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ABSTRACT

Particle filtering is a scheme under sequential Bayesian framework widely
employed to estimate state of desired information from the observation data outputted
from non-linear, non-Gaussian systems. We proposed an adaptive genetic algorithm-
based scheme to enhance quality of the drawn sample vectors of state variables (called
particles). Each low-weight parent pairs with a randomly selected high-weight parent.
The newly created offspring particle is allowed to replace its low-weight parent only if
the weight of the offspring is higher than the weight of the low-weight parent. The
accepted offspring particles with high weights can also be paired with the other low-
weight parents in order to promote particle diversity. Simulation results show that the
new method is superior to state-of-the-art algorithms in estimating one-dimensional and
multidimensional state estimation. The new method is also tested in an application
under the multiple-model particle filter (MMPF) framework of spectrum and dispersion
curve estimation of a time-varying acoustics propagated through an ocean waveguide.
The new method still can perform well in capturing the modal frequency. However, the
new method is also sensitive to high-intensity time-domain noise where such severe
noise causes false frequency contents to be more likely to be misidentified as modal
frequency. Such a pilot study of testing the new method on the MMPF indicates that

further research and improvements of GAs still be needed.
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CHAPTER 1

INTRODUCTION

1.1 Research Rationale

In scientific and engineering problems and applications, we need to obtain the
state of the desired information (e.g., target parameters) from any system. These
parameters, however, cannot be measured directly because they are hidden in
observation data. Also, the hidden state can be assumed time-varying because the
observation values can change as time goes. To extract the state of targeted parameters
from the sequential observation data, we need a function that relates the state
parameters and the observation data together. While such a function can be designed
according to our related prior knowledge, there can be uncertainties (or random noise)
that occur during the output measurements. A direct inversion process that finds the
state by inverting the designed function and employing the observation data can be
inefficient (Cappé et al., 2007; Krumm, 2010). Therefore, estimating states of time-
varying parameters from noisy sequential observations is a challenging but important
task in order to understand the nature of any system.

Bayesian approaches find the probability density function (PDF) of targeted
parameters that is conditional on observation data. This PDF is called the posterior PDF
because we must first obtain the observation data before the PDF can be created (Candy,
2016). However, we cannot obtain the full posterior PDF because it requires all possible
state values of the parameters. Also, the posterior PDF does not stay fixed because
parameter states evolve with time.

Kalman (1960) proposed the Kalman filtering (KF) as a sequential Bayesian
filtering approach that is optimal for systems with a linear relationship between states
and the observation data that are corrupted with additive, uncorrelated, and zero-mean
normally distributed noise (or additive white zero-mean Gaussian noise). It fully
characterizes the Gaussian posterior PDFs by estimating their means and covariances

at each time step. There are also variants of KFs proposed to improve the performance



of original KFs. Ensemble KFs (EnKFs) act as the approximation version of the original
KF by drawing samples (or ensembles) to estimate the mean and the covariance of the
Gaussian posterior PDF at each time step (Evensen, 1994); Katzfuss et al., 2016; van
Leeuwan, 2020), while Unscented KFs (UKFs) employ only a few selected samples (or
points) to capture the mean and the covariance (Julier, 1997; Wan & van der Merwe,
2000). Extended KFs (EKFs) were proposed to work with non-linear systems by using
a linearization processes (Maybeck, 1982). However, KFs are not the optimal methods
for estimating states from highly non-linear systems with non-Gaussian posterior PDFs
(Candy, 2016; Gordon et al., 1993; Ristic et al., 2004; Roonizi, 2022).

Particle filtering (PF) is a sequential Monte Carlo (SMC) method that randomly
draws independent and identically distributed (i.i.d.) sample vectors of values of state
variables from the prior PDF of initial state values; these sample vectors are called
“particles”. Next, we find the importance weight of each particle and normalize these
weights to obtain probability masses (or normalized weighted particles), which partially
represent the posterior PDF of state given noisy observations. Finally, we infer (or
estimate) the hidden state from this approximated posterior PDF (Candy, 2016; Ristic
etal., 2004). PF is proved effective in many applications, for example, signal processing
(Andrieu et al., 2003; Aunsri & Chamnongthai, 2019; Aunsri & Chamnongthai 2021;
Aunsri & Michalopoulou, 2014; Michalopoulou & Aunsri, 2018; Yardim et al., 2011;
Zorych & Michalopoulou, 2008), agriculture (Saenmuang & Aunsri, 2019), fault
detection (Yin & Zhu, 2015; Yu et al., 2019), moving object tracking (Bhat et al., 2021;
Han et al., 2011; Park et al., 2009; Wang et al., 2020), and non-destructive evaluation
(Zafar et al., 2020).

Drawing particles in great numbers causes the approximated posterior PDF to
get closer to the true PDF, but a higher cost is required. Also, because all particles are
randomly drawn, sometimes there can be only a few high-weight particles while the
rest have low weights. Consequently, the posterior PDF and state may be poorly
estimated (Candy, 2016; Gordon et al., 1993; Ristic et al., 2004). We should reshape
the approximated posterior PDF by altering the state values of the particles that are
located in low-probability regions in order to relocate them. After we relocate the low-
weight particles, their weights must be re-evaluated according to their new state values

in order to verify whether or not they become high-weight particles. However, we



should employ the state values of high-weight particles that are available on-hand as
clues for finding high-probability regions, instead of relocating the low-weight particles
blindly.

Holland (1992) proposed the Genetic algorithm (GA) to imitate the “survival-
of-the-fittest” scheme that treats each sample (i.e., state vector) as an individual and
performs a selection process to keep high-fit individuals. The high-fit individuals that
survive are then employed as parents to produce new offspring state vectors with high
diversity among state values (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996).
During the offspring creation process, GA blindly creates pairs of two survived particles
as parents. In each pair, the state values of two parent vectors are employed to calculate
state values of the two new offspring vectors that then replace their parents.

Yin and Zhu (2015) suggested that particles should first be classified as high-
weight and low-weight parents. Each low-weight parent must pair with a randomly
selected high-weight parent. Only one offspring particle is found from each pair and
this offspring particle then replaces its low-weight parent. This ensures existence of
high weight parents. However, if the number of high-weight parents is small, diversity
of state values of to-be-created offspring particles can be low. Consequently, the
chances of discovering new high-probability state values are limited. Also, the weight
of the offspring particle may be lower than the weights of their parents. The new set of
particles that we obtain after the GA approach is employed may consist of inferior
particles whose weights are lower than those of the particles in the old set (or parents’
generation). Consequently, the state estimation performance may be unsatisfactory
(Kuptametee et al., 2024). Thus, an efficient scheme must be employed in order to
ensure that the GA method actually improves the state estimation performance when

being integrated in PF algorithms.



1.2 Objectives

1.2.1 To propose a more efficient scheme of employing GA, ensuring quality
and diversity of created offspring state vectors in a particle filtering framework.

1.2.2 To employ the developed adaptive GA in a PF algorithm to achieve better
state estimation performance for non-linear system, both in one-dimensional and

multidimensional systems.

1.3 Scope

1.3.1 This research employs only arithmetic GA operators to improve the
performance of the PF framework.

1.3.2 The algorithms and experiments will be implemented in MATLAB.

1.4 Contributions

In our proposed adaptive GA, all original particles (i.e., high-weight parents and
low-weight parents) are always prevented from being replaced by inferior offspring
particles. This ensures that the state estimation performance will not be degraded. Some
offspring particles have weights that can be considered as high according to the
threshold employed to classify the original parents before offspring creation. To fix a
shortage of high-weight parents, such high-quality offspring particles can then be
employed as new high-weight parents. That is, low-weight parents will have more
choices of high-weight parents to randomly pair with. Adding new high-weight parents
does not increase the complexity of employing the proposed method.

In addition, the proposed adaptive GA does not require too many parameters.
Our method can then be employed with ease to enhance performance in any state-space

system.



1.5 Dissertation Structure

The remainder of this dissertation is organized as follows:

Chapter 2: Literature Review. This chapter provides the related background
theories including sequential Bayesian filtering, PF, and GA. Related previous research
is also discussed.

Chapter 3: Proposed Method. This chapter proposes a scheme that ensures
efficient employment of an adaptive GA in a PF algorithm.

Chapter 4: Simulation Results. This chapter presents the results of employing
the proposed adaptive GA in simulation state-space models. The performance of our
proposed method will be compared with that of other state-of-the-art algorithms in
cases of a one-dimensional (1-D) and a multidimensional system.

Chapter 5: Application. This chapter presents the results of employing the
proposed adaptive GA algorithm to estimate time-varying spectra of a broadband
acoustics signal that propagates through the ocean; the likelihood function is non-
Gaussian. The experiment is based on the scenario where: (1) the number of frequency
modes (or dispersion curves) can vary with time, and (2) the intensity of the additive
white Gaussian observation noise that corrupts the time-domain acoustics is unknown.

Chapter 6: Conclusions. This chapter provides conclusions from the overall

work. Limitations and future work are also discussed.



CHAPTER 2

LITERATURE REVIEW

2.1 Sequential Bayesian Filtering

In order to estimate hidden states of time-varying targeted parameters of any
system, we must first obtain a sequence of observation data as shown in Figure 2.1. In
practice, any observation can be corrupted by many kinds of undesired random noise,
while observation data can also be time-varying. State-space models are then employed
to describe the systems (Candy, 2016). At time step k €I, let X, € R% be the d,-
dimensional vector of state variables that are hidden in the d,-dimensional vector of
measurable values (i.e., observation) y, € R%. There are two functions in the state-
space model: (1) the state evolution function f;(-) and (2) the observation function

g1 (). These two functions are not necessarily linear and are respectively expressed as:

Xj = f_1 (Xg—1, Ug—1) (2.1)

Vi = 8k Xk, Vi), (2.2)

where u;,_; € R% is a d,,-dimensional vector of state evolution noise (as independent
and identically distributed (i.i.d.) random values) that updates values of state X;_; to
obtain new values X, while vector v, € R% is a d,,-dimensional vector of i.i.d. random

noise that corrupts the observation y, (Candy, 2016; Ristic et al., 2004).

System
State
variables
X bl v ¥ v
O r
servable ¥i-1 ¥ ¥ie+1
values

Figure 2.1 State variables hidden in sequential observable data



As previously mentioned, the true state variables cannot be obtained directly
due to contaminating observation noise which sometimes can be too severe to be
handled with denoising tools. A Bayesian approach is a method employed to find the
posterior probability density function (PDF) of state variables conditional on the
observation (Candy, 2016). Suppose that we need to find the full posterior PDF at time
step k. Let X;, = {x4, ..., X} } be a set of all states up to time step k and Y, = {yy, ..., ¥x}
be a set of data obtained from all observations up to time step k. The posterior PDF can

be expressed by decomposition via Bayes’ rule as:

(X |Ye) = PXYD _ Py Yi-1) _ PlXieYiee )P Xl Vi )P (Yie—1)
KT p(Y) T @Y AL

X X, Y-
01 = LY

(2.3)

where p(y|Xy) is the likelihood function expressing the PDF of the observation y
conditional on the set of all states X;, (Candy, 2016). Function p(Xj|Yk_1) is the prior
PDF employed in state prediction and expressed via the Chapman-Kolmogorov

equation as:

PXil Y1) = [ p Xl Xpe—1, Y1) P K1 | Y1) dX o1, (2.4)

and p(yx|Yk-1) 1s the normalizing denominator expressed as:

PVl Yi—1) = [ Wil Xier Y1) K| Yie— 1) d X (2.5)

We can assume that all observations in Y, are mutually independent from each
other because each observation y;, is contaminated with i.i.d. random noise. Also, each
observation y, is assumed to be conditional on only the hidden state vector X;, at the
same time step (Candy, 2016). We can then reduce Equation 2.3 as follows:

P(Yk|xk)P(Xk|Yk—1)
P(YlYi-1)

P Xk [Ye) = (2.6)
After the posterior PDF is obtained, the state can be estimated (or inferred) as
the maximum a posteriori (MAP) estimate or the conditional mean (CM) of the

posterior PDF expressed as:



XA = argrr)l(ix P (X |Yx) (2.7)

and
XM = [ Xep X Yi)dX. (2.8)

Alternatively, we can express the full posterior PDF in a recursive form by

starting from expressing it via Bayes’ rule as:

p(Yi X )p(Xy)
Xpl|Yy) = —EF~—% 2.9

p( kl k) p(Yk) > ( )

where the functions p(Y|Xy), p(Xx), and p(Yy), denote the full likelihood function,
the full prior distribution, and the evidence or the normalizing denominator,
respectively (Candy, 2016). The full likelihood function p(Y,|X}) can be decomposed

via Bayes’ rule as:

P(YilXi) = p(¥i» Yie—1 Xk, Xie—1)
P(YelXi) = (Wil Yie—1, Xpe» Xk 1) D (Yie—1 X, Xp—1)
P (Y |Xi) = Pl X1 )0 (Yie—11Xpe=1), (2.10)

where the observations are assumed to be not conditional on the state in the future

(Candy, 2016). The full prior distribution p(X},) can be decomposed via Bayes’ rule as:

P(Xk) = pXp|Xp—1)PXg-1), (2.11)

where p(X|Xy_1) is the state evolution distribution. We can also decompose the

evidence p(Yy) via Bayes’ rule as:

P(Yr) = (Vi Yi-1)P(Yi—1)- (2.12)

Finally, according to Equations 2.10 — 2.12, we can rewrite Equation 2.9 in the

recursive form as:



_ pYIX)D (Vi1 [ Xi—1) P X X —1) 0 (Xi—1)
P(XlYie) = ICAL O I¢ /)

PV %) (X | X —1)

Xi|Ye) = p(Xp—1| Y- 2.13
P (XilYr) = p(Xi-1|Yk-1) P, Vi1 ) ( )
where p(Xy_1|Ykx—_1) is the previous posterior PDF for k € {2,...}. If k = 1,
Py, [X1)p(X1/%0)
p(xalyn) = p(xo) = S (2.14)

p(y,) ’

where p(Xy) = p(X(|Yo) 1s the initial prior PDF because observation y, does not exist

(Candy, 2016). We can also rewrite Equation 2.14 as:

anzl p(ymlxm)p(xmlxm—l)
Py lYi-1)

P (Xk|Yi) = p(Xo) (2.15)

2.2 Particle Filtering

Any posterior PDFs are continuous which cause Bayesian approaches
impractical to implement computing devices. Particle filtering (PF) is a sequential
Monte Carlo (SMC) method which generates samples of hidden states (called particles)

to approximate the posterior PDF as:
P(Xi|Ye) =~ Xily W68 X — X, (2.16)

where W}, is the probability value of the i-th sample state matrix at time step k, XJ,.
Quantity N is the number of particles set by the user and 6 (*) is the Dirac delta function
(Candy, 2016; Ristic et al., 2004). That is, Wé:k denotes the normalized importance
weight of particle X}, as:

W]

0:k
Wi, = _ (2.17)
Z}\]:l W]O:k

where w ;. represents the true importance weight of particle X, that can be found from
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(XY
W, o =Sk ke (2.18)
Ok q(XL Y,

where q(X|Yy) is the proposal distribution that draws particles X}, because we cannot
directly draw particles from the true posterior PDF p(Xj|Yx). The approximated
posterior PDF gets closer to the true posterior PDF as N increases (Candy, 2016; Ristic
et al., 2004).

