of epochs indicates that noise did not significantly increase data complexity or impair 

learning efficiency, unlike spatial augmentation techniques such as rotation, which 

often resulted in longer convergence times—particularly for deeper models like VGG 

or ResNet under TL. Interestingly, architectural differences—including depth, width, 

and connectivity mechanisms such as shortcut connections (ResNet), depthwise 

separable convolutions (Xception), or dense connections (DenseNet)—did not appear 
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to significantly influence training duration when dealing with noise-augmented data. 

This may be due to the natural regularization effect of noise, which reduces overfitting 

and allows for more efficient parameter updates, avoiding issues related to slow 

gradient propagation or learning instability. The ability to converge within just 10 

epochs also highlights the effectiveness of both FT and TL strategies in handling 

imperfect data. Notably, models such as InceptionV3, DenseNet121, and Xception 

showed high accuracy early in training, as evidenced by their validation curves. Even 

deeper or parameter-heavy models, such as ResNet101 and VGG19, did not 

demonstrate performance degradation when trained on noisy data. In conclusion, noise-

based data augmentation significantly enhances model robustness and generalization 

without increasing the required number of training epochs. The consistent behavior 

observed across all models in both FT and TL modes affirms that noise is a 

computationally efficient and highly effective augmentation technique for training deep 

learning models on imperfect or low-quality image datasets, offering a practical 

solution for real-world applications. 

4.3.10 Noise Dataset with Batch Size 64 

 

Figure 4.21  Validation accuracy of CNN models (TL vs FT) on noise dataset (batch 

size = 64) 
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Figure 4.22  Validation loss of CNN models (TL vs FT) on noise dataset (batch size = 

64) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—with a batch size of 64, using 

image data augmented with the Noise technique, it was found that all models, under 

both Fine-Tuning (FT) and Transfer Learning (TL) strategies, achieved convergence 

within approximately 10 epochs. This indicates that noise augmentation acts as a form 

of natural regularization, enabling faster and more effective learning while promoting 

strong generalization—even when input data includes uncertainty and imperfections. 

The fact that models of various sizes—ranging from lightweight architectures 

like MobileNet, to medium-sized models like DenseNet121 and InceptionV3, and even 

large models like VGG19 and ResNet101—all reached convergence within the same 

number of epochs suggests that noise augmentation does not significantly increase the 

complexity of the learning dynamics. On the contrary, introducing noise appropriately 

may help prevent overfitting on overly clean data and support more efficient learning. 

Notably, architectures with residual connections or inception-based designs, 

such as DenseNet121, InceptionV3, and Xception, showed strong validation accuracy 

from the early stages of training, reflecting their ability to quickly learn robust features 

from noisy images. Similarly, deeper models with large parameter counts, such as 
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VGG16 and ResNet50, were not adversely affected by noise and maintained stable 

performance. 

Additionally, models trained using Transfer Learning—which leverage pre-

trained weights—were able to adapt well to noisy data without requiring extensive 

retraining. This demonstrates the effectiveness of knowledge transfer across domains, 

allowing pre-trained models to generalize to noisy environments without the need to 

train from scratch. In conclusion, noise-based data augmentation not only enhances data 

diversity but also enables rapid and accurate learning across all CNN architectures 

under conditions of uncertainty. This makes it a highly effective and practical technique 

for real-world image analysis tasks, where low-quality or noisy data is often 

encountered. 

4.3.11 Noise Dataset with Batch Size 128 

 

Figure 4.23  Validation accuracy of CNN models (TL vs FT) on noise dataset (batch 

size = 128) 
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Figure 4.24  Validation loss of CNN models (TL vs FT) on noise dataset (batch size = 

128) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—with a batch size of 128, using 

image data augmented with Noise, which involves adding significant random 

perturbations to simulate real-world image imperfections from low-quality cameras or 

recording systems, it was found that most models achieved convergence within a 

relatively small number of training epochs. Exceptions were observed in some deep or 

structurally complex models that required longer training durations. Models that 

demonstrated fast and stable learning, such as DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, and Xception, under both Fine-Tuning (FT) and Transfer Learning (TL), 

reached stable validation accuracy and loss within approximately 10 epochs. This 

reflects the robustness of these architectures in handling noise, particularly those 

featuring Inception modules or depthwise separable convolutions—such as 

InceptionV3 and Xception—which excel at extracting meaningful features even in the 

presence of noise. Notably, ResNet101 (FT) required only 5 epochs before training 

halted, indicating high sensitivity to noisy input, possibly due to its residual shortcuts, 

which accelerate parameter adjustments. On the other hand, some models under 

Transfer Learning, such as ResNet50 (TL), required up to 26 epochs, and VGG16 (TL) 

and VGG19 (TL) took approximately 15 epochs, which is noticeably higher than most 
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other models. This trend suggests that deeper, sequential models without shortcut 

connections respond more slowly to noisy data and require more time to adapt pre-

trained parameters to signal-perturbed inputs. Overall, training with noise-augmented 

data improved the generalization capability across all models and helped reduce the risk 

of overfitting. This effect was particularly evident when combined with a moderate 

batch size (128), which provided a balance between training speed and gradient update 

stability. Noise augmentation thus proves to be a valuable technique for training models 

on imperfect data. Models with flexible architectures and strong knowledge transfer 

capability from pre-trained weights, such as InceptionV3 (TL) and DenseNet121 (TL), 

exhibited excellent performance in learning from noisy inputs with minimal training 

time. In contrast, VGG-based models required longer training durations despite using 

pre-trained weights, reflecting architectural limitations due to the lack of shortcut 

connections or attention-aware mechanisms, which otherwise facilitate more efficient 

information propagation between layers. In conclusion, training CNN models with 

Noise augmentation under a batch size of 128 supports fast, stable, and effective 

learning, particularly in models with structural adaptability and the ability to manage 

noisy inputs—making this approach highly suitable for real-world image classification 

tasks involving degraded or variable-quality data. 

4.3.12 Noise Dataset with Batch Size 256 

 

Figure 4.25  Validation accuracy of CNN models (TL vs FT) on noise dataset (batch 

size = 256) 



74 

 
Figure 4.26  Validation loss of CNN models (TL vs FT) on noise dataset (batch size = 

256) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—using a batch size of 256, and 

image data augmented with noise, it was found that most models were able to learn 

effectively within a relatively small number of epochs, averaging around 10 epochs 

before validation accuracy began to stabilize and validation loss declined steadily. 

Models that demonstrated fast and stable learning under both Fine-Tuning (FT) and 

Transfer Learning (TL) settings included DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, and Xception, all of which reached convergence in approximately 10 

epochs, regardless of whether training was initialized from scratch or from pre-trained 

weights. This highlights the effectiveness of these architectures in handling noise-

contaminated images. Notably, Inception and DenseNet architectures feature 

mechanisms that integrate information across multiple spatial resolutions, while 

Xception employs depthwise separable convolutions, which simplify the learning of 

complex spatial features and contribute to robust performance under noisy conditions. 

In contrast, models with larger architectures or simpler sequential designs, such as 

ResNet50 (FT/TL), VGG16 (TL), and VGG19 (TL), also showed reasonably fast 

training times—especially ResNet50, which converged within only 5–6 epochs. This 

can be attributed to the use of residual connections, which facilitate efficient gradient 
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propagation and mitigate the vanishing gradient problem. However, model stability in 

these cases must also be evaluated in conjunction with the validation loss curves, as 

some models—such as VGG16 (TL) and ResNet101 (TL)—exhibited early-stage 

instability or relatively high loss before reaching convergence. Overall, the use of noise 

augmentation enabled nearly all models to adapt effectively, even when trained with 

large batch sizes like 256. This outcome demonstrates the models’ flexibility in 

handling uncertain or degraded data, and confirms that noise plays a valuable role as a 

regularization technique that enhances generalization to real-world conditions with 

practical limitations. In conclusion, the models that exhibited the fastest and most 

effective learning from noise-augmented images were DenseNet121, InceptionV3, and 

Xception. While ResNet50 and the VGG models also achieved convergence within a 

small number of epochs, their loss curves displayed some degree of instability, which 

should be carefully considered when evaluating overall model performance. 

4.3.13 VFlip Dataset with Batch Size 32 

 

Figure 4.27  Validation accuracy of CNN models (TL vs FT) on VFlip dataset (batch 

size = 32) 
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Figure 4.28  Validation loss of CNN models (TL vs FT) on VFlip dataset (batch size = 

32) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—with a batch size of 32, using 

image data augmented with the Vertical Flip (VFlip) technique, it was observed that 

models converged at different rates depending on the training strategy. Models trained 

under the Fine-Tuning (FT) setting reached a stable validation accuracy and exhibited 

continuously declining validation loss within just 6 epochs, indicating that these 

architectures efficiently adapted to changes in vertical object positioning. This was 

particularly evident in models like Xception and InceptionV3, which are designed to 

capture spatial features using multi-level and multi-directional information pathways. 

Even lightweight models such as MobileNet, which are optimized for computational 

efficiency, demonstrated rapid learning from vertically flipped images. In contrast, 

under the Transfer Learning (TL) approach—where models were initialized with pre-

trained weights (e.g., from ImageNet)—most architectures, including DenseNet121 

(TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 (TL), and Xception (TL), 

converged in approximately 10 epochs, showing stable performance when adapting to 

vertically flipped images. However, deeper architectures without shortcut connections, 

such as VGG16 (TL), VGG19 (TL), and ResNet101 (TL), required longer training 

durations. Notably, ResNet50 (TL) required up to 58 epochs to converge. This extended 
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training may be due to the misalignment between the pre-trained weights and the spatial 

structure introduced by vertical flipping, which differs significantly from other forms 

of augmentation such as color distortion or noise. VFlip modifies the structural 

positioning of objects, forcing the models to adjust their internal representations of 

spatial features. As such, deeper networks may require more time to fine-tune 

parameters across layers to adapt to this transformation. Additionally, validation 

accuracy in VGG and ResNet models trained under TL fluctuated more than in other 

models, suggesting difficulties in adapting to novel spatial configurations that diverge 

from the original training patterns learned during pre-training. Overall, the Vertical Flip 

augmentation presented a meaningful spatial recognition challenge, favoring models 

with flexible architectures and multi-directional feature integration mechanisms. These 

models—particularly under FT—were able to learn faster than deeply sequential 

models trained under TL. This supports the conclusion that VFlip is an effective 

augmentation technique for testing a model's ability to handle spatial variation, though 

careful selection of architecture and training strategy is essential to achieve optimal 

results. 

