
ADAPTIVE GENETIC ALGORITHMS FOR PARTICLE

FILTERING IMPROVEMENT

CHANIN KUPTAMETEE

DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

SCHOOL OF APPLIED DIGITAL TECHNOLOGY

MAE FAH LUANG UNIVERSITY

2025

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

ADAPTIVE GENETIC ALGORITHMS FOR PARTICLE

FILTERING IMPROVEMENT

CHANIN KUPTAMETEE

THIS DISSERTATION IS A PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

SCHOOL OF APPLIED DIGITAL TECHNOLOGY

MAE FAH LUANG UNIVERSITY

2025

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

ACKNOWLEDGEMENTS

First of all, I would like to deeply appreciate my dissertation advisor, Assoc.

Prof. Nattapol Aunsri, Ph. D., for his expertise, encouragement, support, and patience,

devoted to this dissertation. I am also deeply grateful to my co-advisor, Prof. Zoi-Heleni

Michalopoulou, Ph. D., for her patience devoted to guidance and writing corrections

throughout the research.

I would like to express gratitude to all examiners, Prof. Prayoot Akkaraekthalin,

Ph. D., Assoc. Prof. Punnarumol Temdee, Ph. D., Assoc. Prof. Roungsan

Chaisricharoen, Ph. D., and Asst. Prof. Chayapol Kamyod, Ph. D., for valuable

feedback and suggestions for reshaping this dissertation.

I also would like to be grateful to all instructors that I took their classes during

my Ph. D. journey at School of Applied Digital Technology (formerly School of

Information Technology), Mae Fah Luang University, Asst. Prof. Gp. Capt. Thongchai

Yooyativong, Ph. D., Assoc. Prof. Punnarumol Temdee, Ph. D., Assoc. Prof. Roungsan

Chaisricharoen, Ph. D., Assoc. Prof. Nattapol Aunsri, Ph. D., and Asst. Prof. Chayapol

Kamyod, Ph. D., for their immense knowledge and dedication in teaching.

I would like to acknowledge Mae Fah Luang University for the graduate

scholarship (Grant No. 008) and the dissertation support grant (Grant No. 0245). I also

would like to be grateful to all staffs of Office of the Postgraduate Studies and School

of Applied Digital Technology for their assistance and support. Last but not least, I

would like to express gratitude to my beloved family for continuous love and support

at any time.

 Chanin Kuptametee

Dissertation Title Adaptive Genetic Algorithms for Particle Filtering

Improvement

Author Chanin Kuptametee

Degree Doctor of Philosophy (Computer Engineering)

Advisor Associate Professor Nattapol Aunsri, Ph. D.

Co-Advisor Professor Zoi-Heleni Michalopoulou, Ph. D.

ABSTRACT

 Particle filtering is a scheme under sequential Bayesian framework widely

employed to estimate state of desired information from the observation data outputted

from non-linear, non-Gaussian systems. We proposed an adaptive genetic algorithm-

based scheme to enhance quality of the drawn sample vectors of state variables (called

particles). Each low-weight parent pairs with a randomly selected high-weight parent.

The newly created offspring particle is allowed to replace its low-weight parent only if

the weight of the offspring is higher than the weight of the low-weight parent. The

accepted offspring particles with high weights can also be paired with the other low-

weight parents in order to promote particle diversity. Simulation results show that the

new method is superior to state-of-the-art algorithms in estimating one-dimensional and

multidimensional state estimation. The new method is also tested in an application

under the multiple-model particle filter (MMPF) framework of spectrum and dispersion

curve estimation of a time-varying acoustics propagated through an ocean waveguide.

The new method still can perform well in capturing the modal frequency. However, the

new method is also sensitive to high-intensity time-domain noise where such severe

noise causes false frequency contents to be more likely to be misidentified as modal

frequency. Such a pilot study of testing the new method on the MMPF indicates that

further research and improvements of GAs still be needed.

Keywords: Genetic Algorithm, Particle Degeneracy, Particle Diversity,

 Particle Filter, Particle Impoverishment, Resampling,

 Time-frequency Representation

TABLE OF CONTENTS

CHAPTER Page

1 INTRODUCTION 1

1.1 Research Rationale 1

1.2 Objectives 4

1.3 Scope 4

1.4 Contributions 4

1.5 Dissertation Structure 5

2 LITERATURE REVIEW 6

2.1 Sequential Bayesian Filtering 6

2.2 Particle Filtering 9

2.3 Genetic Algorithms 23

2.4 Related Work 29

3 PROPOSED METHOD 37

3.1 Parent Classification 37

3.2 Parent Pairing 39

3.3 Offspring Creation 39

3.4 Evolution of High-weight Offspring Particles 42

4 SIMULATION RESULTS 47

4.1 One-dimensional State Estimation 48

4.2 Multidimensional State Estimation 59

5 APPLICATION 72

5.1 Time-frequency Analysis of Underwater Broadband Signals 72

5.2 Particle Filtering Formulation for Spectra Estimation 76

5.3 Experimental Results 82

6 CONCLUSIONS 104

6.1 Conclusions 104

6.2 Limitations 106

6.3 Future Work 107

TABLE OF CONTENTS

 Page

REFERENCES 109

CURRICULUM VITAE 116

LIST OF TABLES

Table Page

4.1 Parameters for the 1-D state estimation experiment 49

4.2 Numerical error measurements in 1-D state estimation 55

4.3 Computation time in 1-D state estimation 56

4.4 Parameters set for multidimensional state estimation experiment 61

4.5 Average RMSEs in multidimensional state estimation 68

4.6 Variances of RMSEs in multidimensional state estimation 68

4.7 Average MAEs in multidimensional state estimation 69

4.8 Variances of RMSEs in multidimensional state estimation 69

4.9 Computation time in multidimensional state estimation 70

5.1 Parameters used in spectrum estimation 87

5.2 Average RMSEs 103

LIST OF FIGURES

Figure Page

2.1 State variables hidden in sequential observable data 6

2.2 Low-weight particles with severe degeneracy 12

2.3 A theoretical process of state prediction in SIS 14

2.4 A practical process of state evolution in SIS 15

2.5 State evolution of resampled particles 16

2.6 A pseudocode for RWS and SUS algorithms 18

2.7 Two new offspring state values found via arithmetic crossover 27

3.1 A pseudocode for parent classification 38

3.2 Euler diagrams of sets of particles before and after employing GA 43

3.3 The process of finding an offspring particle in the proposed method 44

3.4 A pseudocode for offspring creation 45

4.1 Comparison of 1-D state estimations via WM by employing non-GA-

 based PF algorithms

50

4.2 Comparison of 1-D state estimations via WM by employing GA-

 based PF algorithms

52

4.3 Posterior PDFs are reshaped after employing the proposed method 54

4.4 RMSEs plotted against number of particles in 1-D state estimation 58

4.5 RMSEs plotted against SNRs in 1-D state estimation 58

4.6 The state of the maneuvering missile tracked by the SIR-PF 62

4.7 The state of the maneuvering missile tracked by the ASIR-PF 63

4.8 The state of the maneuvering missile tracked by the AFPF 64

4.9 The state of the maneuvering missile tracked by the GORPF 65

4.10 The state of the maneuvering missile tracked by the IPF 66

4.11 The state of the maneuvering missile tracked by the proposed PF 67

5.1 A noise-free acoustic time-series 83

5.2 A spectrogram of the noise-free acoustic time-series 84

5.3 A portion of the spectrogram 84

LIST OF FIGURES

Figure Page

5.4 A zoomed portion of the spectrogram 85

5.5 A squared sinc function used in spectrum estimation 86

5.6 The noisy spectrogram at an average SNR of 15 dB 88

5.7 Dispersion curves at an average SNR of 15 dB as tracked by the

 SIR-PF

89

5.8 Dispersion curves at an average SNR of 15 dB as tracked by the

 PBR-PF

89

5.9 Dispersion curves at an average SNR of 15 dB as tracked by the

 proposed method

90

5.10 Spectrum estimation at time 485 ms for an average SNR of 15 dB 90

5.11 Spectrum estimation at time 715 ms for an average SNR of 15 dB 91

5.12 PMF of the number of modes for an average SNR of 15 dB delivered

 from the SIR-PF

91

5.13 PMF of the number of modes for an average SNR of 15 dB delivered

 from the PBR-PF

92

5.14 PMF of the number of modes for an average SNR of 15 dB delivered

 from the proposed method

92

5.15 The noisy spectrogram at an average SNR of 5 dB 93

5.16 Dispersion curves at an average SNR of 5 dB as tracked by the SIR-PF 94

5.17 Dispersion curves at an average SNR of 5 dB as tracked by the PBR-PF 94

5.18 Dispersion curves at an average SNR of 5 dB as tracked by the

 proposed method

95

5.19 Spectrum estimation at time 950 ms for an average SNR of 5 dB 95

5.20 PMF of the number of modes for an average SNR of 5 dB delivered

 from the SIR-PF

96

5.21 PMF of the number of modes for an average SNR of 5 dB delivered

 from the PBR-PF

96

LIST OF FIGURES

Figure Page

5.22 PMF of the number of modes for an average SNR of 5 dB delivered

 from the PBR-PF

97

5.23 The extremely noisy spectrogram at an average SNR of 0 dB 98

5.24 Dispersion curves at an average SNR of 0 dB as tracked by the SIR-PF 98

5.25 Dispersion curves at an average SNR of 0 dB as tracked by the PBR-PF 99

5.26 Dispersion curves at an average SNR of 0 dB as tracked by the

 proposed method

99

5.27 Spectrum estimation at time 729 ms for an average SNR of 0 dB 100

5.28 Spectrum estimation at time 927 ms for an average SNR of 0 dB 100

5.29 PMF of the number of modes for an average SNR of 0 dB delivered

 from the SIR-PF

101

5.30 PMF of the number of modes for an average SNR of 0 dB delivered

 from the PBR-PF

101

5.31 PMF of the number of modes for an average SNR of 0 dB delivered

 from the proposed method

102

ABBREVIATIONS AND SYMBOLS

1-D

CDF

dB

df

𝛿(∙)

e.g.

GA

Hz

i.e.

i.i.d.

KF

MAE

MAP

MMPF

ms

PDF

PF

PMF

RMSE

SIR

SIS

SMC

SNR

STFT

TFR

WM

One-dimensional

Cumulative Density Function

Decibel

Degrees of Freedom

Dirac Delta Function

Exempli Gratia

Genetic Algorithm

Hertz

Id Est

Independent and Identically Distributed

Kalman Filter
Mean Absolute Error

Maximum a Posteriori

Multiple-Model Particle Filter

Millisecond

Probability Density Function

Particle Filter

Probability Mass Function

Root-mean-squared Error

Sequential Importance Resampling

Sequential Importance Sampling

Sequential Monte Carlo

Signal-to-noise Ratio

Short-time Fourier Transform

Time-frequency Representation

Weighted Mean

1

CHAPTER 1

INTRODUCTION

1.1 Research Rationale

 In scientific and engineering problems and applications, we need to obtain the

state of the desired information (e.g., target parameters) from any system. These

parameters, however, cannot be measured directly because they are hidden in

observation data. Also, the hidden state can be assumed time-varying because the

observation values can change as time goes. To extract the state of targeted parameters

from the sequential observation data, we need a function that relates the state

parameters and the observation data together. While such a function can be designed

according to our related prior knowledge, there can be uncertainties (or random noise)

that occur during the output measurements. A direct inversion process that finds the

state by inverting the designed function and employing the observation data can be

inefficient (Cappé et al., 2007; Krumm, 2010). Therefore, estimating states of time-

varying parameters from noisy sequential observations is a challenging but important

task in order to understand the nature of any system.

 Bayesian approaches find the probability density function (PDF) of targeted

parameters that is conditional on observation data. This PDF is called the posterior PDF

because we must first obtain the observation data before the PDF can be created (Candy,

2016). However, we cannot obtain the full posterior PDF because it requires all possible

state values of the parameters. Also, the posterior PDF does not stay fixed because

parameter states evolve with time.
 Kalman (1960) proposed the Kalman filtering (KF) as a sequential Bayesian

filtering approach that is optimal for systems with a linear relationship between states

and the observation data that are corrupted with additive, uncorrelated, and zero-mean

normally distributed noise (or additive white zero-mean Gaussian noise). It fully

characterizes the Gaussian posterior PDFs by estimating their means and covariances

at each time step. There are also variants of KFs proposed to improve the performance

2

of original KFs. Ensemble KFs (EnKFs) act as the approximation version of the original

KF by drawing samples (or ensembles) to estimate the mean and the covariance of the

Gaussian posterior PDF at each time step (Evensen, 1994); Katzfuss et al., 2016; van

Leeuwan, 2020), while Unscented KFs (UKFs) employ only a few selected samples (or

points) to capture the mean and the covariance (Julier, 1997; Wan & van der Merwe,

2000). Extended KFs (EKFs) were proposed to work with non-linear systems by using

a linearization processes (Maybeck, 1982). However, KFs are not the optimal methods

for estimating states from highly non-linear systems with non-Gaussian posterior PDFs

(Candy, 2016; Gordon et al., 1993; Ristic et al., 2004; Roonizi, 2022).

 Particle filtering (PF) is a sequential Monte Carlo (SMC) method that randomly

draws independent and identically distributed (i.i.d.) sample vectors of values of state

variables from the prior PDF of initial state values; these sample vectors are called

“particles”. Next, we find the importance weight of each particle and normalize these

weights to obtain probability masses (or normalized weighted particles), which partially

represent the posterior PDF of state given noisy observations. Finally, we infer (or

estimate) the hidden state from this approximated posterior PDF (Candy, 2016; Ristic

et al., 2004). PF is proved effective in many applications, for example, signal processing

(Andrieu et al., 2003; Aunsri & Chamnongthai, 2019; Aunsri & Chamnongthai 2021;

Aunsri & Michalopoulou, 2014; Michalopoulou & Aunsri, 2018; Yardim et al., 2011;

Zorych & Michalopoulou, 2008), agriculture (Saenmuang & Aunsri, 2019), fault

detection (Yin & Zhu, 2015; Yu et al., 2019), moving object tracking (Bhat et al., 2021;

Han et al., 2011; Park et al., 2009; Wang et al., 2020), and non-destructive evaluation

(Zafar et al., 2020).

 Drawing particles in great numbers causes the approximated posterior PDF to

get closer to the true PDF, but a higher cost is required. Also, because all particles are

randomly drawn, sometimes there can be only a few high-weight particles while the

rest have low weights. Consequently, the posterior PDF and state may be poorly

estimated (Candy, 2016; Gordon et al., 1993; Ristic et al., 2004). We should reshape

the approximated posterior PDF by altering the state values of the particles that are

located in low-probability regions in order to relocate them. After we relocate the low-

weight particles, their weights must be re-evaluated according to their new state values

in order to verify whether or not they become high-weight particles. However, we

3

should employ the state values of high-weight particles that are available on-hand as

clues for finding high-probability regions, instead of relocating the low-weight particles

blindly.

 Holland (1992) proposed the Genetic algorithm (GA) to imitate the “survival-

of-the-fittest” scheme that treats each sample (i.e., state vector) as an individual and

performs a selection process to keep high-fit individuals. The high-fit individuals that

survive are then employed as parents to produce new offspring state vectors with high

diversity among state values (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996).

During the offspring creation process, GA blindly creates pairs of two survived particles

as parents. In each pair, the state values of two parent vectors are employed to calculate

state values of the two new offspring vectors that then replace their parents.

 Yin and Zhu (2015) suggested that particles should first be classified as high-

weight and low-weight parents. Each low-weight parent must pair with a randomly

selected high-weight parent. Only one offspring particle is found from each pair and

this offspring particle then replaces its low-weight parent. This ensures existence of

high weight parents. However, if the number of high-weight parents is small, diversity

of state values of to-be-created offspring particles can be low. Consequently, the

chances of discovering new high-probability state values are limited. Also, the weight

of the offspring particle may be lower than the weights of their parents. The new set of

particles that we obtain after the GA approach is employed may consist of inferior

particles whose weights are lower than those of the particles in the old set (or parents’

generation). Consequently, the state estimation performance may be unsatisfactory

(Kuptametee et al., 2024). Thus, an efficient scheme must be employed in order to

ensure that the GA method actually improves the state estimation performance when

being integrated in PF algorithms.

4

1.2 Objectives

 1.2.1 To propose a more efficient scheme of employing GA, ensuring quality

and diversity of created offspring state vectors in a particle filtering framework.

 1.2.2 To employ the developed adaptive GA in a PF algorithm to achieve better

state estimation performance for non-linear system, both in one-dimensional and

multidimensional systems.

1.3 Scope

 1.3.1 This research employs only arithmetic GA operators to improve the

performance of the PF framework.