2.2.1 Sequential Importance Sampling

In case states and observations are sequential, we require particles that
approximate the posterior PDF at a previous time step. In other words, particle weights
need to be updated for each time step. Sequential importance sampling (SIS) is an
algorithm derived from the concept of particle filtering for such a case (Candy, 2016;
Ristic et al., 2004). The marginal importance distribution which is employed to draw
particles X can be obtained by decomposing the importance distribution q(X|Yy)

with Bayes’ rule as:
q(XielYi) = (X[ Xpe-1, Yi) g (Xpe—11Yie-1), (2.19)

where q (X |Xj_1, Yy) is the proposal distribution employed to draw sample vector X}
which can be added to sample matrix X,_; to obtain particle X%. According to
Equations 2.13 and 2.19, we can rewrite Equation 2.18 to express the recursive weight

updating equation as:

: p(Xi1 | Yie D (X )P (XL X1
W(S:k X i i i
q(Xje—1 |Yk—1)Q(Xkka—lek)p(ylek—l)

i i P(Yk|X;)P(X§c|X;<—1)
Wo.x X Wok—1 i vl
q (X[ X-1,Y))

: (2.20)

where w) = 1/N is the initial weight assigned to all initial particles that are drawn from
the initial proposal distribution q(X,). We discard term 1/[p(yi|Yx—1)] and express
wt, in proportionality because all N particles are conditional on the same set of
observations Y, (Candy, 2016). First-order Markovian systems are systems where state

X, is conditional on only X, _;. Thus, sets X;_; and Y,_; are not necessary (Ristic et
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al., 2004). If we need to estimate only state X, of such a system, we can reduce Equation

2.20 to:

Wi - Wi p(Yklx;{)p(X;(lx;(—l)
A [CA LS

, (2.21)

where w}, denotes the true non-normalized weight of the sample state vector x, (Ristic
et al., 2004). We can also reduce Equation 2.16 in case we draw particles x}'( instead of

Xt as:
P Yy) = Tty We8(xp — Xp), (2.22)

where the state x;, can be computed with MAP estimation or with a weighted mean

(WM) expressed as’:

R = argn}l{f;\Xp(X};IYk), (2.23)
k
and
WM = vV Wixt. (2.24)

The variance of particle weights grows as time increased, even after a few time
steps. Particle degeneracy can then occur where only few particles have substantial
weights while those of the other particles tend to zero as shown in Figure 2.2. Particle
degeneracy causes poor performance in the posterior PDF approximation and state
estimation. In the worst case, there can be only one particle with a non-zero weight (or
unity normalized weight) (Candy, 2016; Ristic et al., 2004). The variance of particle

weights can be found as:

N = (i 2 [ PROXOP? () -
Var(wi) = (wie1)” | =Gy X~ P OlXi)| - (229)

where q(X,|X5_,Vx) represents the proposal distribution which can be chosen by the

user (Candy, 2016; Doucet, 2000; Ristic et al., 2004).
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Note (a) A particle swarm of low-weight particles with true weights
(b) A particle swarm of low-weight particles with normalized weights

Figure 2.2 Low-weight particles with severe degeneracy

To obtain the minimum variance of weights as Var(w,i) = 0, we draw particles

from the proposal distribution p(xy |X,ic_1, Vi) (Candy, 2016; Doucet, 2000). However,
this PDF cannot be obtained directly because state X is not only conditional on the
latest observation but also the previous state. Furthermore, it causes weight updating in

Equation 2.20 to be expressed as:

D P XDPX_) s p . IXDp XD (Y, IXi_)
Wy X Wr_q =

p(X}[x}_1.y,) 1 p(y XX DXL Dp(xE_,)
wi & Wi_1 (Vi [Xf—1), (2.26)
where
P(Vilxk1) = [ (il xi)p (Xpc|Xk— ) dx, (2.27)

which requires evaluating an integral and is, therefore, impractical (Doucet, 2000;
Ristic et al., 2004). Note that p(x;;_l) = 1/N fori € {1, ..., N} is a constant according
to the assumption of “perfect sampling” and it can also be canceled out because we
express Equation 2.26 in proportionality (Candy, 2016).

For simplicity, we prefer to draw each new particle X%, from the state evolution

PDF p(x,|x5_,) (Candy, 2016). We can then approximate the state prediction PDF



13

p(Xx|Yx—1) by modifying the Chapman-Kolmogorov equation that was shown in

Equation 2.4 as:

P(Xp|Yi-1) = [ PXpelXp—1, Yiee )P Ki—1 | Yiem 1) dX -1
P(Xp|Yi-1) = fp(xk|Xk—1) 2?’:1 l7‘71i<—15(xk—1 - X;.c—l) dXj_q

P(Xk|Ye-1) = Iiv=1 Wl.c—lp(xklec—l): (2.28)

which is the summation of N weighted state evolution PDFs as shown in Figure 2.3
where the state evolution function is assumed to be non-linear but with Gaussian noise,
for simplicity. To be accurate, we select the weighted state evolution PDF
W,i_lp(x Kk |x§(_1) as the proposal distribution and this simplifies the weight calculation

in Equation 2.20 as:

i i p(Yklxz)p(X;{lx;{—l)
Wy X Wy — —
Wi—1P (X [X—1)

Wi & p(Vi|X}), (2.29)

because w}._, /WL_; is the constant obtained from weight normalization. Choosing the
weighted state evolution PDF W} _, p(Xy|X%_,) as the proposal distribution means that
each PDF p(x,|x._,) is expected to draw Nw._, new prediction particles X, at the
beginning of time step k. That is, state values of high-weight particles are employed to
form state evolution PDFs that are allowed to draw new particles in greater numbers at
the next time step (Candy, 2016; Kuptametee & Aunsri, 2022a; Li et al., 2015).
However, quantity NW}._; can be any non-negative, non-integer value. We can then
force each state evolution PDF p(X|x._,) to draw only one new particle X as shown
in Figure 2.4 by setting w._, = 1/N and Ww._, = 1/N for every PDF p(x,|x._,) in
order to satisfy Equation 2.29 (Kuptametee & Aunsri, 2023).
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Figure 2.3 A theoretical process of state prediction in SIS
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Figure 2.4 A practical process of state evolution in SIS

2.2.2 Particle Resampling

As previously discussed, quantity NWw._,, the expected number of new
prediction particles to be drawn from each state evolution PDF p(xk|x}'{_1), is not
always an integer. Thus, we employ a random selection method called “resampling” to
draw new particles (Kuptametee & Aunsri, 2022a; Li et al., 2015). High-weight
particles are more likely to be selected multiple times, while low-weight particles are
more likely to not be selected. Consequently, the particle swarm will consist of replicas
of high-weight particles and low-weight particles will be eliminated or reduced. Also,

each particle weight must be reset to 1/N because these particles are no longer i.i.d.
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and their state values will be employed to construct the new prior PDF that draws new
particles that belong to the next time step (Candy, 2016). The state evolution of
resampled particles is shown in Figure 2.5. For example, the normalized weight of the
green particle is 0.3 when N = 10. Three green proposal PDFs that are weighted by

term 1/N can then be summed and three green new particles can be drawn.
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Note (a) An approximated posterior PDF p(xy_1|Y—1)
(b) A swarm of resampled particles X5_;
(c) Weighted proposal PDFs with new mean values fi_; (¥:_,)
(d) A created state prediction PDF p(x;|Y_;) and newly drawn particles x},

Figure 2.5 State evolution of resampled particles

Multinomial resampling is the most basic scheme that employs the roulette

wheel selection (RWS) algorithm to resample the particles (Larose, 2006; Ristic et al.,
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2004). First, we find the cumulative distribution function (CDF) of the normalized

weights of particles x&_, as:
Wiy = e Wiy, (2.30)

where CW,>_; = 0 and CW;_, = 1. The state values of the i-th particle x}_, are then

assigned to the j-th resampled particle i£—1 as:
X,_y =Xk, if CWTT <uj_, < CWi,, (2.31)

where u,];_l is a random value employed to find the resampled particle ii—r It is drawn

as u,j( ~ U(0,1) where each real number between 0 to 1 excluding the bounds has
uniform probability to be drawn (Candy, 2016; Ristic et al., 2004). Then, we draw only
one new particle X, from each state evolution PDF p(x|&._,) as previously shown in
Figure 2.5. If the normalized weight of particle x\_, is high, the particle will have a
high probability to be selected because the difference CW;_, — CW{Z} (which
represents a part of a roulette wheel) is high.

Carpenter et al. (1999) proposed the systematic resampling that employs the
stochastic universal sampling (SUS) algorithm (which was proposed by Baker (1987))
as an alternative to the RWS to reduce the selection bias (Ristic et al., 2004). The

random value u,];_l employed in Equation 2.31 for this scheme is also modified as:

—~

=t + 1 (232)

where uj_, ~ U(0,1/N) is the only one freely drawn random value. That is, systematic
resampling is a quasi-random resampling scheme (Kuptametee & Aunsri, 2022a; Li et

al., 2015). Figure 2.6 presents a pseudocode for employing RWS and SUS algorithms.
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Input: N particles (x}_,) and their normalized weights (W}_,)
Output: N resampled particles (%_,)
CWr | «wi_, %Initialize the CDF of N normalized weights
fori € {2,...,N}do
CWi_, « CWiZh +wi_, %Find the next value of the CDF
end for
If SUS is employed then
u,~U(0,1/N) %A randomly drawn first resampling point
end if
forje{1,..,N}do
If RWS is employed then
u; ~U(0,1) %Draw each resampling point
end if
If SUS is employed then
uj < uy +( —1)/N  %Find the next resampling point
end if
a<1 %Start from the first value of the CDF

while u; > CW2 , do

a<—a+1 %Move to the next value of the CDF
end while
fii_l “Xj_4 % j-th resampled particle

end for
Figure 2.6 A pseudocode for RWS and SUS algorithms

Both RWS and SUS consume substantial computation time because they
employ values of the CDF of all N normalized weights (found via Equation 2.30) to
select each particle sequentially as shown in Equation 2.31. Li et al. (2013) then
proposed the rounding-copy resampling that allows each of N original particles X_,
to create [NW}._, ] replicas where [-] is a rounding symbol (e.g., [8.4] = 8 and [8.5] =
9) and W} _, is the normalized weight of each particle x}_,. While this scheme does
not require the CDF of all N normalized weights, the total number of particles obtained

after resampling may not be N. In case the total number of resampled particles is greater
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than N, we keep only the first N best particles and we then reset the weights of these
particles to 1/N. If the total number of resampled particles is less than N, we must
create more replicas of some resampled particles in order to obtain N resampled
particles in total.

Aunsri et al. (2021) proposed the percentile-based resampling that modifies
rounding-copy resampling by allowing only high-weight particles to replicate
themselves while the others are eliminated from the swarm. After all N original
particles X%, are sorted by their weights in descending order, only the first Nppp k-1
particles are kept while the others are eliminated from the swarm. Quantity Npgg —1 1S
the smallest number of particles that satisfies the condition that summation of the
weights of the surviving Nppgg ;-1 particles must not be less than a preset percentage of
the summation of weights of the N original particles x5 _,. That is, Nppr -1 < N and

we must normalize weights of the surviving Npgg -1 particles as:

, Wi
A~ 2L k—1,dsc
Wk—l,dSC - NpBRKk—1.,j 5 (233)
j=1 Wk—l,dsc

where W,‘;_Ldsc denote the weights of the i-th sorted particles and i € {1, ..., Npgp g—1}-
The number of replicas of each surviving particle is suggested to be [N Wli—l,dsc] where
[-] is the ceiling symbol (e.g., [8.1] = 9). This ensures that the total number of particles
obtained after resampling can only be equal to or greater than N (Aunsri et al., 2021).
More resampling schemes are reviewed and discussed by Kuptametee and Aunsri
(2022a) and Li et al. (2015).

The main side effect of employing particle resampling is that the state values of
particles will have reduced diversity. This problem is called particle impoverishment
where the particle swarm converges to only one or just a few state values and the
opportunity to discover high-weight state values decreases. This problem can be severe
if the variance of the state evolution noise or the width of each weighted proposal PDF
in Figure 2.5(c) is too small. Consequently, the particle swarm may not be able to
discover high-weight state values effectively at the next time steps (Candy, 2016;
Kuptametee et al., 2024; Ristic et al., 2004).
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The effective sample size (ESS) is employed to measure particle degeneracy
and to decide whether or not resampling should be employed. The ESS at time step k —

1 can be calculated as:

N

E = Ve

(2.34)
where 1 < ESS;_; < N and a low ESSj_; denotes highly severe particle degeneracy
where only a few particles have high weights (Candy, 2016; Martino et al., 2017; Ristic
et al., 2004). That is, we may resample particles when ESS;_; is lower than a preset
threshold. As shown in Equation 2.25, Var(w},_;) cannot be found easily because it

requires an integral evaluation. Quantity ESS)_; can then be approximated as:

Neropyime
ESSk—l ~ (lelwk_l)z = 11‘ 29 (2.35)
Z?’:l(W;{_l) Z{\1:1(Wk—1)

which can be found from either the normalized weights or the true non-normalized
weights (Ahwiadi & Wang, 2020; Kuptametee & Aunsri, 2022a; Ristic et al., 2004).

Some particles are considered as “high-weight particles” because the weights of
the others are significantly lower or are near-zero, but their true non-normalized weights
may be low, as previously shown in Figure 2.2. That is, the local maximum state values
(i.e., the best particles that we have on hand) may have low true weights. In a particle
swarm with maximum ESS (i.e., ESS,_; = N), all true weights W};_1 are equal but can
be low, while their state values are not necessarily the same. That is, a high ESS;_;
value does not mean that the hidden state will be estimated effectively (Kuptametee et
al., 2024).

Sequential importance resampling (SIR) always performs particle resampling
to eliminate low-weight particles at every time step regardless of the ESS value
(Arulampalam et al., 2002; Gordon et al., 1993; Ristic et al., 2004). To fix the
impoverishment that can occur after resampling is employed, we can perturb the state
values of the resampled particles to regain particle diversity. In other words, we need
to find completely new state vectors that are different from the local maximum state

vectors. Weights of the new state vectors are also expected to be higher than the original
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non-reset weights of the resampled particles (Candy, 2016; Kuptametee & Aunsri,
2022a; Ristic, 2004).

Pitt and Shephard (1999) proposed the auxiliary particle filter that draws
auxiliary particles that assist in finding the high-weight state vectors at the next time

step. For simplicity, suppose that the state evolution function is a Gaussian PDF:
X = fr1(Xpe—1) + Wpe—y, (2.36)

where u;,_q ~ N(0,Qx_1) and Q,_4 is a d;, X d,, covariance matrix of state evolution
noise that is employed to find new state values at time step k. We employ particles X;'(_l
to find each new state vector X;'c,aux = f,,_; (x_,) as an auxiliary particle that contains
mean values of the Gaussian state evolution PDF at time step k. We employ the
likelihood value p(yy |X§<,aux) as the weight of each auxiliary particle x}'c'aux and we can
then resample these N auxiliary particles. Finally, we find each particle X}, by adding
state evolution noise ul,_; to each resampled auxiliary particle i}'{,aux (according to
Equation 2.36) and we evaluate the weight of every particle x, (according to Equation
2.29) to obtain the approximated posterior PDF at time step k (Pitt & Shephard, 1999).
However, the variance values of covariance matrix Q;_; must be carefully set. If the
variance values of Q;_; are too high, particles x}'( may be blindly located at regions of
state values that have low weights. On the other hand, if variance values of Qj_; are
too low, the diversity of state vectors may still be low and particle impoverishment may
not be properly remedied (Kuptametee & Aunsri, 2022a; Ristic, 2004).

Musso et al. (2001) proposed the regularized particle filter to regain the
diverisity of the post-resampling particles. Regularized particle filter employs state
values of each resampled particle ._; to construct a symmetric continuous kernel
function that is centered at state values of f(,i(_l. Then, we draw each new particle

X%{—l,re g from each created i-th kernel function to obtain a new set of N particles with
regained diversity. Finally, we evaluate the weight of each new particle X§<—1,re g as the
likelihood value p(y_1 |X};_1lre ) to obtain the new approximated posterior PDF at the

same time step k — 1 (Musso et al., 2001). There are many choices of kernel functions

that can be employed, for example, Epanechnikov, box (or uniform), Gaussian and



22

triangle (Candy, 2016; Gordon et al., 1993; Kuptametee et al., 2024). However, kernel

functions must be designed carefully in order to ensure that particle impoverishment
will be properly addressed and new particles x}'(_l,re g Will not be located at regions of
low-weight state values.

The roughening scheme perturbs state values of each of N resampled particles
%._, at time step k — 1 by adding zero-mean Gaussian random values that are drawn

. . . _ . 2 2

from the diagonal covariance matrix X,_; = diag(oy_1,1, .-+, Gf-1,4,) (Gordon et al.,
1993). Each variance value g_, ,, for perturbing the state value of the m-th vector
component where m € {1, ..., d, } is found as:

1 2

O-Ig—l,m = ﬁ(%k—l,m,max = fk—l,m,min)N x|, (2.37)

where f > 0 is a preset tuning parameter. Quantities X, _1 1 min a0d Xg_1 1 max are the
minimum and maximum state values of the m-th vector component at time step k — 1
that must be found from the swarm of N resampled particles (Gordon et al., 1993).
Han et al. (2015) proposed the adaptive fission particle filter (AFPF) that
modifies rounding-copy resampling by diversifying state values of replicas of N
original particles. Each j-th replica of the original particle x,_; is drawn from a

Gaussian PDF as:

J

Xk—1rep@) ~ N (Xje—1, A—1 ), (2.38)

where j € {1, ..., [N W,;_l] + Nrepmin}s Nrepmin = 0 the preset minimum number of
replicas that will be created from each original particle, X is a symmetric d, X d,

covariance matrix that is designed by the user, and

1

i i ’
1+exp< Wk—il AVg(Wk—1i) >
max(w,,_,)—Avg(wj,_,)

AL, = (2.39)

represents a parameter called “fission factor” that is exclusively found for each original

particle x._, (Han et al., 2015). Function exp(-) denotes the exponential function.
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Quantities max(w}._,) and Avg(w/._,) are the maximum and average values of the non-
normalized weights of N original particles X_,, respectively. Parameter A% _, tunes the
variance values of the covariance matrix X that is employed to perturb the state values
of replicas of the original particle x&_,. If the weight w}_, is high, A,_; will be low
and replicas will be created in a great number and are located close to their parent. If
the weight wj._, is low, A,,_; will be high and replicas will be created in a low number
and are located away from their parent. The theoretical minimum value of A%_; in
Equation 2.39 is at 1/[1 + exp(1)], while its theoretical maximum value approaches 1
asymptotically. After every new replica is found, the N original particles are gathered
along with all created replicas forming the new set of particles. Finally, weight sorting
must be done to keep only the N best particles from this set that are then further

employed in state estimation (Han et al., 2015).