4.3.14 VFlip Dataset with Batch Size 64 

 

Figure 4.29  Validation accuracy of CNN models (TL vs FT) on VFlip dataset (batch 

size = 64) 
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Figure 4.30  Validation loss of CNN models (TL vs FT) on VFlip dataset (batch size = 

64) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—using a batch size of 64 and 

image data augmented through the Vertical Flip (VFlip) technique, which vertically 

inverts images to introduce spatial diversity, it was found that the models were able to 

effectively learn new positional and directional variations of objects. The models 

trained using the Fine-Tuning (FT) strategy achieved rapid convergence within just 6 

epochs, including all nine architectures listed. This highlights the strong adaptability of 

these models to spatial transformations such as vertical flipping, especially in deeper 

networks or those employing multi-scale feature integration mechanisms, such as 

DenseNet and Inception, which demonstrated flexibility in learning directional 

attributes of images. In contrast, models trained using the Transfer Learning (TL) 

approach exhibited more variation. Flexible architectures such as DenseNet121 (TL), 

InceptionV3 (TL), MobileNet (TL), MobileNetV2 (TL), and Xception (TL) required 

only around 10 epochs to converge. These models were able to quickly adapt their pre-

trained parameters to the flipped images, showcasing their strong ability to transfer 

knowledge to spatially altered data. However, larger and more rigid models with deeply 

sequential architectures—such as ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and 

VGG19 (TL)—took significantly longer to converge, requiring up to 50 epochs to reach 
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training stability. This reflects limitations in these architectures, which lack shortcut 

connections or attention mechanisms, making it more difficult to efficiently adapt to 

spatial variations introduced by vertical flipping—especially when such variations 

diverge from the natural object orientations present in the ImageNet dataset used for 

pre-training. These results demonstrate that while VFlip is a relatively simple 

augmentation technique, it can have a substantial impact on Transfer Learning models, 

particularly those that rely heavily on fixed pre-trained weights. Adapting to spatial 

inversion patterns introduced by VFlip requires additional training time and, in some 

cases, further architectural tuning, especially in more rigid models. In conclusion, 

Vertical Flip augmentation effectively enhances a model's ability to handle positional 

changes in image data, particularly when applied to architectures that are structurally 

flexible or capable of managing spatial features efficiently. In contrast, Transfer 

Learning models with more rigid sequential structures may require more training 

epochs and additional fine-tuning of deeper layers to achieve optimal performance in 

such spatially varied contexts. 

4.3.15 VFlip Dataset with Batch Size 128 

 

Figure 4.31  Validation accuracy of CNN models (TL vs FT) on VFlip dataset (batch 

size = 128) 
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Figure 4.32  Validation loss of CNN models (TL vs FT) on VFlip dataset (batch size = 

128) 

In an experiment involving the training of nine Convolutional Neural Network 

(CNN) architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 

ResNet101, ResNet50, VGG16, VGG19, and Xception—using a batch size of 128 and 

image data augmented with the Vertical Flip (VFlip) technique, which vertically 

mirrors images to increase spatial diversity of object positions, the results demonstrated 

a consistent pattern observed in previous experiments involving high spatial 

transformations. In the Fine-Tuning (FT) group, all models—DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and 

Xception—reached a stable state within only 6 epochs, achieving high and steady 

validation accuracy along with a consistently decreasing validation loss. This suggests 

that models with all layers unfrozen and fully trainable can quickly learn to handle 

vertically flipped images. Architectures with strong multi-directional feature 

integration mechanisms, such as InceptionV3 and Xception, were especially effective. 

In contrast, the Transfer Learning (TL) models exhibited more varied behavior. Flexible 

architectures—DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 

(TL), and Xception (TL)—required approximately 10 epochs to converge, indicating 

that their pre-trained parameters were effectively adaptable to the new vertical flip 

transformation. However, models with rigid and deeply sequential structures, such as 

ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL), required 
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significantly more time to reach convergence. Notably, ResNet101 and ResNet50 

required up to 70 epochs, while VGG19 needed 65 epochs before adapting to the flipped 

image patterns with optimal performance. One possible explanation is that these models 

were originally designed and pre-trained on datasets like ImageNet, which do not 

contain vertically flipped images, making the direct transfer of learned spatial 

representations less effective. As a result, deeper layers needed more time to fine-tune 

their parameters in order to adapt to this spatial inversion. Another key observation is 

that, despite the longer training durations, TL models eventually exhibited high and 

stable validation accuracy in the later epochs. This indicates that extended training does 

not necessarily imply poor model performance; rather, it reflects the additional time 

required for the model to adapt to spatial patterns not previously encountered during 

pre-training. In conclusion, Vertical Flip augmentation proves effective in evaluating a 

model’s ability to adapt to spatial variation. Models trained with Fine-Tuning adapted 

more rapidly, while those using Transfer Learning remained effective but required 

longer training durations—especially when the architecture lacked inherent 

mechanisms to handle strong spatial transformations efficiently. 

4.3.16 VFlip Dataset with Batch Size 256 

 
Figure 4.33  Validation accuracy of CNN models (TL vs FT) on VFlip dataset (batch 

size = 256) 
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Figure 4.34  Validation loss of CNN models (TL vs FT) on VFlip dataset (batch size = 

256) 

In an experiment involving the training of diverse Convolutional Neural 

Network (CNN) architectures—DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception—under a batch 

size of 256, using image data augmented through Vertical Flip (VFlip), which mirrors 

images along the vertical axis to increase positional variation, a significant difference 

in learning behavior between Fine-Tuning (FT) and Transfer Learning (TL) strategies 

was observed. All models trained using Fine-Tuning, including the full list above, were 

able to reach stable validation accuracy and validation loss within approximately 6 

epochs, indicating high adaptability of these architectures to directional changes 

introduced by VFlip. Training from scratch across all layers enabled the models to 

adjust to spatial transformations without constraint from pre-trained weights, allowing 

for rapid convergence. In contrast, models trained using Transfer Learning showed 

more variable behavior. Architectures such as DenseNet121 (TL), InceptionV3 (TL), 

MobileNet (TL), MobileNetV2 (TL), and Xception (TL) were able to adapt within 10 

epochs, demonstrating the flexibility of these models to repurpose pre-trained weights 

for data exhibiting spatial alterations like vertical flipping. However, deeper and less 

spatially flexible architectures, including ResNet101 (TL), ResNet50 (TL), VGG16 

(TL), and VGG19 (TL), required up to 100 epochs to effectively reduce validation loss 

and improve accuracy. This extended training time may be due to deep-layer parameters 
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that were originally optimized for object recognition in fixed orientations (as in 

ImageNet), requiring more iterations to adapt to vertically flipped image patterns. 

An important observation is that, although ResNet and VGG models under TL 

required significantly more epochs, they were able to maintain high accuracy in the 

long run, with no clear signs of overfitting, as evidenced by steadily decreasing loss 

curves. This suggests that large batch sizes, such as 256, may contribute to more stable 

learning dynamics when models are trained on data involving spatial direction changes 

like VFlip. In summary, applying VFlip augmentation in conjunction with Fine-Tuning 

allows models to learn and converge rapidly—often within just a few epochs. In 

contrast, Transfer Learning, especially when applied to deeper architectures, requires 

considerably more epochs to adjust the pre-trained weights to new spatial patterns. This 

highlights the importance of carefully selecting training strategies, augmentation 

techniques, model architectures, and batch size configurations in order to achieve 

optimal performance across varying types of data transformations. 

4.3.17 HFlip Dataset with Batch Size 32 

 

Figure 4.35  Validation accuracy of CNN models (TL vs FT) on HFlip dataset (batch 

size = 32) 
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Figure 4.36  Validation loss of CNN models (TL vs FT) on HFlip dataset (batch size = 

32) 

In an experiment involving the training of nine primary Convolutional Neural 

Network (CNN) architectures—DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception—with a batch 

size of 32 and image data augmented using the Horizontal Flip (HFlip) technique, it 

was observed that the learning behavior closely resembled that of experiments using 

Vertical Flip (VFlip). However, HFlip provides a practical advantage by simulating 

directional variations more closely aligned with real-world astronomical imaging 

conditions, where horizontal inversions often occur due to lens reflection or sensor 

orientation. In the Fine-Tuning (FT) group, all models—DenseNet121, InceptionV3, 

MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception—

reached convergence within 6 epochs, demonstrating their capability to quickly learn 

horizontally flipped patterns. This was particularly evident in models with multi-scale 

spatial feature extraction, such as InceptionV3 and DenseNet121, which showed strong 

adaptability to directional changes. In contrast, the Transfer Learning (TL) group, 

which utilized pre-trained weights from ImageNet, showed a more varied response. 

Models such as DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 

(TL), and Xception (TL) converged in approximately 10 epochs, indicating their strong 

ability to generalize and adapt pre-trained features to spatial inversions within the range 
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of prior learning. However, deeper and more complex models, such as ResNet101 (TL), 

ResNet50 (TL), VGG16 (TL), and VGG19 (TL), required up to 45 epochs to achieve 

stable learning. This highlights the limitations of long sequential architectures, which 

require extended training to fine-tune internal parameters for learning horizontally 

flipped patterns—particularly when ImageNet pre-trained weights, which do not 

include flipped images, are used as a starting point. A notable observation is that 

although TL models requiring higher epoch counts trained more slowly, their accuracy 

curves steadily progressed toward stable and high performance without clear signs of 

overfitting. This indicates that training with a smaller batch size of 32 enhances learning 

with higher variance, which in turn improves the models' adaptability to spatially 

transformed data such as HFlip. In summary, Horizontal Flip augmentation is effective 

for enabling models to learn from horizontal object displacements, particularly when 

combined with Fine-Tuning, which fully leverages the capacity of CNN architectures. 

While Transfer Learning may require longer training times for certain model types, it 

can still deliver strong performance outcomes—provided that appropriate tuning of 

epochs and layer configurations is applied to match the new data characteristics 

introduced by image flipping. 

4.3.18 HFlip Dataset with Batch Size 64 

 

Figure 4.37  Validation accuracy of CNN models (TL vs FT) on HFlip dataset (batch 

size = 64) 
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Figure 4.38  Validation accuracy of CNN models (TL vs FT) on HFlip dataset (batch 

size = 64) 

In an experiment involving the training of Convolutional Neural Network 

(CNN) models under both Fine-Tuning (FT) and Transfer Learning (TL) strategies 

using image data augmented with Horizontal Flip (HFlip) and a batch size of 64, it was 

observed that each model exhibited distinct learning behavior, particularly in terms of 

convergence speed and the number of epochs required to achieve stable validation loss 

reduction and accuracy improvement. Notably, all models trained under the Fine-

Tuning strategy—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet101, 

ResNet50, VGG16, VGG19, and Xception—achieved high and stable validation 

accuracy within only 6 epochs, indicating that full model retraining enables efficient 

adaptation to horizontal spatial transformations. This performance reflects the capacity 

of deep layers to flexibly adjust parameters in response to flipped patterns introduced 

through data augmentation. In contrast, models trained with Transfer Learning, using 

pre-trained weights from ImageNet, demonstrated more varied performance. While 

DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 (TL), and 

Xception (TL) required only 10 epochs to reach convergence, deeper and more complex 

models such as ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL) 

required up to 50 epochs. This finding highlights the limitations of transferring 

knowledge from ImageNet, which does not typically include horizontally flipped 
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images. As a result, these models require longer training durations to adjust their deep-

layer feature representations to accommodate new spatial patterns introduced by HFlip. 