 1.3.2 The algorithms and experiments will be implemented in MATLAB.

1.4 Contributions

 In our proposed adaptive GA, all original particles (i.e., high-weight parents and

low-weight parents) are always prevented from being replaced by inferior offspring

particles. This ensures that the state estimation performance will not be degraded. Some

offspring particles have weights that can be considered as high according to the

threshold employed to classify the original parents before offspring creation. To fix a

shortage of high-weight parents, such high-quality offspring particles can then be

employed as new high-weight parents. That is, low-weight parents will have more

choices of high-weight parents to randomly pair with. Adding new high-weight parents

does not increase the complexity of employing the proposed method.

 In addition, the proposed adaptive GA does not require too many parameters.

Our method can then be employed with ease to enhance performance in any state-space

system.

5

1.5 Dissertation Structure

 The remainder of this dissertation is organized as follows:

 Chapter 2: Literature Review. This chapter provides the related background

theories including sequential Bayesian filtering, PF, and GA. Related previous research

is also discussed.

Chapter 3: Proposed Method. This chapter proposes a scheme that ensures

efficient employment of an adaptive GA in a PF algorithm.

 Chapter 4: Simulation Results. This chapter presents the results of employing

the proposed adaptive GA in simulation state-space models. The performance of our

proposed method will be compared with that of other state-of-the-art algorithms in

cases of a one-dimensional (1-D) and a multidimensional system.

 Chapter 5: Application. This chapter presents the results of employing the

proposed adaptive GA algorithm to estimate time-varying spectra of a broadband

acoustics signal that propagates through the ocean; the likelihood function is non-

Gaussian. The experiment is based on the scenario where: (1) the number of frequency

modes (or dispersion curves) can vary with time, and (2) the intensity of the additive

white Gaussian observation noise that corrupts the time-domain acoustics is unknown.

 Chapter 6: Conclusions. This chapter provides conclusions from the overall

work. Limitations and future work are also discussed.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Sequential Bayesian Filtering

 In order to estimate hidden states of time-varying targeted parameters of any

system, we must first obtain a sequence of observation data as shown in Figure 2.1. In

practice, any observation can be corrupted by many kinds of undesired random noise,

while observation data can also be time-varying. State-space models are then employed

to describe the systems (Candy, 2016). At time step 𝑘 ∈ I, let 𝐱𝑘 ∈ 𝐑
𝑑𝑥 be the 𝑑𝑥-

dimensional vector of state variables that are hidden in the 𝑑𝑦-dimensional vector of

measurable values (i.e., observation) 𝐲𝑘 ∈ 𝐑
𝑑𝑦. There are two functions in the state-

space model: (1) the state evolution function 𝐟𝑘(∙) and (2) the observation function

𝐠𝑘(∙). These two functions are not necessarily linear and are respectively expressed as:

 𝐱𝑘 = 𝐟𝑘−1(𝐱𝑘−1, 𝐮𝑘−1) (2.1)

 𝐲𝑘 = 𝐠𝑘(𝐱𝑘, 𝐯𝑘), (2.2)

where 𝐮𝑘−1 ∈ 𝐑
𝑑𝑢 is a 𝑑𝑢-dimensional vector of state evolution noise (as independent

and identically distributed (i.i.d.) random values) that updates values of state 𝐱𝑘−1 to

obtain new values 𝐱𝑘, while vector 𝐯𝑘 ∈ 𝐑
𝑑𝑣 is a 𝑑𝑣-dimensional vector of i.i.d. random

noise that corrupts the observation 𝐲𝑘 (Candy, 2016; Ristic et al., 2004).

Figure 2.1 State variables hidden in sequential observable data

7

 As previously mentioned, the true state variables cannot be obtained directly

due to contaminating observation noise which sometimes can be too severe to be

handled with denoising tools. A Bayesian approach is a method employed to find the

posterior probability density function (PDF) of state variables conditional on the

observation (Candy, 2016). Suppose that we need to find the full posterior PDF at time

step 𝑘. Let 𝐗𝑘 = {𝐱1, … , 𝐱𝑘} be a set of all states up to time step 𝑘 and 𝐘𝑘 = {𝐲1, … , 𝐲𝑘}

be a set of data obtained from all observations up to time step 𝑘. The posterior PDF can

be expressed by decomposition via Bayes’ rule as:

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐗𝑘,𝐘𝑘)
𝑝(𝐘𝑘)

=
𝑝(𝐗𝑘,𝐲𝑘,𝐘𝑘−1)
𝑝(𝐲𝑘,𝐘𝑘−1)

=
𝑝(𝐲𝑘|𝐗𝑘,𝐘𝑘−1)𝑝(𝐗𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐗𝑘)𝑝(𝐗𝑘|𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
, (2.3)

where 𝑝(𝐲𝑘|𝐗𝑘) is the likelihood function expressing the PDF of the observation 𝐲𝑘

conditional on the set of all states 𝐗𝑘 (Candy, 2016). Function 𝑝(𝐗𝑘|𝐘𝑘−1) is the prior

PDF employed in state prediction and expressed via the Chapman-Kolmogorov

equation as:

 𝑝(𝐗𝑘|𝐘𝑘−1) = ∫𝑝(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘−1)𝑝(𝐗𝑘−1|𝐘𝑘−1)𝑑𝐗𝑘−1, (2.4)

and 𝑝(𝐲𝑘|𝐘𝑘−1) is the normalizing denominator expressed as:

 𝑝(𝐲𝑘|𝐘𝑘−1) = ∫𝑝(𝐲𝑘|𝐗𝑘 , 𝐘𝑘−1)𝑝(𝐗𝑘|𝐘𝑘−1)𝑑𝐗𝑘. (2.5)

 We can assume that all observations in 𝐘𝑘 are mutually independent from each

other because each observation 𝐲𝑘 is contaminated with i.i.d. random noise. Also, each

observation 𝐲𝑘 is assumed to be conditional on only the hidden state vector 𝐱𝑘 at the

same time step (Candy, 2016). We can then reduce Equation 2.3 as follows:

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐗𝑘|𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
. (2.6)

 After the posterior PDF is obtained, the state can be estimated (or inferred) as

the maximum a posteriori (MAP) estimate or the conditional mean (CM) of the

posterior PDF expressed as:

8

 𝐗̂𝑘

𝑀𝐴𝑃 = argmax
𝐗𝑘

𝑝(𝐗𝑘|𝐘𝑘) (2.7)

and

 𝐗̂𝑘
𝐶𝑀 = ∫𝐗𝑘𝑝(𝐗𝑘|𝐘𝑘)𝑑𝐗𝑘. (2.8)

 Alternatively, we can express the full posterior PDF in a recursive form by

starting from expressing it via Bayes’ rule as:

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐘𝑘|𝐗𝑘)𝑝(𝐗𝑘)

𝑝(𝐘𝑘)
, (2.9)

where the functions 𝑝(𝐘𝑘|𝐗𝑘), 𝑝(𝐗𝑘), and 𝑝(𝐘𝑘), denote the full likelihood function,

the full prior distribution, and the evidence or the normalizing denominator,

respectively (Candy, 2016). The full likelihood function 𝑝(𝐘𝑘|𝐗𝑘) can be decomposed

via Bayes’ rule as:

 𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘 , 𝐘𝑘−1|𝐱𝑘, 𝐗𝑘−1)

 𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘|𝐘𝑘−1, 𝐱𝑘 , 𝐗𝑘−1)𝑝(𝐘𝑘−1|𝐱𝑘, 𝐗𝑘−1)

 𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐘𝑘−1|𝐗𝑘−1), (2.10)

where the observations are assumed to be not conditional on the state in the future

(Candy, 2016). The full prior distribution 𝑝(𝐗𝑘) can be decomposed via Bayes’ rule as:

 𝑝(𝐗𝑘) = 𝑝(𝐱𝑘|𝐗𝑘−1)𝑝(𝐗𝑘−1), (2.11)

where 𝑝(𝐱𝑘|𝐗𝑘−1) is the state evolution distribution. We can also decompose the

evidence 𝑝(𝐘𝑘) via Bayes’ rule as:

 𝑝(𝐘𝑘) = 𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1). (2.12)

 Finally, according to Equations 2.10 – 2.12, we can rewrite Equation 2.9 in the

recursive form as:

9

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐘𝑘−1|𝐗𝑘−1)𝑝(𝐱𝑘|𝐗𝑘−1)𝑝(𝐗𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)

 𝑝(𝐗𝑘|𝐘𝑘) = 𝑝(𝐗𝑘−1|𝐘𝑘−1)
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐗𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
, (2.13)

where 𝑝(𝐗𝑘−1|𝐘𝑘−1) is the previous posterior PDF for 𝑘 ∈ {2,… }. If 𝑘 = 1,

 𝑝(𝐱1|𝐲1) = 𝑝(𝐱0)
𝑝(𝐲1|𝐱1)𝑝(𝐱1|𝐱0)

𝑝(𝐲1)
, (2.14)

where 𝑝(𝐱0) = 𝑝(𝐱0|𝐲0) is the initial prior PDF because observation 𝐲0 does not exist

(Candy, 2016). We can also rewrite Equation 2.14 as:

 𝑝(𝐗𝑘|𝐘𝑘) = 𝑝(𝐱0)
∏ 𝑝(𝐲𝑚|𝐱𝑚)𝑝(𝐱𝑚|𝐗𝑚−1)
𝑘
𝑚=1

𝑝(𝐲𝑘|𝐘𝑘−1)
. (2.15)

2.2 Particle Filtering

 Any posterior PDFs are continuous which cause Bayesian approaches

impractical to implement computing devices. Particle filtering (PF) is a sequential

Monte Carlo (SMC) method which generates samples of hidden states (called particles)

to approximate the posterior PDF as:

 𝑝(𝐗𝑘|𝐘𝑘) ≈ ∑ 𝑤̂0:𝑘
𝑖 𝛿(𝐗𝑘 − 𝐗𝑘

𝑖)𝑁
𝑖=1 , (2.16)

where 𝑤̂0:𝑘
𝑖 is the probability value of the 𝑖-th sample state matrix at time step 𝑘, 𝐗𝑘

𝑖 .

Quantity 𝑁 is the number of particles set by the user and 𝛿(∙) is the Dirac delta function

(Candy, 2016; Ristic et al., 2004). That is, 𝑤̂0:𝑘
𝑖 denotes the normalized importance

weight of particle 𝐗𝑘
𝑖 as:

 𝑤̂0:𝑘
𝑖 =

𝑤0:𝑘
𝑗

∑ 𝑤0:𝑘
𝑗𝑁

𝑗=1

, (2.17)

where 𝑤0:𝑘
𝑖 represents the true importance weight of particle 𝐗𝑘

𝑖 that can be found from

10

 𝑤0:𝑘
𝑖 ∝

𝑝(𝐗𝑘
𝑖
|𝐘𝑘)

𝑞(𝐗𝑘
𝑖
|𝐘𝑘)

, (2.18)

where 𝑞(𝐗𝑘|𝐘𝑘) is the proposal distribution that draws particles 𝐗𝑘
𝑖 because we cannot

directly draw particles from the true posterior PDF 𝑝(𝐗𝑘|𝐘𝑘). The approximated

posterior PDF gets closer to the true posterior PDF as 𝑁 increases (Candy, 2016; Ristic

et al., 2004).

 2.2.1 Sequential Importance Sampling

 In case states and observations are sequential, we require particles that

approximate the posterior PDF at a previous time step. In other words, particle weights

need to be updated for each time step. Sequential importance sampling (SIS) is an

algorithm derived from the concept of particle filtering for such a case (Candy, 2016;

Ristic et al., 2004). The marginal importance distribution which is employed to draw

particles 𝐗𝑘
𝑖 can be obtained by decomposing the importance distribution 𝑞(𝐗𝑘|𝐘𝑘)

with Bayes’ rule as:

 𝑞(𝐗𝑘|𝐘𝑘) = 𝑞(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘)𝑞(𝐗𝑘−1|𝐘𝑘−1), (2.19)

where 𝑞(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘) is the proposal distribution employed to draw sample vector 𝐱𝑘
𝑖

which can be added to sample matrix 𝐗𝑘−1
𝑖 to obtain particle 𝐗𝑘

𝑖 . According to

Equations 2.13 and 2.19, we can rewrite Equation 2.18 to express the recursive weight

updating equation as:

 𝑤0:𝑘
𝑖 ∝

𝑝(𝐗𝑘−1
𝑖 |𝐘𝑘−1)𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖)

𝑞(𝐗𝑘−1
𝑖 |𝐘𝑘−1)𝑞(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖 ,𝐘𝑘)𝑝(𝐲𝑘|𝐘𝑘−1)

 𝑤0:𝑘
𝑖 ∝ 𝑤0:𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖)

𝑞(𝐱𝑘
𝑖 |𝐗𝑘−1

𝑖 ,𝐘𝑘)
, (2.20)

where 𝑤0
𝑖 = 1/𝑁 is the initial weight assigned to all initial particles that are drawn from

the initial proposal distribution 𝑞(𝐱0). We discard term 1/[𝑝(𝐲𝑘|𝐘𝑘−1)] and express

𝑤0:𝑘
𝑖 in proportionality because all 𝑁 particles are conditional on the same set of

observations 𝐘𝑘 (Candy, 2016). First-order Markovian systems are systems where state

𝐱𝑘 is conditional on only 𝐱𝑘−1. Thus, sets 𝐗𝑘−1 and 𝐘𝑘−1 are not necessary (Ristic et

11

al., 2004). If we need to estimate only state 𝐱𝑘 of such a system, we can reduce Equation

2.20 to:

 𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖)

𝑞(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 ,𝐲
𝑘
)

, (2.21)

where 𝑤𝑘
𝑖 denotes the true non-normalized weight of the sample state vector 𝐱𝑘

𝑖 (Ristic

et al., 2004). We can also reduce Equation 2.16 in case we draw particles 𝐱𝑘
𝑖 instead of

𝐗𝑘
𝑖 as:

 𝑝(𝐱𝑘|𝐘𝑘) ≈ ∑ 𝑤̂𝑘
𝑖δ(𝐱𝑘 − 𝐱𝑘

𝑖)𝑁
𝑖=1 , (2.22)

where the state 𝐱𝑘 can be computed with MAP estimation or with a weighted mean

(WM) expressed as3:

 𝐱̂𝑘
𝑀𝐴𝑃 = argmax

𝐱𝑘
𝑖
𝑝(𝐱𝑘

𝑖 |𝐘𝑘), (2.23)

and

 𝐱̂𝑘
𝑊𝑀 = ∑ 𝑤̂𝑘

𝑖𝐱𝑘
𝑖𝑁

𝑖=1 . (2.24)

 The variance of particle weights grows as time increased, even after a few time

steps. Particle degeneracy can then occur where only few particles have substantial

weights while those of the other particles tend to zero as shown in Figure 2.2. Particle

degeneracy causes poor performance in the posterior PDF approximation and state

estimation. In the worst case, there can be only one particle with a non-zero weight (or

unity normalized weight) (Candy, 2016; Ristic et al., 2004). The variance of particle

weights can be found as:

 Var(𝑤𝑘
𝑖) = (𝑤𝑘−1

𝑖)
2
[∫
𝑝2(𝐲𝑘|𝐱𝑘)𝑝

2(𝐱𝑘|𝐱𝑘−1
𝑖)

𝑞(𝐱𝑘|𝐱𝑘−1
𝑖 ,𝐲

𝑘
)

𝑑𝐱𝑘 − 𝑝
2(𝐲𝑘|𝐱𝑘−1

𝑖)], (2.25)

where 𝑞(𝐱𝑘|𝐱𝑘−1
𝑖 , 𝐲𝑘) represents the proposal distribution which can be chosen by the

user (Candy, 2016; Doucet, 2000; Ristic et al., 2004).

12

Note (a) A particle swarm of low-weight particles with true weights

 (b) A particle swarm of low-weight particles with normalized weights

Figure 2.2 Low-weight particles with severe degeneracy

 To obtain the minimum variance of weights as Var(𝑤𝑘
𝑖) = 0, we draw particles

from the proposal distribution 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 , 𝐲𝑘) (Candy, 2016; Doucet, 2000). However,

this PDF cannot be obtained directly because state 𝐱𝑘 is not only conditional on the

latest observation but also the previous state. Furthermore, it causes weight updating in

Equation 2.20 to be expressed as:

 𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝐲𝑘|𝐱𝑘
𝑖)𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖)

𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 ,𝐲
𝑘
)

= 𝑤𝑘−1
𝑖 𝑝(𝐲𝑘|𝐱𝑘

𝑖)𝑝(𝐱𝑘
𝑖 |𝐗𝑘−1

𝑖)𝑝(𝐲𝑘|𝐱𝑘−1
𝑖)

𝑝(𝐲𝑘|𝐱𝑘
𝑖 ,𝐱𝑘−1

𝑖)𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖)𝑝(𝐱𝑘−1
𝑖)

 𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝐲𝑘|𝐱𝑘−1
𝑖), (2.26)

where

 𝑝(𝐲𝑘|𝐱𝑘−1
𝑖) = ∫𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐱𝑘−1

𝑖)𝑑𝐱𝑘, (2.27)

which requires evaluating an integral and is, therefore, impractical (Doucet, 2000;

Ristic et al., 2004). Note that 𝑝(𝐱𝑘−1
𝑖) = 1/𝑁 for 𝑖 ∈ {1,… ,𝑁} is a constant according

to the assumption of “perfect sampling” and it can also be canceled out because we

express Equation 2.26 in proportionality (Candy, 2016).