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are proposed by Holland (1992) as the methods
employed to randomly find the best solution for optimization problems. GAs are
inspired by the natural selection process where the fittest individuals have increased
chances to survive. Then, the survived individuals produce new offspring individuals
with high diversity and greater fitness. In offspring creation, a chromosome of a parent
and that of another parent are employed to create a pair of new offspring chromosomes.
However, mutation may occur where some genes of the offspring chromosomes alter.

In traditional GAs, we treat a binary string as a chromosome where bits (zeros
and ones) denote genes. However, state values in practical applications are real
numbers. These state values must first be converted into binary strings, where the
number of bits must be carefully considered. Longer length mitigates loss of
information that is due to conversions between real numbers and binary strings and vice
versa, but a higher computational cost is required (Larose, 2006). We can alternatively
employ arithmetic GAs which directly treat a vector of real number state values as a

chromosome, while each real number state value of the vector represents a gene. Thus,
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binary GAs are out of scope in this dissertation; more information about binary GAs
can be found in work by Katoch et al. (2021), Larose (2006), and Michalewicz (1996).

After new offspring state vectors are produced, the state vector with the highest
fitness value is chosen as the best solution for the problem. GAs can be employed in,
for example, shortest path planning, localization, prices prediction, neural networks,
and video processing (Alam et al., 2020; Drachal & Pawtowski, 2021; Michalewicz,
1996).

2.3.1 Parent Selection

High-fit individuals have high probabilities to survive the selection process. The
most basic selection process is to employ the RWS algorithm which is also employed
in multinomial resampling as discussed in Subsection 2.2.2. That is, particle weights
found according to Equation 2.29 are employed as fitness values, while normalized
weights can be employed as selection probabilities (Larose, 2006; Ristic et al., 2004).
There are also other selection schemes that can be employed. Rank selection and
tournament ranking involve competitions between individuals that are not necessarily
based on the natural selection process (Katoch et al., 2021; Kuptametee et al., 2024;
Larose, 2006). De Jong (1975) proposed the elitism technique which ensures that the
state values of the individuals with the highest weights will appear in the next
generation without being altered during offspring creation (Kuptametee et al., 2024;
Larose, 2006).

If there is an individual that dominates one significantly large part of the
selection wheel while the other parts are very small, the parents will consist of too many
replicas of this high-fit individual and diversity of parents will be low (Larose, 2006).
The Sigma scaling technique ensures diversity of individuals by modifying each fitness
value of the i-th individual (i.e., particle X;.() that will be employed in the selection

Pprocess as:

wi - Avg(w,)

i —
Wik,ss = 1+ Std(Wk) > (2.40)

where w denotes the original fitness value of the i-th individual (or particle weight
found according to Equation 2.29) and Avg(w;) denotes the average of all N original

fitness values (Katoch et al., 2021; Larose, 2006). If the standard deviation of all N
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original fitness values, Std(wy), is high, the sigma-scaled fitness values of unfit
individuals will increase. Consequently, unfit individuals have a higher chance to be
selected as parents. On the contrary, if Std(wy) is low, high-fit individuals will gain
greater dominance in offspring creation by having higher sigma-scaled fitness values.
Note that we must first normalize the modified fitness values of every individual to
obtain the modified selection probability values that can be employed in any selection
schemes (Larose, 2006).

Boltzmann selection initially widens the exploration scope on the search space
in order to promote diversity of individuals. Then, it narrows the search scope to make
GA converge to the optimal solution more quickly at later generations (Katoch et al.,
2021; Larose, 2006). That is, selection probabilities of unfit individuals are almost as
high as those of high-fit individuals in the beginning generations. Then, selection
probabilities of unfit individuals decrease at later generations (Katoch et al., 2021;

Larose, 2006). The modified fitness values in Boltzmann selection can be found as:

, i

Whss = Togles o T @41)
where T is a parameter called “temperature” that is initially set to be high and decreases
with time. If T decreases, the high-fit individuals are more likely to be selected as
parents. Again, we must first normalize each modified fitness value to obtain the
modified selection probability of each individual (Larose, 2006).

The effects of employing the modified fitness values found with the Sigma
scaling and Boltzmann selection techniques can be significant if the number of
generations is set to be high (Katoch et al., 2021; Larose, 2006). However, the diversity
of individuals and the number of generations must be carefully considered and be
balanced with computation time. Also, recall that the modified fitness values can only
be employed in the selection process. We must employ the original fitness values to
consider the optimality of each individual to be the best solution of the optimization
problem (Kuptametee et al., 2024).

2.3.2 Offspring Creation

Suppose that there are N individuals that survive and are included in the set of

parents. We can randomly create up to |N /2| pairs of parents where |:]| is the floor
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symbol (e.g., |9.9] = 9). When the quantity N is odd, the number of individuals that
skip the offspring creation (or do not pair with any other individuals) must also be odd
and be at least one. These skipped individuals should have the highest fitness values
according to the principle of the elitism technique and their state values definitely
appear in the next generation of the population (De Jong, 1975). There are two steps in
calculating new state values of the to-be-created offspring vectors, crossover and
mutation (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996).

In the crossover process, two parent chromosomes exchange some of their genes
in order to produce two new offspring chromosomes. Discrete crossover follows the
principle of natural offspring chromosome creation (Larose, 2006). Suppose that there
are two parent vectors with length of five state values, {0.4,0.7,0.5,0.8,1.1} and
{0.6,0.3,1.2,1.0, 0.9}. For example, the first state value of the first offspring vector can
be either 0.4 or 0.6 with equal probability. If the first offspring vector is
{0.6,0.7,0.5, 1.0, 1.1}, another offspring vector must then be {0.4,0.3,1.2,0.8,0.9}.
However, the number of possible patterns of offspring vectors in this example is only
25 = 32. That is, the diversity of individuals can still be limited (Larose, 2006).

Arithmetic crossover creates two offspring vectors with state values that can be
completely different from those of their two parents in order to ensure diversity (Larose,
2006). Suppose that there are two parent vectors, X¢ and x2, where a € {1, ..., N} and

b € {1,...,N}buta # b. Two new offspring vectors can be found as:

<@OIf _ {axﬂ + (1 —-a)x;, u<p, (2.42a)
k X%, u > p, '
x¢ + (1 — a)x?, <
Xpor u>pe,

where a ~ U(0, 1) is a uniform random value that tunes the state values of the two
offspring vectors. Parameter p. represents the probability of crossover (p.) where 0 <
Pc <1 and u~ U(0,1). Parameter p, is normally set to be high because individuals
are encouraged to create new offspring (Katoch et al., 2021; Larose, 2006;
Michalewicz, 1996). That is, the expected number of pairs that will create new offspring

s p. X [N /2] pairs.
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Parameter a can be independently drawn for each pair of two parents. When
each parent is a one-dimensional (1-D) state value, the two linear equations for finding
new offspring state values cross each other at @ = 0.5 as shown in Figure 2.7. Circles
denote state values of two new offspring according to the parameter @ (shown as a
magenta dashed line). State values of the two offspring vectors are located between
those of their two parents and are also located within bounds (i.e., minimum and

maximum state values) of the population (Larose, 2006).
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State value

Parent 1 . . . . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7 Two new offspring state values found via arithmetic crossover

If two parent vectors are identical, the two new offspring vectors that are created
by employing arithmetic crossover will be exact copies of their parents. Radcliffe
(1990) proposed the flat crossover that creates only one new offspring to save
computation time. First, we need to compare fitness values of the two parents. Then,

the one created offspring replaces the less-fit parent, while the fitter parent is kept

unchanged. Suppose that there are two parent vectors, a high-fit parent x’,zig " and an
unfit parent x'°". We can then find the offspring vector as:
X = ax" 4 (1 — a)xie”, (2.43)

where a large value of parameter a tunes the state values of the offspring vector to
become closer to those of its high-fit parent (Radcliffe, 1990).

Mutation ensures the diversity of individuals in the new generation by randomly
altering some genes of the two offspring chromosomes created in the crossover step. In
traditional GAs, each state value of all offspring vectors will be perturbed with the

probability of mutation (p,,). That is, the expected total number of state values of the
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whole offspring generation that will mutate after crossover is employed is p,,, X N X d,
values where 0 < p,, <1 and d, represents length of state vector (Larose, 2006;
Michalewicz, 1996). Parameter p,, can also be defined as the probability that all state
values of an offspring vector will mutate, while the probability that none of state values
of the offspring vector will mutate is 1 — p,,, (Katoch et al., 2021). The reason is that,
depending on the application, a state vector can consist of state values with different
units. If some state values of such vectors are mutated while the rest are not, the
optimization results can be highly erroneous because each new state value is
inconsistently found. However, there can be cases where the mutated offspring vectors
will contain abnormal state values that are located out of bounds. Also, any offspring
state vector found by employing crossover may be replaced by its mutated replica with
the lower weight. Thus, the parameter p,,, should be set to a low value (Larose, 2006).

Gaussian mutation perturbs the offspring vectors by adding zero-mean Gaussian
random values to offspring state values. In other words, the state values of the offspring

vector are employed as mean values of the Gaussian PDF for drawing another new state

ff

vector (Larose, 2006). Suppose that a whole offspring vector xz mutates. The new

state vector can then be found as:
x ~ N(xYT %), if u < po, (2.44)

where X is a d,, X d,, symmetric covariance matrix and u ~ U(0, 1). We can choose a
diagonal matrix as the covariance matrix £ when there are no correlations between each
state value of the vector. However, variance values must be carefully set in order to
prevent abnormally high or low state values (Kuptametee et al., 2024; Larose, 2006).
Uniform mutation can be employed in case the minimum and the maximum of

the acceptable state values are known (Michalewicz, 1996). That is,
o~ Ui, xim], if w < D, (2.45)

off_-m

where Xem

denotes the m-th vector component of the mutated offspring vector
XM u~U(0,1) and m € {1, ..., d,}. U[xEE,, Y] denotes a uniform distribution

where each real number between xi5, and x5, (including both) can be drawn.



29

Quantities x,%fn and x,l({ B denote the lower and upper bounds of the state values of the

m-th vector component that must be set by the user, respectively (Michalewicz, 1996).

While the new mutated state values are not located out of bounds, the original state

values of the offspring vector Xzf T found in the crossover step can be destroyed. More
crossover and mutation schemes are discussed and can be found in work by Katoch et
al. (2021).

After we obtain new offspring individuals (where some of them mutate) at the
desired number, we re-evaluate the fitness value of every individual in the most recent
generation and repeat the overall GA process to find the next-generation individuals
until our termination criteria are met. The termination criteria can be, for example, when
a preset maximum number of generations (i.e., attempts of finding new high-fit state
vectors) per time step is reached or when the average of fitness values of every

individual no longer increases (Garzelli et al., 2008; Kuptametee et al., 2024; Larose,

2006).

2.4 Related Work

Resampling in generic PF algorithms replicates high-weight particles and
eliminates low-weight particles. The resampled particles then are employed to predict
the state at the next time step. The selection process in GAs also replicates high-fit
individuals for creating new offspring values that belong to the same time step, while
unfit individuals are eliminated. That is, particle resampling is technically similar to the
selection process in GAs, while their objectives are different (Kuptametee et al., 2024).

Because parent selection reduces the diversity of the parent state vectors, Park
et al. (2009) suggested that crossover and mutation should be employed to diversify the
state values of N resampled particles %,_, (i.e., replicas of selected parents) before
entering the state evolution function. If the diversity of new particles i;'(_l,G 4 was high,

the diversity of the new mean values fk_l(f(;'{_l,g A) and that of the new prediction

particles . would also be high. Consequently, there could be high likelihoods of
discovering high-weight state vectors at time step k. However, recall that the true

posterior PDF can be time-varying because both true state and observation data can
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evolve with time. There could still be a chance that all of the new particles X% would
have low true weights.

Zhou et al. (2021) employed roughening on N resampled particles X (that are
selected via the RWS algorithm) to obtain a set of N new parents X}'{‘G 4 With regained
diversity. Also, the weight of each new parent X};,G 4 had to be re-evaluated as the new
likelihood value p(yklf(}'c,(; 4) (according to Equation 2.29). The N weighted parents
could then be employed to create new offspring at the same time step k. That is,
enhancing state estimation performance by reshaping the posterior PDF is the main
rationale for employing offspring creation schemes (i.e., crossover and mutation) in PF
algorithms (Kuptametee et al., 2024).

Wang et al. (2020) and Zhou et al. (2021) suggested that offspring particles
should be created only when particle degeneracy of the parent-generation swarm is
severe or when quantity ESS, (found via Equation 2.35) is lower than the preset
threshold. However, as previously discussed, a high ESS), value does not mean that the
true non-normalized particle weights are also high. Thus, regardless of the value ESSy,
offspring particles must be created to ensure that the particle swarm will not be trapped
at local maximum state values.

To save computation time and to not destroy particle diversity, Yin and Zhu
(2015) suggested that all N original particles can be instantly employed as parents
without implementing any selection scheme. All N parents at each time step k,
however, must first be classified as Ny high-weight parents and Nj; low-weight
parents where Ny + Ny, = N; Ny 1s not necessarily equal to Ny

According to studies by Yin and Zhu (2015), Yin et al. (2016), Yu et al. (2019),
Zhang et al. (2021), and Zhou et al. (2021), the N parents were first sorted by their
weights in descending order. The weight of the [ESSy]-th particle that was selected
from this new set was then employed as the weight threshold where [ESS; ] was the
rounded value of ESSj, that was found via Equation 2.35. Recall that a low ESS), value
denotes severe particle degeneracy as previously shown in Figure 2.2 and the number
of high-weight parents Ny must then be low.

Zhou et al. (2021) also employed arithmetic crossover to modify the set of Ny

high-weight parents before any offspring particle was found. That is, two new high-
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weight parents were created from each of [Ny /2] randomly created pairs of original
high-weight parents where |-] is the floor symbol. Suppose that high-weight parent Xj;,
is paired with another high-weight parent x2,,. Parameter p, for this pair could be

modified and found as:

(Pcmax maX(WI‘cIH' WI?H) < Avg(wyy)

pc max_pc min
Pe = in + e
¢ Pe,min 2[max(wiywhy)—AvgWy)] 1

max(Wyy) —Avg(Wyy)

’ maX(Wl(clHrWllc)H) > Avg(Wip )
1+exp[€ ”

(2.46)

where Pcmax and pemin denote the upper and lower bounds of parameter p.,
respectively. Parameter € adjusts the shape of the employed sigmoid function and it
must be set carefully by the user. Avg(wyy) and max(wyy) denote the average and the
maximum values of the weights of the N, original high-weight parents, respectively
(Zhou et al., 2021). Parameter « for arithmetic crossover in Equation 2.42 was also

modified as:
a = max(wZH, WQH) /Wiy + WﬁH), (2.47)

where a depends on weights of the two original parents x%; and x2,, (Zhou et al.,
2021). Furthermore, Zhou et al. (2021) modified the Metropolis-Hasting (M-H) method
(proposed by Hastings (1970)) to find the probability of acceptance for the two new
high-weight parents as:

wé
= y N ) % 2.4
POA(XkH,neW' XkH) Ry <1’ maX(WﬁH:WzH)> ( Sa)

b
b b\ — mi Wi,
POA(XRp news Xiy) = min <1, m>, (2.48D)

where, for example, Xgy 0, Will always replace Xpy if its weight is greater than the
weights of both original high-weight parents. Otherwise, the probability that Xgy e
will be accepted can be low if its weight is much lower than max(w,?H, W,?H). Note that

the weights of the two new high-weight parents and those of the two original high-

weight parents must be evaluated according to the same observation y,. After
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arithmetic crossover was employed, all of 2 X [N,y /2] new particles (and the one
unpaired original high-weight parent in case quantity Ny is odd) were then gathered
together as a set of new high-weight parents (Zhou et al., 2021). However, the weights
of some newly found high-weight parents could be lower than the previously found
weight threshold and these new inferior particles did not qualify to be employed as
high-weight parents.

To create offspring particles, Yin and Zhu (2015) suggested that each low-
weight parent must first be paired with a randomly selected high-weight parent; there
would be in total N pairs of parents. The reason was to prevent pairs of any two parent
vectors that had the same state values or equal weights. To follow the principle of GA,
Zhou et al. (2021) created a CDF of normalized weights of N parent particles and
employed the RWS to randomly select a high-weight parent for each low-weight parent.
That is, the best high-weight parent had the greatest chance to be selected. However,
computation time must be considered. Yin and Zhu (2015), Yin et al. (2016), Yu et al.
(2019), Zhang et al. (2021), and Zhou et al. (2021) forced each pair to create a new
offspring particle via flat crossover to replace its low-weight parent while its high-
weight parent was kept unchanged. That is, parameter p,. in flat crossover was neglected
(or set as p. = 1) because the likelihood of finding new high-weight state vectors must
be maximized.