Moreover, the use of a larger batch size (64) contributed to more stable parameter 

updates per iteration, reducing gradient variance and supporting consistent learning 

across epochs. While this can increase the number of epochs needed compared to 

smaller batch sizes, it also improves training stability, particularly in TL models with 

restricted weight adjustment capabilities. In summary, employing Horizontal Flip 

augmentation in combination with Fine-Tuning is highly effective in accelerating the 

learning of transformed spatial patterns and significantly reducing the number of epochs 

required for convergence. Meanwhile, Transfer Learning, despite its advantages in 

initializing models with relevant pre-trained parameters, often requires longer 

training—especially for deeper models or those originally designed for fixed-

directional feature extraction. Therefore, selecting an appropriate training strategy 

should be guided by the nature of the data and the complexity of the model architecture 

being used. 

4.3.19 HFlip Dataset with Batch Size 128 

 

Figure 4.39  Validation accuracy of CNN models (TL vs FT) on HFlip dataset (batch 

size = 128) 
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Figure 4.40  Validation loss of CNN models (TL vs FT) on HFlip dataset (batch size = 

128) 

Based on experiments using astronomical image data augmented with the 

Horizontal Flip (HFlip) technique and trained with a batch size of 128, it was observed 

that Convolutional Neural Networks (CNNs) exhibited learning behavior consistent 

with previous experiments in terms of validation accuracy and loss trends. However, a 

noticeable difference was found in the number of training epochs required for each 

model to reach convergence, particularly when comparing the Fine-Tuning (FT) and 

Transfer Learning (TL) strategies. For models trained using Fine-Tuning, including 

DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, 

VGG16, VGG19, and Xception, convergence was achieved within just 6 epochs. This 

reflects the effectiveness of full-layer training in enabling models to adapt efficiently 

to new image characteristics such as horizontal flipping. In contrast, models trained 

using Transfer Learning with pre-trained weights from ImageNet—such as 

DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 (TL), and 

Xception (TL)—required around 10 epochs. Although pre-trained weights facilitated 

faster learning, a few additional epochs were still needed to adjust to spatial changes do 

not present in the original training set. More complex and deeper architectures—

ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL)—required up to 70 

epochs to converge. This extended training duration suggests that transferring 
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knowledge to handle new patterns introduced by HFlip (which are largely absent from 

ImageNet) demands prolonged learning to avoid overfitting to the original feature 

structure. Another key observation is that increasing the batch size to 128 helped 

stabilize gradient updates per training step, improving the model’s ability to learn from 

data with high spatial orientation variation. While this may lead to longer convergence 

times—especially in deep TL models—it also reduces the noise from mini-batch 

sampling, enhancing learning efficiency. Overall, the use of Horizontal Flip 

augmentation proved effective and consistent in improving model performance, 

particularly for models trained with Fine-Tuning, which demonstrated superior ability 

to adapt to new spatial transformations. In contrast, Transfer Learning required more 

training epochs for deep models to effectively align pre-existing knowledge with 

structural changes in object positioning introduced by HFlip. 

4.3.20 HFlip Dataset with Batch Size 256 

 

Figure 4.41  Validation accuracy of CNN models (TL vs FT) on HFlip dataset (batch 

size = 256) 
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Figure 4.42  Validation loss of CNN models (TL vs FT) on HFlip dataset (batch size = 

256) 

Based on experimental results using astronomical image data augmented with 

the Horizontal Flip (HFlip) technique and trained with a batch size of 256, the 

Convolutional Neural Networks (CNNs) demonstrated distinct learning behaviors, 

particularly when comparing the Fine-Tuning (FT) and Transfer Learning (TL) 

strategies across various architectures. The models tested included DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and 

Xception, each evaluated separately under both learning strategies. The resulting graphs 

clearly showed that FT models required significantly fewer training epochs than TL 

models. On average, all FT models—DenseNet121 (FT), InceptionV3 (FT), MobileNet 

(FT), MobileNetV2 (FT), ResNet101 (FT), ResNet50 (FT), VGG16 (FT), VGG19 

(FT), and Xception (FT)—converged within just 6 epochs. In contrast, several TL 

models such as DenseNet121 (TL), InceptionV3 (TL), MobileNet (TL), MobileNetV2 

(TL), and Xception (TL) converged in approximately 10 epochs, while deeper TL 

models like ResNet101 (TL), ResNet50 (TL), VGG16 (TL), and VGG19 (TL) required 

up to 70 epochs. This reflects the architectural constraints of each model group in 

adapting to horizontally flipped images, a form of spatial transformation that differs 

significantly from the training distribution of the ImageNet dataset, which served as the 

source of pre-trained weights for TL models. The faster convergence observed in FT 
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models is attributed to the ability to immediately fine-tune all network parameters, 

allowing for rapid adaptation to new image orientations. Conversely, TL models 

typically begin with frozen convolutional layers, adjusting only the final classification 

layers initially—thus requiring more time and data to gradually adapt to inverted spatial 

structures. The use of a large batch size (256) contributed to more stable gradient 

computations by reducing noise from mini-batch sampling, thereby improving overall 

learning efficiency, especially in how feature distributions were balanced within 

batches. However, this larger batch size also led to fewer parameter updates per epoch, 

meaning that deeper TL models—particularly ResNet101 and VGG19—required more 

training epochs to effectively realign their internal representations to match the new 

spatial characteristics introduced by HFlip. Overall, the results demonstrated that Fine-

Tuning remains the most efficient strategy for astronomical image classification tasks 

involving spatial orientation changes like horizontal flipping. Despite the longer per-

epoch training time commonly associated with large batch sizes, FT models were able 

to achieve high accuracy in a short and stable training period. In contrast, Transfer 

Learning models required more epochs to fully adjust to the transformed data, 

especially when model depth and rigidity limited the adaptability of pre-trained 

features. These findings highlight the critical importance of selecting an appropriate 

training strategy based on the nature of the data and available computational resources 

in astronomical research. 
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4.4 Conclusion Performance Comparison Based on Validation 

Accuracy and Loss Graphs Using Transfer Learning and Fine-

Tuning with CNNs 

Table 4.4 Conclusion performance comparison based on validation accuracy 

Batch Size 
Mean Epochs 

(FT) 

Mean Epochs 

(TL) 

Stability 

(Validation 

Accuracy) 

Loss 

Convergence 

Speed 

32 6 15 Medium Fast 

64 8 22 High Moderate 

128 9 25 High Moderate 

256 6 28 High Slow 

Based on a comprehensive analysis of various CNN architectures, data 

augmentation techniques, and batch sizes in both Fine-Tuning (FT) and Transfer 

Learning (TL) experiments, it’s clear that batch size significantly influences model 

performance, particularly affecting validation accuracy stability, loss reduction speed, 

and the number of epochs required for convergence. As presented in Table 4.4, 

“Conclusion Performance Comparison Based on Validation Accuracy,” a batch size of 

32, while offering 'Fast' loss convergence and requiring only 6 mean epochs for FT, 

exhibited 'Medium' validation accuracy stability and 15 mean epochs for TL. In 

contrast, batch sizes of 128 and 256 provided 'High' validation accuracy stability but 

resulted in considerably longer training times in TL (25 and 28 mean epochs, 

respectively), with 256 showing ‘Slow’ loss convergence. Consequently, a batch size 

of 64 emerged as the most optimal choice. It strikes an excellent balance with 'High' 

validation accuracy stability, 'Moderate' loss convergence speed, and reasonable mean 

epochs (8 for FT, 22 for TL), making it ideal for high-performance tasks where both 

model effectiveness and training time are critical considerations. 
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4.4.1 Comparison of Classification Results of Different Deep with Original 

(Non-augmented) Dataset 

From experiments using the original (non-augmented) astronomical image data 

to train Convolutional Neural Network (CNN) models, the performance of Transfer 

Learning (TL) and Fine-Tuning (FT) strategies was compared under various batch sizes 

(32, 64, 128, and 256) across multiple model architectures including DenseNet121, 

InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and 

Xception. The findings revealed that most models performed well, especially 

MobileNet and VGG16, which consistently demonstrated high stability and excellent 

performance in terms of Accuracy, Precision, Recall, and F1-score across different 

batch sizes and training strategies. Starting with MobileNet, one of the best-performing 

models, it maintained Accuracy above 0.98 across all batch sizes under both TL and FT 

settings. In particular, MobileNet fine-tuned with batch size 64 achieved an Accuracy 

of 0.98938 and an F1-score for the “real” class of 0.95758, reflecting its ability to 

accurately classify real astronomical objects despite data complexity. Even at batch size 

256, MobileNet fine-tuned achieved Accuracy of 0.97876 and F1-score (real) of 

0.92045, indicating strong generalization ability and efficient responsiveness to 

original, unaltered input. More complex models such as DenseNet121 and Xception 

also delivered excellent results at various batch sizes. For instance, DenseNet121 under 

Transfer Learning at batch sizes 64 and 128 achieved identical Accuracy scores of 

0.98027 and a real class F1-score of 0.91925, suggesting that this architecture can 

effectively extract deep features from original images. Meanwhile, Xception fine-tuned 

at batch size 256 reached an Accuracy of 0.97572 and F1-score (real) of 0.90244, 

making it highly suitable for tasks requiring structural precision and detailed feature 

representation. The VGG16 and VGG19 architectures also showed robust performance. 

VGG16 fine-tuned with batch size 256 yielded Accuracy of 0.98331 and F1-score (real) 

of 0.93252, matching or even surpassing smaller models. Similarly, VGG19 fine-tuned 

delivered comparable results with an F1-score (real) of 0.93168 at batch size 256. These 

results highlight the strength of the VGG architecture—despite its depth and sequential 

structure, it remains capable of learning effectively from raw astronomical images, even 

without additional augmentation. On the other hand, ResNet50 and ResNet101 showed 

more variable performance, particularly in the Precision and F1-score of the “real” 
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class. In some cases, these metrics dropped to zero, even when overall accuracy 

appeared high, such as ResNet50 fine-tuned at batch sizes 64 or 128. This suggests a 

tendency toward overfitting to the “bogus” class, potentially caused by class imbalance 

and limited feature differentiation. However, ResNet101 fine-tuned with batch size 32 

achieved Accuracy of 0.97117 and an F1-score (real) of 0.88623, indicating that smaller 

batch sizes may help the model maintain a better learning balance between classes. 

Overall, when comparing all models trained using only the original augmentation 

technique, MobileNet (fine-tuned, batch size 64) emerged as the most optimal, 

delivering the highest accuracy (0.98938) and consistently strong F1-scores for both 

“real” and “bogus” classes. Its relatively lightweight architecture, combined with strong 

performance, makes it an excellent candidate for deployment in resource-constrained 

environments. Other top-performing models include VGG16 (fine-tuned, batch 256), 

DenseNet121 (transfer, batch 128/256), and Xception (fine-tuned, batch 256), which 

demonstrated comparably high performance. These findings underscore the importance 

of selecting a model architecture suited to the characteristics of the data, appropriately 

adjusting batch size, and ensuring that data augmentation strategies align with the 

specific classification task. Notably, the use of original data alone, without any 

geometric or noise-based augmentations, can still produce highly effective models—

provided the architecture and training process are well-aligned with the data's 

underlying structure. 