 For simplicity, we prefer to draw each new particle 𝐱𝑘
𝑖 from the state evolution

PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖) (Candy, 2016). We can then approximate the state prediction PDF

13

𝑝(𝐱𝑘|𝐘𝑘−1) by modifying the Chapman-Kolmogorov equation that was shown in

Equation 2.4 as:

 𝑝(𝐱𝑘|𝐘𝑘−1) = ∫𝑝(𝐱𝑘|𝐱𝑘−1, 𝐘𝑘−1)𝑝(𝐱𝑘−1|𝐘𝑘−1)𝑑𝐱𝑘−1

 𝑝(𝐱𝑘|𝐘𝑘−1) ≈ ∫𝑝(𝐱𝑘|𝐱𝑘−1)∑ 𝑤̂𝑘−1
𝑖 𝛿(𝐱𝑘−1 − 𝐱𝑘−1

𝑖)𝑁
𝑖=1 𝑑𝐱𝑘−1

 𝑝(𝐱𝑘|𝐘𝑘−1) ≈ ∑ 𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖)𝑁
𝑖=1 , (2.28)

which is the summation of 𝑁 weighted state evolution PDFs as shown in Figure 2.3

where the state evolution function is assumed to be non-linear but with Gaussian noise,

for simplicity. To be accurate, we select the weighted state evolution PDF

𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖) as the proposal distribution and this simplifies the weight calculation

in Equation 2.20 as:

 𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖)

𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖)

 𝑤𝑘
𝑖 ∝ 𝑝(𝐲𝑘|𝐱𝑘

𝑖), (2.29)

because 𝑤𝑘−1
𝑖 /𝑤̂𝑘−1

𝑖 is the constant obtained from weight normalization. Choosing the

weighted state evolution PDF 𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖) as the proposal distribution means that

each PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖) is expected to draw 𝑁𝑤̂𝑘−1

𝑖 new prediction particles 𝐱𝑘
𝑖 at the

beginning of time step 𝑘. That is, state values of high-weight particles are employed to

form state evolution PDFs that are allowed to draw new particles in greater numbers at

the next time step (Candy, 2016; Kuptametee & Aunsri, 2022a; Li et al., 2015).

However, quantity 𝑁𝑤̂𝑘−1
𝑖 can be any non-negative, non-integer value. We can then

force each state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖) to draw only one new particle 𝐱𝑘

𝑖 as shown

in Figure 2.4 by setting 𝑤𝑘−1
𝑖 = 1/𝑁 and 𝑤̂𝑘−1

𝑖 = 1/𝑁 for every PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖) in

order to satisfy Equation 2.29 (Kuptametee & Aunsri, 2023).

14

Note (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1)

 (b) Weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥𝑘−1
𝑖)

 (c) Theoretical state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1)

Figure 2.3 A theoretical process of state prediction in SIS

15

Note (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1)

 (b) Equally weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥𝑘−1
𝑖)

 (c) A created state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1) and newly drawn particles 𝑥𝑘
𝑖

Figure 2.4 A practical process of state evolution in SIS

 2.2.2 Particle Resampling

 As previously discussed, quantity 𝑁𝑤̂𝑘−1
𝑖 , the expected number of new

prediction particles to be drawn from each state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖), is not

always an integer. Thus, we employ a random selection method called “resampling” to

draw new particles (Kuptametee & Aunsri, 2022a; Li et al., 2015). High-weight

particles are more likely to be selected multiple times, while low-weight particles are

more likely to not be selected. Consequently, the particle swarm will consist of replicas

of high-weight particles and low-weight particles will be eliminated or reduced. Also,

each particle weight must be reset to 1/𝑁 because these particles are no longer i.i.d.

16

and their state values will be employed to construct the new prior PDF that draws new

particles that belong to the next time step (Candy, 2016). The state evolution of

resampled particles is shown in Figure 2.5. For example, the normalized weight of the

green particle is 0.3 when 𝑁 = 10. Three green proposal PDFs that are weighted by

term 1/𝑁 can then be summed and three green new particles can be drawn.

Note (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1)

 (b) A swarm of resampled particles 𝑥̃𝑘−1
𝑖

 (c) Weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥̃𝑘−1
𝑖)

 (d) A created state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1) and newly drawn particles 𝑥𝑘
𝑖

Figure 2.5 State evolution of resampled particles

 Multinomial resampling is the most basic scheme that employs the roulette

wheel selection (RWS) algorithm to resample the particles (Larose, 2006; Ristic et al.,

17

2004). First, we find the cumulative distribution function (CDF) of the normalized

weights of particles 𝐱𝑘−1
𝑖 as:

 𝐶𝑊̂𝑘−1
𝑖 = ∑ 𝑤̂𝑘−1

𝑛𝑖
𝑛=1 , (2.30)

where 𝐶𝑊̂𝑘−1
0 = 0 and 𝐶𝑊̂𝑘−1

𝑁 = 1. The state values of the 𝑖-th particle 𝐱𝑘−1
𝑖 are then

assigned to the 𝑗-th resampled particle 𝐱̃𝑘−1
𝑗

 as:

 𝐱̃𝑘−1
𝑗

= 𝐱𝑘−1
𝑖 , if 𝐶𝑊̂𝑘−1

𝑖−1 < 𝑢𝑘−1
𝑗

≤ 𝐶𝑊̂𝑘−1
𝑖 , (2.31)

where 𝑢𝑘−1
𝑗

 is a random value employed to find the resampled particle 𝐱̃𝑘−1
𝑗

. It is drawn

as 𝑢𝑘
𝑗
 ~ 𝑈(0, 1) where each real number between 0 to 1 excluding the bounds has

uniform probability to be drawn (Candy, 2016; Ristic et al., 2004). Then, we draw only

one new particle 𝐱𝑘
𝑖 from each state evolution PDF 𝑝(𝐱𝑘|𝐱̃𝑘−1

𝑖) as previously shown in

Figure 2.5. If the normalized weight of particle 𝐱𝑘−1
𝑖 is high, the particle will have a

high probability to be selected because the difference 𝐶𝑊̂𝑘−1
𝑖 − 𝐶𝑊̂𝑘−1

𝑖−1 (which

represents a part of a roulette wheel) is high.

 Carpenter et al. (1999) proposed the systematic resampling that employs the

stochastic universal sampling (SUS) algorithm (which was proposed by Baker (1987))

as an alternative to the RWS to reduce the selection bias (Ristic et al., 2004). The

random value 𝑢𝑘−1
𝑗

 employed in Equation 2.31 for this scheme is also modified as:

 𝑢𝑘−1
𝑗

= 𝑢𝑘−1
1 +

𝑗−1
𝑁

, (2.32)

where 𝑢𝑘−1
1 ~ 𝑈(0, 1/𝑁) is the only one freely drawn random value. That is, systematic

resampling is a quasi-random resampling scheme (Kuptametee & Aunsri, 2022a; Li et

al., 2015). Figure 2.6 presents a pseudocode for employing RWS and SUS algorithms.

18

Input: 𝑁 particles (𝐱𝑘−1

𝑖) and their normalized weights (𝑤̂𝑘−1
𝑖)

Output: 𝑁 resampled particles (𝐱̃𝑘−1
𝑖)

𝐶𝑊̂𝑘−1
1 ← 𝑤̂𝑘−1

1 %Initialize the CDF of 𝑁 normalized weights

for 𝑖 ∈ {2,… ,𝑁} do

 𝐶𝑊̂𝑘−1
𝑖 ← 𝐶𝑊̂𝑘−1

𝑖−1 + 𝑤̂𝑘−1
𝑖 %Find the next value of the CDF

end for

If SUS is employed then

 𝑢1~ 𝑈(0, 1/𝑁) %A randomly drawn first resampling point

end if

for 𝑗 ∈ {1,… ,𝑁} do

 If RWS is employed then

 𝑢𝑗 ~ 𝑈(0, 1) %Draw each resampling point

 end if

 If SUS is employed then

 𝑢𝑗 ← 𝑢1 + (𝑗 − 1)/𝑁 %Find the next resampling point

 end if

 𝑎 ← 1 %Start from the first value of the CDF

 while 𝑢𝑗 > 𝐶𝑊̂𝑘−1
𝑎 do

 𝑎 ← 𝑎 + 1 %Move to the next value of the CDF

 end while

 𝐱̃𝑘−1
𝑗

← 𝐱𝑘−1
𝑎 % 𝑗-th resampled particle

end for

Figure 2.6 A pseudocode for RWS and SUS algorithms

 Both RWS and SUS consume substantial computation time because they

employ values of the CDF of all 𝑁 normalized weights (found via Equation 2.30) to

select each particle sequentially as shown in Equation 2.31. Li et al. (2013) then

proposed the rounding-copy resampling that allows each of 𝑁 original particles 𝐱𝑘−1
𝑖

to create [𝑁𝑤̂𝑘−1
𝑖] replicas where [∙] is a rounding symbol (e.g., [8.4] = 8 and [8.5] =

9) and 𝑤̂𝑘−1
𝑖 is the normalized weight of each particle 𝐱𝑘−1

𝑖 . While this scheme does

not require the CDF of all 𝑁 normalized weights, the total number of particles obtained

after resampling may not be 𝑁. In case the total number of resampled particles is greater

19

than 𝑁, we keep only the first 𝑁 best particles and we then reset the weights of these

particles to 1/𝑁. If the total number of resampled particles is less than 𝑁, we must

create more replicas of some resampled particles in order to obtain 𝑁 resampled

particles in total.

 Aunsri et al. (2021) proposed the percentile-based resampling that modifies

rounding-copy resampling by allowing only high-weight particles to replicate

themselves while the others are eliminated from the swarm. After all 𝑁 original

particles 𝐱𝑘−1
𝑖 are sorted by their weights in descending order, only the first 𝑁𝑃𝐵𝑅,𝑘−1

particles are kept while the others are eliminated from the swarm. Quantity 𝑁𝑃𝐵𝑅,𝑘−1 is

the smallest number of particles that satisfies the condition that summation of the

weights of the surviving 𝑁𝑃𝐵𝑅,𝑘−1 particles must not be less than a preset percentage of

the summation of weights of the 𝑁 original particles 𝐱𝑘−1
𝑖 . That is, 𝑁𝑃𝐵𝑅,𝑘−1 ≤ 𝑁 and

we must normalize weights of the surviving 𝑁𝑃𝐵𝑅,𝑘−1 particles as:

 𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖 =

𝑤𝑘−1,𝑑𝑠𝑐
𝑖

∑ 𝑤𝑘−1,𝑑𝑠𝑐
𝑗𝑁𝑃𝐵𝑅,𝑘−1

𝑗=1

, (2.33)

where 𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖 denote the weights of the 𝑖-th sorted particles and 𝑖 ∈ {1,… ,𝑁𝑃𝐵𝑅,𝑘−1}.

The number of replicas of each surviving particle is suggested to be ⌈𝑁𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖 ⌉ where

⌈∙⌉ is the ceiling symbol (e.g., ⌈8.1⌉ = 9). This ensures that the total number of particles

obtained after resampling can only be equal to or greater than 𝑁 (Aunsri et al., 2021).

More resampling schemes are reviewed and discussed by Kuptametee and Aunsri

(2022a) and Li et al. (2015).

 The main side effect of employing particle resampling is that the state values of

particles will have reduced diversity. This problem is called particle impoverishment

where the particle swarm converges to only one or just a few state values and the

opportunity to discover high-weight state values decreases. This problem can be severe

if the variance of the state evolution noise or the width of each weighted proposal PDF

in Figure 2.5(c) is too small. Consequently, the particle swarm may not be able to

discover high-weight state values effectively at the next time steps (Candy, 2016;

Kuptametee et al., 2024; Ristic et al., 2004).

20

 The effective sample size (ESS) is employed to measure particle degeneracy

and to decide whether or not resampling should be employed. The ESS at time step 𝑘 −

1 can be calculated as:

 𝐸𝑆𝑆𝑘−1 =
𝑁

1+Var(𝑤𝑘−1
𝑖)

, (2.34)

where 1 ≤ 𝐸𝑆𝑆𝑘−1 ≤ 𝑁 and a low 𝐸𝑆𝑆𝑘−1 denotes highly severe particle degeneracy

where only a few particles have high weights (Candy, 2016; Martino et al., 2017; Ristic

et al., 2004). That is, we may resample particles when 𝐸𝑆𝑆𝑘−1 is lower than a preset

threshold. As shown in Equation 2.25, Var(𝑤𝑘−1
𝑖) cannot be found easily because it

requires an integral evaluation. Quantity 𝐸𝑆𝑆𝑘−1 can then be approximated as:

 𝐸𝑆𝑆𝑘−1 ≈
(∑ 𝑤𝑘−1

𝑖𝑁
𝑖=1)

2

∑ (𝑤𝑘−1
𝑖
)𝑁

𝑖=1

2 =
1

∑ (𝑤̂𝑘−1
𝑖)

2
𝑁
𝑖=1

, (2.35)

which can be found from either the normalized weights or the true non-normalized

weights (Ahwiadi & Wang, 2020; Kuptametee & Aunsri, 2022a; Ristic et al., 2004).

 Some particles are considered as “high-weight particles” because the weights of

the others are significantly lower or are near-zero, but their true non-normalized weights

may be low, as previously shown in Figure 2.2. That is, the local maximum state values

(i.e., the best particles that we have on hand) may have low true weights. In a particle

swarm with maximum ESS (i.e., 𝐸𝑆𝑆𝑘−1 = 𝑁), all true weights 𝑤𝑘−1
𝑖 are equal but can

be low, while their state values are not necessarily the same. That is, a high 𝐸𝑆𝑆𝑘−1

value does not mean that the hidden state will be estimated effectively (Kuptametee et

al., 2024).

 Sequential importance resampling (SIR) always performs particle resampling

to eliminate low-weight particles at every time step regardless of the ESS value

(Arulampalam et al., 2002; Gordon et al., 1993; Ristic et al., 2004). To fix the

impoverishment that can occur after resampling is employed, we can perturb the state

values of the resampled particles to regain particle diversity. In other words, we need

to find completely new state vectors that are different from the local maximum state

vectors. Weights of the new state vectors are also expected to be higher than the original

21

non-reset weights of the resampled particles (Candy, 2016; Kuptametee & Aunsri,

2022a; Ristic, 2004).

 Pitt and Shephard (1999) proposed the auxiliary particle filter that draws

auxiliary particles that assist in finding the high-weight state vectors at the next time

step. For simplicity, suppose that the state evolution function is a Gaussian PDF:

 𝐱𝑘 = 𝐟𝑘−1(𝐱𝑘−1) + 𝐮𝑘−1, (2.36)

where 𝐮𝑘−1 ~ 𝑁(0, 𝐐𝑘−1) and 𝐐𝑘−1 is a 𝑑𝑢 × 𝑑𝑢 covariance matrix of state evolution

noise that is employed to find new state values at time step 𝑘. We employ particles x𝑘−1
𝑖

to find each new state vector x𝑘,𝑎𝑢𝑥
𝑖 = 𝐟𝑘−1(x𝑘−1

𝑖) as an auxiliary particle that contains

mean values of the Gaussian state evolution PDF at time step 𝑘. We employ the

likelihood value 𝑝(𝐲𝑘|x𝑘,𝑎𝑢𝑥
𝑖) as the weight of each auxiliary particle x𝑘,𝑎𝑢𝑥

𝑖 and we can

then resample these 𝑁 auxiliary particles. Finally, we find each particle x𝑘
𝑖 by adding

state evolution noise u𝑘−1
𝑖 to each resampled auxiliary particle 𝐱̃𝑘,𝑎𝑢𝑥

𝑖 (according to

Equation 2.36) and we evaluate the weight of every particle x𝑘
𝑖 (according to Equation

2.29) to obtain the approximated posterior PDF at time step 𝑘 (Pitt & Shephard, 1999).

However, the variance values of covariance matrix 𝐐𝑘−1 must be carefully set. If the

variance values of 𝐐𝑘−1 are too high, particles x𝑘
𝑖 may be blindly located at regions of

state values that have low weights. On the other hand, if variance values of 𝐐𝑘−1 are

too low, the diversity of state vectors may still be low and particle impoverishment may

not be properly remedied (Kuptametee & Aunsri, 2022a; Ristic, 2004).