Studies by Yin et al. (2016) and Zhou et al. (2021) adaptively adjusted the range
of the tuning parameter « for flat crossover in Equation 2.43 as o ~ U(ESSy/N,1). If
particle degeneracy is severe (or the ESS), value is low), the bound of @ would be large
in order to maximize the diversity of offspring particles. On the contrary, if the ESS)
value is high, the state values of each offspring particle would be close to those of its
high-weight parent. However, Zhang et al. (2021) used a ~ U(1 — (ESS/N),1) to
ensure that state values of each offspring particle will be located around state values of
its high-weight parent, especially in case the ESS}, value is low. On the contrary, if the
ESS), value is high, offspring particles could be more freely found within a larger bound
for parameter a. A side effect of employing an adaptive bound for parameter « is that
new high-weight state vectors may not be searched thoroughly because the search scope
sometimes can be very narrow. Consequently, the new population still has chances to

be trapped at the local maximum state values of a few high-weight parents.
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In traditional GAs, crossover is followed by mutation. Zhou et al. (2021)
suggested that all new offspring particles (found via flat crossover) and all high-weight
parents (found via arithmetic crossover) should be gathered as a set of N new offspring
particles and should enter the mutation process in order to ensure particle diversity.
Parameter p,, (which was defined by Katoch et al. (2021) as the probability that the
whole offspring vector will mutate), however, was modified to be adaptively calculated

for each i-th new offspring particle X;.(’O Ff as:

pm,max_pm,min

{pm,max' Wll;,o ff < AVg(Wk,Of f )
Pm = me,min +

l 1+exp{8

2[Wh o —AVEWicopp)]
max(wk‘off)—Avg(wk’off)

I}; ng,off 2 AVg(Wk,Off)a
1

(2.49)

where Py max and pgmin denote the upper and lower bounds of parameter p,,,
respectively. Parameter € adjusts the shape of the employed sigmoid function and it
must be set carefully by the user. Avg(wk,o ff) and max(wk,o ff) denote the average
and the maximum values of the weights of the N new offspring particles, respectively
(Zhou et al., 2021). Zhou et al. (2021) also suggested that a mutated replica of each
offspring should not be immediately accepted. Thus, the M-H method was also applied

to find the probability of acceptance of the new mutated offspring as:

A . Wi
POA(x! XL = min 1M> 2.50
( k,of f-m k,off) < W (2.50)

where xfw #7 18 the original offspring particle that is found via flat crossover (Zhou et
al, 2021). Note that the weight of offspring x}lclo sr and that of its mutated replica
Xfw £f m must be evaluated according to the same observation yy.

To save computational cost and to ensure diversity, Park et al. (2009), Wang et
al. (2020), and Zhang et al. (2021) suggested that some offspring particles could be
found only via crossover while the rest of offspring particles could be found only via
mutation. That is, offspring particles that were found by employing only crossover and

those found by employing only mutation should coexist within the new-generation



34

swarm. If every offspring was found only via crossover, the bounds of the swarm could
get narrower in the next generation, while undiscovered high-weight state values might
be actually located outside the swarm. If only mutation was employed to find every
offspring, the algorithm could become inefficient because every new offspring would
be found blindly (Kuptametee et al., 2024).

Park et al. (2009) and Wang et al. (2020) manually set the number of crossover-
based offspring particles N,sr . and the number of mutation-based offspring particles
Ny m- These studies, however, had the constraint Ny ¢ +Norr m < N because parent
particles in these studies were not classified as high-weight parents and low-weight
parents. This constraint cannot be applied with algorithms that first classify parents by
their weights.

Zhang et al. (2021) suggested that the number of offspring particles in each of
these two types should depend on the ESS), value of the parent-generation swarm, while
the total number of offspring particles from both types must be equal to the number of
low-weight parents Ny; where Ny, < N. When quantity ESS), is high, there should be
no particle whose weight is significantly higher than the weights of the other particles.
In this case, flat crossover has greater probability of being selected and employed. On
the other hand, when quantity ESSy is low, the expected number of mutation-based
offspring particles should be high. Because the ESS; value of the parent-generation
swarm can be different at each time step, fixed quantities N ¢ ¢ and Ny sr y cannot be
employed. Thus, Zhang et al. (2021) set the probability that flat crossover would be
chosen to ESS, /N, while probability that the Gaussian mutation would be chosen was
setto 1 — (ESS,/N). Note that work by Zhang et al. (2021) neglected parameters p,
and p,, in order to maximize the likelihood of finding new high-weight state vectors.
That is, for each pair of two parents, if crossover is chosen, an offspring must always
be created with p. = 1. In the same way, if mutation is chosen for that pair of parents,
an offspring must always be created with p,,, = 1.

Recall that Zhang et al. (2021) employed mutation to find a new state vector to
directly replace the low-weight parent rather than the offspring found by employing flat

crossover. Suppose that a high-weight parent xzig "is paired with a low-weight parent

X% and mutation is randomly chosen for the pair. Gaussian mutation (as shown in
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Equation 2.44) was then modified by setting the mean values of the Gaussian PDF as
the state values of the high-weight parent. That is,

x)/ T N(x ), (2.51)

where the covariance matrix X must be carefully designed in order to prevent out-of-
bound state values. This ensured that state values of the offspring vector would be
located around those of its high-weight parent, while the weight of this new state vector
was also expected to have a high value (Zhang et al. 2021).

After we obtain the new population that consists of new Ny; offspring particles
(that replace their respective low-weight parent) and original N high-weight parents,
Yin and Zhu (2015) suggested that resampling (or selection) should be employed in
order to eliminate particles that are re-considered as having low weights (or low
selection probabilities). That is, former high-weight parents whose weights are re-
considered as low and new low-weight offspring particles must be eliminated.

Yin et al. (2016) modified work of Yin and Zhu (2015) by removing the
resampling step after employing crossover and mutation to obtain a new set of particles.
Also, the weight of every particle in this new set was simply reset to be 1/N before
advancing to the next time step via the state evolution function. Although particle
diversity could be preserved and computational cost could be reduced, low-weight
particles could still exist and state estimation performance might not be acceptable.

In practice, we should validate the weight of every new offspring particle in
order to ensure good state estimation performance. For each pair of two parents, if the
weight of an offspring particle is higher than that of its low-weight parent, this offspring
will definitely replace its low-weight parent. Otherwise, this offspring should not
qualify to exist and state values of its low-weight parent are kept unchanged
(Kuptametee et al., 2024; Michalewicz, 1996). Zhang et al, (2021) suggested that an
inferior offspring particle (i.e., an offspring particle whose weight is lower than the
weight of its low-weight parent) should have a certain likelihood to be accepted and to
replace its low-weight parent in order to ensure particle diversity. The probability of

acceptance of an offspring particle can be found by applying the M-H method:
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of f
POA(x”,x1") = min <1%> (2.52)
where xzf T is the offspring that can be found by employing either only crossover or

only mutation (Zhang et al., 2021). If there are too many accepted inferior offspring
particles, the state estimation performance can be negatively impacted. Ahwiadi and

Wang (2020) and Kuptametee and Aunsri (2022b) suggested that, for each pair of

T \ntil we obtain the one

parents, we can retry finding a new offspring particle XZ
whose weight is higher than the weight of its low-weight parent. Increasing
computational time and cost, however, must be considered.

According to Figure 2.2, severe particle degeneracy can also mean a shortage
of high-weight parents. Each low-weight parent then has only a few cases of high-
weight parents to pair with. Consequently, the particle swarm can still be trapped at the
local maximum state values. Each new offspring particle stays unused after being
computed until the last offspring particle is calculated from of the last low-weight
parent and its paired high-weight parent. Finally, we can gather all Nj; offspring
particles (with new evaluated weights) and all unchanged Ny high-weight parents as
the new swarm of N particles to estimate the hidden state. That is, we lose the
opportunity to employ high-weight offspring particles as new high-weight parents to

further promote diversity of state values in the new generation of the particle swarm.
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CHAPTER 3

PROPOSED METHOD

In this dissertation, we modify a GA to ensure particle diversity and the
likelihood of discovering new high-weight state vectors. The modified GA is also
designed to be adaptive to the original parent generation of particle swarm (i.e., the set
of N original weighted particles) instead of requiring too many parameters that must be
carefully preset. We then integrate the proposed GA into a generic PF algorithm to
improve state estimation performance. The following sections in this chapter present

the steps of the proposed method.
3.1 Parent Classification

At the beginning of each time step k, each particle X}, is first drawn from the
state evolution PDF p(x; |x§(_1); its weight W,i( is found as p(yk|x§() (as per Equation
2.29). As suggested by Yin and Zhu (2015), all N weighted particles should participate
in offspring creation without employing a selection process to ensure particle diversity.
All particles, however, must first be classified as high-weight or low-weight parents.
The benefits of particle classification are: (1) to prevent having pairs of any two
identical parents and (2) to prevent high-weight parents from being replaced by new
offspring particles. The proposed method computes the weight threshold for classifying

parents at time step k as:
thr 1w i
Wik :NZL':kaa (3.1)

which is the average of the true non-normalized weights of all N particles in the original
parent generation at time step k. Particles whose weights are not lower than wi"" will
be classified as high-weight parents, while the others are classified as low-weight
parents. Equation 3.1 does not require weight sorting and computation time can then be

saved. Furthermore, the weight threshold found in work by Yin and Zhu (2015), Yin et
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al. (2016), Yu et al. (2019), Zhang et al. (2021), and Zhou et al. (2021) as the weight of
the [ESSy]-th best particle is not always adequately high. Suppose that there are 10
particles whose weights are sorted in a descending order as: 0.28, 0.19, 0.14, 0.12, 0.08,
0.06, 0.05, 0.04, 0.03 and 0.01. The ESS value of this swarm calculated according to
Equation 2.35 will be approximately 6.1125 and [6.1125] = 6. Thus, the weight of the
sixth best particle, 0.06, is then employed as weight threshold, while the value 0.06 is
lower than the average of all ten weights, 0.1.

Note that the number of low-weight parents and the number of high-weight
parents can be different and time-varying. We denote the number of low-weight parents
at time step k and the number of high-weight parents at time step k as variables Ny,
and Ny, respectively. The pseudocode for parent classification is also provided in

Figure 3.1.

Input: N particles (x;) and their true weights (wy,)

Output: Np,; low-weight parents (x;) and Ny high-weight parents (x;y) where

Ny, + Ny =N
wilm < YN wi %Employ average of all true weights as the threshold
l<0 %]nitialize the index number of low-weight parents
h<0 %Initialize the index number of high-weight parents

fori € {1,...,N}do
if W,i > wi" then %Classify the particle as a high-weight parent
he<h+1
Xy < Xi’.,old

h i
Wirn < Wi oid

else %Classify the particle as a low-weight parent
l=l+1
XjeL < X,
Wiy, < Wk
end if
end for

Figure 3.1 A pseudocode for parent classification
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3.2 Parent Pairing

Each pair of parents is created sequentially. Each low-weight parent randomly
selects a high-weight parent to pair with. We allow each high-weight parent to be
selected multiple times. Otherwise, in case particle degeneracy occurs when the number
of high-weight parents is smaller than that of low-weight parents as shown in Figure
2.2, some low-weight parents will not have any high-weight parents to pair with.

According to the traditional principle of GAs, the fittest individual has the
highest chances to survive and to produce new offspring individuals (Katoch et al.,
2021; Larose,2006; Michalewicz, 1996). Thus, the parent particle with the maximum
weight is supposed to be selected most often or to pair with low-weight parents in
greatest numbers (Zhou et al., 2021). However, the state values of the maximum-weight
particle that we have on hand are not necessarily located around the global maximum
state values (that are located at the highest peak of the true unknown posterior PDF).
That is, the true weight of the maximum-weight particle that we have on hand may be
actually low (Kuptametee et al., 2024).

Suppose that we need to create the a-th pair of parents where a € {1, ..., Ny }.
We draw an index number b ~ U{1, ..., Ny} to select the b-th high-weight parent x2,,
to pair with the a-th low-weight parent x, . That is, we set the selection probability of
each high-weight parent to be the same because we need to mitigate the chances that
the new offspring particles will be trapped around the state values of the maximum-
weight particle (or local maximum state values). Note that each index number b does
not denote ranking orders of the high-weight parents because weight sorting was not

employed during particle classification.

3.3 Offspring Creation

Zhang et al. (2021) suggested that there are two types of offspring particles that
should be computed together in order to obtain the new generation of particle swarm:
(1) offspring particles that are calculated using only flat crossover (proposed by

Radcliffe (1990) as in Equation 2.43), and (2) offspring particles that are computed
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using only modified Gaussian mutation (proposed by Zhang et al. (2021) as in Equation
2.51). This scheme ensures that new high-weight state vectors will be identified in the
search space. However, the number of offspring particles from each type should depend
on the ESS) value of the original parent-generation particle swarm. When the ESS
value is high, the variance of all particle weights is supposed to be low and flat
crossover should be preferred to find new offspring particles whose state values are
located within the bounds of the swarm. On the other hand, when the ESS}, value is low
(or particle degeneracy is severe), there are only few particles whose weights are
significantly higher than the weights of the other particles, as previously shown in
Figure 2.2. Modified Gaussian mutation should be preferred to find new offspring
particles that are located around the state values of these few high-weight parents. Thus,
we adopt the Gaussian mutation modified by Zhang et al. (2021) by setting the

probability of choosing flat crossover for each pair at time step k as:

A (2, wi)”

Nxsi (wh)*

while the probability of choosing modified Gaussian mutation for each pair at time step
k is 1 — y,. That is, the expected number of crossover-based offspring particles to be

found at time step k is:

NkC,exp = Niz X Vi, (3.3)

and the expected number of mutation-based offspring particles to be found at time step

k is:
NkM,exp = Nip X (1 = ¥i)- (3.4

All high-weight parents are always kept unchanged, while each low-weight
parent is supposed to be replaced with its offspring in case the latter has a higher weight.
However, the new state vector may not always have a higher weight. We must first find
the offspring candidate particle X 4,4 from a pair of the low-weight parent X, and the

high-weight parent x2,,.
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Let a random number u ~ U(0,1) be drawn for selecting a GA operator for
offspring creation. If u < y,, flat crossover will be chosen and the offspring candidate

can be calculated as:
Xcand = asz + (1 - a)ng, (3-5>

where variable a ~ U(0, 1) is the state value tuning parameter. If a is low, the state
values of the candidate X.q,4 Will be close to those of the low-weight parent Xy, . In
contrast, the state values of the candidate x.,,,4 Will be close to those of the high-weight
parent X2, if « is high. Equation 3.5 can be employed only when the two parent vectors
have the same size. Equation 3.5 can then be generalized for finding each m-th new

state value as:

Xcand,m = axllc)H,m +(1- a)xlcclL,mv (3.6)

where tuning value a must be the same for every m-th vector component, where m €
{1, ..., min(d¥,, d2;)}. Quantities d¢, and d?,, denote the size of the low-weight parent
x¥, and the size of the high-weight parent x2,,, respectively. That is, only the first
min(d%,, d?,;) vector components of the two parents can be paired. Note that the two
parent state values xg; ., and x,le_m must have same data type or unit, while the whole
vector may consist of state values with different data types or units.

In case dpy > dg;, the [min(dg,, d2;;) + 1]-th through the dp};-th components
of the high-weight parent x2,, will be left unused. In case d2,; < d%, every vector
component of the high-weight parent x?,; will be employed in Equation 3.6. Then, the
[min(dg;, dpy;) + 1]-th through the dg; -th components of the low-weight parent x§;
will be concatenated to the newly found candidate x.,,,4 Without being changed. That
is, the size of the candidate X.,,,4 that is found using flat crossover must be the same
as that of the low-weight parent X, . Note that, although the two parent vectors have
different sizes in this case, all of their respective state values must have the same data

type or unit.
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Recall that the random value u ~ U(0,1) is drawn to select a GA operator for
offspring creation. If u > y,, modified Gaussian mutation will be chosen and the

offspring candidate can be found as:
Xcand ~ N(XIZQH: ¥), (3.7)

where X is a d2,; x d?,; covariance matrix that can be designed by the user. Recall that,
in this mutation scheme, the state values of the high-weight parent x2,; are employed
as mean values of the Gaussian PDF. Thus, the size of the candidate X.,,4 that is found
using modified Gaussian mutation must be same to that of the high-weight parent x2,,.

Finally, we find the a-th offspring particle that will replace its low weight parent

Xj, as:

@O f {Xcand' P(Yk|Xcana) > P(YklXkL)
. =

3.8
x4, pWilXeana) < DVEIXEL), (3-8)

where state values of the candidate X,,,4 Will be accepted and assigned to the offspring
particle only if the weight of the candidate X4 1s higher than the weight of the low-
weight parent Xy, . Otherwise, the low-weight particle X3, assigns its state values to the

offspring particle without being changed.