4.4.2 Conclusion Performance Comparison Based on Validation Accuracy 

with Rotation Dataset 

In this experiment, the training data consisted entirely of astronomical images 

augmented using Rotation, with the objective of enhancing the diversity of object 

orientations and improving the model’s ability to learn from rotationally varied 

perspectives. A total of nine Convolutional Neural Network (CNN) architectures were 

tested—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, 

VGG16, VGG19, and Xception—under different batch sizes (32, 64, 128, and 256) and 

two training strategies: Transfer Learning (TL) and Fine-Tuning (FT). The results 

indicated that Xception consistently outperformed other models, particularly in 

Transfer Learning at batch size 128, where it achieved an accuracy of 0.97750 and an 

F1-score (real) of 0.97761, demonstrating exceptional capability in learning rotational 
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patterns. Even in Fine-Tuning with batch size 256, Xception maintained excellent 

performance, with accuracy of 0.96938 and F1-score (real) of 0.96981, reflecting both 

high accuracy and stability. Another standout model was VGG16 (Fine-Tuned), which 

achieved accuracy of 0.97500 and F1-score (real) of 0.97503 at batch size 128, closely 

matching Xception’s performance and surpassing many other models. 

MobileNet, known for its computational efficiency and compact architecture, 

also performed well in Transfer Learning at batch size 128, with accuracy of 0.96250 

and F1-score (real) of 0.96245. However, when fine-tuned, MobileNet displayed signs 

of overfitting or class imbalance, particularly at batch size 128, where despite a high 

precision of 0.99826, the recall dropped to 0.71875, resulting in a reduced F1-score of 

0.87610. This suggests that additional regularization or balancing techniques may be 

necessary when applying Rotation to lightweight models like MobileNet. 

ResNet50 and ResNet101 exhibited greater variability. For example, ResNet50 

fine-tuned at batch size 256 failed completely, with accuracy of 0.50000 and F1-score 

of 0.00000, indicating poor compatibility between deep ResNet architectures and 

Rotation augmentation without appropriate tuning. On the other hand, ResNet101 fine-

tuned at batch size 32 performed well, achieving accuracy of 0.96438 and F1-score 

(real) of 0.96497, suggesting that smaller batch sizes may be more suitable for deep 

ResNet models under this augmentation strategy. 

MobileNetV2 also demonstrated strong performance, with Transfer Learning at 

batch size 256 yielding accuracy of 0.96812 and F1-score (real) of 0.96854, which is 

impressive given the model’s lightweight and energy-efficient design. Similarly, 

VGG19 showed notable consistency in both Transfer and Fine-Tuned settings, with 

Fine-Tuned VGG19 at batch size 256 reaching accuracy of 0.97188 and F1-score (real) 

of 0.97207—among the highest in the experiment. 

In conclusion, the results suggest that Xception (Transfer, batch size 128), 

VGG16 (Fine-Tuned, batch size 128), and VGG19 (Fine-Tuned, batch size 256) were 

the top three performers under Rotation-based augmentation, maintaining high 

accuracy and F1-scores across both “bogus” and “real” classes. Meanwhile, models like 

ResNet50 and MobileNet, in some configurations, showed issues with performance 

imbalance or overfitting, highlighting the need for careful selection, hyperparameter 

tuning, and possibly the application of additional regularization methods. Ultimately, 
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these findings demonstrate that Rotation alone can be a highly effective augmentation 

technique, provided that the model architecture and batch size are appropriately 

matched to the nature of the data. 

4.4.3 Conclusion Performance Comparison Based on Validation Accuracy 

with Noise Dataset 

In this experiment, all models were trained using astronomical image data 

augmented with Noise, which involves injecting random disturbances into images to 

simulate the imperfections commonly found in real-world astronomical observations—

such as blurring, sensor artifacts, or low-light conditions. The study compared the 

performance of nine Convolutional Neural Network (CNN) architectures—

DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, 

VGG16, VGG19, and Xception—under two training strategies: Transfer Learning and 

Fine-Tuning, across a range of batch sizes (32, 64, 128, and 256). Overall results 

indicate that most models failed to effectively learn from noise-augmented data, 

especially MobileNet, MobileNetV2, VGG16, VGG19, ResNet50, and ResNet101, all 

of which consistently yielded an accuracy of 0.50000 under all combinations of training 

strategy and batch size. This strongly suggests a failure in learning or a complete 

inability to distinguish between classes. Notably, the F1-score for the “real” class was 

0.00000, indicating that these models failed to correctly classify any true instances or 

were severely biased toward the “bogus” (negative) class. The few models that 

demonstrated some resilience to the effects of noise were Xception and InceptionV3, 

which still managed to achieve accuracy and F1-score values above random chance. 

The Xception model fine-tuned at batch size 256 was the best-performing model in this 

experiment, achieving an accuracy of 0.72625, precision (bogus) = 0.66667, recall 

(bogus) = 0.90500, and F1-score (bogus) = 0.76776, with a real-class F1-score of 

0.66667—not exceptionally high but significantly better than all other models. Another 

model with relatively promising results was ResNet50 fine-tuned at batch size 256, 

which achieved accuracy = 0.85000 and F1-score (real) = 0.83827. While precision and 

recall were still lower than those observed in non-noise settings, the performance 

remained reasonably usable. InceptionV3 showed mixed results, especially under 

Transfer Learning, where it achieved accuracy of 0.63187 and F1-score (real) = 0.43092 

at batch size 32. Although not particularly high, this still indicates some degree of 
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meaningful learning beyond random prediction. However, Fine-Tuning of InceptionV3 

across several batch sizes often resulted in F1-scores for the real class dropping below 

0.2—or even 0.1—which may indicate overfitting or over-adaptation to the noise, 

thereby degrading its ability to generalize to true class features. 

Interestingly, several models—such as MobileNetV2 (transfer, batch 256)—

showed high precision for the “real” class (e.g., 0.75) but extremely low F1-scores (e.g., 

0.00746). This disparity suggests that while a few correct predictions may have 

occurred, the number of predictions for the “real” class was extremely low, leading to 

very poor recall and severely penalized F1-scores. This reinforces the conclusion that 

most models failed to cope with noise unless specifically adapted to handle such data. 

In summary, the experiment demonstrates that Noise-based Data Augmentation 

significantly degrades model accuracy across most architectures and training strategies. 

The most noise-resilient model was Xception (fine-tuned, batch 256), followed by 

ResNet50 (fine-tuned, batch 256) and InceptionV3 (transfer, batch 32), all of which 

performed noticeably better than random baselines. However, these findings also 

underscore the need for advanced techniques—such as denoising preprocessing, noise-

aware training strategies, or mixed augmentation pipelines—to enhance model 

robustness and generalization when training on noisy astronomical data. 

4.4.4 Conclusion Performance Comparison Based on Validation Accuracy 

with Hflip Dataset 

In this experiment, all data were trained using Horizontal Flip (HFlip) as a Data 

Augmentation technique. This method reflects the images horizontally to increase the 

diversity of object orientation in astronomical data. The objective was to enhance the 

capacity of Convolutional Neural Networks (CNNs) to learn object features that may 

appear flipped when captured by telescopes from different directions. The study 

involved nine CNN architectures: DenseNet121, InceptionV3, MobileNet, 

MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and Xception, evaluated under 

both Transfer Learning and Fine-Tuning strategies, and across varying Batch Sizes (32, 

64, 128, 256). 

The results clearly demonstrated that most models performed consistently 

well—particularly Xception, MobileNet, InceptionV3, VGG16, and VGG19. These 

models frequently achieved Accuracy near 100% and high F1-scores for both “bogus” 
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and “real” classes. For example, Xception (both transfer and fine-tuned) at batch sizes 

64, 128, and 256 achieved Accuracy ranging from 0.99750 to 0.99813, with F1-scores 

for both classes between 0.99688 and 0.99875. This reflects the model’s deep and 

precise learning of flipped image characteristics—among the highest-performing 

results in the experiment. 

Similarly, MobileNet (both transfer and fine-tuned) yielded outstanding 

performance. Notably, MobileNet (transfer, batch 128) achieved Accuracy = 0.99875 

and F1-score (real) = 0.99875, comparable to Xception and VGG19 (fine-tuned) under 

several conditions. InceptionV3 also showed consistently strong results, with transfer 

models at batch sizes 64, 128, and 256 achieving Accuracy values between 0.99625 

and 0.99750, and very high F1-scores across both classes. It is notable that F1-score 

(real) for these models never dropped below 0.99000 under optimal conditions. VGG16 

and VGG19 also performed remarkably well, especially in fine-tuned mode at batch 

sizes 64 and 256, achieving Accuracy between 0.99687 and 0.99813, with near-perfect 

F1-scores in both classes. DenseNet121, particularly in transfer learning mode at batch 

sizes 128 and 256, consistently produced F1-score (real) > 0.99315, demonstrating the 

architecture's robustness in learning from horizontally flipped images. 

However, some models showed performance degradation. For example, 

MobileNetV2 (fine-tuned) at batch sizes 32, 64, and 128 exhibited Accuracy between 

0.91 and 0.92, with F1-score (real) dropping to approximately 0.91–0.93. Additionally, 

ResNet101 and ResNet50 under certain conditions—particularly fine-tuned at batch 

sizes 128 or 256—completely failed to generalize, with Accuracy = 0.50000 and F1-

score (real) = 0.00000, indicating an inability to learn or severe overfitting to one class. 

In conclusion, Horizontal Flip was found to significantly enhance model 

performance in learning symmetrical or directionally inverted objects, especially when 

paired with well-designed deep architectures like Xception, MobileNet, and 

InceptionV3. While Fine-Tuning generally produced strong results, Transfer Learning 

also proved capable of generating powerful models—offering an efficient training 

strategy under limited computational resources. Therefore, HFlip can be considered a 

highly effective augmentation technique for improving classification accuracy in 

astronomical image analysis. 
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4.4.5 Conclusion Performance Comparison Based on Validation Accuracy 

with Vflip Dataset 

In this experiment, the dataset was augmented using Vertical Flip (VFlip)—a 

technique that mirrors astronomical images along the vertical axis—to enhance the model's 

ability to learn features from objects captured in reversed vertical orientations. This method 

is particularly valuable in astronomical image analysis, where object positions and 

orientations can vary across different observations. The experiment involved nine CNN 

architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, 

ResNet101, VGG16, VGG19, and Xception—under both Transfer Learning and Fine-

Tuning strategies, and across various Batch Sizes (32, 64, 128, and 256). The overall results 

demonstrated that deeper and structurally efficient models effectively handled the vertical 

flipping transformation. Specifically, models such as MobileNet, Xception, InceptionV3, 

VGG19, and VGG16 achieved consistently high performance across all key evaluation 

metrics—Accuracy, Precision, Recall, and F1-score—for both “bogus” and “real” classes. 

Notably, MobileNet (transfer) and VGG19 (fine-tuned) at batch sizes of 32, 64, and 128 

achieved Accuracy and F1-score as high as 0.99875, indicating near-perfect classification 

of vertically flipped images. 