 Musso et al. (2001) proposed the regularized particle filter to regain the

diverisity of the post-resampling particles. Regularized particle filter employs state

values of each resampled particle 𝐱̃𝑘−1
𝑖 to construct a symmetric continuous kernel

function that is centered at state values of 𝐱̃𝑘−1
𝑖 . Then, we draw each new particle

𝐱𝑘−1,𝑟𝑒𝑔
𝑖 from each created 𝑖-th kernel function to obtain a new set of 𝑁 particles with

regained diversity. Finally, we evaluate the weight of each new particle 𝐱𝑘−1,𝑟𝑒𝑔
𝑖 as the

likelihood value 𝑝(𝐲𝑘−1|𝐱𝑘−1,𝑟𝑒𝑔
𝑖) to obtain the new approximated posterior PDF at the

same time step 𝑘 − 1 (Musso et al., 2001). There are many choices of kernel functions

that can be employed, for example, Epanechnikov, box (or uniform), Gaussian and

22

triangle (Candy, 2016; Gordon et al., 1993; Kuptametee et al., 2024). However, kernel

functions must be designed carefully in order to ensure that particle impoverishment

will be properly addressed and new particles 𝐱𝑘−1,𝑟𝑒𝑔
𝑖 will not be located at regions of

low-weight state values.

 The roughening scheme perturbs state values of each of 𝑁 resampled particles

𝐱̃𝑘−1
𝑖 at time step 𝑘 − 1 by adding zero-mean Gaussian random values that are drawn

from the diagonal covariance matrix 𝚺𝑘−1 = diag(𝜎𝑘−1,1
2 , … , 𝜎𝑘−1,𝑑𝑥

2) (Gordon et al.,

1993). Each variance value 𝜎𝑘−1,𝑚
2 for perturbing the state value of the 𝑚-th vector

component where 𝑚 ∈ {1,… , 𝑑𝑥} is found as:

 𝜎𝑘−1,𝑚
2 = [𝛽(𝑥̃𝑘−1,𝑚,𝑚𝑎𝑥 − 𝑥̃𝑘−1,𝑚,𝑚𝑖𝑛)𝑁

−
1

𝑑𝑥]

2

, (2.37)

where 𝛽 > 0 is a preset tuning parameter. Quantities 𝑥̃𝑘−1,𝑚,𝑚𝑖𝑛 and 𝑥̃𝑘−1,𝑚,𝑚𝑎𝑥 are the

minimum and maximum state values of the 𝑚-th vector component at time step 𝑘 − 1

that must be found from the swarm of 𝑁 resampled particles (Gordon et al., 1993).

 Han et al. (2015) proposed the adaptive fission particle filter (AFPF) that

modifies rounding-copy resampling by diversifying state values of replicas of 𝑁

original particles. Each 𝑗-th replica of the original particle 𝐱𝑘−1
𝑖 is drawn from a

Gaussian PDF as:

 𝐱𝑘−1,𝑟𝑒𝑝(𝑖)
𝑗

 ~ 𝑁(𝐱𝑘−1
𝑖 , 𝜆𝑘−1

𝑖 𝚺), (2.38)

where 𝑗 ∈ {1,… , [𝑁𝑤̂𝑘−1
𝑖] + 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛}; 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛 ≥ 0 the preset minimum number of

replicas that will be created from each original particle, 𝚺 is a symmetric 𝑑𝑥 × 𝑑𝑥

covariance matrix that is designed by the user, and

 𝜆𝑘−1
𝑖 =

1

1+exp(
𝑤𝑘−1
𝑖 −Avg(𝑤𝑘−1

𝑖)

max(𝑤𝑘−1
𝑖

)−Avg(𝑤𝑘−1
𝑖)

)

, (2.39)

represents a parameter called “fission factor” that is exclusively found for each original

particle 𝐱𝑘−1
𝑖 (Han et al., 2015). Function exp(∙) denotes the exponential function.

23

Quantities max(𝑤𝑘−1

𝑖) and Avg(𝑤𝑘−1
𝑖) are the maximum and average values of the non-

normalized weights of 𝑁 original particles 𝐱𝑘−1
𝑖 , respectively. Parameter 𝜆𝑘−1

𝑖 tunes the

variance values of the covariance matrix 𝚺 that is employed to perturb the state values

of replicas of the original particle 𝐱𝑘−1
𝑖 . If the weight 𝑤𝑘−1

𝑖 is high, 𝜆𝑘−1
𝑖 will be low

and replicas will be created in a great number and are located close to their parent. If

the weight 𝑤𝑘−1
𝑖 is low, 𝜆𝑘−1

𝑖 will be high and replicas will be created in a low number

and are located away from their parent. The theoretical minimum value of 𝜆𝑘−1
𝑖 in

Equation 2.39 is at 1/[1 + exp(1)], while its theoretical maximum value approaches 1

asymptotically. After every new replica is found, the 𝑁 original particles are gathered

along with all created replicas forming the new set of particles. Finally, weight sorting

must be done to keep only the 𝑁 best particles from this set that are then further

employed in state estimation (Han et al., 2015).

2.3 Genetic Algorithms

 Genetic Algorithms (GAs) are proposed by Holland (1992) as the methods

employed to randomly find the best solution for optimization problems. GAs are

inspired by the natural selection process where the fittest individuals have increased

chances to survive. Then, the survived individuals produce new offspring individuals

with high diversity and greater fitness. In offspring creation, a chromosome of a parent

and that of another parent are employed to create a pair of new offspring chromosomes.

However, mutation may occur where some genes of the offspring chromosomes alter.

 In traditional GAs, we treat a binary string as a chromosome where bits (zeros

and ones) denote genes. However, state values in practical applications are real

numbers. These state values must first be converted into binary strings, where the

number of bits must be carefully considered. Longer length mitigates loss of

information that is due to conversions between real numbers and binary strings and vice

versa, but a higher computational cost is required (Larose, 2006). We can alternatively

employ arithmetic GAs which directly treat a vector of real number state values as a

chromosome, while each real number state value of the vector represents a gene. Thus,

24

binary GAs are out of scope in this dissertation; more information about binary GAs

can be found in work by Katoch et al. (2021), Larose (2006), and Michalewicz (1996).

 After new offspring state vectors are produced, the state vector with the highest

fitness value is chosen as the best solution for the problem. GAs can be employed in,

for example, shortest path planning, localization, prices prediction, neural networks,

and video processing (Alam et al., 2020; Drachal & Pawłowski, 2021; Michalewicz,

1996).

 2.3.1 Parent Selection

 High-fit individuals have high probabilities to survive the selection process. The

most basic selection process is to employ the RWS algorithm which is also employed

in multinomial resampling as discussed in Subsection 2.2.2. That is, particle weights

found according to Equation 2.29 are employed as fitness values, while normalized

weights can be employed as selection probabilities (Larose, 2006; Ristic et al., 2004).

There are also other selection schemes that can be employed. Rank selection and

tournament ranking involve competitions between individuals that are not necessarily

based on the natural selection process (Katoch et al., 2021; Kuptametee et al., 2024;

Larose, 2006). De Jong (1975) proposed the elitism technique which ensures that the

state values of the individuals with the highest weights will appear in the next

generation without being altered during offspring creation (Kuptametee et al., 2024;

Larose, 2006).

 If there is an individual that dominates one significantly large part of the

selection wheel while the other parts are very small, the parents will consist of too many

replicas of this high-fit individual and diversity of parents will be low (Larose, 2006).

The Sigma scaling technique ensures diversity of individuals by modifying each fitness

value of the 𝑖-th individual (i.e., particle 𝐱𝑘
𝑖) that will be employed in the selection

process as:

 𝑤𝑘,𝑆𝑆
𝑖 = 1 +

𝑤𝑘
𝑖 − Avg(𝑤𝑘)
Std(𝑤𝑘)

, (2.40)

where 𝑤𝑘
𝑖 denotes the original fitness value of the 𝑖-th individual (or particle weight

found according to Equation 2.29) and Avg(𝑤𝑘) denotes the average of all 𝑁 original

fitness values (Katoch et al., 2021; Larose, 2006). If the standard deviation of all 𝑁

25

original fitness values, Std(𝑤𝑘), is high, the sigma-scaled fitness values of unfit

individuals will increase. Consequently, unfit individuals have a higher chance to be

selected as parents. On the contrary, if Std(𝑤𝑘) is low, high-fit individuals will gain

greater dominance in offspring creation by having higher sigma-scaled fitness values.

Note that we must first normalize the modified fitness values of every individual to

obtain the modified selection probability values that can be employed in any selection

schemes (Larose, 2006).

 Boltzmann selection initially widens the exploration scope on the search space

in order to promote diversity of individuals. Then, it narrows the search scope to make

GA converge to the optimal solution more quickly at later generations (Katoch et al.,

2021; Larose, 2006). That is, selection probabilities of unfit individuals are almost as

high as those of high-fit individuals in the beginning generations. Then, selection

probabilities of unfit individuals decrease at later generations (Katoch et al., 2021;

Larose, 2006). The modified fitness values in Boltzmann selection can be found as:

 𝑤𝑘,𝐵𝑆
𝑖 =

exp(𝑤𝑘
𝑖 /𝑇)

Avg[exp(𝑤𝑘/𝑇)]
, (2.41)

where 𝑇 is a parameter called “temperature” that is initially set to be high and decreases

with time. If 𝑇 decreases, the high-fit individuals are more likely to be selected as

parents. Again, we must first normalize each modified fitness value to obtain the

modified selection probability of each individual (Larose, 2006).

 The effects of employing the modified fitness values found with the Sigma

scaling and Boltzmann selection techniques can be significant if the number of

generations is set to be high (Katoch et al., 2021; Larose, 2006). However, the diversity

of individuals and the number of generations must be carefully considered and be

balanced with computation time. Also, recall that the modified fitness values can only

be employed in the selection process. We must employ the original fitness values to

consider the optimality of each individual to be the best solution of the optimization

problem (Kuptametee et al., 2024).

 2.3.2 Offspring Creation

 Suppose that there are 𝑁 individuals that survive and are included in the set of

parents. We can randomly create up to ⌊𝑁/2⌋ pairs of parents where ⌊∙⌋ is the floor

26

symbol (e.g., ⌊9.9⌋ = 9). When the quantity 𝑁 is odd, the number of individuals that

skip the offspring creation (or do not pair with any other individuals) must also be odd

and be at least one. These skipped individuals should have the highest fitness values

according to the principle of the elitism technique and their state values definitely

appear in the next generation of the population (De Jong, 1975). There are two steps in

calculating new state values of the to-be-created offspring vectors, crossover and

mutation (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996).

 In the crossover process, two parent chromosomes exchange some of their genes

in order to produce two new offspring chromosomes. Discrete crossover follows the

principle of natural offspring chromosome creation (Larose, 2006). Suppose that there

are two parent vectors with length of five state values, {0.4, 0.7, 0.5, 0.8, 1.1} and

{0.6, 0.3, 1.2, 1.0, 0.9}. For example, the first state value of the first offspring vector can

be either 0.4 or 0.6 with equal probability. If the first offspring vector is

{0.6, 0.7, 0.5, 1.0, 1.1}, another offspring vector must then be {0.4, 0.3, 1.2, 0.8, 0.9}.

However, the number of possible patterns of offspring vectors in this example is only

25 = 32. That is, the diversity of individuals can still be limited (Larose, 2006).

 Arithmetic crossover creates two offspring vectors with state values that can be

completely different from those of their two parents in order to ensure diversity (Larose,

2006). Suppose that there are two parent vectors, 𝐱𝑘
𝑎 and 𝐱𝑘

𝑏, where 𝑎 ∈ {1,… ,𝑁} and

𝑏 ∈ {1,… ,𝑁} but 𝑎 ≠ 𝑏. Two new offspring vectors can be found as:

 𝐱𝑘
𝑎,𝑜𝑓𝑓

= {
𝛼𝐱𝑘

𝑏 + (1 − 𝛼)𝐱𝑘
𝑎, 𝑢 ≤ 𝑝𝑐

𝐱𝑘
𝑎, 𝑢 > 𝑝𝑐

 (2.42a)

 𝐱𝑘
𝑏,𝑜𝑓𝑓

= {
𝛼𝐱𝑘

𝑎 + (1 − 𝛼)𝐱𝑘
𝑏, 𝑢 ≤ 𝑝𝑐

𝐱𝑘
𝑏 , 𝑢 > 𝑝𝑐,

 (2.42b)

where 𝛼 ~ 𝑈(0, 1) is a uniform random value that tunes the state values of the two

offspring vectors. Parameter 𝑝𝑐 represents the probability of crossover (𝑝𝑐) where 0 ≤

𝑝𝑐 ≤ 1 and 𝑢 ~ 𝑈(0, 1). Parameter 𝑝𝑐 is normally set to be high because individuals

are encouraged to create new offspring (Katoch et al., 2021; Larose, 2006;

Michalewicz, 1996). That is, the expected number of pairs that will create new offspring

is 𝑝𝑐 × ⌊𝑁/2⌋ pairs.

27

 Parameter 𝛼 can be independently drawn for each pair of two parents. When

each parent is a one-dimensional (1-D) state value, the two linear equations for finding

new offspring state values cross each other at 𝛼 = 0.5 as shown in Figure 2.7. Circles

denote state values of two new offspring according to the parameter 𝛼 (shown as a

magenta dashed line). State values of the two offspring vectors are located between

those of their two parents and are also located within bounds (i.e., minimum and

maximum state values) of the population (Larose, 2006).

Figure 2.7 Two new offspring state values found via arithmetic crossover

 If two parent vectors are identical, the two new offspring vectors that are created

by employing arithmetic crossover will be exact copies of their parents. Radcliffe

(1990) proposed the flat crossover that creates only one new offspring to save

computation time. First, we need to compare fitness values of the two parents. Then,

the one created offspring replaces the less-fit parent, while the fitter parent is kept

unchanged. Suppose that there are two parent vectors, a high-fit parent 𝐱𝑘
ℎ𝑖𝑔ℎ

 and an

unfit parent 𝐱𝑘
𝑙𝑜𝑤. We can then find the offspring vector as:

 𝐱𝑘
𝑜𝑓𝑓

= 𝛼𝐱𝑘
ℎ𝑖𝑔ℎ

+ (1 − 𝛼)𝐱𝑘
𝑙𝑜𝑤, (2.43)

where a large value of parameter 𝛼 tunes the state values of the offspring vector to

become closer to those of its high-fit parent (Radcliffe, 1990).

 Mutation ensures the diversity of individuals in the new generation by randomly

altering some genes of the two offspring chromosomes created in the crossover step. In

traditional GAs, each state value of all offspring vectors will be perturbed with the

probability of mutation (𝑝𝑚). That is, the expected total number of state values of the

28

whole offspring generation that will mutate after crossover is employed is 𝑝𝑚 × 𝑁 × 𝑑𝑥

values where 0 ≤ 𝑝𝑚 ≤ 1 and 𝑑𝑥 represents length of state vector (Larose, 2006;

Michalewicz, 1996). Parameter 𝑝𝑚 can also be defined as the probability that all state

values of an offspring vector will mutate, while the probability that none of state values

of the offspring vector will mutate is 1 − 𝑝𝑚 (Katoch et al., 2021). The reason is that,

depending on the application, a state vector can consist of state values with different

units. If some state values of such vectors are mutated while the rest are not, the

optimization results can be highly erroneous because each new state value is

inconsistently found. However, there can be cases where the mutated offspring vectors

will contain abnormal state values that are located out of bounds. Also, any offspring

state vector found by employing crossover may be replaced by its mutated replica with

the lower weight. Thus, the parameter 𝑝𝑚 should be set to a low value (Larose, 2006).

 Gaussian mutation perturbs the offspring vectors by adding zero-mean Gaussian

random values to offspring state values. In other words, the state values of the offspring

vector are employed as mean values of the Gaussian PDF for drawing another new state

vector (Larose, 2006). Suppose that a whole offspring vector 𝒙𝑘
𝑜𝑓𝑓

 mutates. The new

state vector can then be found as:

 𝐱𝑘
𝑜𝑓𝑓_𝑚

 ~ 𝑁(𝐱𝑘
𝑜𝑓𝑓
, 𝚺), if 𝑢 ≤ 𝑝𝑚, (2.44)

where 𝚺 is a 𝑑𝑥 × 𝑑𝑥 symmetric covariance matrix and 𝑢 ~ 𝑈(0, 1). We can choose a

diagonal matrix as the covariance matrix 𝚺 when there are no correlations between each

state value of the vector. However, variance values must be carefully set in order to

prevent abnormally high or low state values (Kuptametee et al., 2024; Larose, 2006).

 Uniform mutation can be employed in case the minimum and the maximum of

the acceptable state values are known (Michalewicz, 1996). That is,

 𝑥𝑘,𝑚
𝑜𝑓𝑓_𝑚

 ~ 𝑈[𝑥𝑘,𝑚
𝐿𝐵 , 𝑥𝑘,𝑚

𝑈𝐵], if 𝑢 ≤ 𝑝𝑚, (2.45)

where 𝑥𝑘,𝑚
𝑜𝑓𝑓_𝑚

 denotes the 𝑚-th vector component of the mutated offspring vector

𝐱𝑘
𝑜𝑓𝑓_𝑚

, 𝑢 ~ 𝑈(0, 1) and 𝑚 ∈ {1,… , 𝑑𝑥}. 𝑈[𝑥𝑘,𝑚
𝐿𝐵 , 𝑥𝑘,𝑚

𝑈𝐵] denotes a uniform distribution

where each real number between 𝑥𝑘,𝑚
𝐿𝐵 and 𝑥𝑘,𝑚

𝑈𝐵 (including both) can be drawn.