3.4 Evolution of High-weight Offspring Particles

Initially, particles are classified according to the threshold wi™ that is

calculated using Equation 3.1. Consequently, there are two disjoint sets of particles:
high-weight particles (red-line circles) and low-weight particles (blue-line circles) as
shown in Figure 3.2. When offspring particles are found, a set of offspring particles
(yellow-line circle) must be created. Some offspring particles are actually new state
vectors while the others are just replicas of their respective low-weight parents. That is,
the set of replicas of low-weight particles is a subset of the set of offspring particles.
Also, some offspring particles may have weights that are not smaller than the threshold
wil"  That is, these offspring particles satisfy the condition of being classified as high-

weight parents and they can then be employed along with original members of the set
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of high-weight parents. Thus, the set of high-weight particles and the set of offspring
particles are not disjoint. When all Ny offspring particles are found, the original set of
low-weight particles becomes an empty set and can be removed. Recall that the weight
threshold wi™ must stay fixed once it is calculated via Equation 3.1.

Before GA

High-weight particles Low-weight particles

After GA

High-weight particles Offspring particles

Low-weight
parent
replicas

Figure 3.2 Euler diagrams of sets of particles before and after employing GA

As previously discussed, when particle degeneracy is severe, each low-weight
parent has a few choices of high-weight parents to randomly choose and pair with.
Normally, each offspring particle can be obtained sequentially from each pair and the
computed offspring particles are stored unused until we obtain all Nj; offspring
particles. Some of the stored offspring particles may have high weights and we should
make use of them to ensure diversity of the rest of the offspring particles. In other
words, the low-weight parents should be offered more choices of high-weight parents
to pair with.

Figure 3.3 demonstrates the process of finding the first offspring particle (i.e.,

. a,of f
particle X,

with index number a = 1) where the digit on each particle denotes its
index number. The selected low-weight parent also generates a replica that is employed
during weight comparison against its offspring. If the weight of the offspring is smaller

than or equal to the weight of its low-weight parent, this offspring will be rejected and
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the state values of its low-weight parents will replace the new state values. Then, this
offspring is regarded as the replica of its low-weight parent.

If the weight of the offspring is higher than the weight of its low-weight parent,
this offspring will be accepted. Also, if the weight of the offspring is not smaller than
the preset threshold wi™ (computed via Equation 3.1), it will evolve to a new high-
weight parent with an additional probability to be selected and paired with the rest of
the low-weight parents. Otherwise, the offspring will be stored unused because its

weight is not high enough for it to be promoted as a new high-weight parent.

L ow-weight Earticles
: Crossover/
selection Mutation

Picked by
Return
QO @

index number

Replicate

Add new member o particles

Figure 3.3 The process of finding an offspring particle in the proposed method

We iterate the overall process in Figure 3.3 until there are no original low-
weight parents (not their replicas) left. Finally, we gather all N weighted particles from
all three sets (high-weight particles, offspring particles, and low-weight parent replicas)
as the new-generation population (or particle swarm) at time step k and we employ this
new population to infer (or estimate) the true state at time step k. The pseudocode for
improving the low-weight parents (i.e., offspring creation) in the proposed method is

also shown in Figure 3.4.



Input: N, low-weight parents (X,;) and N,y high-weight parents (X;5)
Output: Ny, offspring particles and N,y original high-weight parents (xy)

Ve < (X, W,i)z/ [N X Z?’zl(w,i)z] %Probability of choosing flat crossover
h « Npy %]Initial number of high-weight parents
fora e {1,...,Ny, }do
b~U{1,..,~h}
u~U(0,1)
ifu <y, then %Employ flat crossover
a~U(,1)
d < min (d,;, dyy) %Number of pairable vector components

forme {1,..,d}do
Xcanam < axllc)H,m + (1 — a)xgm

end for

ifd,, >d %In case low-weight parent is longer
forme{d+1,..,d,}do
Xeanam < Xkim %Inherit unpaired vector components

end for
end if

else %Employ mutation

b
Xeana ~ N (Xgwm Zom)

end if
Whina < PVelXena) %Weight of the a-th offspring candidate
if Wegng = Wi then %Add new high-weight parent
he<h+1
Xin < Xfana
Wity < Weana
elseifwl,,;, = wy; then %Replace the low-weight parent
Xje, < X¢ana
Wil < Weana
else
Keep the low-weight parent x§; and its weight unchanged
end if

end for

Figure 3.4 A pseudocode for offspring creation

45
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Suppose that the number of the original high-weight parents at time step k is
Nyy 014 and the number of the new high-weight offspring particles at time step k whose
weights are not lower than the threshold as computed by Equation 3.1 is Nyy pney (Which
is initially zero). In theory, the computational complexity of adding a new high-weight
offspring into an array (or a set) of high-weight parents is O(Nyy o1a + Ninnew)
because we have to create a new array with a larger size before we move the Nyy 514 +
Nip new high-weight particles (excluding the newest high-weight offspring at the
moment) to the new array (Lewis & Chase, 2014). It is possible that all N;; new
candidates will not only be accepted as new offspring but also evolve to be new high-
weight parents. Thus, we can create an array with size N X d,. in advance to store both
the original and the new high-weight particles. The complexity of adding (or pushing)
a new particle into this “maximum size” array is only O (1) because we do not need to

create a new array once each high-weight offspring is obtained (Lewis & Chase, 2014).
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CHAPTER 4

SIMULATION RESULTS

This chapter presents results of state estimation of the proposed method in
simulation state-space models. There are two experiments conducted where the state-
space model is: (1) one-dimensional, and (2) multidimensional. The size of the state
vectors in each of these experiments is, however, not time-varying.

The state-of-the-art algorithms selected for experiments in this chapter are as
follows.

The traditional particle filter called sequential importance resampling particle
filter (SIR-PF) employs stochastic universal sampling (SUS) (i.e., systematic
resampling) to eliminate low-weight particles at every time step. This selection scheme
is also employed by the auxiliary SIR particle filter (ASIR-PF) proposed by Pitt and
Shephard (1999) to resample the auxiliary particles.

The adaptive fission particle filter (AFPF) proposed by Han et al. (2015) sets
the minimum number of replicas to be created from each of N particles (excluding
themselves) t0 Nyepmin = 2. A fission factor is also employed to tune variance values
according to the weight of each original particle according to Equation 2.39.

The genetic optimization resampling particle filter (GORPF) proposed by Zhou
et al. (2021) creates new offspring only when the effective sample size (ESS) found
according to the new weights of N post-roughening parents is lower than 0.7N.
Roughening is employed according to Equation 2.38 with a tuning parameter § = 0.2
as suggested by Gordon et al. (1993). In parent classification, the number of high-
weight parents is Ny = [ESS)] where [-] is the rounding symbol, e.g., [3.4] = 3 and
[3.5] = 4. Arithmetic crossover is employed to create new high-weight parents with
parameters set as: Pcmin = 0.6, Pemaxr = 0.9 and & = 9.903438, according to
Equation 2.46, while Equations 2.48a and 2.48b are employed to accept or reject the
two new high-weight parents. The ESSj, of all N particles must be re-evaluated and flat
crossover (in Equation 2.43) can then be employed with @ ~ U(ESSy /N, 1) where each

new offspring must replace its low-weight parent, while each high-weight parent is



48

randomly selected according to a CDF of the normalized weights of N, high-weight
parents. Finally, Gaussian mutation is employed to perturb state values of every particle
(including Ny high-weight parents and Nj; new offspring particles) according to
Equation 2.44 with the parameter p,, calculated via Equation 2.49. Equation 2.49 is
employed with the following parameters: pcmin = 0.6, Pemaxr = 0.9, and € =
9.903438. Finally, Equation 2.50 is employed to accept or reject the mutated replica
of each particle.

The intelligent particle filter (IPF) proposed by Zhang et al. (2021) treats the
[ESS)] best particles as high-weight parents while the rest are treated as low-weight
parents, similar to GORPF. The probability that each of Ny high-weight parents will
be selected is set to be uniform, similar to our proposed method. If flat crossover is
chosen with probability ESS; /N, flat crossover will be employed according to Equation
2.43 with a ~U(1 — (ESS,/N),1). Modified Gaussian mutation can be chosen and
employed according to Equation 2.51 with probability 1 — (ESS;/N). Equation 2.52 is

employed for allowing the new offspring to replace its low-weight parent or not.

4.1 One-dimensional State Estimation

In this section, we choose a benchmark non-linear state-space model from work
by Gordon et al. (1993) to perform a one-dimensional (1-D) state estimation

experiment. The state evolution function and the observation function of this model are:

25x),_
Xk = free1 (X1, Up—1) = 0.5x,_; + 1+x% 11 + 8cos[1.2(k — D] + uy_q, (4.1)
and
Yk = gk, vi) = 0.05x; + vy, (4.2)

where quantity u;_, is additive state evolution noise that updates old state values at
time step k —1 and quantity v, is additive observation noise at time step k,
respectively. The weight of each particle x} in this system can be found from the

likelihood function:
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)
WL = exp <_(yk_gk(xk)) ), 4.3)

20'12,k

where g (x%) denotes the i-th predicted observation data value and a,?k denotes the
variance of observation noise vy. The parameters configured for this 1-D state-space
model are provided in Table 4.1

Table 4.1 Parameters for the 1-D state estimation experiment

Symbol Meaning Value
Xo Initial state 0
p(xo) Initial prior PDF N(0,2)
Ui_1 State evolution noise Draw from N (0, 2)
Vg Observation noise Draw from N (0, 2)
Number of time steps 100
R Number of simulation runs 50

Some configurations in this experiment were specifically made for selected
state-of-the-art algorithms. The AFPF employs a variance o of 2 for perturbing the
state values of each created replica. The GORPF, IPF and the proposed method also
employ a variance o2 of 2 in their respective mutation schemes.

In this experiment, the state was inferred using the weighted mean (WM) of
sample state values. To obtain a fair state estimation comparison using WM, the weight
of each new particle in the final set that was obtained after resampling in SIR-PF and
ASIR-PF, after roughening in GORPF (only when ESS, = 0.7N), after offspring
creation in GORPF (only when ESS;, < 0.7N), IPF and the proposed method, must be
re-evaluated via Equation 2.29 before we estimate the state at the end of any time step
k, instead of leaving particle weights as 1/N.

The results of 1-D state estimation using WM with N = 100 particles are shown
in Figures 4.1 and 4.2, where the true states (shown as a black curve with black dots)
are plotted against estimated tracks of 50 simulation runs (shown as magenta curves).

Figure 4.1 shows comparison results obtained from non-GA-based PF algorithms (i.e.,
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SIR-PF, ASIR-PF and AFPF), while Figure 4.2 shows comparison results obtained
from GA-based PF algorithms (i.e., GORPF, IPF and the proposed PF).

SIR-PF
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10 |
BT ) " \
= OaN] ¥ \
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I‘.
ASIR-PF
2{] T T T T T T T T T
10
» ) f Y S [ :
= 0 'r s 3 Y j =
A L ‘
A0} ;
_2[] 1 '] 1 1 '] 1 L L L
0 10 20 30 40 50 60 70 80 90 100
L'
AFPF
zn T T T T T T T T
10 Y , ) '
g 0 i. T3
_1[] -
_2[] L ) L L ' L L L L L
0 10 20 30 40 50 60 70 80 90 100

k —+—True state
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Figure 4.1 Comparison of 1-D state estimations via WM by employing non-GA-based
PF algorithms

In Figure 4.1, results obtained from non-GA-based PF algorithms (i.e., SIR-PF,
ASIR-PF and AFPF show significant errors: the estimated tracks deviate from the true
state track. In ASIR-PF, the estimated tracks are more erroneous than those of the SIR-
PF at, for example, around time steps 17-18, time steps 51-52, and time steps 79-80.
The reason is that the ASIR-PF further perturbs state values of resampled auxiliary



51

particles blindly. The AFPF, however, delivered the most erroneous estimation results:
many parts of the estimated tracks clearly deviate from the track of the true state. In
AFPF, each high-weight particle created replicas at higher numbers, but the state values
of these replicas were not perturbed much from the state values of their original copy
because the fission factor tuned the variance of the Gaussian PDF that was employed
for drawing random perturbing values to be low. Each of the low-weight particles, in
contrast, created fewer replicas where the fission factor value and the variance of the
Gaussian PDF were high. Thus, the particle swarm in AFPF, even after weight sorting
and keeping only the N best particles, still could be trapped at the local maximum state

values.
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Figure 4.2 Comparison of 1-D state estimations via WM by employing GA-based PF

algorithms

Figure 4.2 compares results of 1-D state estimation using WM obtained from

GA-based PF algorithms: GORPF, IPF and the new method. The GORPF, at some time

steps, employed only roughening to diversify the state values of the selected parents (or

resampled particles) because quantity ESS; was not smaller than the preset threshold.

As previously discussed, a high ESS;, does not mean that all (or most of) particles are

located at regions of high-weight state values. Thus, the GORPF lost the opportunity to

find new and better particles to enhance state estimation at some time steps and,
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consequently, delivered erroneous results, as shown in time steps 8-15 and 30-36. The
IPF accepted some new inferior low-weight particles to be members of the new
generation of swarm. These inferior particles then participated in the state estimation
and negatively affected its performance, as shown in time steps 30-36. Thus, the new
method is obviously superior to the others because this method always rejected every
offspring candidate that was inferior to its respective low-weight parent. Also, potential
offspring particles were employed as new high-weight parents instead of being kept
unused until we needed to estimate the state.

Figure 4.3 shows the effects of employing the proposed method for posterior
PDF reshaping at selected time steps of one run. To keep the values of the y-axis scale
(i.e., normalized weights) consistent as before and after employing our method, we
normalized the weights of pre-reshaping the posterior PDFs (shown on the left-hand
side). The dark gray lines denote the normalized weight threshold at the average (or
1/N where N = 100). Some low-weight particles can be seen to have been relocated
to the new positions where high-weight state values existed because they were replaced
by offspring particles that had higher weights. Note that the weights of particles in post-
reshaping PDFs (shown on the right-hand side) had not been re-normalized because we

need to present clear comparisons between before and after employing the new method.
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Figure 4.3 Posterior PDFs are reshaped after employing the proposed method

Table 4.2 presents a comparison of the 1-D state estimation performance

previously shown in Figures 4.1 and 4.2 in terms of numerical error measurements.

Root-mean-squared errors (RMSE) and mean absolute errors (MAE) were employed to

assess the state estimation performance. We employ their averages values that can be

found as:

1 1 -
AVB(RMSE) = £ Ziy (L85, [y — s (4.4)

and

1

R 1

r=1 KZ§=1 |xk - fk,r B (4-5)
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where x;, denotes the true state at time step k from all K time steps, while X, denotes

the estimated state at time step k of the r-th simulation run from all R runs (Aunsri et
al., 2021; Kuptametee & Aunsri, 2022b).

Table 4.2 Numerical error measurements in 1-D state estimation

PF Avg(RMSE) Var(RMSE) Avg(MAE) Var(MAE)
SIR-PF 3.1113 0.1471 1.6290 0.0277
ASIR-PF 3.1922 0.1790 1.5644 0.0348
AFPF 4.0221 1.0266 2.2174 0.2540
GORPF 2.9023 0.2758 1.5145 0.0461
IPF 2.6131 0.1692 1.4481 0.0286
Proposed 2.4507 0.0185 1.3998 0.0077

The average numerical errors of non-GA-based PF algorithms were higher than
those of GA-based PF algorithms. The average RMSE of the SIR-PF was lower than
that of the ASIR-PF but the average MAE of the SIR-PF was higher than that of the
ASIR- PF. However, the variances of the numerical errors of the SIR-PF were lower
than those of the ASIR-PF for both RMSEs and MAEs. The AFPF yielded the highest
averages of errors and the highest variances of errors. This showed that blind state value
perturbation was ineffective.

Results obtained from the GORPF were more erroneous than results delivered
from the other two GA-based PF algorithms, the IPF and the proposed method.
Although the average errors of the GORPF were lower than those of the SIR-PF and
ASIR-PF, the variance of RMSEs and MAEs of the GORPF were higher than not only
those of the SIR-PF and the ASIR-PF but also those of the IPF and the proposed PF. In
roughening which was employed in the GORPF, the state values of N resampled
particles were perturbed according to the same set of adaptive variance values, which
could be different for each vector component at each time step via Equation 2.37. That
is, variance values in roughening could vary for each time step. This showed that the
adaptability of the IPF and the proposed PF without pre-setting too many GA
parameters provided better performance compared to the GORPF. The average RMSE
and MAE obtained by the IPF were lower than those of the SIR-PF, but the variance of
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RMSEs and MAEs of the IPF are higher than those of the SIR-PF. The reason was that
the IPF sometimes accepted candidate particles as new offspring particles, while their
weights were lower than those of their respective low-weight parents. The performance
of the proposed method was better and more reliable than the other algorithms as shown
by having the lowest averages and variances of errors in this experiment.

The computation time for 1-D state estimation for each PF algorithm where N =
100 was also measured and provided in Table 4.3. The average computation time can

be found as:

. 1
Avg(Time) = ﬁ2$=1 211;1 ti,rs (4.6)

where t; ;- denotes the computation time (measured in seconds) at time step k of the
r-th simulation run. Quantities K and R denote the total number of time steps and the
total number of simulation runs, respectively (Aunsri et al., 2021).