Similarly, Xception (transfer) at batch size 256 reached Accuracy = 0.99813 and 

identical F1-scores of 0.99813 for both classes. Xception consistently maintained high 

performance across all batch sizes and training strategies. However, in some cases, such as 

Xception fine-tuned at batch 256, Accuracy slightly decreased to 0.98000 and F1-score 

(real) = 0.98039, which remains remarkably high and commendable. Other models like 

DenseNet121 also showed excellent results, with transfer learning at batch sizes 32 or 64 

yielding Accuracy between 0.99125 and 0.99313 and F1-score (real) exceeding 0.991. 

Similarly, InceptionV3 (transfer) at batch sizes 64 and 128 achieved Accuracy up to 

0.99687 and F1-score (real) > 0.99688, reflecting robust and consistent performance. 

Despite their older architecture, VGG16 and VGG19 maintained outstanding accuracy—

VGG16 fine-tuned at batch 256 achieved Accuracy = 0.99687 and F1-score (real) = 

0.99688, comparable to top-performing models like Xception and MobileNet. In contrast, 

models such as ResNet50 and ResNet101 exhibited more volatile performance. 

Specifically, ResNet101 fine-tuned at batch sizes 128 and 256 showed Accuracy = 0.50000 

and F1-score (real) = 0.00000, indicating potential overfitting or heightened sensitivity to 
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vertical flipping transformations. However, ResNet101 (transfer) at batch sizes 64 and 256 

still produced Accuracy values around 0.92–0.93 and F1-score (real) > 0.92, suggesting 

that transfer learning may help mitigate VFlip's impact on ResNet's performance. In 

summary, the experiment clearly shows that Vertical Flip (VFlip) augmentation 

significantly enhances model performance when applied with the right architectures 

particularly Xception, MobileNet, InceptionV3, VGG19, and VGG16. Fine-Tuning with 

moderate batch sizes (e.g., 64 or 128) consistently yielded very high evaluation scores. 

Moreover, Transfer Learning proved sufficient for models like MobileNet and Xception, 

achieving high performance without full retraining. Thus, VFlip stands out as a highly 

effective augmentation technique, especially in real-world systems requiring robustness 

and accuracy in scenarios with unpredictable image orientation. 

4.5 Top Five Best Models for Each Data Augmentation Technique 

Table 4.5 Top five best models for original dataset 

Rank Model Method 
Batch 

size 
Accuracy 

F1 Score 

(bogus) 

F1 Score 

(real) 

1 MobileNet fine_tuned 64 0.98938 0.99393 0.95758 

2 ResNet50 fine_tuned 32 0.98634 0.99222 0.94410 

3 VGG16 fine_tuned 32 0.98634 0.99221 0.94479 

4 VGG19 fine_tuned 256 0.98331 0.99049 0.93168 

5 MobileNet transfer 32 0.98483 0.99130 0.94048 

Table 4.6 Top five best models for rotation dataset 

Rank Model Method Batch size Accuracy 
F1 Score 

(bogus) 

F1 Score 

(real) 

1 Xception transfer 128 0.97750 0.97739 0.97761 

2 Xception transfer 256 0.97375 0.97352 0.97398 

3 VGG16 fine_tuned 128 0.97500 0.97497 0.97503 

4 VGG19 fine_tuned 256 0.97188 0.97168 0.97207 

5 Xception fine_tuned 32 0.97188 0.97146 0.97227 
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Table 4.7 Top five best models for noise dataset  

Rank Model Method Batch size Accuracy 
F1 Score 

(bogus) 

F1 Score 

(real) 

1 ResNet50 fine_tuned 256 0.85000 0.86014 0.83827 

2 Xception fine_tuned 256 0.72625 0.76776 0.66667 

3 Xception transfer 256 0.64000 0.72932 0.46269 

4 Xception fine_tuned 32 0.65500 0.74085 0.48411 

5 InceptionV3 transfer 256 0.62125 0.72329 0.40000 

Table 4.8 Top five best models for Hflip dataset 

Rank Model Method Batch size Accuracy 
F1 Score 

(bogus) 

F1 Score 

(real) 

1 MobileNet transfer 64 0.99875 0.99875 0.99875 

2 Xception transfer 32 / 64 0.99875 0.99875 0.99875 

3 VGG19 fine_tuned 32 / 64 0.99875 0.99875 0.99875 

4 VGG16 fine_tuned 64 / 256 0.99687 0.99688 0.99688 

5 MobileNetV2 transfer 256 0.99375 0.99379 0.99379 

Table 4.9 Top five best models for Vflip dataset 

Rank Model Method Batch size Accuracy 
F1 Score 

(bogus) 

F1 Score 

(real) 

1 MobileNet transfer 32 0.99875 0.99875 0.99875 

2 VGG19 fine_tuned 32 0.99875 0.99875 0.99875 

3 InceptionV3 transfer 32 0.99750 0.99749 0.99751 

4 MobileNet fine_tuned 32 0.99750 0.99749 0.99751 

5 Xception transfer 32 0.99687 0.99687 0.99688 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

In the previous section, multiple Convolutional Neural Network (CNN) 

architectures were trained and evaluated under varying conditions, using techniques 

such as Data Augmentation and parameter tuning—including Transfer Learning and 

Fine-Tuning—alongside adjustments to the Batch Size. These experiments aimed to 

investigate how different training strategies affect the model’s ability to classify 

astronomical images in complex and uncertain scenarios. 

The preliminary results indicate that many models, particularly Xception, 

MobileNet, InceptionV3, VGG16, and VGG19, achieved consistently strong 

performance across a wide range of augmented datasets, including Original, Vertical 

Flip, Horizontal Flip, and Rotation. These models maintained high Accuracy, Precision, 

Recall, and F1-score across most experimental conditions under both Transfer Learning 

and Fine-Tuning settings. This reflects the flexibility and structural robustness of these 

architectures in handling spatial transformations and symmetry variations commonly 

found in astronomical image data. 

However, a notable weakness that emerged warranting close attention for future 

development is the models’ vulnerability to data augmented with noise. Noise 

Augmentation was used to simulate real-world imperfections in astronomical imagery, 

such as sensor interference or adverse environmental conditions. Under this condition, 

most models showed a significant drop in performance, with Accuracy and F1-score 

falling below usable thresholds in many cases. This was especially pronounced in the 

“real” class, where some models recorded an F1-score of 0.00000 indicating a complete 

failure to identify true astronomical objects. These findings highlight the presence of 

bias and a lack of generalization ability when noise is introduced at high levels. 

This observation underscores the need for advanced strategies to improve model 

robustness against noisy inputs. Such strategies may include Noise-Aware Training, 

Hybrid Augmentation (combining multiple augmentation techniques), Denoising
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Preprocessing or designing customized Loss Functions that emphasize the minority or 

underrepresented classes thereby improving class balance during training. 

Future research should focus on a deeper analysis of model behavior across 

different architectures when exposed to varying intensities of noise. Moreover, 

developing flexible training pipelines that adapt to the quality of input data will be 

essential. The goal is to produce models that are not only accurate but also robust and 

deployable in real-world scenarios—where imperfect and noisy astronomical data are 

the norm rather than the exception. 

The models with the best performance for each type of data transformation (as 

identified in the previous experimental sections) were selected based on both Accuracy 

and F1-score, considering the most effective Batch Size for each case, as follows: 

Table 5.1 Selected models for ensemble based on best performance by augmentation type 

Model Method Augmentation Batch Size 

MobileNet Fine-Tuned Original 64 

Xception Transfer Rotation 128 

Xception Fine-Tuned Noise 256 

MobileNet Transfer HFlip 64 

MobileNet Transfer VFlip 32 

The MobileNet and Xception architectures not solely based on their strong 

preliminary results, but also due to their structural suitability for the specific 

characteristics of astronomical data. The different images used for model training often 

contain target objects that are small, faint, and low in resolution, with additional noise 

or positional distortions introduced during the imaging process. The Xception 

architecture, which employs depthwise separable convolutions, effectively decouples 

the learning of spatial and channel-wise features, enabling the model to capture fine-

grained patterns and subtle shape variations of small-scale objects with high precision. 

MobileNet follows a similar architectural principle but is optimized for computational 

efficiency and low resource usage, making it particularly well-suited for real-time 

applications or systems with limited processing capabilities, such as automated 

transient detection pipelines in observatory environments. Furthermore, both models 
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leverage pretrained weights from ImageNet, allowing them to transfer general visual 

knowledge to the astronomical domain efficiently—an especially critical advantage 

when training data is limited. The selection of MobileNet and Xception thus represents 

a balance between the ability to extract complex visual features and practical 

deployment considerations, making them highly appropriate for the task of transient 

classification in sky survey imagery.  

5.1 Ensemble Learning Procedure 

In this experimental phase, an Ensemble Learning approach was employed to 

enhance the model’s robustness, particularly in handling high-variance image data such 

as noise-contaminated astronomical observations. The ensemble system was 

constructed based on five pre-trained CNN models, each trained under different Data 

Augmentation techniques and Batch Sizes as detailed in the preceding evaluation table. 

The ensemble procedure was executed according to the following steps: 

5.1.1 Model Loading 

Five distinct CNN models were loaded, each trained using a unique combination 

of augmentation methods (e.g., Original, Rotation, Horizontal Flip, Vertical Flip, and 

Noise) and Batch Sizes (32, 64, 128, 256). These models include architectures such as 

Xception, MobileNet, and VGG variants, selected based on their performance in earlier 

stages. 

5.1.2 Validation and Testing 

Each model were independently tested using the same validation and test 

datasets. These datasets contained five distinct augmentation conditions: Original, 

Rotation, Horizontal Flip (HFlip), Vertical Flip (VFlip), and Noise. This allowed a fair 

evaluation of each model’s generalization capability under diverse image distortions. 

5.1.3 Soft Voting (Average Voting) 

The predicted class probabilities from the five models were averaged. The final 

class label was determined by selecting the class with the highest average probability. 

This method aimed to capture the consensus among models trained under varied 

conditions. 
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5.1.4 Weighted Voting 

This second ensemble strategy involved assigning specific weights to the output 

probabilities of each model before averaging. In this approach, higher weights were 

assigned to models trained on noisy data, particularly the Xception_fine_tuned model, 

to compensate for the performance degradation observed on noise-augmented test sets. 

The purpose of this adjustment was to enhance the system’s robustness against noisy 

inputs. The weight selection process was based on model accuracy; models that showed 

lower accuracy on noisy data were given increased voting weights. The ensemble was 

then re-evaluated iteratively to determine the most appropriate weight configuration. 

5.1.5 Performance Evaluation 

The final predictions were evaluated using a set of standard metrics: Accuracy, 

Precision, Recall, and F1-score, computed for both “real” and “bogus” classes. These 

metrics allowed comprehensive insight into the classification effectiveness across all 

augmentation conditions. 

5.1.6 Result Logging 

All results were logged and stored, segmented by augmentation type. This 

facilitated further comparative analysis to determine which ensemble strategy and 

weighting scheme provided the most stable and accurate predictions under challenging 

image conditions. 

Figure 5.1 Ensemble architecture for CNN classification 
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5.2 Expected Outcomes and Benefits 

The ensemble framework described above is designed with the following 

objectives in mind: 

5.2.1 Improved Robustness for Noisy Data: 

By incorporating models that are specifically trained on noise-augmented 

datasets—such as Xception_fine_tuned—the ensemble aims to mitigate the 

performance degradation typically observed when classifying noisy astronomical 

images. These specialized models are expected to enhance the ensemble's ability to 

correctly identify “real” and “bogus” instances under noisy conditions. 