29

Quantities 𝑥𝑘,𝑚

𝐿𝐵 and 𝑥𝑘,𝑚
𝑈𝐵 denote the lower and upper bounds of the state values of the

𝑚-th vector component that must be set by the user, respectively (Michalewicz, 1996).

While the new mutated state values are not located out of bounds, the original state

values of the offspring vector 𝐱𝑘
𝑜𝑓𝑓

 found in the crossover step can be destroyed. More

crossover and mutation schemes are discussed and can be found in work by Katoch et

al. (2021).

 After we obtain new offspring individuals (where some of them mutate) at the

desired number, we re-evaluate the fitness value of every individual in the most recent

generation and repeat the overall GA process to find the next-generation individuals

until our termination criteria are met. The termination criteria can be, for example, when

a preset maximum number of generations (i.e., attempts of finding new high-fit state

vectors) per time step is reached or when the average of fitness values of every

individual no longer increases (Garzelli et al., 2008; Kuptametee et al., 2024; Larose,

2006).

2.4 Related Work

 Resampling in generic PF algorithms replicates high-weight particles and

eliminates low-weight particles. The resampled particles then are employed to predict

the state at the next time step. The selection process in GAs also replicates high-fit

individuals for creating new offspring values that belong to the same time step, while

unfit individuals are eliminated. That is, particle resampling is technically similar to the

selection process in GAs, while their objectives are different (Kuptametee et al., 2024).

 Because parent selection reduces the diversity of the parent state vectors, Park

et al. (2009) suggested that crossover and mutation should be employed to diversify the

state values of 𝑁 resampled particles 𝐱̃𝑘−1
𝑖 (i.e., replicas of selected parents) before

entering the state evolution function. If the diversity of new particles 𝐱̃𝑘−1,𝐺𝐴
𝑖 was high,

the diversity of the new mean values 𝐟𝑘−1(𝐱̃𝑘−1,𝐺𝐴
𝑖) and that of the new prediction

particles 𝐱𝑘
𝑖 would also be high. Consequently, there could be high likelihoods of

discovering high-weight state vectors at time step 𝑘. However, recall that the true

posterior PDF can be time-varying because both true state and observation data can

30

evolve with time. There could still be a chance that all of the new particles 𝐱𝑘

𝑖 would

have low true weights.

 Zhou et al. (2021) employed roughening on 𝑁 resampled particles 𝐱̃𝑘
𝑖 (that are

selected via the RWS algorithm) to obtain a set of 𝑁 new parents 𝐱̃𝑘,𝐺𝐴
𝑖 with regained

diversity. Also, the weight of each new parent 𝐱̃𝑘,𝐺𝐴
𝑖 had to be re-evaluated as the new

likelihood value 𝑝(𝐲𝑘|𝐱̃𝑘,𝐺𝐴
𝑖) (according to Equation 2.29). The 𝑁 weighted parents

could then be employed to create new offspring at the same time step 𝑘. That is,

enhancing state estimation performance by reshaping the posterior PDF is the main

rationale for employing offspring creation schemes (i.e., crossover and mutation) in PF

algorithms (Kuptametee et al., 2024).

 Wang et al. (2020) and Zhou et al. (2021) suggested that offspring particles

should be created only when particle degeneracy of the parent-generation swarm is

severe or when quantity 𝐸𝑆𝑆𝑘 (found via Equation 2.35) is lower than the preset

threshold. However, as previously discussed, a high 𝐸𝑆𝑆𝑘 value does not mean that the

true non-normalized particle weights are also high. Thus, regardless of the value 𝐸𝑆𝑆𝑘,

offspring particles must be created to ensure that the particle swarm will not be trapped

at local maximum state values.

 To save computation time and to not destroy particle diversity, Yin and Zhu

(2015) suggested that all 𝑁 original particles can be instantly employed as parents

without implementing any selection scheme. All 𝑁 parents at each time step 𝑘,

however, must first be classified as 𝑁𝑘𝐻 high-weight parents and 𝑁𝑘𝐿 low-weight

parents where 𝑁𝑘𝐻 + 𝑁𝑘𝐿 = 𝑁; 𝑁𝑘𝐻 is not necessarily equal to 𝑁𝑘𝐿.

 According to studies by Yin and Zhu (2015), Yin et al. (2016), Yu et al. (2019),

Zhang et al. (2021), and Zhou et al. (2021), the 𝑁 parents were first sorted by their

weights in descending order. The weight of the [𝐸𝑆𝑆𝑘]-th particle that was selected

from this new set was then employed as the weight threshold where [𝐸𝑆𝑆𝑘] was the

rounded value of 𝐸𝑆𝑆𝑘 that was found via Equation 2.35. Recall that a low 𝐸𝑆𝑆𝑘 value

denotes severe particle degeneracy as previously shown in Figure 2.2 and the number

of high-weight parents 𝑁𝑘𝐻 must then be low.

 Zhou et al. (2021) also employed arithmetic crossover to modify the set of 𝑁𝑘𝐻

high-weight parents before any offspring particle was found. That is, two new high-

31

weight parents were created from each of ⌊𝑁𝑘𝐻/2⌋ randomly created pairs of original

high-weight parents where ⌊∙⌋ is the floor symbol. Suppose that high-weight parent 𝐱𝑘𝐻
𝑎

is paired with another high-weight parent 𝐱𝑘𝐻
𝑏 . Parameter 𝑝𝑐 for this pair could be

modified and found as:

𝑝𝑐 =

{

𝑝𝑐,𝑚𝑎𝑥, max(𝑤𝑘𝐻

𝑎 , 𝑤𝑘𝐻
𝑏) < Avg(𝑤𝑘𝐻)

𝑝𝑐,𝑚𝑖𝑛 +
𝑝𝑐,𝑚𝑎𝑥−𝑝𝑐,𝑚𝑖𝑛

1+exp{𝜀[
2[max(𝑤𝑘𝐻

𝑎 ,𝑤𝑘𝐻
𝑏)−Avg(𝑤𝑘𝐻)]

max(𝑤𝑘𝐻)−Avg(𝑤𝑘𝐻)
−1]}

, max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏) ≥ Avg(𝑤𝑘𝐻),

 (2.46)

where 𝑝𝑐,𝑚𝑎𝑥 and 𝑝𝑐,𝑚𝑖𝑛 denote the upper and lower bounds of parameter 𝑝𝑐,

respectively. Parameter 𝜀 adjusts the shape of the employed sigmoid function and it

must be set carefully by the user. Avg(𝑤𝑘𝐻) and max(𝑤𝑘𝐻) denote the average and the

maximum values of the weights of the 𝑁𝑘𝐻 original high-weight parents, respectively

(Zhou et al., 2021). Parameter 𝛼 for arithmetic crossover in Equation 2.42 was also

modified as:

 𝛼 = max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏) /(𝑤𝑘𝐻
𝑎 + 𝑤𝑘𝐻

𝑏), (2.47)

where 𝛼 depends on weights of the two original parents 𝐱𝑘𝐻
𝑎 and 𝐱𝑘𝐻

𝑏 (Zhou et al.,

2021). Furthermore, Zhou et al. (2021) modified the Metropolis-Hasting (M-H) method

(proposed by Hastings (1970)) to find the probability of acceptance for the two new

high-weight parents as:

 POA(𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎 , 𝐱𝑘𝐻

𝑎) = min (1,
𝑤𝑘𝐻.𝑛𝑒𝑤
𝑎

max(𝑤𝑘𝐻
𝑎 ,𝑤𝑘𝐻

𝑏)
) (2.48a)

 POA(𝐱𝑘𝐻,𝑛𝑒𝑤
𝑏 , 𝐱𝑘𝐻

𝑏) = min (1,
𝑤𝑘𝐻.𝑛𝑒𝑤
𝑏

max(𝑤𝑘𝐻
𝑎 ,𝑤𝑘𝐻

𝑏)
), (2.48b)

where, for example, 𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎 will always replace 𝐱𝑘𝐻

𝑎 if its weight is greater than the

weights of both original high-weight parents. Otherwise, the probability that 𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎

will be accepted can be low if its weight is much lower than max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏). Note that

the weights of the two new high-weight parents and those of the two original high-

weight parents must be evaluated according to the same observation 𝐲𝑘. After

32

arithmetic crossover was employed, all of 2 × ⌊𝑁𝑘𝐻/2⌋ new particles (and the one

unpaired original high-weight parent in case quantity 𝑁𝑘𝐻 is odd) were then gathered

together as a set of new high-weight parents (Zhou et al., 2021). However, the weights

of some newly found high-weight parents could be lower than the previously found

weight threshold and these new inferior particles did not qualify to be employed as

high-weight parents.

 To create offspring particles, Yin and Zhu (2015) suggested that each low-

weight parent must first be paired with a randomly selected high-weight parent; there

would be in total 𝑁𝑘𝐿 pairs of parents. The reason was to prevent pairs of any two parent

vectors that had the same state values or equal weights. To follow the principle of GA,

Zhou et al. (2021) created a CDF of normalized weights of 𝑁𝑘𝐻 parent particles and

employed the RWS to randomly select a high-weight parent for each low-weight parent.

That is, the best high-weight parent had the greatest chance to be selected. However,

computation time must be considered. Yin and Zhu (2015), Yin et al. (2016), Yu et al.

(2019), Zhang et al. (2021), and Zhou et al. (2021) forced each pair to create a new

offspring particle via flat crossover to replace its low-weight parent while its high-

weight parent was kept unchanged. That is, parameter 𝑝𝑐 in flat crossover was neglected

(or set as 𝑝𝑐 = 1) because the likelihood of finding new high-weight state vectors must

be maximized.

 Studies by Yin et al. (2016) and Zhou et al. (2021) adaptively adjusted the range

of the tuning parameter 𝛼 for flat crossover in Equation 2.43 as 𝛼 ~ 𝑈(𝐸𝑆𝑆𝑘/𝑁, 1). If

particle degeneracy is severe (or the 𝐸𝑆𝑆𝑘 value is low), the bound of 𝛼 would be large

in order to maximize the diversity of offspring particles. On the contrary, if the 𝐸𝑆𝑆𝑘

value is high, the state values of each offspring particle would be close to those of its

high-weight parent. However, Zhang et al. (2021) used 𝛼 ~ 𝑈(1 − (𝐸𝑆𝑆𝑘/𝑁), 1) to

ensure that state values of each offspring particle will be located around state values of

its high-weight parent, especially in case the 𝐸𝑆𝑆𝑘 value is low. On the contrary, if the

𝐸𝑆𝑆𝑘 value is high, offspring particles could be more freely found within a larger bound

for parameter 𝛼. A side effect of employing an adaptive bound for parameter 𝛼 is that

new high-weight state vectors may not be searched thoroughly because the search scope

sometimes can be very narrow. Consequently, the new population still has chances to

be trapped at the local maximum state values of a few high-weight parents.

33

 In traditional GAs, crossover is followed by mutation. Zhou et al. (2021)

suggested that all new offspring particles (found via flat crossover) and all high-weight

parents (found via arithmetic crossover) should be gathered as a set of 𝑁 new offspring

particles and should enter the mutation process in order to ensure particle diversity.

Parameter 𝑝𝑚 (which was defined by Katoch et al. (2021) as the probability that the

whole offspring vector will mutate), however, was modified to be adaptively calculated

for each 𝑖-th new offspring particle 𝐱𝑘,𝑜𝑓𝑓
𝑖 as:

𝑝𝑚 =

{

 𝑝𝑚,𝑚𝑎𝑥, 𝑤𝑘,𝑜𝑓𝑓

𝑖 < Avg(𝑤𝑘,𝑜𝑓𝑓)

𝑝𝑚,𝑚𝑖𝑛 +
𝑝𝑚,𝑚𝑎𝑥−𝑝𝑚,𝑚𝑖𝑛

1+exp{𝜀[
2[𝑤𝑘,𝑜𝑓𝑓

𝑖 −Avg(𝑤𝑘,𝑜𝑓𝑓)]

max(𝑤𝑘,𝑜𝑓𝑓)−Avg(𝑤𝑘,𝑜𝑓𝑓)
−1]}

, 𝑤𝑘,𝑜𝑓𝑓
𝑎 ≥ Avg(𝑤𝑘,𝑜𝑓𝑓),

 (2.49)

where 𝑝𝑚,𝑚𝑎𝑥 and 𝑝𝑚,𝑚𝑖𝑛 denote the upper and lower bounds of parameter 𝑝𝑚,

respectively. Parameter 𝜀 adjusts the shape of the employed sigmoid function and it

must be set carefully by the user. Avg(𝑤𝑘,𝑜𝑓𝑓) and max(𝑤𝑘,𝑜𝑓𝑓) denote the average

and the maximum values of the weights of the 𝑁 new offspring particles, respectively

(Zhou et al., 2021). Zhou et al. (2021) also suggested that a mutated replica of each

offspring should not be immediately accepted. Thus, the M-H method was also applied

to find the probability of acceptance of the new mutated offspring as:

 POA(𝐱𝑘,𝑜𝑓𝑓_𝑚
𝑖 , 𝐱𝑘,𝑜𝑓𝑓

𝑖) = min (1,
𝑤𝑘,𝑜𝑓𝑓_𝑚
𝑖

𝑤𝑘,𝑜𝑓𝑓
𝑖), (2.50)

where 𝐱𝑘,𝑜𝑓𝑓
𝑖 is the original offspring particle that is found via flat crossover (Zhou et

al, 2021). Note that the weight of offspring 𝐱𝑘,𝑜𝑓𝑓
𝑖 and that of its mutated replica

𝐱𝑘,𝑜𝑓𝑓_𝑚
𝑖 must be evaluated according to the same observation 𝐲𝑘.

 To save computational cost and to ensure diversity, Park et al. (2009), Wang et

al. (2020), and Zhang et al. (2021) suggested that some offspring particles could be

found only via crossover while the rest of offspring particles could be found only via

mutation. That is, offspring particles that were found by employing only crossover and

those found by employing only mutation should coexist within the new-generation

34

swarm. If every offspring was found only via crossover, the bounds of the swarm could

get narrower in the next generation, while undiscovered high-weight state values might

be actually located outside the swarm. If only mutation was employed to find every

offspring, the algorithm could become inefficient because every new offspring would

be found blindly (Kuptametee et al., 2024).

 Park et al. (2009) and Wang et al. (2020) manually set the number of crossover-

based offspring particles 𝑁𝑜𝑓𝑓_𝑐 and the number of mutation-based offspring particles

𝑁𝑜𝑓𝑓_𝑚. These studies, however, had the constraint 𝑁𝑜𝑓𝑓_𝑐+𝑁𝑜𝑓𝑓_𝑚 ≤ 𝑁 because parent

particles in these studies were not classified as high-weight parents and low-weight

parents. This constraint cannot be applied with algorithms that first classify parents by

their weights.

 Zhang et al. (2021) suggested that the number of offspring particles in each of

these two types should depend on the 𝐸𝑆𝑆𝑘 value of the parent-generation swarm, while

the total number of offspring particles from both types must be equal to the number of

low-weight parents 𝑁𝑘𝐿 where 𝑁𝑘𝐿 < 𝑁. When quantity 𝐸𝑆𝑆𝑘 is high, there should be

no particle whose weight is significantly higher than the weights of the other particles.

In this case, flat crossover has greater probability of being selected and employed. On

the other hand, when quantity 𝐸𝑆𝑆𝑘 is low, the expected number of mutation-based

offspring particles should be high. Because the 𝐸𝑆𝑆𝑘 value of the parent-generation

swarm can be different at each time step, fixed quantities 𝑁𝑜𝑓𝑓_𝐶 and 𝑁𝑜𝑓𝑓_𝑀 cannot be

employed. Thus, Zhang et al. (2021) set the probability that flat crossover would be

chosen to 𝐸𝑆𝑆𝑘/𝑁, while probability that the Gaussian mutation would be chosen was

set to 1 − (𝐸𝑆𝑆𝑘/𝑁). Note that work by Zhang et al. (2021) neglected parameters 𝑝𝑐

and 𝑝𝑚 in order to maximize the likelihood of finding new high-weight state vectors.

That is, for each pair of two parents, if crossover is chosen, an offspring must always

be created with 𝑝𝑐 = 1. In the same way, if mutation is chosen for that pair of parents,

an offspring must always be created with 𝑝𝑚 = 1.