Table 4.3 Computation time in 1-D state estimation

Variance

PF Minimum Average Maximum
(*x 10°)
SIR-PF 0.0013 0.0022 0.0175 2.1685
ASIR-PF 0.0017 0.0031 0.0190 3.2025
AFPF 0.0019 0.0040 0.0436 11.2781
GORPF 0.0023 0.0048 0.1587 81.8221
IPF 0.0016 0.0038 0.0431 9.4376
Proposed 0.0014 0.0031 0.0420 3.8568

The SIR-PF runtime was the shortest because, after resampling and state
estimation, the SIR-PF just moved to next time step by updating state values of N
resampled particles via the state evolution function. This differs from perturbing the
state values to estimate the state with diversified particles. The ASIR-PF required
slightly longer computation time compared to the SIR-PF because the ASIR-PF blindly
perturbed the state values of the N resampled auxiliary particles to obtain the N new
particles employed in state estimation. In the GORPF resampling (i.e., parent selection)

and roughening were always employed at every time step. This scheme is more
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complicated than perturbing the state values of N resampled particles with fixed-
variance Gaussian random values as implemented in the ASIR-PF. Thus, the minimum
computation time spent by the GORPF was the largest. The AFPF, IPF and the
proposed PF did not employ any traditional selection (or resampling) scheme.
However, the AFPF required substantial time to find new state values of replicas of
each of the N original particles. The total number of newly created replicas (with
perturbed state values) could exceed N, while weight sorting was also required to keep
the best N particles. Also, the AFPF calculated the fission factor value of each of the N
original particles which depended on the particle weights as in Equation 2.39.

The maximum computation time of the GORPF was the longest, especially
when the ESS; value was lower than the preset threshold where parent selection,
roughening, crossover and mutation were sequentially employed. The variance of the
computation time spent by the GORPF was the largest because crossover and mutation
were employed only at some time steps. The IPF and the proposed PF employed only
crossover or mutation to find an offspring from each of the Ny pairs of parents where
Ny, < N to save computation time. However, the GORPF and IPF sorted weights to
find the weight threshold for parent classification, while the proposed method did not
require weight sorting. The computation time of the new PF then was shorter than that
of the AFPF, GORPF and IPF. However, the variance of computation time of the AFPF
and that of all GA-based PF algorithms were higher than those of the SIR-PF and ASIR-
PF in this experiment. The reason was that the number of the created offspring particles
in the AFPF and that in GA-based PF algorithms could be different at each time step.
Nevertheless, variance of computation time of the new PF was close to that of the
ASIR-PF.

Figure 4.4 shows a comprehensive comparison of 1-D state estimation in terms
of RMSEs where the variance of the Gaussian observation noise was a,?k = 2 with
different number of particles N. Figure 4.5 shows another comparison of 1-D state
estimation performance in terms of average RMSEs with different levels of observation

noise in signal-to-noise ratios (SNRs) where N = 100.
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Figure 4.5 RMSEs plotted against SNRs in 1-D state estimation

The AFPF was shown to be the least effective method in this experiment as it
led to the highest RMSEs for every case. The results also illustrated the importance of
employing GA to find new and better particles to enhance state estimation. The trend
of RMSEs of the IPF seemed more consistent than the trend of RMSEs of the GORPF
when the number of particles varied as shown in Figure 4.4 and the RMSEs of the IPF
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were lower than those of all non-GA-based methods (i.e., SIR-PF, ASIR-PF and AFPF).
However, the trend of RMSEs against varying SNRs obtained with the GORPF seemed
more consistent than the trend of RMSEs of the IPF as shown in Figure 4.5. Also, the
GORPF yielded lower RMSEs compared to those of the IPF when the SNRs of the
observation noise were low. Nevertheless, the new algorithm was shown to be robust
for low numbers of particles (shown in Figure 4.4) and for severe observation noise

(shown in Figure 4.5) by leading to the lowest RMSEs for every case.

4.2 Multidimensional State Estimation

In this section, we further test the state estimation performance on the problem
of tracking the movement of a maneuvering anti-ship missile adopted from work by
Zhou et al. (2019). The target state variables now become a multidimensional vector.

The state evolution function and the observation function of this model are:

Sk = fr_1(Sk-1, Ug—1) = ®sp_1 +Tuy 4 4.7)
and
y T
Zi = 8i(sivi) = [VaE 37 arctan ()] + v, (4.38)
where
sk =[x Yk % Y Xk il” 4.9)

is the state vector of the missile that contains: the x-axis position, the y-axis position,
the x-axis velocity, the y-axis velocity, the x-axis acceleration and the y-axis
acceleration, respectively. Matrices @ and I' denote the normal state evolution matrix

and the state evolution noise matrix, respectively, and they are expressed as
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where T is the sampling period (in seconds) and ® is the maneuvering frequency (in
radians). That is, the multiplication ®s;_; delivers a vector of the updated x-axis
position, y-axis position, x-axis velocity, y-axis velocity, x-axis acceleration and y-axis
acceleration. The multiplication I'u,_; provides a vector of x-axis jolt and y-axis jolt
(i.e., rate of acceleration change) that perturbs the multiplication ®s;_; to compute the
new state vector s, as in Equation 4.7 (Zhou et al., 2019). The weight of each particle

st in this system can be found from the likelihood function:

S .
W,l; = exp _(Zk_gk(s;‘)) ?kl(zk_gk(s;‘)) , (4.12)

where g (st) denotes the i-th predicted observation data value and R, denotes the
covariance matrix of the observation noise vector v,. The radar that tracks the
maneuvering missile is assumed to be static and is located at the xy-position (0, 0).

Parameter configurations are also provided in Table 4.4.
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Table 4.4 Parameters set for multidimensional state estimation experiment

Symbol Meaning Value
so Initial state [30000 3000 1450 0 0 —2m2]"
p(sg) Initial prior PDF N(sg,0.1I¢)
u,_, State evolution noise Draw from N (0, 0.11,)
Vi Observation noise Draw from N (0, 0.011,)
T Sampling period 0.1 seconds
w Maneuvering frequency 0.2m radians
N Number of particles 300
K Time steps 400
R Simulation runs 50

In this experiment, the selection of the state inference method was also WM.
There were only a few additional parameter configurations for this experiment as
follows. The AFPF employs the covariance matrix £ = 0.1I for perturbing the state
values of each created replica. The GORPF, IPF and the proposed PF also employ the
covariance matrix ¥ = 0.1I4 in their respective mutation schemes.

The missile tracking simulation results obtained from non-GA-based PF
algorithms (i.e., SIR-PF, ASIR-PF and AFPF) are shown in Figures 4.6-4.8. The missile
tracking simulation results computed with the GA-based PF algorithms (i.e., GORPF,
IPF and the new method) are shown in Figures 4.9-4.11. Fifty magenta curves denote
curves of the estimated state and are plotted against the true state (shown as a black

curve).
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Figure 4.6 The state of the maneuvering missile tracked by the SIR-PF
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Figure 4.7 The state of the maneuvering missile tracked by the ASIR-PF
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Figure 4.8 The state of the maneuvering missile tracked by the AFPF

In the SIR-PF, the x-axis acceleration was poorly estimated, and it negatively
affected the x-axis velocity and position estimation as shown in Figure 4.6. The curves
of the estimated x-axis acceleration kept decreasing since the beginning until the time
around 10 s. Then, the estimated x-axis acceleration kept increasing and reached 0 m/s?
at around 25 s. This caused the estimated x-axis position (or the x-axis maneuvered
distance) to become shorter than the true one starting at the x-axis position of 60000 m.

The ASIR-PF mitigated the x-axis positional errors of the SIR-PF as shown in

Figure 4.7. At position 80000 m on the x-axis, the curves of the estimated position
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became closer to the true one. However, this was due to the overestimated x-axis
accelerations that are higher than those of the SIR-PF. Thus, this position estimation
cannot be considered effective. The problem was due to particle impoverishment where
particles got trapped in local maxima. The AFPF led to curves of the estimated x-axis
velocity and acceleration which were significantly more accurate than those of the SIR-
PF and ASIR-PF, as shown in Figure 4.8. However, the AFPF resulted in the most
severe errors in the y-axis state estimation. That is, the x-axis position was estimated

well but most of the curves of the estimated y-axis positions clearly deviate from the

true one.
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Figure 4.9 The State of the maneuvering missile tracked by the GORPF
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Figure 4.10 The state of the maneuvering missile tracked by the IPF
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Figure 4.11 The state of the maneuvering missile tracked by the proposed PF

The GORPF faced a similar problem as the SIR-PF and ASIR-PF, providing
results with erroneous estimates of x-axis positions, especially at the end of the track,
as shown in Figure 4.9. Although the estimated tracks of the x-axis acceleration
deviated less from the true track, the estimated x-axis accelerations were negative
longer than those of the SIR-PF and ASIR-PF. Consequently, the estimated x-axis
velocities were lower than the true velocity value at all times for almost every run. The
estimated traveled x-axis distances of the missile were lower than the true one at the

final time step (88000 m) for every run.
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The IPF and the proposed method were superior to all other algorithms. While
the estimated x-axis velocities and x-axis accelerations obtained from the IPF (shown
in Figure 4.10) seem to not be significantly different from those computed with the new
proposed method (shown in Figure 4.11), the superior accuracy of the proposed method
is illustrated via the estimated position tracks. The estimated y-axis positions are clearly
more accurate than those from the IPF because of more accurately estimated y-axis
velocities and y-axis accelerations. Thus, our proposed method is proved more reliable
than all of the other state-of-the-art algorithms.

Numerical errors were also calculated for performance evaluation of each PF
algorithm in multidimensional state estimation. The average and variances of RMSEs
are shown in Tables 4.5 and 4.6, respectively. The average and variances of MAEs are
also shown in Tables 4.7 and 4.8 respectively.

Table 4.5 Average RMSEs in multidimensional state estimation

PF Xk Vi Xk Ve Xi Ve
SIR-PF  830.8774 1.6024 43.4959 0.5992 4.9619 0.3808
ASIR-PF  797.6756 1.5498 43.0944 0.5812 6.0826 0.3674
AFPF 0.1085 14.6709 0.6180 4.8250 0.6943 3.0276
GORPF  682.9181 2.0176 39.5444 0.7311 2.5575 0.4575
IPF 0.0655 1.4557 0.1178 0.5225 0.0941 0.3265
Proposed  0.0625 0.5396 0.0838 0.2137 0.0621 0.1349

Table 4.6 Variances of RMSEs in multidimensional state estimation

PF Xk Vk Xpe Vi Xk Ve
SIR-PF  9.98e+03 0.3838 28.5326 0.0607 0.2326 0.0228
ASIR-PF  1.48e+04 0.3412 18.9508 0.0534 0.2001 0.0218
AFPF 2.13e-05  31.2837 0.0088 2.8147 0.0133 1.0635
GORPF  8.41e+03 1.0278 44.9217 0.1130 0.0598 0.0421
IPF 1.40e-05 0.4356 1.00e-04 0.0402 1.17e-04 0.0156
Proposed  3.29e¢-05 0.0504 1.08e-04 0.0099 6.55e-05 0.0040
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Table 4.7 Average MAEs in multidimensional state estimation

PF Xk Vi X Vi Xpe Vi
SIR-PF  638.8815 1.3520 36.8528 0.5081 4.0521 0.3221
ASIR-PF  631.8755 1.2914 36.7499 0.4965 4.8917 0.3135
AFPF 0.0869 11.6129 0.4703 3.8337 0.5396 2.3859
GORPF  504.1201 1.6742 34.0662 0.6211 2.2201 0.3880
IPF 0.0519 1.1483 0.0924 0.4166 0.0733 0.2584
Proposed  0.0470 0.4319 0.0652 0.1760 0.0483 0.1107

Table 4.8 Variances of MAEs in multidimensional state estimation

PF Xk Vk Xje Vi Xk Ve
SIR-PF  5.41e+03  0.3515 20.3666 0.0480 0.1516 0.0179
ASIR-PF  8.24e+03  0.2637 14.0046 0.0419 0.1413 0.0171
AFPF 1.72¢-04  24.5280 0.0045 1.6823 0.0079 0.6363
GORPF  4.43e+03  0.8193 31.6699 0.0874 0.0479 0.0328
IPF 1.01e-05 0.3087 5.08e-05 0.0242 6.53e-05 0.0092
Proposed  2.38e-05 0.0353 6.65¢-05 0.0070 3.30e-05 0.0028

The numerical results in Tables 4.5-4.8 show that the SIR-PF, the ASIR-PF and
the GORPF faced severe problems in estimating the x-axis state values by having
significantly high average errors and high error variances. The GORPF provided the
less erroneous x-axis state estimates compared to the SIR-PF and the ASIR-PF.
However, the y-axis state estimation performance of the GORPF was inferior to that of
the SIR-PF and the ASIR-PF. The AFPF provided very good x-axis state estimates but
the performance in estimating the y-axis state values was inferior to all other
algorithms. The IPF was superior to the other state-of-the-art algorithms in terms of
average errors with the exception of the proposed PF which provided the lowest average
errors for every state variable. Although the variances of the errors from the proposed
PF are not better (or lower) than those of the IPF for every state variable, they were

quite low and were considered acceptable.
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Table 4.9 provides the computation time (measured according to Equation 4.6)
for each PF algorithm in multidimensional state estimation.

Table 4.9 Computation time in multidimensional state estimation

PF Min(Time) Avg(Time) Max(Time) Var(Time)
(x 10°%)
SIR-PF 0.0209 0.0274 0.0633 1.3563
ASIR-PF 0.0313 0.0413 0.0826 3.4192
AFPF 0.0667 0.0851 0.1913 9.7741
GORPF 0.0265 0.0544 0.2191 55.9023
IPF 0.0248 0.0386 0.1661 15.9022
Proposed 0.0218 0.0319 0.0815 3.1469

In multidimensional state estimation, every PF algorithm except the SIR-PF
suffered from the larger size of state vectors because each vector component (i.e., state
value) of each original particle must be perturbed to find the new particles. The size of
state vectors affected the SIR-PF only at the state evolution of the N particles. The SIR-
PF, thus, required the shortest computation time. Although the minimum computation
time of the ASIR-PF was not lower than that of the GA-based PF algorithms in this
experiment, the variance of computation time of the ASIR-PF was still low. This could
be due to the increased number of particles N employed in this experiment and the
increased size of state vectors d,.. Recall that the ASIR-PF perturbed all of N X d,, state
values of N resampled auxiliary particles, while GA-based PF algorithms needed to
find only Ng; new offspring particles, where Ng; < N. Besides larger state vectors, the
AFPF also suffered from the total number of new particles (i.e., replicas with perturbed
state values) that exceeded N. Thus, the minimum and average of the AFPF
computation time spent was the longest, while the maximum computation time of AFPF
was slightly lower than only that of the GORPF.

Recall that the GORPF creates offspring only when the ESS) value is lower
than the preset threshold with every GA operator implemented sequentially. The
maximum and variance of the computation time of the GORPF were then larger than

those of the other algorithms. The minimum and average of the computation time of
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the GORPF were also larger than those of the IPF and the new PF. Among non-SIR PF
algorithms, the minimum and average of the computation time of the IPF were larger
than only those of our method. However, the maximum computation time of IPF was
larger than not only that of the new method but also of that of the ASIR-PF. Weight
sorting could be a factor that caused a high maximum computation time in the AFPF,
GORPF and IPF, especially when the number of particles N increased. The difference
between the maximum computation time of the new method and that of the IPF then
became larger. The new method was also shown in this experiment to work faster than
other state-of-the art PF algorithms except for the SIR-PF, while the variance of the
computation time was also significantly low.

While employing GAs increased computation time and its variance as seen in
Tables 4.3 and 4.9, the numerical errors shown in Tables 4.2 and 4.5-4.8 demonstrate
the importance of efforts in finding new high-weight state values that addresses the
problem of a particle swarm getting trapped at a local maximum. Our method not only
prevented low-quality offspring particles but also employed high-quality offspring
particles as new high-weight parents. Our method was shown to be efficient and
provided results that are superior to those of state-of-the-art GA-based PF algorithms,
GORPF and IPF.
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CHAPTER S

APPLICATION

This chapter provides details of employing the new approach to estimate the
state in a real-world application. We select the application of estimating spectra of time-
varying signals in non-linear systems studied by Aunsri and Chamnongthai (2021). A
broadband signal is emitted from the source located underwater (i.e., the ocean). Then,
the signal propagates through the medium and is recorded by a hydrophone. We
perform the signal analyses in the time-frequency domain to investigate the changes of
frequencies with time in terms of the number of the modal waves (i.e., modes) that
arrives at the different time and their peak frequency values (i.e., instantaneous modal
frequency). Tracks of such changes contain useful information for the analysis of the
dispersion characteristics of the propagation medium.