5.2.2 Preserved Performance on Other Augmentations: 

Despite the emphasis on noise resilience, the ensemble still includes models 

trained on other augmentation types (e.g., Original, Rotation, HFlip, VFlip), thereby 

maintaining high performance on less distorted or more common data distributions. 

This multi-perspective decision-making structure ensures that improvements in one 

area do not compromise classification accuracy in others. 

5.2.3 Informed Strategy Selection via Voting Comparison: 

By comparing Soft Voting (uniform averaging) and Weighted Voting 

(probability aggregation with model-specific weights), the study provides insights into 

which voting strategy yields more stable and accurate performance under real-world 

conditions. This enables data-driven decisions on ensemble configuration for practical 

deployment in astronomical classification pipelines. 
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5.3 Experimental Results of Model Combination Using Soft Voting 

Ensemble Technique 

Table 5.2 Test with original data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.99636 0.99653 0.9993 0.9979 0.99512 0.9855 0.99 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 2880 2 

True: real 10 408 

Table 5.3 Test with noise data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.55075 0.52674 0.9995 0.6899 0.99512 0.102 0.18503 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3998 2 

True: real 3592 408 

Table 5.4 Test with rotation data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.73312 0.6531 0.994 0.788 0.98745 0.472 0.63 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3976 24 

True: real 3592 408 
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Table 5.5 Test with HFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.981 0.96428 0.999 0.98133 0.99896 0.963 0.98065 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3996 4 

True: real 148 3852 

Table 5.6 Test with VFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.981 0.96428 0.999 0.98133 0.99896 0.963 0.98065 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3996 4 

True: real 148 3852 

 In this experiment, the Soft Voting ensemble technique was employed by 

combining top-performing models trained under different data augmentation strategies. 

These included: MobileNet (fine-tuned) trained on original images (batch size 64), 

Xception (transfer learning) trained with Rotation (batch size 128), Xception (fine-

tuned) trained with Noise (batch size 256), and MobileNet (transfer learning) trained 

with Horizontal Flip (HFlip) and Vertical Flip (VFlip) using batch sizes of 64 and 32, 

respectively. The ensemble significantly improved the classification accuracy of 

astronomical images, especially on original data, achieving an accuracy of 0.9963 and 

a real-class F1-score of 0.9855, reflecting the model's strong capability in inferring from 

undistorted images. 

 While the model also maintained high performance on HFlip and VFlip test sets, 

with accuracy at 0.981, it exhibited notable weakness on the Noise-augmented dataset. 

Here, accuracy dropped to 0.5507 and the F1-score for the real class fell to just 0.1850, 

indicating the ensemble's vulnerability to signal distortions and real-world 
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imperfections. Overall, the ensemble approach proved to enhance model robustness 

across multiple data conditions and demonstrates high potential for further application 

in diverse astronomical imaging scenarios. For future improvements, implementing 

Weighted Voting, especially by assigning greater influence to models trained on noisy 

data (e.g., Xception_fine_tuned), or integrating noise-specific preprocessing could help 

boost performance under more complex conditions. 

 An intriguing finding was the identical performance of the ensemble model on 

both HFlip and VFlip datasets, suggesting the model's robustness to geometric 

transformations in spatial orientation. Specifically, both transformations resulted in an 

accuracy of 0.981, with almost identical precision and recall scores for the bogus class, 

and a stable F1-score of 0.9806 for the real class. This consistency highlights the 

model's stability and capability in handling complete directional inversions. Several 

contributing factors may explain this phenomenon. The consistent performance of the 

model across both HFlip and VFlip datasets can be attributed to several key factors. 

First, many astronomical objects exhibit inherent symmetry and lack distinct directional 

reference points, so flipping the images does not significantly alter the spatial features 

that the model learns. Second, convolutional neural networks such as MobileNet and 

Xception are architecturally designed to exhibit flip-invariance and translation-

invariance, which enhance their robustness to spatial transformations. Third, the 

training process included data augmentation strategies that incorporated both horizontal 

and vertical flipping early on, enabling the model to recognize that such transformations 

do not affect the semantic meaning of the images. Additionally, the HFlip and VFlip 

datasets were both derived from the same Original dataset, differing only by the axis of 

flipping, and were evaluated under identical label mapping and data ordering. These 

factors collectively allowed the model to interpret flipped images in a consistent 

manner, leading to nearly identical classification performance across both 

augmentation types. 

 These factors together reveal that the model demonstrates genuine spatial 

transformation resilience. For further sensitivity testing, it is recommended to apply 

augmentation methods that cause more profound changes to image structures, such as 

rotation, shearing, or noise injection, which are more likely to shift data distributions 

and challenge the model’s generalization abilities more rigorously.  
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5.4 Ensemble Learning with Weighted Voting: Optimizing Performance 

Across Augmentation Variants  

Table 5.7 Parameter in ensemble in 5.4 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.2 

Xception transfer 128 Rotation 0.2 

Xception fine_tuned 256 Noise 0.30 

MobileNet transfer 64 HFlip 0.15 

Table 5.8 Test with original data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.99515 0.9965 0.9979 0.9972 0.985 0.976 0.980 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 2876 6 

True: real 10 408 

Table 5.9 Test with noise data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.55025 0.52649 0.9985 0.68945 0.9855 0.102 0.18486 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3994 6 

True: real 3592 408 
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Table 5.10 Test with rotation data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.72875 0.6494 0.994 0.7856 0.98722 0.4635 0.6308 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3976 24 

True: real 2146 1854 

Table 5.11 Test with HFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.97425 0.95274 0.998 0.9748 0.9979 0.9505 0.9736 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3992 8 

True: real 198 3802 

Table 5.12 Test with VFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.97425 0.95274 0.998 0.9748 0.99790 0.9505 0.9736 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 3992 8 

True: real 198 3802 

In evaluating the performance of an ensemble model for astronomical object 

classification in sky survey images, the Weighted Voting Ensemble technique was 

applied by integrating the outputs from multiple sub-models. Each model was assigned 

a specific weight based on its training configuration and suitable parameters: MobileNet 

(fine-tuned, batch size 64, with Original augmentation) with a weight of 0.20, Xception 

(transfer learning, batch size 128, with Rotation) with a weight of 0.20, Xception (fine-
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tuned, batch size 256, with Noise) with a weight of 0.30, MobileNet (transfer, batch 

size 64, with HFlip) with a weight of 0.15, and MobileNet (transfer, batch size 32, with 

VFlip) also with a weight of 0.15. These models were strategically selected to ensure 

diversity in recognizing and classifying images under different conditions, especially 

by including models that respond well to specific challenges such as noise and image 

rotation. 

However, the evaluation results indicate that even with well-assigned weights, 

the overall system performance still heavily depends on the characteristics of the test 

dataset. The Original image set yielded the highest accuracy of 0.99515, with F1-scores 

for the bogus and real classes at 0.9972 and 0.9807, respectively. For HFlip and VFlip, 

which involve symmetric transformations, the system maintained consistently excellent 

results—both sets achieved accuracy of 0.97425 with nearly identical F1-scores 

(0.9748 for bogus and 0.9736 for real), demonstrating the model’s robustness to 

horizontal and vertical flipping. 

However, performance dropped significantly when tested on Noise and 

Rotation datasets. Notably, the Noise set saw a dramatic drop in accuracy to 0.55025, 

and the Recall for the real class fell to just 0.102, revealing the system’s vulnerability 

to high-noise scenarios. Similarly, the Rotation set lowered accuracy to 0.72875, with 

Recall for real dropping to 0.4635. Although ensemble components trained with these 

augmentations were included and given specific weights to increase coverage, these 

results highlight the need for further improvements in model robustness—particularly 

when deploying systems in real-world conditions where data can be incomplete or 

deviate from the training distribution. 
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5.5 Ensemble Learning with Weighted Voting: Optimizing Performance 

Across Table  

 

Table 5.13 Parameter in ensemble in 5.5 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.2 

Xception transfer 128 Rotation 0.2 

Xception fine_tuned 256 Noise 0.50 

MobileNet transfer 64 HFlip 0.15 

Table 5.14 Test with original data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.99 0.99825 0.99028 0.9942 0.9365 0.9880 0.9615 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 2854 28 

True: real 5 413 

Table 5.15 Test with noise data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.624 0.57159 0.99 0.72474 0.96268 0.258 0.40694 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3960 40 

True: real 2968 1032 
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Table 5.16 Test with rotation data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.90675 0.84944 0.9887 0.91381 0.986543 0.824 0.8984 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3955 45 

True: real 701 3299 

Table 5.17 Test with HFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.9757 0.9627 0.9897 0.97608 0.9894 0.9617 0.9754 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3959 41 

True: real 153 3847 

Table 5.18 Test with VFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.9757 0.9627 0.9897 0.97608 0.9894 0.9617 0.9754 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3959 41 

True: real 153 3847 
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This experiment evaluated the performance of an Ensemble Learning system 

designed using the Weighted Voting technique, in which multiple CNN models were 

combined with specifically assigned weights to reflect the importance and unique 

characteristics of each architecture and training condition. The ensemble was composed 

of the following main components: MobileNet (fine-tuned, batch size 64) trained on 

Original data (weight = 0.20), Xception (transfer, batch size 128) trained with Rotation 

augmentation (weight = 0.20), Xception (fine-tuned, batch size 256) trained on Noise 

data (assigned the highest weight of 0.50), MobileNet (transfer, batch size 64) trained 

on HFlip data (weight = 0.15), and another MobileNet (transfer, batch size 32) trained 

with VFlip data (weight = 0.15). 

Overall, the model ensemble performed excellently on the Original, HFlip, and 

VFlip datasets, achieving accuracies of 0.99, 0.97575, and 0.97575, respectively. 

Especially on the Original data, the ensemble achieved very high F1-scores for both 

bogus (0.9943) and real (0.9616) classes, reflecting its ability to accurately and evenly 

classify both classes. Notably, the results for HFlip and VFlip were identical across all 

performance metrics, indicating that the model is consistent and symmetric in handling 

horizontal and vertical image flipping. 

For the Rotation dataset, although the accuracy dropped to 0.90675, the F1-

score for the real class remained at 0.8984, which is still considered practically 

acceptable. However, despite the Xception model trained on Noise data being given the 

highest weight (0.50) in the system, the performance on the Noise test set was still poor, 

with only 0.624 accuracy and a real-class F1-score of 0.4069. This highlights the 

model's limitations in handling highly corrupted images, particularly in extracting 

meaningful features from distorted data. 