 Recall that Zhang et al. (2021) employed mutation to find a new state vector to

directly replace the low-weight parent rather than the offspring found by employing flat

crossover. Suppose that a high-weight parent 𝐱𝑘
ℎ𝑖𝑔ℎ

 is paired with a low-weight parent

𝐱𝑘
𝑙𝑜𝑤 and mutation is randomly chosen for the pair. Gaussian mutation (as shown in

35

Equation 2.44) was then modified by setting the mean values of the Gaussian PDF as

the state values of the high-weight parent. That is,

 𝐱𝑘
𝑜𝑓𝑓_𝑚

~ 𝑁(𝐱𝑘
ℎ𝑖𝑔ℎ

, 𝚺), (2.51)

where the covariance matrix 𝚺 must be carefully designed in order to prevent out-of-

bound state values. This ensured that state values of the offspring vector would be

located around those of its high-weight parent, while the weight of this new state vector

was also expected to have a high value (Zhang et al. 2021).

 After we obtain the new population that consists of new 𝑁𝑘𝐿 offspring particles

(that replace their respective low-weight parent) and original 𝑁𝑘𝐻 high-weight parents,

Yin and Zhu (2015) suggested that resampling (or selection) should be employed in

order to eliminate particles that are re-considered as having low weights (or low

selection probabilities). That is, former high-weight parents whose weights are re-

considered as low and new low-weight offspring particles must be eliminated.

 Yin et al. (2016) modified work of Yin and Zhu (2015) by removing the

resampling step after employing crossover and mutation to obtain a new set of particles.

Also, the weight of every particle in this new set was simply reset to be 1/𝑁 before

advancing to the next time step via the state evolution function. Although particle

diversity could be preserved and computational cost could be reduced, low-weight

particles could still exist and state estimation performance might not be acceptable.

 In practice, we should validate the weight of every new offspring particle in

order to ensure good state estimation performance. For each pair of two parents, if the

weight of an offspring particle is higher than that of its low-weight parent, this offspring

will definitely replace its low-weight parent. Otherwise, this offspring should not

qualify to exist and state values of its low-weight parent are kept unchanged

(Kuptametee et al., 2024; Michalewicz, 1996). Zhang et al, (2021) suggested that an

inferior offspring particle (i.e., an offspring particle whose weight is lower than the

weight of its low-weight parent) should have a certain likelihood to be accepted and to

replace its low-weight parent in order to ensure particle diversity. The probability of

acceptance of an offspring particle can be found by applying the M-H method:

36

 POA(𝐱𝑘
𝑜𝑓𝑓
, 𝐱𝑘
𝑙𝑜𝑤) = min(1,

𝑤𝑘
𝑜𝑓𝑓

𝑤𝑘
𝑙𝑜𝑤), (2.52)

where 𝐱𝑘
𝑜𝑓𝑓

 is the offspring that can be found by employing either only crossover or

only mutation (Zhang et al., 2021). If there are too many accepted inferior offspring

particles, the state estimation performance can be negatively impacted. Ahwiadi and

Wang (2020) and Kuptametee and Aunsri (2022b) suggested that, for each pair of

parents, we can retry finding a new offspring particle 𝐱𝑘
𝑜𝑓𝑓

 until we obtain the one

whose weight is higher than the weight of its low-weight parent. Increasing

computational time and cost, however, must be considered.

 According to Figure 2.2, severe particle degeneracy can also mean a shortage

of high-weight parents. Each low-weight parent then has only a few cases of high-

weight parents to pair with. Consequently, the particle swarm can still be trapped at the

local maximum state values. Each new offspring particle stays unused after being

computed until the last offspring particle is calculated from of the last low-weight

parent and its paired high-weight parent. Finally, we can gather all 𝑁𝑘𝐿 offspring

particles (with new evaluated weights) and all unchanged 𝑁𝑘𝐻 high-weight parents as

the new swarm of 𝑁 particles to estimate the hidden state. That is, we lose the

opportunity to employ high-weight offspring particles as new high-weight parents to

further promote diversity of state values in the new generation of the particle swarm.

37

CHAPTER 3

PROPOSED METHOD

 In this dissertation, we modify a GA to ensure particle diversity and the

likelihood of discovering new high-weight state vectors. The modified GA is also

designed to be adaptive to the original parent generation of particle swarm (i.e., the set

of 𝑁 original weighted particles) instead of requiring too many parameters that must be

carefully preset. We then integrate the proposed GA into a generic PF algorithm to

improve state estimation performance. The following sections in this chapter present

the steps of the proposed method.

3.1 Parent Classification

 At the beginning of each time step 𝑘, each particle 𝐱𝑘
𝑖 is first drawn from the

state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖); its weight 𝑤𝑘

𝑖 is found as 𝑝(𝐲𝑘|𝐱𝑘
𝑖) (as per Equation

2.29). As suggested by Yin and Zhu (2015), all 𝑁 weighted particles should participate

in offspring creation without employing a selection process to ensure particle diversity.

All particles, however, must first be classified as high-weight or low-weight parents.

The benefits of particle classification are: (1) to prevent having pairs of any two

identical parents and (2) to prevent high-weight parents from being replaced by new

offspring particles. The proposed method computes the weight threshold for classifying

parents at time step 𝑘 as:

 𝑤𝑘
𝑡ℎ𝑟 =

1
𝑁

∑ 𝑤𝑘
𝑖𝑁

𝑖 = 1 , (3.1)

which is the average of the true non-normalized weights of all 𝑁 particles in the original

parent generation at time step 𝑘. Particles whose weights are not lower than 𝑤𝑘
𝑡ℎ𝑟 will

be classified as high-weight parents, while the others are classified as low-weight

parents. Equation 3.1 does not require weight sorting and computation time can then be

saved. Furthermore, the weight threshold found in work by Yin and Zhu (2015), Yin et

38

al. (2016), Yu et al. (2019), Zhang et al. (2021), and Zhou et al. (2021) as the weight of

the [𝐸𝑆𝑆𝑘]-th best particle is not always adequately high. Suppose that there are 10

particles whose weights are sorted in a descending order as: 0.28, 0.19, 0.14, 0.12, 0.08,

0.06, 0.05, 0.04, 0.03 and 0.01. The ESS value of this swarm calculated according to

Equation 2.35 will be approximately 6.1125 and [6.1125] = 6. Thus, the weight of the

sixth best particle, 0.06, is then employed as weight threshold, while the value 0.06 is

lower than the average of all ten weights, 0.1.

 Note that the number of low-weight parents and the number of high-weight

parents can be different and time-varying. We denote the number of low-weight parents

at time step 𝑘 and the number of high-weight parents at time step 𝑘 as variables 𝑁𝑘𝐿

and 𝑁𝑘𝐻, respectively. The pseudocode for parent classification is also provided in

Figure 3.1.

Input: 𝑁 particles (𝐱𝑘) and their true weights (𝑤𝑘)

Output: 𝑁𝑘𝐿 low-weight parents (𝐱𝑘𝐿) and 𝑁𝑘𝐻 high-weight parents (𝐱𝑘𝐻) where

 𝑁𝑘𝐿 + 𝑁𝑘𝐻 = 𝑁

𝑤𝑘
𝑡ℎ𝑟 ← ∑ 𝑤𝑘

𝑖𝑁
𝑖=1 %Employ average of all true weights as the threshold

𝑙 ← 0 %Initialize the index number of low-weight parents

ℎ ← 0 %Initialize the index number of high-weight parents

for 𝑖 ∈ {1, … , 𝑁} do

 if 𝑤𝑘
𝑖 ≥ 𝑤𝑘

𝑡ℎ𝑟 then %Classify the particle as a high-weight parent

 ℎ ← ℎ + 1

 𝐱𝑘𝐻
ℎ ← 𝐱𝑘,𝑜𝑙𝑑

𝑖

 𝑤𝑘𝐻
ℎ ← 𝑤𝑘,𝑜𝑙𝑑

𝑖

 else %Classify the particle as a low-weight parent

 𝑙 ← 𝑙 + 1

 𝐱𝑘𝐿
𝑙 ← 𝐱𝑘

𝑖

 𝑤𝑘𝐿
𝑙 ← 𝑤𝑘

𝑖

 end if

end for

Figure 3.1 A pseudocode for parent classification

39

3.2 Parent Pairing

 Each pair of parents is created sequentially. Each low-weight parent randomly

selects a high-weight parent to pair with. We allow each high-weight parent to be

selected multiple times. Otherwise, in case particle degeneracy occurs when the number

of high-weight parents is smaller than that of low-weight parents as shown in Figure

2.2, some low-weight parents will not have any high-weight parents to pair with.

 According to the traditional principle of GAs, the fittest individual has the

highest chances to survive and to produce new offspring individuals (Katoch et al.,

2021; Larose,2006; Michalewicz, 1996). Thus, the parent particle with the maximum

weight is supposed to be selected most often or to pair with low-weight parents in

greatest numbers (Zhou et al., 2021). However, the state values of the maximum-weight

particle that we have on hand are not necessarily located around the global maximum

state values (that are located at the highest peak of the true unknown posterior PDF).

That is, the true weight of the maximum-weight particle that we have on hand may be

actually low (Kuptametee et al., 2024).

 Suppose that we need to create the 𝑎-th pair of parents where 𝑎 ∈ {1, … , 𝑁𝑘𝐿}.

We draw an index number 𝑏 ~ 𝑈{1, … , 𝑁𝑘𝐻} to select the 𝑏-th high-weight parent 𝐱𝑘𝐻
𝑏

to pair with the 𝑎-th low-weight parent 𝐱𝑘𝐿
𝑎 . That is, we set the selection probability of

each high-weight parent to be the same because we need to mitigate the chances that

the new offspring particles will be trapped around the state values of the maximum-

weight particle (or local maximum state values). Note that each index number 𝑏 does

not denote ranking orders of the high-weight parents because weight sorting was not

employed during particle classification.

3.3 Offspring Creation

 Zhang et al. (2021) suggested that there are two types of offspring particles that

should be computed together in order to obtain the new generation of particle swarm:

(1) offspring particles that are calculated using only flat crossover (proposed by

Radcliffe (1990) as in Equation 2.43), and (2) offspring particles that are computed

40

using only modified Gaussian mutation (proposed by Zhang et al. (2021) as in Equation

2.51). This scheme ensures that new high-weight state vectors will be identified in the

search space. However, the number of offspring particles from each type should depend

on the 𝐸𝑆𝑆𝑘 value of the original parent-generation particle swarm. When the 𝐸𝑆𝑆𝑘

value is high, the variance of all particle weights is supposed to be low and flat

crossover should be preferred to find new offspring particles whose state values are

located within the bounds of the swarm. On the other hand, when the 𝐸𝑆𝑆𝑘 value is low

(or particle degeneracy is severe), there are only few particles whose weights are

significantly higher than the weights of the other particles, as previously shown in

Figure 2.2. Modified Gaussian mutation should be preferred to find new offspring

particles that are located around the state values of these few high-weight parents. Thus,

we adopt the Gaussian mutation modified by Zhang et al. (2021) by setting the

probability of choosing flat crossover for each pair at time step 𝑘 as:

 𝛾𝑘 =
(∑ 𝑤𝑘

𝑖𝑁
𝑖=1)

2

𝑁×∑ (𝑤𝑘
𝑖𝑁

𝑖=1)
2 , (3.2)

while the probability of choosing modified Gaussian mutation for each pair at time step

𝑘 is 1 − 𝛾𝑘. That is, the expected number of crossover-based offspring particles to be

found at time step 𝑘 is:

 𝑁𝑘𝐶,𝑒𝑥𝑝 = 𝑁𝑘𝐿 × 𝛾𝑘, (3.3)

and the expected number of mutation-based offspring particles to be found at time step

𝑘 is:

 𝑁𝑘𝑀,𝑒𝑥𝑝 = 𝑁𝑘𝐿 × (1 − 𝛾𝑘). (3.4)

 All high-weight parents are always kept unchanged, while each low-weight

parent is supposed to be replaced with its offspring in case the latter has a higher weight.

However, the new state vector may not always have a higher weight. We must first find

the offspring candidate particle 𝐱𝑐𝑎𝑛𝑑 from a pair of the low-weight parent 𝐱𝑘𝐿
𝑎 and the

high-weight parent 𝐱𝑘𝐻
𝑏 .

41

 Let a random number 𝑢 ~ 𝑈(0,1) be drawn for selecting a GA operator for

offspring creation. If 𝑢 ≤ 𝛾𝑘, flat crossover will be chosen and the offspring candidate

can be calculated as:

 𝐱𝑐𝑎𝑛𝑑 = 𝛼𝐱𝑘𝐻
𝑏 + (1 − 𝛼)𝐱𝑘𝐿

𝑎 , (3.5)

where variable 𝛼 ~ 𝑈(0, 1) is the state value tuning parameter. If 𝛼 is low, the state

values of the candidate 𝐱𝑐𝑎𝑛𝑑 will be close to those of the low-weight parent 𝐱𝑘𝐿
𝑎 . In

contrast, the state values of the candidate 𝐱𝑐𝑎𝑛𝑑 will be close to those of the high-weight

parent 𝐱𝑘𝐻
𝑏 if 𝛼 is high. Equation 3.5 can be employed only when the two parent vectors

have the same size. Equation 3.5 can then be generalized for finding each 𝑚-th new

state value as:

 𝑥𝑐𝑎𝑛𝑑,𝑚 = 𝛼𝑥𝑘𝐻,𝑚
𝑏 + (1 − 𝛼)𝑥𝑘𝐿,𝑚

𝑎 , (3.6)

where tuning value 𝛼 must be the same for every 𝑚-th vector component, where 𝑚 ∈

{1, … , min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏)}. Quantities 𝑑𝑘𝐿
𝑎 and 𝑑𝑘𝐻

𝑏 denote the size of the low-weight parent

𝐱𝑘𝐿
𝑎 and the size of the high-weight parent 𝐱𝑘𝐻

𝑏 , respectively. That is, only the first

min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏) vector components of the two parents can be paired. Note that the two

parent state values 𝑥𝑘𝐿,𝑚
𝑎 and 𝑥𝑘𝐻,𝑚

𝑏 must have same data type or unit, while the whole

vector may consist of state values with different data types or units.

 In case 𝑑𝑘𝐻
𝑏 > 𝑑𝑘𝐿

𝑎 , the [min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏) + 1]-th through the 𝑑𝑘𝐻
𝑏 -th components

of the high-weight parent 𝐱𝑘𝐻
𝑏 will be left unused. In case 𝑑𝑘𝐻

𝑏 < 𝑑𝑘𝐿
𝑎 , every vector

component of the high-weight parent 𝐱𝑘𝐻
𝑏 will be employed in Equation 3.6. Then, the

[min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏) + 1]-th through the 𝑑𝑘𝐿
𝑎 -th components of the low-weight parent 𝐱𝑘𝐿

𝑎

will be concatenated to the newly found candidate 𝐱𝑐𝑎𝑛𝑑 without being changed. That

is, the size of the candidate 𝐱𝑐𝑎𝑛𝑑 that is found using flat crossover must be the same

as that of the low-weight parent 𝐱𝑘𝐿
𝑎 . Note that, although the two parent vectors have

different sizes in this case, all of their respective state values must have the same data

type or unit.

42

 Recall that the random value 𝑢 ~ 𝑈(0,1) is drawn to select a GA operator for

offspring creation. If 𝑢 > 𝛾𝑘, modified Gaussian mutation will be chosen and the

offspring candidate can be found as:

 𝐱𝑐𝑎𝑛𝑑 ~ 𝑁(𝐱𝑘𝐻
𝑏 , 𝚺), (3.7)

where 𝚺 is a 𝑑𝑘𝐻
𝑏 × 𝑑𝑘𝐻

𝑏 covariance matrix that can be designed by the user. Recall that,

in this mutation scheme, the state values of the high-weight parent 𝐱𝑘𝐻
𝑏 are employed

as mean values of the Gaussian PDF. Thus, the size of the candidate 𝐱𝑐𝑎𝑛𝑑 that is found

using modified Gaussian mutation must be same to that of the high-weight parent 𝐱𝑘𝐻
𝑏 .

 Finally, we find the 𝑎-th offspring particle that will replace its low weight parent

𝐱𝑘𝐿
𝑎 as:

 𝐱𝑘
𝑎,𝑜𝑓𝑓

= {
𝐱𝑐𝑎𝑛𝑑, 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑) > 𝑝(𝐲𝑘|𝐱𝑘𝐿

𝑎)

𝐱𝑘𝐿
𝑎 , 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑) ≤ 𝑝(𝐲𝑘|𝐱𝑘𝐿

𝑎),
 (3.8)

where state values of the candidate 𝐱𝑐𝑎𝑛𝑑 will be accepted and assigned to the offspring

particle only if the weight of the candidate 𝐱𝑐𝑎𝑛𝑑 is higher than the weight of the low-

weight parent 𝐱𝑘𝐿
𝑎 . Otherwise, the low-weight particle 𝐱𝑘𝐿

𝑎 assigns its state values to the

offspring particle without being changed.

3.4 Evolution of High-weight Offspring Particles

 Initially, particles are classified according to the threshold 𝑤𝑘
𝑡ℎ𝑟 that is

calculated using Equation 3.1. Consequently, there are two disjoint sets of particles:

high-weight particles (red-line circles) and low-weight particles (blue-line circles) as

shown in Figure 3.2. When offspring particles are found, a set of offspring particles

(yellow-line circle) must be created. Some offspring particles are actually new state

vectors while the others are just replicas of their respective low-weight parents. That is,

the set of replicas of low-weight particles is a subset of the set of offspring particles.