In practice, the signal received at the hydrophone can be corrupted by noise.
Although the time-domain noise can be assumed to be additive white Gaussian,
property of the noise that corrupts the time-frequency representation (TFR) is non-
Gaussian, as to be discussed later. This necessitates the implementation of PFs for the
modal frequency estimation. The accuracy of the modal frequency estimation affects

the validity of further research work related to the environmental studies.
5.1 Time-frequency Analysis of Underwater Broadband Signals

In theory, we calculate the sound pressure against time of a broadband time-

series that propagates in the ocean as:

1 14 4 . 14 !
p(r,dg, d, t) = %meu(w )G (1, dg, d,, 0" )exp {] (a) t — knr— %)} dw',
(5.1)

where quantity r denotes the distance between the source and the receiver (i.e.,

hydrophone), quantities d and d,- denote the source and receiver depths, respectively,
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quantity k,,, denotes the modal wave number, u(w") denotes the source spectrum, w =
2rf denotes the angular frequency in radians per second (rad/s), and f denotes the
frequency in Hertz (Hz) (Aunsri & Chamnongthai, 2021; Yang, 1984). Function

G,(r,d,, d,, w") is the mode transfer function that can be expressed as:

G (1, ds, dy, 0) = (5.2)

_ Ny W (d
p(dr)\/m m( S) m( r)’

where ¥,,(*) denotes the orthogonal and normalized depth-dependent functions, and
p(d,) denotes the medium density. When the signal has only one mode (i.e., the m-th

mode), the spectrum of a finite segment of such a signal can be computed as:

t+At .
Pu(w,t) = [ o, ds, d;, Dexp(—jwr)dr, (5.3)

which starts and ends at time t — At and t + At, respectively. Consequently, we obtain

P, (w,t)

e , i@~ w) ot
= 27_[ J,u(w )G‘m(rr ds' drrw ) ((1)’ _ (1))

X exp {j (w’t — kpt — %)} dw', (5.4)

whose instantaneous power spectrum can be obtained by squaring the spectrum

approximated via stationary phase approximation as:

T sin(w—wm,)At|
1P (@, )|* = —= |1(@n) G (7, ds, dy, 1)1 |ﬁ
m(At)? sin(w—wm,)At|
mwww=ﬁ%wmw%m¢mwmﬂﬁ&mﬁr, (53)

for |w — wy,| < w/At. That is, the power spectrum of the m-th single-mode signal in
Equation 5.5 has a peak at the angular frequency w,, which is regarded as the
instantaneous modal frequency. Consequently, the power spectrum can be
approximated as a summation of squared sinc pulses (Aunsri & Chamnongthai, 2021;

Yang, 1984).
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In this experiment, we employ a short-time Fourier transform (STFT) to
compute the TFR of a time-varying input signal. The reason is that the STFT does not
introduce false frequency modes called “cross-terms” which negatively affect the

readability of the TFR (Boashash, 2016). Suppose that we have an input signal:
x(t) = s(1) + n(1), (5.6)

where s(t) and n(t) represent a noise-free signal and a series of additive white
Gaussian noise values. We compute the STFT of the signal x(zr) and time t and

frequency f as:

STFT(t, f) = [ x(®)w(t — 1) exp(—j2rfT) dT
STFT.(t,f) = [[s(z) + n(D)]w(t — 7) exp(—j27fT) dT
STFT,(t, f) = STETs(t, f) + STFT,(¢, f), (5.7)

where w(t) denotes a window function employed in the STFT calculation. Terms
STFTs(t, f) and STFT,(t, f) represent the STFT of the noise-free signal s(t) and the
STFT of the noise n(7), respectively. Sometimes we can find the term w(t — t) written
as w(t — 7) in Equation 5.7 because the employed window function w(t) is normally
an even function where w(t) = w(—1) (Boashash, 2016).

For simplicity, we assume that the term STFT, (¢, f) is a Gaussian random

variable:
STFT,(t, f) ~ N(STFT,(t, f),0?), (5.8)

where 2 is an unknown variance. Because STFT,.(t, f) is a complex number, we can

then assume that the real part:

Re(STFT,(t,f)) = [ x(x)w(t — 7) cos(—j2nf7) dt (5.9)
and the imaginary part:

Im(STFT, (¢, f)) = [ x(x)w(t — 1) sin(—j2nf7) dr, (5.10)

are corrupted by additive white Gaussian noise with the same variance at g2 /2. That

1s,
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Re(STFT,(t, f)) ~ N(Re(STFT,(t, ), 62/2), (5.11)
and
Im(STFT,(t, f)) ~ N(Im(STFT,(t, f)),02/2). (5.12)

The spectrogram at time t and frequency f of the signal x(7) can be found as

the squared magnitude of its STFT:

SP.(t, f) = U x(Dw(t — t) exp(—j2nft) dt
SP(t, ) = [Re(STFT,(t, £)]” + [Im(STFT, (¢, H))], (5.13)

where the PDF of the squared STFT, SP;(t, f), becomes a noncentral chi-squared PDF
with two degrees of freedom; the parts of the noise-free STFT (i.e., Re(STFTs(t, f))
and Im(STFT(t, f)) in Equations 5.11-5.12) are not necessarily zero for each time t
and frequency f (Aunsri & Chamnongthai, 2021; Boashash, 2016).

In practice, any input signal is discrete because it is recorded with a preset

sampling rate. The spectrogram of such a signal at time step k and frequency f can be

found as:
SP.(k, ) = [Re(STFT,(k, £))]” + [Im(STFT. (e, )]’ (5.14)
where
Re(STFT (k, f)) ZlLWO_lx[ Jw[k —[] cos (—27Tf —— ) (5.15)
and

Im(STFT,(k, £)) = X2 x[l]w [k—l]sin(—anLDFlT(x) ) (5.16)

are the real part and imaginary parts of the STFT at time step k and frequency f,
respectively (Aunsri, 2019; Huillery et al., 2008; Kuptametee & Aunsri, 2022¢; Tan &
Jiang, 2019). Quantity [ denotes time, while Lppr(x) and L,, represent the length of the
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discrete Fourier transform (DFT) of the input signal x[[] and the length of the employed

window function w|[l], respectively.

5.2 Particle Filtering Formulation for Spectra Estimation

5.2.1 PF Initialization

Because we do not know the true states at the initialization, we can draw
particles to predict the state vector X; and find their weights according to the first
observation y;. Note that this application differs from the experiments presented in
Chapter 4 where the initial state vector X, was known and employed to initialize the
state evolution function.

In case of the first time step (i.e., k = 1), we need to draw the number of modes

1 for each i-th initial particle x} as:

rli ~ {Tmim, hhak) (5.17)

where U{Tyin, Tmax} denotes a discrete uniform distribution. Quantities 73, and 7,4
are the minimum and maximum of the number of modes, respectively.
Next, we draw 1 modal frequencies for each initial particle x4 and store them

as a state vector f!. Each m-th modal frequency where m € {1, ..., i} can be drawn as:

V0 fin S0 (5.18)

where fli‘m denotes the modal frequency of the m-th mode of the i-th initial particle x¢ .

Quantities f,in and fi, 4, are a preset minimum modal frequency and a preset maximum
modal frequency, respectively.

Next, we set the initial prior PDF of the modal amplitude (i.e., peak amplitude)

for each initial particle X} and store them as a state vector a;. Each m-th modal

amplitude where m € {1, ...,r{} can be drawn as a positive real-numbered value:

@, ~ U(0, max(y,)], (5.19)



77

where max(y;) denotes the maximum amplitude value searched through the
observation y;.
Also, we draw the initial STFT noise variance value for each particle initial

particle x! as:
ot ~ U(0, 020x], (5.20)

where 02, denotes the preset upper bound of the noise variance values; the noise
variance must be greater than zero.
5.2.2 State Vector Evolution

At time step k > 2, we update the modal frequencies of each particle as:
fi ~ N(fi_1, Zr k1), (5.21)

where X _; denotes a covariance matrix with the dimension ri_y X ri_; employed to
update the frequency values.

Next, we update modal amplitudes for each particle X, as:
aj ~ N(@j_1, Za -1, (5.22)

where X, ,,_; denotes a covariance matrix with the dimension ri_y X ri_, employed to
update the amplitude values.

Next, we update the noise variance value of each particle X}, as:
2,0 2,0 2
o~ N(0x21,$%), (5.23)

where {2 denotes the preset variance of the noise variance updating function.

Recall that the number of modes can vary with time because each mode arrives
the receiver at the different time. The size of each vector f. and the size of each vector
al. (i.e., number of modes r\) must then be further updated. The state evolution of modal
frequencies is then encompassed within the multiple-model particle filter (MMPF)
framework (Aunsri & Michalopoulou, 2014; Aunsri, 2018b). In this work, we assume

that the number of modes can stay the same, can decrease by one, or can increase by


https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1
https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1
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one. The transition matrix of the probabilities of change of the number of modes can

then be employed and expressed as:

p 1-p 0
P=(1-p/2 p (A-p)/2|, (5.24)
0 1-p p

where p denotes the probability that the number of modes will remain the same (i.e.,
r,i = r,i_l); 0 < p < 1. The probabilities in the first row of the matrix P are employed
when the number of modes of a particle is at the minimum; the number of modes will
increase by one with the probability 1 — p. The probabilities in the second row of the
matrix P are employed when the number of modes of a particle is at neither the
minimum nor the maximum; the probability that the number of modes will decrease by
one and the probability that the number of modes will increase by one are the same at
(1 — p)/2. The probabilities in the third row of the matrix P are employed when the
number of modes of a particle is at the maximum; the number of modes will decrease
by one with the probability 1 — p (Aunsri & Michalopoulou, 2014).

When rf =1i_; +1, we can simply draw the (r\_; + 1)-th new modal

frequency as:

ka 1~ U{fmin' fmax}: (5.25)

i
Te—1 g

which can be appended to the vector f. previously found via Equation 5.21. The modal
amplitude of the newly added mode can also be drawn as a positive real-numbered

value:

at U[min(aj_,), max(ak_,)], (5.26)

k,r,i_l +1

which can be appended to the vector a, previously found via Equation 5.22. Quantities
min(afc_l) and max(a}'c_l) denote the minimum and the maximum amplitude value of
the particle X _;.

When 7 = ri_; — 1, we can simply remove the {_,-th modal frequency and
the r¢_,-th modal amplitude from the vectors f: and al, previously found via Equations

5.21 and 5.22, respectively.
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5.2.3 Particle Weights Calculation
Let we first consider a noncentral chi-squared PDF of a 1-D random variable
zZ~ Zgl x?; quantity df denotes the degree of freedom and x; ~ N(u;, a2). Such a

PDF can be expressed as!%%%;

f(zdf,2) = % (ﬁ) s exp (— %) Lar-2)/2 (m) (5.27)

?
where
1=37 u?, (5.28)

denotes the noncentrality parameter. I,,(-) denotes the n-th order modified Bessel
function of the first kind.
To calculate weight of each particle at each time step k, we must first construct

the spectrum replica of each particle as:

. Ti . A .
Sk = 2 W mSINC?(f = fim), (5.29)

where quantity a,i(’m denotes the modal amplitude of the m-th mode (i.e., the m-th

squared sinc function) at time step k. Note that, when there is only one mode (i.e., 7} =
1), Equation 5.29 can be considered as a simplification of Equation 5.5.

The prior PDF of the number of modal frequencies is p(rx) = 1/(fhnax —
Tmin + 1). That is, the probability is the same for every value of r,, where 1} €
{Tmins -» Tmax}- The prior PDF of each modal frequency is p( fk,m) = 1/L; quantity L
represents the length of the spectrum. If a particle has r;, modes, the prior PDF can be
generalized as p( frem rk) = 1/L"*. The prior PDF of each modal amplitude is non-
informative because each modal amplitude can be any non-negative real number. Recall
that the magnitude the spectrogram at time step k and frequency f, SP.(k, f), in
Equation 5.14 can be considered as a noncentral chi-squared random variable with two
degrees of freedom and variance at 62 /2. The likelihood function can then be expressed

as:
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; 1 1 Oy +Skf) ,/yk,fxsfc,f
wp = —L]_[%=1 exp (— kf kS )IO (5.30)

i ; 2,0 2,0
1 (Ui,z) ot al/2 |

where quantities yj r and s,ic‘ s represent the magnitude at time step k and frequency f
of the observation and that of the spectrum replica, respectively (Aunsri &
Chamnongthai, 2021).

5.2.4 Employment of Our Proposed Method

Because the number of modes can vary with time, the size of each state vector
(i.e., particle) can be different. Suppose that each [-th low-weight parent x}, is paired
with the randomly selected h-th high-weight parent x%,. where I € {1, ..., Ny},
h ~U{1, ..., Nyy}, Ny, < N, and Ny < N. Quantities r%; and 1y}, denote the number
of modes of the high-weight parent X}, and that of the low-weight parent x.,,
respectively. Only one of two GA operators (i.e., flat crossover proposed by Radcliffe
(1990) or modified Gaussian mutation proposed by Zhang et al. (2021)) is randomly
chosen according to quantity ESS, of all N pre-classification parents (i.e., parameter
¥k calculated via Equation 3.2) and employed to calculate only new modal frequencies
and new modal amplitudes for each offspring. Regardless of the choice of GA
operators, each offspring must inherit the noise variance value a,f'i of its own low-
weight parent X, without perturbing it. The reason is to obtain fair comparison of the
weight of the spectrum replica generated from state values of the offspring particle and
the weight of the spectrum replica generated from state values of the low-weight parent
with the same noise variance value.

In flat crossover, only modal frequencies and modal amplitudes of the first
through the min(r%;, ¢, )-th mode of the high-weight parent x?;; and those of the low-
weight parent x4, are employed to calculate offspring state values. In case iy, > 17,
modal frequencies and modal amplitudes of the (r{; + 1)-th through the 7}, -th mode
of the low-weight parent x};, will be assigned to the offspring without being changed.
Incase 1}, < r%;, i, modal frequencies and ri{; modal amplitudes of the new offspring

can be completely different from those of its two parents. Modal frequencies and modal
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amplitudes of the (1}, + 1)-th through the r%;-th mode of the high-weight parent x%,,
are left unpaired and unemployed in this case.

When modified Gaussian mutation is employed, the size of the offspring vector
must be same as that of its high-weight parent x},;. That is, the offspring in this case
can be found by: (1) creating a copy of its low-weight parent X}, , (2) replacing the old
modal frequencies and modal amplitudes with those of its high-weight parent X1, and
(3) perturbing the newly assigned modal frequencies and modal amplitudes.

After new modal frequencies and new modal amplitudes are obtained for an
offspring, we need to find the new spectrum replica and the new weight of that offspring
(with the inherited unchanged noise variance 0,3 'i) according to Equations 5.29-5.30.
We accept the new offspring only if its weight is higher than that of its low-weight
parent x.,; . Recall that, before the first offspring is found at any time step, Ny, + Ny =
N. Because our method suggests that any offspring particle whose weight is not lower
than the weight threshold employed to classify the N parents should be employed as a
new high-weight parent, quantity N,y must be increased by one every time such an
offspring is found.

5.2.5 Spectra Estimation

After GA is employed, some original high-weight parents may have weights
that are lower than those of their respective offspring. In this application, we also
perform resampling to eliminate low-weight particles and to ensure the existence of
high-weight particles.

Suppose that the resampled particle & has 7 modes where 7, < 7 < Tnax-
We select the most frequently obtained number of modes as the number of modes of

the estimated spectrum to be created at time step k:
i = Ml_AP(fﬂ,ﬁ). (5.31)

Next, we find the most frequently obtained non-zero modal frequency of each

mode at time step k:

fim = MAP(fém), (5.32)
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where m € {1, ..., 7 }.

Next, we find the modal amplitude of each estimated modal frequency fy ,,, at
time step k. In this step, we first need to find resampled particles X!, whose modal
frequencies fklm are equal to fk,m (computed via Equation 5.32). Let N Frem denote the
number of resampled particles whose modal frequencies fk‘m satisfy the condition
fki,m = fk'm, where N From = N; quantity N Frem CanN be different for each m-th mode.
The m-th modal amplitude d,i(,m of such resampled particles is kept unchanged, while
those of the rest are set as zero, because modal amplitudes C'l,i(,m of resampled particles
whose modal frequencies fk‘m do not satisfy the condition fkfm = fk_m will be excluded.

Then, we can find each m-th modal amplitude of the estimated spectrum at time step k

as
G = T, (5.33)

which is equivalent to finding an average of the m-th modal amplitude d}'('m that
belongs to the Nz, — resampled particles. That is, the denominator in Equation 5.33
must be N Frm instead of N, while quantity d,ic,m of each unused resampled particle has

already been set to zero.