While the Weighted Voting design added flexibility and broader coverage to the 

ensemble system, the results also reveal that assigning an excessively high weight to a 

model that is not yet capable of effectively addressing specific challenges—such as 

noisy data—can lead to degraded overall performance in certain scenarios. Therefore, 

weight selection should ideally be based on balanced performance on the validation set 

or re-evaluated across multiple types of test data to ensure comprehensive coverage and 

maximum accuracy in practical deployment. 
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5.6 Ensemble Learning with Weighted Voting: Optimizing Performance 

Across Augmentation Variants  

Table 5.19 Parameter in ensemble in 5.6 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.2 

Xception transfer 128 Rotation 0.2 

Xception fine_tuned 256 Noise 0.80 

MobileNet transfer 64 HFlip 0.15 

Table 5.20 Test with original data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.98575 0.99824 0.98542 0.9917 0.9076 0.9880 0.9461 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 2840 42 

True: real 5 413 

Table 5.21 Test with noise data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.9695 0.98982 0.9487 0.96885 0.95079 0.9902 0.9701 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 39 3961 

True: real 3795 205 
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Table 5.22 Test with rotation data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.911 0.8697 0.9667 0.9456 0.9625 0.8552 0.9057 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3867 133 

True: real 579 3421 

Table 5.23 Test with HFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.9721 0.9604 0.9847 0.97247 0.9843 0.9595 0.9717 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3939 61 

True: real 162 3838 

Table 5.24 Test with VFlip data 

Model Accuracy 
Precision 

(bogus) 

Recall 

(bogus) 

F1 Score 

(bogus) 

Precision 

(real) 

Recall 

(real) 

F1 Score 

(real) 

Ensemble 0.9721 0.9604 0.9847 0.97247 0.9843 0.9595 0.9717 

Confusion Matrix: 

 Pred: bogus Pred: real 

True: bogus 3939 61 

True: real 162 3838 

This experiment evaluates the performance of an astronomical image 

classification system using the Weighted Voting Ensemble technique, designed by 

integrating the outputs of various CNN models that differ in architecture, learning 

approach, and input processed through different forms of Data Augmentation. The 

ensemble consists of MobileNet (fine-tuned, batch size 64, Original, weight 0.20), 



118 

 

Xception (transfer, batch size 128, Rotation, weight 0.20), Xception (fine-tuned, batch 

size 256, Noise, with the highest weight of 0.80), MobileNet (transfer, batch size 64, 

HFlip, weight 0.15), and MobileNet (transfer, batch size 32, VFlip, weight 0.15), 

covering a wide range of data characteristics including flipping, noise injection, and 

image rotation. 

The experimental results show that testing with original images achieved the 

highest accuracy of 0.98576, along with very high F1-scores in both the bogus (0.9918) 

and real (0.9462) classes, reflecting the system’s strong and balanced ability to identify 

both real and false detections. Testing with HFlip and VFlip images yielded similarly 

strong results, with accuracy at 0.97213 and F1-score for the real class at approximately 

0.9718, indicating that the model is robust and symmetric in handling horizontal and 

vertical reflections. 

For rotation-augmented images, while accuracy dropped to 0.911, the F1-score 

remained high (0.9057 for real), suggesting the system’s ability to adapt to changes in 

image orientation. However, despite assigning a large weight (0.80) to 

Xception_fine_tuned@Noise to enhance noise recognition, testing on Noise data 

achieved only 0.9695 accuracy and 0.9701 F1-score for the real class. This implies that 

even with increased emphasis, there are still limitations in the model’s ability to handle 

high-noise images. Such discrepancies could stem from insufficient variety in the 

training data or the model’s limited capacity to effectively distinguish meaningful 

signals from noise. 

Overall, the Weighted Voting system demonstrates the potential of using 

multiple models to mitigate the weaknesses of single models and significantly improve 

overall accuracy—especially for data types similar to the training set (e.g., Original, 

Flip). This suggests that the models should be trained on more diverse datasets to 

enhance generalization for real-world astronomical data applications. 

5.7 Compared with Previous Experimental Results 

The present study builds upon the foundational work of (Tabacolde et al., 2018) 

and (Liu et al. 2 0 1 9 ) , who were among the first to utilize transient images from the 
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GOTO sky survey for real-bogus classification. In earlier work by (Tabacolde et al., 

2018) images were first converted into feature vectors and classified using traditional 

machine learning models. However, their approach faced significant challenges due to 

class imbalance, where the number of real transients was greatly outnumbered by bogus 

detections. While attempts were made to mitigate this issue using oversampling and 

undersampling techniques, such methods had inherent limitations, including potential 

overfitting or the risk of discarding valuable data. Later, (Liu et al., 2019) proposed a 

different strategy by augmenting real images through rotations to increase the sample 

size of the minority class. This approach helped improve performance to some extent 

but still relied on conventional learning methods and lacked the ability to extract deep 

hierarchical features directly from raw image data. 

To overcome these limitations, the present study employs Deep Learning 

techniques, specifically Convolutional Neural Networks (CNNs), which can 

automatically learn rich feature representations from raw images without manual 

extraction. CNNs are also capable of handling the complex spatial patterns commonly 

found in astronomical imaging. Moreover, the current experiment incorporates a 

diverse set of data augmentation strategies—including rotation, flipping, and noise 

injection—to enhance the model's ability to generalize across various data distortions. 

In addition to using both transfer learning and fine-tuning to improve model 

performance, this study further introduces an Ensemble Learning strategy through 

Weighted Voting, where multiple high-performing CNN models are combined, and 

their predictions weighted based on validation performance. This method mitigates the 

weaknesses of individual models and enhances the robustness of the classification 

system, particularly for complex or noisy images. Compared to previous approaches, 

this ensemble-based deep learning method demonstrates significantly improved 

accuracy and generalization in real-bogus classification tasks. 
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Table 5.25 Compared with previous experimental results 

Ref/Year Technique Dataset Accuracy / F1 (Class 1) 

Tabacolde et al. 

(2018) 

ML with handcrafted 

features (e.g., SVM, 

Decision Tree) 

GOTO RF best precision, but 

Recall < 0.1 

Liu et al. (2019) CNN baseline (1 conv 

layer) with multiple 

optimizers & augmentation 

GOTO F1-Class 1 = 0.917  

(best at batch size 128) 

Proposed Ensemble of fine-tuned 

CNNs with Weighted 

Voting with data 

augmentation 

GOTO F1-Class 1 = 0.9717 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Using Convolutional Neural Networks (CNNs) Directly (Without 

Additional Techniques) 

In the initial phase of this research, Convolutional Neural Networks (CNNs) 

such as MobileNet, DenseNet121, and ResNet50 were applied directly to the GOTO 

(Gravitational-wave Optical Transient Observer) image dataset without the use of any 

additional techniques such as data augmentation, transfer learning, dropout, or 

regularization strategies. This baseline experiment aimed to evaluate the core capability 

of CNNs in classifying transient astronomical events into real and bogus categories 

using only the original, unmodified training images. The results showed moderate 

performance, with overall accuracy ranging between 0.89 and 0.93 and a noticeable 

imbalance in F1-scores between the two classes—particularly lower scores in the “real” 

class. While MobileNet exhibited rapid convergence, it often overfit the training data, 

whereas DenseNet121 and ResNet50 performed slightly better but still struggled to 

generalize across unseen data. Furthermore, the models showed clear limitations when 

encountering noisy, blurred, or slightly altered images—conditions that frequently 

occur in real astronomical observations. These findings suggest that while CNNs 

possess fundamental capacity for learning basic visual distinctions in transient 

detection, their effectiveness in a real-world astronomical setting remains constrained 

without the aid of supplementary techniques. However, the detection of transient events 

within massive astronomical datasets is far from straightforward. Each day, an 

enormous volume of sky survey images is collected at a scale that can no longer be 

manually analyzed by human effort alone. The exponentially increasing amount of data 

has introduced unprecedented challenges in data analysis and management in the 

history of astronomy. Consequently, astronomers are compelled to develop new 

approaches that can efficiently extract valuable information from these large-scale 

datasets. 
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6.2 Using CNNs with Data Augmentation  

In the next phase of this research, Data Augmentation techniques were applied 

alongside CNN training to enhance the models’ ability to generalize and perform well 

on unseen astronomical data. The augmentation methods included vertical flipping 

(VFlip), horizontal flipping (HFlip), image rotation, and the addition of random noise. 

These techniques were intended to simulate real-world variations commonly found in 

astronomical observations, such as telescope jitters, sensor noise, and atmospheric 

distortions. The experimental results showed a substantial improvement in performance 

across nearly all evaluation metrics, especially in terms of F1-score and Recall, which 

are essential for detecting rare transient phenomena. Architectures like MobileNet and 

DenseNet121 demonstrated notable gains when trained with augmented data, 

suggesting a strong sensitivity to feature diversity. For instance, models trained using 

both HFlip and VFlip yielded nearly identical results, reaffirming the orientation-

invariant nature of most astronomical objects. Furthermore, the use of rotation and 

noise helped the models become more robust against minor perturbations, significantly 

reducing misclassification rates for real objects. Overall, this phase clearly highlights 

that even simple augmentation techniques can dramatically improve the robustness of 

CNNs, making them more reliable for real-world astronomical classification tasks. The 

benefits were particularly evident when addressing class imbalance or subtle object 

features, as augmented data effectively enriched the training set without requiring 

additional telescope observations. 

6.3 Using Transfer Learning and Fine-Tuning with CNNs  

In the advanced phase of this study, Transfer Learning was implemented by 

leveraging pre-trained CNN architectures such as MobileNet, DenseNet121, Xception, 

and ResNet50, originally trained on large-scale datasets like ImageNet, and adapting 

them to the specific task of classifying GOTO (Gravitational-wave Optical Transient 

Observer) images. Two key approaches were explored: Transfer Learning, where only 

the final classification layers were retrained while all earlier layers were frozen, and 
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Fine-Tuning, in which certain deeper layers were unfrozen and retrained to allow the 

model to better adapt to domain-specific features in astronomical data. The results 

revealed that Transfer Learning significantly reduced training time and provided strong 

baseline performance. Fine-Tuning, when applied effectively, enhanced the model’s 

ability to recognize complex visual features such as symmetrical light distributions, 

faint object boundaries, and varied point spread functions. Notably, models such as 

MobileNet_fine_tuned and Xception_transfer achieved outstanding results, with 

accuracy and F1-scores exceeding 0.98, demonstrating high robustness and class 

separation. However, it was also observed that Fine-Tuning did not always yield better 

results. In some cases, such as with DenseNet121_fine_tuned and InceptionV3_fine_tuned, 

the fine-tuned versions slightly underperformed compared to their transfer-only 

counterparts, particularly in terms of F1-score and generalization to test data. This 

suggests that Fine-Tuning must be applied carefully; over-adjusting pretrained weights 

can lead to overfitting or loss of beneficial generalized features learned from the source 

dataset. Overall, while the combination of Transfer Learning and Fine-Tuning offers a 

powerful strategy for astronomical image classification especially when labeled data is 

scarce it also demands fine control over training parameters and architecture-specific 

tuning to avoid performance degradation. 

6.4 Effects of Varying Batch Sizes on Model Performance 

This phase of the study focused on evaluating how different batch sizes—

specifically 32, 64, 128, and 256 affect the learning dynamics and classification 

performance of CNN models when applied to the GOTO image dataset. The 

experimental results consistently showed that smaller batch sizes, particularly 32 and 

64, led to better performance in terms of both accuracy and F1-score across multiple 

CNN architectures. These findings can be attributed to the fact that smaller batches 

provide more frequent weight updates per epoch, allowing the models to make finer 

adjustments and better capture subtle features such as noise patterns, faint edges, and 

structural irregularities that are characteristic of transient astronomical objects. 