Also, some offspring particles may have weights that are not smaller than the threshold

𝑤𝑘
𝑡ℎ𝑟. That is, these offspring particles satisfy the condition of being classified as high-

weight parents and they can then be employed along with original members of the set

43

of high-weight parents. Thus, the set of high-weight particles and the set of offspring

particles are not disjoint. When all 𝑁𝑘𝐿 offspring particles are found, the original set of

low-weight particles becomes an empty set and can be removed. Recall that the weight

threshold 𝑤𝑘
𝑡ℎ𝑟 must stay fixed once it is calculated via Equation 3.1.

Figure 3.2 Euler diagrams of sets of particles before and after employing GA

 As previously discussed, when particle degeneracy is severe, each low-weight

parent has a few choices of high-weight parents to randomly choose and pair with.

Normally, each offspring particle can be obtained sequentially from each pair and the

computed offspring particles are stored unused until we obtain all 𝑁𝑘𝐿 offspring

particles. Some of the stored offspring particles may have high weights and we should

make use of them to ensure diversity of the rest of the offspring particles. In other

words, the low-weight parents should be offered more choices of high-weight parents

to pair with.

 Figure 3.3 demonstrates the process of finding the first offspring particle (i.e.,

particle 𝐱𝑘
𝑎,𝑜𝑓𝑓

 with index number 𝑎 = 1) where the digit on each particle denotes its

index number. The selected low-weight parent also generates a replica that is employed

during weight comparison against its offspring. If the weight of the offspring is smaller

than or equal to the weight of its low-weight parent, this offspring will be rejected and

44

the state values of its low-weight parents will replace the new state values. Then, this

offspring is regarded as the replica of its low-weight parent.

 If the weight of the offspring is higher than the weight of its low-weight parent,

this offspring will be accepted. Also, if the weight of the offspring is not smaller than

the preset threshold 𝑤𝑘
𝑡ℎ𝑟 (computed via Equation 3.1), it will evolve to a new high-

weight parent with an additional probability to be selected and paired with the rest of

the low-weight parents. Otherwise, the offspring will be stored unused because its

weight is not high enough for it to be promoted as a new high-weight parent.

Figure 3.3 The process of finding an offspring particle in the proposed method

 We iterate the overall process in Figure 3.3 until there are no original low-

weight parents (not their replicas) left. Finally, we gather all 𝑁 weighted particles from

all three sets (high-weight particles, offspring particles, and low-weight parent replicas)

as the new-generation population (or particle swarm) at time step 𝑘 and we employ this

new population to infer (or estimate) the true state at time step 𝑘. The pseudocode for

improving the low-weight parents (i.e., offspring creation) in the proposed method is

also shown in Figure 3.4.

45

Input: 𝑁𝑘𝐿 low-weight parents (𝐱𝑘𝐿) and 𝑁𝑘𝐻 high-weight parents (𝐱𝑘𝐻)

Output: 𝑁𝑘𝐿 offspring particles and 𝑁𝑘𝐻 original high-weight parents (𝐱𝑘𝐻)

𝛾𝑘 ← (∑ 𝑤𝑘
𝑖𝑁

𝑖=1)
2

/ [𝑁 × ∑ (𝑤𝑘
𝑖)

2𝑁
𝑖=1] %Probability of choosing flat crossover

ℎ ← 𝑁𝑘𝐻 %Initial number of high-weight parents

for 𝑎 ∈ {1, … , 𝑁𝑘𝐿} do

 𝑏 ~ 𝑈{1, … , ℎ}

 𝑢 ~ 𝑈(0,1)

 if 𝑢 ≤ 𝛾𝑘 then %Employ flat crossover

 𝛼 ~ 𝑈(0,1)

 𝑑 ← min (𝑑𝑥𝐿 , 𝑑𝑥𝐻) %Number of pairable vector components

 for 𝑚 ∈ {1, … , 𝑑} do

 𝑥𝑐𝑎𝑛𝑑,𝑚
𝑎 ← 𝛼𝑥𝑘𝐻,𝑚

𝑏 + (1 − 𝛼)𝑥𝑘𝐿,𝑚
𝑎

 end for

 if 𝑑𝑥𝐿 > 𝑑 %In case low-weight parent is longer

 for 𝑚 ∈ {𝑑 + 1, … , 𝑑𝑥𝐿} do

 𝑥𝑐𝑎𝑛𝑑,𝑚
𝑎 ← 𝑥𝑘𝐿,𝑚

𝑎 %Inherit unpaired vector components

 end for

 end if

 else %Employ mutation

 𝐱𝑐𝑎𝑛𝑑
𝑎 ~ 𝑁(𝐱𝑘𝐻,𝑚

𝑏 , 𝚺𝐺𝑀)

 end if

 𝑤𝑐𝑎𝑛𝑑
𝑎 ← 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑

𝑎) %Weight of the 𝑎-th offspring candidate

 if 𝑤𝑐𝑎𝑛𝑑 ≥ 𝑤𝑘
𝑡ℎ𝑟 then %Add new high-weight parent

 ℎ ← ℎ + 1

 𝐱𝑘𝐻
ℎ ← 𝐱𝑐𝑎𝑛𝑑

𝑎

 𝑤𝑘𝐻
ℎ ← 𝑤𝑐𝑎𝑛𝑑

𝑎

 else if 𝑤𝑐𝑎𝑛𝑑
𝑎 ≥ 𝑤𝑘𝐿

𝑎 then %Replace the low-weight parent

 𝐱𝑘𝐿
𝑎 ← 𝐱𝑐𝑎𝑛𝑑

𝑎

 𝑤𝑘𝐿
𝑎 ← 𝑤𝑐𝑎𝑛𝑑

𝑎

 else

 Keep the low-weight parent 𝐱𝑘𝐿
𝑎 and its weight unchanged

 end if

end for

Figure 3.4 A pseudocode for offspring creation

46

 Suppose that the number of the original high-weight parents at time step 𝑘 is

𝑁𝑘𝐻,𝑜𝑙𝑑 and the number of the new high-weight offspring particles at time step 𝑘 whose

weights are not lower than the threshold as computed by Equation 3.1 is 𝑁𝑘𝐻,𝑛𝑒𝑤 (which

is initially zero). In theory, the computational complexity of adding a new high-weight

offspring into an array (or a set) of high-weight parents is 𝑂(𝑁𝑘𝐻,𝑜𝑙𝑑 + 𝑁𝑘𝐻,𝑛𝑒𝑤)

because we have to create a new array with a larger size before we move the 𝑁𝑘𝐻,𝑜𝑙𝑑 +

𝑁𝑘𝐻,𝑛𝑒𝑤 high-weight particles (excluding the newest high-weight offspring at the

moment) to the new array (Lewis & Chase, 2014). It is possible that all 𝑁𝑘𝐿 new

candidates will not only be accepted as new offspring but also evolve to be new high-

weight parents. Thus, we can create an array with size 𝑁 × 𝑑𝑥 in advance to store both

the original and the new high-weight particles. The complexity of adding (or pushing)

a new particle into this “maximum size” array is only 𝑂(1) because we do not need to

create a new array once each high-weight offspring is obtained (Lewis & Chase, 2014).

47

CHAPTER 4

SIMULATION RESULTS

 This chapter presents results of state estimation of the proposed method in

simulation state-space models. There are two experiments conducted where the state-

space model is: (1) one-dimensional, and (2) multidimensional. The size of the state

vectors in each of these experiments is, however, not time-varying.

 The state-of-the-art algorithms selected for experiments in this chapter are as

follows.

 The traditional particle filter called sequential importance resampling particle

filter (SIR-PF) employs stochastic universal sampling (SUS) (i.e., systematic

resampling) to eliminate low-weight particles at every time step. This selection scheme

is also employed by the auxiliary SIR particle filter (ASIR-PF) proposed by Pitt and

Shephard (1999) to resample the auxiliary particles.

 The adaptive fission particle filter (AFPF) proposed by Han et al. (2015) sets

the minimum number of replicas to be created from each of 𝑁 particles (excluding

themselves) to 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛 = 2. A fission factor is also employed to tune variance values

according to the weight of each original particle according to Equation 2.39.

 The genetic optimization resampling particle filter (GORPF) proposed by Zhou

et al. (2021) creates new offspring only when the effective sample size (ESS) found

according to the new weights of 𝑁 post-roughening parents is lower than 0.7𝑁.

Roughening is employed according to Equation 2.38 with a tuning parameter 𝛽 = 0.2

as suggested by Gordon et al. (1993). In parent classification, the number of high-

weight parents is 𝑁𝑘𝐻 = [𝐸𝑆𝑆𝑘] where [∙] is the rounding symbol, e.g., [3.4] = 3 and

[3.5] = 4. Arithmetic crossover is employed to create new high-weight parents with

parameters set as: 𝑝𝑐,𝑚𝑖𝑛 = 0.6, 𝑝𝑐,𝑚𝑎𝑥 = 0.9 and 𝜀 = 9.903438, according to

Equation 2.46, while Equations 2.48a and 2.48b are employed to accept or reject the

two new high-weight parents. The 𝐸𝑆𝑆𝑘 of all 𝑁 particles must be re-evaluated and flat

crossover (in Equation 2.43) can then be employed with 𝛼 ~ 𝑈(𝐸𝑆𝑆𝑘/𝑁, 1) where each

new offspring must replace its low-weight parent, while each high-weight parent is

48

randomly selected according to a CDF of the normalized weights of 𝑁𝑘𝐻 high-weight

parents. Finally, Gaussian mutation is employed to perturb state values of every particle

(including 𝑁𝑘𝐻 high-weight parents and 𝑁𝑘𝐿 new offspring particles) according to

Equation 2.44 with the parameter 𝑝𝑚 calculated via Equation 2.49. Equation 2.49 is

employed with the following parameters: 𝑝𝑐,𝑚𝑖𝑛 = 0.6, 𝑝𝑐,𝑚𝑎𝑥 = 0.9, and 𝜀 =

9.903438. Finally, Equation 2.50 is employed to accept or reject the mutated replica

of each particle.

 The intelligent particle filter (IPF) proposed by Zhang et al. (2021) treats the

[𝐸𝑆𝑆𝑘] best particles as high-weight parents while the rest are treated as low-weight

parents, similar to GORPF. The probability that each of 𝑁𝑘𝐻 high-weight parents will

be selected is set to be uniform, similar to our proposed method. If flat crossover is

chosen with probability 𝐸𝑆𝑆𝑘/𝑁, flat crossover will be employed according to Equation

2.43 with 𝛼 ~ 𝑈(1 − (𝐸𝑆𝑆𝑘/𝑁), 1). Modified Gaussian mutation can be chosen and

employed according to Equation 2.51 with probability 1 − (𝐸𝑆𝑆𝑘/𝑁). Equation 2.52 is

employed for allowing the new offspring to replace its low-weight parent or not.

4.1 One-dimensional State Estimation

 In this section, we choose a benchmark non-linear state-space model from work

by Gordon et al. (1993) to perform a one-dimensional (1-D) state estimation

experiment. The state evolution function and the observation function of this model are:

 𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘−1) = 0.5𝑥𝑘−1 +
25𝑥𝑘−1

1+𝑥𝑘−1
2 + 8cos[1.2(𝑘 − 1)] + 𝑢𝑘−1, (4.1)

and

 𝑦𝑘 = 𝑔𝑘(𝑥𝑘, 𝑣𝑘) = 0.05𝑥𝑘
2 + 𝑣𝑘, (4.2)

where quantity 𝑢𝑘−1 is additive state evolution noise that updates old state values at

time step 𝑘 − 1 and quantity 𝑣𝑘 is additive observation noise at time step 𝑘,

respectively. The weight of each particle 𝑥𝑘
𝑖 in this system can be found from the

likelihood function:

49

 𝑤𝑘
𝑖 = exp(

−(𝑦𝑘−𝑔𝑘(𝑥𝑘
𝑖))

2

2𝜎𝑣𝑘
2), (4.3)

where 𝑔𝑘(𝑥𝑘
𝑖) denotes the 𝑖-th predicted observation data value and 𝜎𝑣𝑘

2 denotes the

variance of observation noise 𝑣𝑘. The parameters configured for this 1-D state-space

model are provided in Table 4.1

Table 4.1 Parameters for the 1-D state estimation experiment

Symbol Meaning Value

𝑥0 Initial state 0

𝑝(𝑥0) Initial prior PDF 𝑁(0, 2)

𝑢𝑘−1 State evolution noise Draw from 𝑁(0, 2)

𝑣𝑘 Observation noise Draw from 𝑁(0, 2)

𝐾 Number of time steps 100

𝑅 Number of simulation runs 50

 Some configurations in this experiment were specifically made for selected

state-of-the-art algorithms. The AFPF employs a variance 𝜎2 of 2 for perturbing the

state values of each created replica. The GORPF, IPF and the proposed method also

employ a variance 𝜎2 of 2 in their respective mutation schemes.

 In this experiment, the state was inferred using the weighted mean (WM) of

sample state values. To obtain a fair state estimation comparison using WM, the weight

of each new particle in the final set that was obtained after resampling in SIR-PF and

ASIR-PF, after roughening in GORPF (only when 𝐸𝑆𝑆𝑘 ≥ 0.7𝑁), after offspring

creation in GORPF (only when 𝐸𝑆𝑆𝑘 < 0.7𝑁), IPF and the proposed method, must be

re-evaluated via Equation 2.29 before we estimate the state at the end of any time step

𝑘, instead of leaving particle weights as 1/𝑁.

 The results of 1-D state estimation using WM with 𝑁 = 100 particles are shown

in Figures 4.1 and 4.2, where the true states (shown as a black curve with black dots)

are plotted against estimated tracks of 50 simulation runs (shown as magenta curves).

Figure 4.1 shows comparison results obtained from non-GA-based PF algorithms (i.e.,

50

SIR-PF, ASIR-PF and AFPF), while Figure 4.2 shows comparison results obtained

from GA-based PF algorithms (i.e., GORPF, IPF and the proposed PF).

Figure 4.1 Comparison of 1-D state estimations via WM by employing non-GA-based

PF algorithms

 In Figure 4.1, results obtained from non-GA-based PF algorithms (i.e., SIR-PF,

ASIR-PF and AFPF show significant errors: the estimated tracks deviate from the true

state track. In ASIR-PF, the estimated tracks are more erroneous than those of the SIR-

PF at, for example, around time steps 17-18, time steps 51-52, and time steps 79-80.

The reason is that the ASIR-PF further perturbs state values of resampled auxiliary

51

particles blindly. The AFPF, however, delivered the most erroneous estimation results:

many parts of the estimated tracks clearly deviate from the track of the true state. In

AFPF, each high-weight particle created replicas at higher numbers, but the state values

of these replicas were not perturbed much from the state values of their original copy

because the fission factor tuned the variance of the Gaussian PDF that was employed

for drawing random perturbing values to be low. Each of the low-weight particles, in

contrast, created fewer replicas where the fission factor value and the variance of the

Gaussian PDF were high. Thus, the particle swarm in AFPF, even after weight sorting

and keeping only the 𝑁 best particles, still could be trapped at the local maximum state

values.

52

Figure 4.2 Comparison of 1-D state estimations via WM by employing GA-based PF

algorithms

 Figure 4.2 compares results of 1-D state estimation using WM obtained from

GA-based PF algorithms: GORPF, IPF and the new method. The GORPF, at some time

steps, employed only roughening to diversify the state values of the selected parents (or

resampled particles) because quantity 𝐸𝑆𝑆𝑘 was not smaller than the preset threshold.

As previously discussed, a high 𝐸𝑆𝑆𝑘 does not mean that all (or most of) particles are

located at regions of high-weight state values. Thus, the GORPF lost the opportunity to

find new and better particles to enhance state estimation at some time steps and,

53

consequently, delivered erroneous results, as shown in time steps 8-15 and 30-36. The

IPF accepted some new inferior low-weight particles to be members of the new

generation of swarm. These inferior particles then participated in the state estimation

and negatively affected its performance, as shown in time steps 30-36. Thus, the new

method is obviously superior to the others because this method always rejected every

offspring candidate that was inferior to its respective low-weight parent. Also, potential

offspring particles were employed as new high-weight parents instead of being kept

unused until we needed to estimate the state.

 Figure 4.3 shows the effects of employing the proposed method for posterior

PDF reshaping at selected time steps of one run. To keep the values of the y-axis scale

(i.e., normalized weights) consistent as before and after employing our method, we

normalized the weights of pre-reshaping the posterior PDFs (shown on the left-hand

side). The dark gray lines denote the normalized weight threshold at the average (or

1/𝑁 where 𝑁 = 100). Some low-weight particles can be seen to have been relocated

to the new positions where high-weight state values existed because they were replaced

by offspring particles that had higher weights. Note that the weights of particles in post-

reshaping PDFs (shown on the right-hand side) had not been re-normalized because we

need to present clear comparisons between before and after employing the new method.