Finally, we create the estimated spectrum at time step k as

Sk = XK Qe mSINC(f = fim) (5.34)

which is a summation of 7, squared sinc functions with their respective modal
frequencies fk,m (found via Equation 5.32) and respective modal amplitudes dy ,,

(found via Equation 5.33).
5.3 Experimental Results

A time-varying broadband signal emitted and from a sound source received at

a hydrophone in the ocean (shown in Figure 5.1) is chosen as the input signal. The
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sampling rate employed in recording the signal was 2000 Hz. A spectrogram of the
signal is also shown in Figure 5.2. We selected a Hamming window as suggested by
Aunsri (2018a) with a length at 180 milliseconds (ms). However, we choose to perform
state estimation only between 451 to 1050 ms of the spectrogram where the dispersion
curves (i.e., tracks of the modal waves) seem well-separated as shown in Figure 5.3.
Figure 5.4 shows the zoomed version of such a portion of the spectrogram at frequency

200 to 600 Hz.
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Figure 5.1 A noise-free acoustic time-series
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Figure 5.2 A spectrogram of the noise-free acoustic time-series
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Figure 5.3 A portion of the spectrogram
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Figure 5.4 A zoomed portion of the spectrogram

The spectrum estimation performance of our method will be compared with that
of the traditional sequential importance resampling particle filter (SIR-PF) and the
percentile-based resampling particle filter (PBR-PF) proposed by Aunsri et al. (2021).
According to the PF formulation discussed in Section 5.2, at each time step, the SIR-
PF and PBR-PF perform Steps 5.2.1-5.2.3 and then skip to Step 5.2.5 because these PF
algorithms do not employ GA. At the beginning of Step 5.2.5, the SIR-PF and the
proposed method employ a systematic resampling scheme. The PBR-PF, however,
keeps and replicates only the Npgp ; best particles with the summation of their weights
not less 90% of the summation of all N weights at time step k, while the rest are
eliminated (Aunsri et al., 2021). Recall that Npgg < N and Npgp , must be the lowest
integer that satisfies such a condition and preset percentage. Also, the weights of the
selected and sorted Nppp\ particles must first be normalized according to Equation
2.34. Figure 5.5 shows a squared sinc function employed in this experiment to calculate

the replica of the spectrum according to Equation 5.29.
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Figure 5.5 A squared sinc function used in spectrum estimation

Table 5.1 presents the related parameters preset for the PF algorithms. The

proposed method employs modified Gaussian mutation with covariance matrices Ly =

IT;?H and X, = 10‘3lr£H to find new modal frequencies and new modal amplitudes,

respectively. Matrix I . denotes an identity matrix with dimension ri, X v, where

rt, is the number of modes of the high-weight parent x7,,.
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Table 5.1 Parameters used in spectrum estimation

Symbol Meaning Value
L Length of spectrum 800
Tmin  Minimum number of modes 2
Tmax  Maximum number of modes 6
fmin ~ Minimum modal frequency 200
fmax ~ Maximum modal frequency 600
024, Maximum noise variance value 10
trirse  First time step (ms) 451
tiast  Last time step (ms) 1050
p Probability that variable r;,_; stays unchanged 0.6
Zrx—1 Covariance matrix of PDF of modal frequencies |
Zak-1 Covariance matrix of PDF of modal amplitudes 10731, |
{2 Variance of PDF of noise variance 10°
N Number of particles 2000
K Number of time steps 600
R Number of simulation runs 50

In this experiment, the time-domain observation noise is additive white
Gaussian with a fixed but unknown variance. The SNR for each case, however, cannot
be obtained as a constant because the signal fades out with time as shown in Figures
5.1-5.2.

Figure 5.6 shows the spectrogram of the acoustic time series that is corrupted
by the time-domain additive white Gaussian noise at an average SNR of 15 dB. The
dispersion curve tracking at such an average SNR delivered by the SIR-PF, PBR-PF,
and the new method are shown in Figures 5.7-5.9. The white dots represent positions
of the estimated center frequency of modal waves that form the dispersion curves. At
the beginning of the tracking, some modes merge and ambiguity in tracking is high.
There are no significant differences between tracking results delivered by all filters at
500-650 ms. Figure 5.10 shows a comparison of spectrum estimation delivered by the

three filters at time 485 ms. The leftmost, wide and non-symmetric mode is estimated
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by two or more squared sinc functions. The rightmost mode, however, cannot be
tracked by any filter. Also, most of the modal amplitudes estimated by each filter seem
to not differ much from each other. At time 700-900 ms, the new method seems to
overestimate the number of dispersion curves as shown in Figure 5.9. Figure 5.11,
however, shows a proof of the superior performance of the new method as it can capture
the 344-Hz and the 371-Hz frequency modes at time 715 ms, while the others cannot.
Figures 5.12-5.14 show the probability mass function (PMF) of the number of modes
delivered from the SIR-PF, PBR-PF, and the new method, respectively.
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Figure 5.6 The noisy spectrogram at an average SNR of 15 dB
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Figure 5.7 Dispersion curves at an average SNR of 15 dB as tracked by the SIR-PF
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Figure 5.8 Dispersion curves at an average SNR of 15 dB as tracked by the PBR-PF
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Figure 5.9 Dispersion curves at an average SNR of 15 dB as tracked by the proposed
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Figure 5.10 Spectrum estimation at time 485 ms for an average SNR of 15 dB
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Figure 5.11 Spectrum estimation at time 715 ms for an average SNR of 15 dB
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Figure 5.12 PMF of the number of modes for an average SNR of 15 dB delivered from
the SIR-PF
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Figure 5.13 PMF of the number of modes for an average SNR of 15 dB delivered from
the PBR-PF
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Figure 5.14 PMF of the number of modes for an average SNR of 15 dB delivered from
the proposed method

Next, we show the results at an average SNR of 5 dB. The noisy spectrogram at
such an average SNR is shown in Figure 5.15, while the dispersion curve tracking
results are shown in Figures 5.16-5.18. For all filters, curves at the beginning of the
spectrogram are not well tracked. The SIR-PF, delivers the poorest tracking at such

time when compared to the PBR-PF and the new method. Both the SIR-PF and the
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PBR-PF started to miss tracking the topmost mode at time 900 ms, as shown in Figures
5.16 and 5.17, respectively. The new method can capture such a mode; however, a false
high-frequency mode shortly occurs between 900 and 950 ms as shown in Figure 5.18.
This stems from the fact that GAs tries to find the new state vectors with higher
likelihoods, while the likelithood value mainly affected by the closeness to the
observation (i.e., noisy spectrum slices) as shown in Equation 5.30. Figure 5.19 shows
the superior performance in spectrum slice estimation at time 950 ms of the new
method. The shown stronger amplitude of false modes (i.e., observation noise) proves
the side-effect of the new method, while only the new method can capture a 362-Hz
frequency mode. Figures 5.20-5.22 show the probability mass function (PMF) of the
number of modes delivered from the SIR-PF, PBR-PF, and the new method,

respectively.
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Figure 5.15 The noisy spectrogram at an average SNR of 5 dB
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Figure 5.16 Dispersion curves at an average SNR of 5 dB as tracked by the SIR-PF
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Figure 5.17 Dispersion curves at an average SNR of 5 dB as tracked by the PBR-PF
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Figure 5.18 Dispersion curves at an average SNR of 5 dB as tracked by the proposed

method
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Figure 5.19 Spectrum estimation at time 950 ms for an average SNR of 5 dB
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Figure 5.20 PMF of the number of modes for an average SNR of 5 dB delivered from
the SIR-PF
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Figure 5.21 PMF of the number of modes for an average SNR of 5 dB delivered from
the PBR-PF
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Figure 5.22 PMF of the number of modes for an average SNR of 5 dB delivered from

the proposed method

Next, we perform the experiment when the average SNR is 0 dB where the noisy
spectrogram at such an average SNR is shown in Figure 5.23. The dispersion curve
tracking results are shown in Figures 5.24-5.26. The bottommost curve tracked by the
SIR-PF has a discontinuity at around 900 ms, as shown in Figure 5.24. This
discontinuity does not appear in the results delivered by the PBR-PF (in Figure 5.25)
and the new method (in Figure 5.26). The dispersion curves at around 650 to 750 ms
delivered by the new method (in Figure 5.26). look better than those delivered by the
SIR-PF (in Figure 5.24). and the PBR-PF (in Figure 5.25) because the former has better
continuity of the curves. However, the new method faces the most severe problem about
delivering false modes as shown as short curves appearing on the TFR. This stems from
the fact that the false modes can have higher amplitudes when the average SNR is low
and they can be more likely to be misidentified as modal frequency. Figures 5.27-5.28
shows the exemplar comparison of spectrum estimation at time 729 ms and 927 ms,
respectively. The new method is shown being able to capture all modes at such
exemplar time steps, but the side-effect of misidentifying noise as false modes remains.
Figures 5.29-5.31 show the probability mass function (PMF) of the number of modes
delivered from the SIR-PF, PBR-PF, and the new method, respectively. Lower average

SNRs cause the new method to prefer the big number of modes.
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Figure 5.23 The extremely noisy spectrogram at an average SNR of 0 dB
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Figure 5.24 Dispersion curves at an average SNR of 0 dB as tracked by the SIR-PF
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Figure 5.25 Dispersion curves at an average SNR of 0 dB as tracked by the PBR-PF
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Figure 5.26 Dispersion curves at an average SNR of 0 dB as tracked by the proposed
method
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Figure 5.29 PMF of the number of modes for an average SNR of 0 dB delivered from
the SIR-PF
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Figure 5.30 PMF of the number of modes for an average SNR of 0 dB delivered from
the PBR-PF
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Figure 5.31 PMF of the number of modes for an average SNR of 0 dB delivered from
the proposed method

Finally, we evaluate the performance in term of the root-mean-square errors

which can be found as:

where s, denotes the true spectrum at time step k, while §; , denotes the inferred
spectrum at time step k of the r-th simulation run (found via Equation 5.34). Symbol
|I-|I* denotes the squared [? norm. Recall that ty;,s; and ¢, represent the first and the
last time step selected according to Table 5.1 (Aunsri & Chamnongthai, 2021).

Table 5.2 presents a comparison of average RMSEs computed for each PF
algorithm at different SNRs. At the average SNR of 15 dB. The new method yields the
lowest RMSEs compared to those of the SIR-PF and the PBR-PF. However, as the
average SNR decreases, the SIR-PF yields the lowest RMSEs compared to the PBR-PF
and the new method. Recall that the PBR-PF prefers keeping and replicating high-
weight particles without considering particle diversity. That is, the PBR-PF and the new
method are sensitive to the high intensity noise where false modes are more likely to be

misidentified. If the misidentified false modes can be eliminated by additional
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techniques by the experts, the RMSEs delivered from the new method is supposed to

be reduced.
Table 5.2 Average RMSEs
SNR SIR-PF PBR-PF Proposed
15 0.6539 0.6511 0.6342
10 0.6780 0.6813 0.6881
5 0.7440 0.7528 0.7577

0 0.8996 0.9054 0.9127
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

This dissertation presents a novel scheme for employing an adaptive GA
efficiently in improving sequential state estimation performance under PF framework.
To ensure diversity of new offspring particles, diversity of parents must be high. Recall
that procedure of parent selection is similar to resampling but their objectives are
different. High-weight particles that survive parent selection will be employed to create
new offspring particles that belong to the same time step. In resampling, after low-
weight particles are eliminated and high-weight particles are replicated, state values of
copies of the latter will be updated via state evolution function in order to predict the
true state at the next time step. While diversity of parents could be regained via
roughening, particle degeneracy might return because some resampled particles might
have lower weights after their state values were perturbed. Also, roughening could be
employed only when size of state vectors was constant, according to the variance values
found via Equation 2.37. Thus, instead of employing parent selection as done in
traditional GAs and in GORPF, all of N weighted particles can be instantly employed
as parents but they must first be classified as high-weight parents and low-weight
parents.

Offspring state vectors calculation must be done for every pair of parents at
every time step regardless of particle degeneracy measured as effective sample size
(ESS) of the N parents. Recall that the maximum ESS denotes that each parent has the
same weight, but it does not mean that this weight is actually high. In GORPF, offspring
creation will be done only when ESS (found according to re-evaluated weights of the
N post-roughening parents) is less than the preset threshold. According to simulation
results in Chapter 4, the estimation performance delivered from GORPF was proved
less reliable than those of our proposed method by having higher averages and variances

of numerical errors, while our proposed method does not require as many preset GA
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parameters as GORPF does. Also, averages and variances of computation time spent
by GORPF were significantly higher than those of our proposed method.

Each low-weight parent must pair with a randomly selected high-weight parent
in order to prevent any pair of two identical parents. Because number of low-weight
parents and high-weight parents can be uneven, each high-weight parent may be
repeatedly selected to pair with more than one low-weight parent. We set the probability
of being selected of each high-weight parent to be uniform. The reasons are to ensure
that: (1) the maximum-weight parent will not be preferred in order to ensure diversity
of offspring particles, and (2) computation time can be saved because CDF of weights
of high-weight parents is not required. Also, each created pair randomly selects only
either flat crossover or modified Gaussian mutation (where mean values of the Gaussian
PDF are state values of the high-weight parent) to find one new offspring particle in
order to save computation time. That is, we treat state values of the high-weight parent
as clues in finding the offspring state vector. Both GA operators are more efficient than
blind perturbation done on state values of each particle. As presented in Chapter 4,
performances of ASIR-PF and AFPF in estimating states from simulation state-space
models were proved inferior to that of our proposed method by delivering higher
RMSEs. Furthermore, GORPF selected each high-weight parent according to the CDF
of weights of high-weight parents. This caused computation time of GORPF to be
longer than those of IPF and our proposed method.

To ensure accuracy of state estimation, our proposed method accepts an
offspring to replace its low-weight parent only if its weight is higher than that of its
low-weight parent. As demonstrated in posterior PDFs reshaping in simulation one-
dimensional state estimation (presented in Section 4.1), each low-weight parent in our
proposed method could only either stay unchanged or randomly move to any new
region where high-weight state values exist. Furthermore, our proposed method treats
offspring particles whose weights are not lower than the weight threshold (which is
found according to weights of all N parents and employed in parent classification) as
additional high-weight parents. This scheme combats shortage of high-weight parents,
especially in case of severe particle degeneracy. In IPF, Metropolis-Hastings (M-H)
method was employed to randomly accept or reject the new offspring, while there were

no any schemes for fixing shortage of high-weight parents. Average RMSEs of IPF
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then were higher than those of our proposed method for simulation results in Chapter
4, while IPF and our proposed method delivered significant low variances of errors
compared to those of the other state-of-the-art methods.

We also tested performance of the new method in estimating spectrum of an
acoustics that disperses through an ocean waveguide in Chapter 5. GA operators were
employed to find new offspring modal frequencies and new offspring modal amplitudes
to ensure particle diversity. According to the results, stronger time-domain observation
noise creates more false modes to be misidentified as the modal frequency. In other
words, false dispersion curves are more likely to appear in the tracking results delivered
by the new method. Although the new method showed superior performance in
capturing the modal frequencies, the misidentification of false modes seems to be a
side-effect of employing the new method. Consequently, the RMSEs of the new method
are higher than those delivered from the SIR-PF and the PBR-PF for such low SNRs.
The RMSEs should be reduced if the problem of the false mode misidentification can

be solved.

6.2 Limitations

Adaptive GAs can be employed only when the condition ESS;, < N is satisfied.
When ESS;, = N or weights of all N parents are same (but not necessarily high), parent
classification will be impossible. In practice, it is difficult to achieve such maximum
ESS, especially when size of state vector is high or number of particles N is sufficient.
However, bigger state vectors decrease probability of finding the offspring whose
weight is higher than that of its low-weight parent. Such curse of dimensionality also
leads to spending more computation time in finding new offspring state values. This is
an unavoidable tradeoff between state estimation performance and computation time.
As previously shown in Chapter 4, SIR-PF spent the shortest computation time for both
one-dimensional state and multidimensional state estimation, while RMSEs delivered
from SIR-PF were higher than those of our proposed method.

Classifying parents as high-weight parents and low-weight parents can prevent

any pair of two identical parents. However, in case the parents are state vectors, it can
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be possible that m-th vector component of the low-weight parent and m-th vector
component of the high-weight parent have same state value. If such case happens, the
new offspring state value found using flat crossover for that m-th vector component,
according to Equation 2.43, will be same to those of the two parents. If all state values
in a vector have different units, we cannot swap the order of the state values and
diversity of state values of that m-th vector component can be low.

Shortage of high-weight parents in case particle degeneracy is severe could be
mitigated by adding new offspring particles whose weights were not less than the preset
threshold as new members of set of high-weight parents. However, all pairs of parents
cannot be created in advance because each pair must create an offspring sequentially
and the newly added high-weight parent can be available to be selected to form the next
pair of parents.

The new method prevents the parent particles from being replaced by the low-
quality offspring particles. However, there are no schemes in GAs for ensuring that the
weight of the new offspring candidate will always be higher than the weight of its low-
weight parent. At any time step, there can be chances that the post-GA particle swarm
will be the same as the original population because every new offspring has its weight
which is lower than the weight of their respective low-weight parent; all of these

offspring particles are then rejected.

6.3 Future Work

State values of any two parent particles can affect search space of the to-be-
drawn offspring state values. If difference between the two parent state values is high,
flat crossover should be preferred because search space is sufficiently large. On the
contrary, if difference between the two parent state values is low, modified Gaussian
mutation can be employed to find new state values that are located outside the small
search space. That is, size of difference between the two parent state values should also
be considered in randomly choosing a GA operator, not just ESS found according to
weights of the N parents. Furthermore, bounds of the population (i.e., minimum and

maximum state values of the particle swarm) should also be taken into consideration.
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New schemes should be proposed and incorporated with GAs to ensure that the
new offspring will be better than its low-weight parent in order to save computation
time for offspring weight checking.

According to the results in Chapter 5, the new method could be employed under
the MMPF framework where size of each particle (i.e., state vector) is uneven. This
pilot study can then be extended to the employment on more complicated systems and

applications.
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