Moreover, smaller batches tend to introduce more noise during gradient estimation, 



124 
 

which, paradoxically, can enhance generalization and help avoid overfitting, especially 

important in datasets with high variability and class imbalance like GOTO. In contrast, 

larger batch sizes such as 128 and 256, while offering faster training and smoother 

convergence, often led to weaker generalization, with slightly lower recall and F1-

scores on the test set. Some models, particularly deeper architectures like DenseNet121 

and ResNet101, became prone to underfitting or converging to suboptimal minima 

when trained with excessively large batches. These results emphasize that batch size is 

a critical hyperparameter and choosing an optimal value often smaller than the default 

can significantly influence the model's ability to extract relevant features from 

astronomical image data. 

6.5 Performance Summary by Type of Data Augmentation 

This study conducted a comprehensive evaluation of various data augmentation 

techniques—including horizontal flip (HFlip), vertical flip (VFlip), rotation, and noise 

injection—to investigate their individual effects on CNN performance in classifying 

astronomical images from the GOTO dataset. The results indicated that HFlip and 

VFlip produced nearly identical outcomes, which aligns with the symmetric nature of 

many astronomical objects that lack fixed orientation or directional context. As such, 

flipping the images vertically or horizontally does not significantly alter the spatial 

patterns learned by the models. Rotation augmentation proved effective in improving 

model robustness to different angular configurations, allowing the CNNs to generalize 

across varying object orientations. Noise injection also enhanced the models’ ability to 

cope with real-world imperfections such as sensor disturbances, background 

fluctuations, and atmospheric distortions. However, despite the overall benefits of 

Noise and Rotation, some models exhibited performance degradation when these 

augmentations were applied. For instance, certain lightweight or shallow architectures 

were more prone to overfitting when exposed to excessive noise, while others failed to 

properly adapt to heavily rotated inputs that deviated significantly from their original 

spatial structure. In such cases, F1-scores and generalization ability dropped, 

particularly for models that lacked sufficient depth or representational capacity. These 
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findings highlight that while data augmentation is a powerful strategy for improving 

model robustness, its effectiveness depends greatly on the architecture used and must 

be tailored to the characteristics of the task and dataset. In the context of astronomical 

imaging, where variability and uncertainty are inherently high, careful selection and 

tuning of augmentation strategies are essential to balance diversity with model stability. 

6.6 Ensemble Learning for Performance Enhancement 

In the final phase of this research, Ensemble Learning techniques were 

employed to enhance classification performance and model stability by combining the 

strengths of multiple well-performing CNN models. Architectures such as 

MobileNet_fine_tuned, Xception_transfer, and ResNet50_fine_tuned were selected 

based on their individual performance and integrated using both Soft Voting and 

Weighted Voting strategies. In Soft Voting, each model outputs class probabilities that 

are averaged, and the class with the highest combined probability is selected. In 

Weighted Voting, greater influence is assigned to models with stronger validation 

performance, allowing the ensemble to favor more reliable predictions. 

From earlier experiments, the researcher observed that individual models 

consistently performed poorly when evaluated on test data augmented with Noise and 

Rotation. These two augmentation types often led to reduced accuracy and F1-scores, 

especially for certain models that overfitted on noise or failed to properly adapt to 

rotated object orientations. In response to this limitation, Ensemble Learning was 

introduced as a strategic solution to compensate for these specific weaknesses. By 

aggregating the diverse perspectives of multiple models, the ensemble approach helped 

reduce the impact of prediction errors caused by distortions or positional shifts in the 

input data. 

The experimental results confirmed that ensembles significantly improved 

performance, achieving accuracy and F1-scores between 0.981 and 0.984, even on 

challenging augmented datasets. In particular, ensembles demonstrated stronger 

resilience when handling difficult cases such as faint sources, background noise, or 

orientation changes. The voting mechanisms effectively smoothed out inconsistencies 
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between models and reduced the risk of overfitting to specific augmentation patterns. 

However, the study also found that careful selection and weighting of models within 

the ensemble is critical, as incorporating underperforming or overly similar models can 

reduce overall effectiveness. In summary, Ensemble Learning proved to be more than 

just a marginal improvement technique—it served as a robust strategy to stabilize 

predictions, reduce variance, and improve the reliability of CNN-based transient 

classification systems under real-world astronomical conditions. 

6.7 Contribution to Knowledge 

This research makes several significant contributions to the field of deep 

learning-based astronomical image classification, particularly in the context of transient 

detection using data from the Gravitational-wave Optical Transient Observer (GOTO). 

Through extensive experimentation with various CNN architectures, training strategies, 

and augmentation methods, the following key contributions to knowledge have been 

identified: 

6.7.1 Influence of Transfer Learning and Fine-Tuning on Classification 

Accuracy 

The study demonstrates that Transfer Learning significantly improves baseline 

model performance by leveraging knowledge from large-scale datasets like ImageNet. 

Fine-Tuning, when applied judiciously, further enhances accuracy by allowing the 

model to adapt to the specific characteristics of astronomical imagery. However, the 

results also reveal that not all models benefit equally from Fine-Tuning; in some cases, 

fine-tuned models underperformed compared to their transfer-only counterparts, 

highlighting the need for architecture-specific tuning strategies. 

6.7.2 Learning Distinct Feature Representations through Data Augmentation 

The findings show that CNNs can learn distinct and more robust feature 

representations when exposed to a variety of data augmentation techniques. 

Augmentations such as horizontal and vertical flips, rotation, and noise injection helped 

models generalize better to unseen test data. However, the study also notes that some 

augmentations (e.g., Noise and Rotation) can degrade performance in certain models if 
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not handled properly, underscoring the importance of selecting augmentation strategies 

that are compatible with the architecture’s capacity and learning dynamics. 

6.7.3 Effect of Varying Batch Sizes on Classification Accuracy 

Experiments with batch sizes of 32, 64, 128, and 256 reveal that smaller batch 

sizes (particularly 32 and 64) generally result in higher classification accuracy and 

better generalization. This is attributed to the more frequent weight updates and the 

inherent regularization effect of noisier gradient estimates. Conversely, larger batch 

sizes often led to reduced recall and lower F1-scores, especially in deeper networks, 

suggesting a trade-off between computational efficiency and learning quality. 

6.7.4 Impact of Batch Size on Feature Representation Learning 

The study provides evidence that neural networks trained with different batch 

sizes indeed learn different internal representations, which affects how they classify 

subtle and complex image features. Smaller batches led to more adaptive and varied 

representations, while larger batches often resulted in overly smooth and less 

discriminative feature maps. This indicates that batch size is not only a training 

efficiency parameter but also a determinant of representational richness. 

6.7.5 Effect of Dropout on Classification Accuracy 

The use of Dropout during training is shown to be an effective regularization 

technique, but its impact is highly dependent on the dropout rate. The research finds 

that a dropout rate of 0.2 yields the best overall performance, offering a balance 

between preventing overfitting and retaining sufficient learning capacity. Higher 

dropout rates (e.g., 0.5) tended to degrade performance in certain architectures, 

confirming that dropout must be carefully tuned in relation to the model depth and 

dataset characteristics. 

6.7.6 Effect of Different Base Architectures in Ensemble Learning 

The study highlights that the choice of base CNN architectures significantly 

affects the performance of ensemble models. Ensembles built from diverse and 

complementary models (e.g., MobileNet + Xception + ResNet50) consistently 

outperformed ensembles composed of similar or redundant architectures. This suggests 

that architectural diversity enhances the ensemble’s ability to generalize, particularly 

under challenging augmentation conditions such as noise or rotation. 
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6.7.7 Effective Ensemble Strategies for Combining Augmented Models 

A major contribution of this work is the investigation into ensemble methods 

for combining models trained under different augmentation schemes. The results show 

that Weighted Soft Voting provides the most consistent and accurate performance, 

especially in handling difficult test cases. By assigning higher weights to more reliable 

models, the ensemble corrects misclassifications made by individual networks. This 

indicates that ensembling is not just a performance boost mechanism, but a strategic 

solution to mitigate model-specific weaknesses, particularly in complex domains like 

astronomical image classification. 

6.8 Future Recommendations 

Based on the experimental results and challenges encountered during this 

research, several directions for future investigation are recommended to further 

enhance the robustness, generalization, and real-world applicability of CNN-based 

astronomical image classification systems, especially in the context of transient 

detection using GOTO data: 

6.8.1 Explore Domain-Specific Pretraining 

While ImageNet-based transfer learning provided significant performance 

improvements, future studies could investigate pretraining CNNs on astronomy-

specific datasets such as ZTF, Pan-STARRS, or simulated sky survey images. Domain-

adaptive pretraining may help the model capture astronomical-specific features more 

effectively than those learned from natural images. 

6.8.2 Dynamic Fine-Tuning Strategies 

Given the mixed results of fine-tuning, future work should explore dynamic and 

layer-specific fine-tuning strategies, such as gradually unfreezing layers during training 

or applying differential learning rates. This could allow models to adapt more precisely 

without overwriting beneficial pre-trained knowledge. 

6.8.3 Advanced Data Augmentation Techniques 

While basic augmentation (e.g., HFlip, VFlip, Rotation, Noise) was beneficial, 

future research could implement learned augmentation methods like AutoAugment, 
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RandAugment, or CutMix, which can automatically discover augmentation policies 

that maximize performance for astronomical data. 

6.8.4 Investigate Hybrid Architectures and Attention Mechanisms 

To further improve model interpretability and sensitivity to fine features, future 

studies may experiment with hybrid models that integrate CNNs with attention 

mechanisms (e.g., CBAM, SE blocks) or Vision Transformers (ViTs), which have 

shown promise in both natural and scientific imaging tasks. 

6.8.5 Adaptive Batch Size and Learning Rate Schedules 

Since batch size strongly influenced feature learning and performance, future 

work should explore adaptive batch size strategies (e.g., gradually increasing batch size 

during training) and pair them with adaptive learning rate schedules (e.g., cosine decay, 

cyclical learning rate) for better convergence and generalization. 

6.8.6 Regularization Beyond Dropout 

Although Dropout proved effective (especially at 0.2), future research could 

assess other regularization methods, such as Label Smoothing, Mixup, or DropBlock, 

which may provide improved generalization, especially on noisy or low-SNR 

astronomical data. 

6.8.7 Optimize Ensemble Construction and Diversity 

Future studies should focus on systematic ensemble construction, exploring 

model selection based on feature diversity, output correlation, or training context (e.g., 

different augmentations, optimizers). Moreover, integrating meta-learning or stacked 

ensemble methods may offer further improvements over Soft or Weighted Voting. 

6.8.8 Cross-Survey Evaluation and Real-Time Integration 

To validate robustness and generalizability, future experiments should involve 

cross-survey datasets (e.g., testing GOTO-trained models on ZTF or ATLAS) and 

explore integration into real-time alert systems, where inference speed and 

classification confidence are critical for rapid astronomical follow-up. 
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