54

Note (a) Time step 𝑘 = 6, (b) Time step 𝑘 = 31, (c) Time step 𝑘 = 86

Figure 4.3 Posterior PDFs are reshaped after employing the proposed method

 Table 4.2 presents a comparison of the 1-D state estimation performance

previously shown in Figures 4.1 and 4.2 in terms of numerical error measurements.

Root-mean-squared errors (RMSE) and mean absolute errors (MAE) were employed to

assess the state estimation performance. We employ their averages values that can be

found as:

 Avg(RMSE) =
1
𝑅

∑ √
1

𝐾
∑ |𝑥𝑘 − 𝑥̂𝑘,𝑟|2

𝐾
𝑘=1

𝑅
𝑟=1 (4.4)

and

 Avg(MAE) =
1

𝐾𝑅
∑

1

𝐾
∑ |𝑥𝑘 − 𝑥̂𝑘,𝑟|

𝐾
𝑘=1

𝑅
𝑟=1 , (4.5)

55

where 𝑥𝑘 denotes the true state at time step 𝑘 from all 𝐾 time steps, while 𝑥̂𝑘,𝑟 denotes

the estimated state at time step 𝑘 of the 𝑟-th simulation run from all 𝑅 runs (Aunsri et

al., 2021; Kuptametee & Aunsri, 2022b).

Table 4.2 Numerical error measurements in 1-D state estimation

PF Avg(RMSE) Var(RMSE) Avg(MAE) Var(MAE)

SIR-PF 3.1113 0.1471 1.6290 0.0277

ASIR-PF 3.1922 0.1790 1.5644 0.0348

AFPF 4.0221 1.0266 2.2174 0.2540

GORPF 2.9023 0.2758 1.5145 0.0461

IPF 2.6131 0.1692 1.4481 0.0286

Proposed 2.4507 0.0185 1.3998 0.0077

 The average numerical errors of non-GA-based PF algorithms were higher than

those of GA-based PF algorithms. The average RMSE of the SIR-PF was lower than

that of the ASIR-PF but the average MAE of the SIR-PF was higher than that of the

ASIR- PF. However, the variances of the numerical errors of the SIR-PF were lower

than those of the ASIR-PF for both RMSEs and MAEs. The AFPF yielded the highest

averages of errors and the highest variances of errors. This showed that blind state value

perturbation was ineffective.

 Results obtained from the GORPF were more erroneous than results delivered

from the other two GA-based PF algorithms, the IPF and the proposed method.

Although the average errors of the GORPF were lower than those of the SIR-PF and

ASIR-PF, the variance of RMSEs and MAEs of the GORPF were higher than not only

those of the SIR-PF and the ASIR-PF but also those of the IPF and the proposed PF. In

roughening which was employed in the GORPF, the state values of 𝑁 resampled

particles were perturbed according to the same set of adaptive variance values, which

could be different for each vector component at each time step via Equation 2.37. That

is, variance values in roughening could vary for each time step. This showed that the

adaptability of the IPF and the proposed PF without pre-setting too many GA

parameters provided better performance compared to the GORPF. The average RMSE

and MAE obtained by the IPF were lower than those of the SIR-PF, but the variance of

56

RMSEs and MAEs of the IPF are higher than those of the SIR-PF. The reason was that

the IPF sometimes accepted candidate particles as new offspring particles, while their

weights were lower than those of their respective low-weight parents. The performance

of the proposed method was better and more reliable than the other algorithms as shown

by having the lowest averages and variances of errors in this experiment.

 The computation time for 1-D state estimation for each PF algorithm where 𝑁 =

100 was also measured and provided in Table 4.3. The average computation time can

be found as:

 Avg(Time) =
1

𝐾𝑅
∑ ∑ 𝑡𝑘,𝑟

𝐾
𝑘=1

𝑅
𝑟=1 , (4.6)

where 𝑡𝑘,𝑟 denotes the computation time (measured in seconds) at time step 𝑘 of the

𝑟-th simulation run. Quantities 𝐾 and 𝑅 denote the total number of time steps and the

total number of simulation runs, respectively (Aunsri et al., 2021).

Table 4.3 Computation time in 1-D state estimation

PF Minimum Average Maximum
Variance

(× 10-6)

SIR-PF 0.0013 0.0022 0.0175 2.1685

ASIR-PF 0.0017 0.0031 0.0190 3.2025

AFPF 0.0019 0.0040 0.0436 11.2781

GORPF 0.0023 0.0048 0.1587 81.8221

IPF 0.0016 0.0038 0.0431 9.4376

Proposed 0.0014 0.0031 0.0420 3.8568

 The SIR-PF runtime was the shortest because, after resampling and state

estimation, the SIR-PF just moved to next time step by updating state values of 𝑁

resampled particles via the state evolution function. This differs from perturbing the

state values to estimate the state with diversified particles. The ASIR-PF required

slightly longer computation time compared to the SIR-PF because the ASIR-PF blindly

perturbed the state values of the 𝑁 resampled auxiliary particles to obtain the 𝑁 new

particles employed in state estimation. In the GORPF resampling (i.e., parent selection)

and roughening were always employed at every time step. This scheme is more

57

complicated than perturbing the state values of 𝑁 resampled particles with fixed-

variance Gaussian random values as implemented in the ASIR-PF. Thus, the minimum

computation time spent by the GORPF was the largest. The AFPF, IPF and the

proposed PF did not employ any traditional selection (or resampling) scheme.

However, the AFPF required substantial time to find new state values of replicas of

each of the 𝑁 original particles. The total number of newly created replicas (with

perturbed state values) could exceed 𝑁, while weight sorting was also required to keep

the best 𝑁 particles. Also, the AFPF calculated the fission factor value of each of the 𝑁

original particles which depended on the particle weights as in Equation 2.39.

 The maximum computation time of the GORPF was the longest, especially

when the 𝐸𝑆𝑆𝑘 value was lower than the preset threshold where parent selection,

roughening, crossover and mutation were sequentially employed. The variance of the

computation time spent by the GORPF was the largest because crossover and mutation

were employed only at some time steps. The IPF and the proposed PF employed only

crossover or mutation to find an offspring from each of the 𝑁𝑘𝐿 pairs of parents where

𝑁𝑘𝐿 < 𝑁 to save computation time. However, the GORPF and IPF sorted weights to

find the weight threshold for parent classification, while the proposed method did not

require weight sorting. The computation time of the new PF then was shorter than that

of the AFPF, GORPF and IPF. However, the variance of computation time of the AFPF

and that of all GA-based PF algorithms were higher than those of the SIR-PF and ASIR-

PF in this experiment. The reason was that the number of the created offspring particles

in the AFPF and that in GA-based PF algorithms could be different at each time step.

Nevertheless, variance of computation time of the new PF was close to that of the

ASIR-PF.

 Figure 4.4 shows a comprehensive comparison of 1-D state estimation in terms

of RMSEs where the variance of the Gaussian observation noise was 𝜎𝑣𝑘
2 = 2 with

different number of particles 𝑁. Figure 4.5 shows another comparison of 1-D state

estimation performance in terms of average RMSEs with different levels of observation

noise in signal-to-noise ratios (SNRs) where 𝑁 = 100.

58

Figure 4.4 RMSEs plotted against number of particles in 1-D state estimation

Figure 4.5 RMSEs plotted against SNRs in 1-D state estimation

 The AFPF was shown to be the least effective method in this experiment as it

led to the highest RMSEs for every case. The results also illustrated the importance of

employing GA to find new and better particles to enhance state estimation. The trend

of RMSEs of the IPF seemed more consistent than the trend of RMSEs of the GORPF

when the number of particles varied as shown in Figure 4.4 and the RMSEs of the IPF

59

were lower than those of all non-GA-based methods (i.e., SIR-PF, ASIR-PF and AFPF).

However, the trend of RMSEs against varying SNRs obtained with the GORPF seemed

more consistent than the trend of RMSEs of the IPF as shown in Figure 4.5. Also, the

GORPF yielded lower RMSEs compared to those of the IPF when the SNRs of the

observation noise were low. Nevertheless, the new algorithm was shown to be robust

for low numbers of particles (shown in Figure 4.4) and for severe observation noise

(shown in Figure 4.5) by leading to the lowest RMSEs for every case.

4.2 Multidimensional State Estimation

 In this section, we further test the state estimation performance on the problem

of tracking the movement of a maneuvering anti-ship missile adopted from work by

Zhou et al. (2019). The target state variables now become a multidimensional vector.

The state evolution function and the observation function of this model are:

 𝐬𝑘 = 𝐟𝑘−1(𝐬𝑘−1, 𝐮𝑘−1) = 𝚽𝐬𝑘−1 + 𝚪𝐮𝑘−1 (4.7)

and

 𝐳𝑘 = 𝐠𝑘(𝐬𝑘, 𝐯𝑘) = [√𝑥𝑘
2 + 𝑦𝑘

2 arctan (
𝑦𝑘

𝑥𝑘
)]

𝑇

+ 𝐯𝑘, (4.8)

where

 𝐬𝑘 = [𝑥𝑘 𝑦𝑘 𝑥̇𝑘 𝑦̇𝑘 𝑥̈𝑘 𝑦̈𝑘]
𝑇 (4.9)

is the state vector of the missile that contains: the x-axis position, the y-axis position,

the x-axis velocity, the y-axis velocity, the x-axis acceleration and the y-axis

acceleration, respectively. Matrices 𝚽 and 𝚪 denote the normal state evolution matrix

and the state evolution noise matrix, respectively, and they are expressed as

60

 𝚽 =

[

 1 0 𝑇 0

𝑇
2

2
0

0 1 0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅
0

1−cos(𝜔̅̅̅𝑇)

𝜔̅̅̅2

0 0 1 0 𝑇 0

0 0 0 cos(𝜔̅𝑇) 0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅
0 0 0 0 1 0
0 0 0 −𝜔̅ sin(𝜔̅𝑇) 0 cos(𝜔̅𝑇)]

 (4.10)

and

 𝚪 =

[

 𝑇

3

6
0

0
𝜔̅̅̅𝑇−sin(𝜔̅̅̅𝑇)

𝜔̅̅̅3

𝑇2

2
0

0
1−cos(𝜔̅̅̅𝑇)

𝜔̅̅̅2

𝑇 0

0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅]

, (4.11)

where 𝑇 is the sampling period (in seconds) and ω̅ is the maneuvering frequency (in

radians). That is, the multiplication 𝚽𝐬𝑘−1 delivers a vector of the updated x-axis

position, y-axis position, x-axis velocity, y-axis velocity, x-axis acceleration and y-axis

acceleration. The multiplication 𝚪𝐮𝑘−1 provides a vector of x-axis jolt and y-axis jolt

(i.e., rate of acceleration change) that perturbs the multiplication 𝚽𝐬𝑘−1 to compute the

new state vector 𝐬𝑘 as in Equation 4.7 (Zhou et al., 2019). The weight of each particle

𝐬𝑘
𝑖 in this system can be found from the likelihood function:

 𝑤𝑘
𝑖 = exp(

−(𝐳𝑘−𝐠𝑘(𝐬𝑘
𝑖))

𝑇
𝐑𝑘

−1(𝐳𝑘−𝐠𝑘(𝐬𝑘
𝑖))

2
), (4.12)

where 𝐠𝑘(𝐬𝑘
𝑖) denotes the 𝑖-th predicted observation data value and 𝐑𝑘 denotes the

covariance matrix of the observation noise vector 𝐯𝑘. The radar that tracks the

maneuvering missile is assumed to be static and is located at the xy-position (0, 0).

Parameter configurations are also provided in Table 4.4.

61

Table 4.4 Parameters set for multidimensional state estimation experiment

Symbol Meaning Value

𝐬0 Initial state [30000 3000 1450 0 0 −2𝜋2]𝑇

𝑝(𝐬0) Initial prior PDF 𝑁(𝐬0, 0.1𝐈6)

𝐮𝑘−1 State evolution noise Draw from 𝑁(𝟎, 0.1𝐈2)

𝐯𝑘 Observation noise Draw from 𝑁(𝟎, 0.01𝐈2)

𝑇 Sampling period 0.1 seconds

𝜔̅ Maneuvering frequency 0.2𝜋 radians

𝑁 Number of particles 300

𝐾 Time steps 400

𝑅 Simulation runs 50

 In this experiment, the selection of the state inference method was also WM.

There were only a few additional parameter configurations for this experiment as

follows. The AFPF employs the covariance matrix 𝚺 = 0.1𝐈6 for perturbing the state

values of each created replica. The GORPF, IPF and the proposed PF also employ the

covariance matrix 𝚺 = 0.1𝐈6 in their respective mutation schemes.

 The missile tracking simulation results obtained from non-GA-based PF

algorithms (i.e., SIR-PF, ASIR-PF and AFPF) are shown in Figures 4.6-4.8. The missile

tracking simulation results computed with the GA-based PF algorithms (i.e., GORPF,

IPF and the new method) are shown in Figures 4.9-4.11. Fifty magenta curves denote

curves of the estimated state and are plotted against the true state (shown as a black

curve).

62

Figure 4.6 The state of the maneuvering missile tracked by the SIR-PF

63

Figure 4.7 The state of the maneuvering missile tracked by the ASIR-PF

64

Figure 4.8 The state of the maneuvering missile tracked by the AFPF

 In the SIR-PF, the x-axis acceleration was poorly estimated, and it negatively

affected the x-axis velocity and position estimation as shown in Figure 4.6. The curves

of the estimated x-axis acceleration kept decreasing since the beginning until the time

around 10 s. Then, the estimated x-axis acceleration kept increasing and reached 0 m/s2

at around 25 s. This caused the estimated x-axis position (or the x-axis maneuvered

distance) to become shorter than the true one starting at the x-axis position of 60000 m.

 The ASIR-PF mitigated the x-axis positional errors of the SIR-PF as shown in

Figure 4.7. At position 80000 m on the x-axis, the curves of the estimated position

65

became closer to the true one. However, this was due to the overestimated x-axis

accelerations that are higher than those of the SIR-PF. Thus, this position estimation

cannot be considered effective. The problem was due to particle impoverishment where

particles got trapped in local maxima. The AFPF led to curves of the estimated x-axis

velocity and acceleration which were significantly more accurate than those of the SIR-

PF and ASIR-PF, as shown in Figure 4.8. However, the AFPF resulted in the most

severe errors in the y-axis state estimation. That is, the x-axis position was estimated

well but most of the curves of the estimated y-axis positions clearly deviate from the

true one.

Figure 4.9 The State of the maneuvering missile tracked by the GORPF

66

Figure 4.10 The state of the maneuvering missile tracked by the IPF

67

Figure 4.11 The state of the maneuvering missile tracked by the proposed PF

 The GORPF faced a similar problem as the SIR-PF and ASIR-PF, providing

results with erroneous estimates of x-axis positions, especially at the end of the track,

as shown in Figure 4.9. Although the estimated tracks of the x-axis acceleration

deviated less from the true track, the estimated x-axis accelerations were negative

longer than those of the SIR-PF and ASIR-PF. Consequently, the estimated x-axis

velocities were lower than the true velocity value at all times for almost every run. The

estimated traveled x-axis distances of the missile were lower than the true one at the

final time step (88000 m) for every run.

68

 The IPF and the proposed method were superior to all other algorithms. While

the estimated x-axis velocities and x-axis accelerations obtained from the IPF (shown

in Figure 4.10) seem to not be significantly different from those computed with the new

proposed method (shown in Figure 4.11), the superior accuracy of the proposed method

is illustrated via the estimated position tracks. The estimated y-axis positions are clearly

more accurate than those from the IPF because of more accurately estimated y-axis

velocities and y-axis accelerations. Thus, our proposed method is proved more reliable

than all of the other state-of-the-art algorithms.

 Numerical errors were also calculated for performance evaluation of each PF

algorithm in multidimensional state estimation. The average and variances of RMSEs

are shown in Tables 4.5 and 4.6, respectively. The average and variances of MAEs are

also shown in Tables 4.7 and 4.8 respectively.

Table 4.5 Average RMSEs in multidimensional state estimation

PF xk yk ẋk ẏ
k
 ẍk ÿ

k

SIR-PF 830.8774 1.6024 43.4959 0.5992 4.9619 0.3808

ASIR-PF 797.6756 1.5498 43.0944 0.5812 6.0826 0.3674

AFPF 0.1085 14.6709 0.6180 4.8250 0.6943 3.0276

GORPF 682.9181 2.0176 39.5444 0.7311 2.5575 0.4575

IPF 0.0655 1.4557 0.1178 0.5225 0.0941 0.3265

Proposed 0.0625 0.5396 0.0838 0.2137 0.0621 0.1349

Table 4.6 Variances of RMSEs in multidimensional state estimation

PF xk yk ẋk ẏ
k
 ẍk ÿ

k

SIR-PF 9.98e+03 0.3838 28.5326 0.0607 0.2326 0.0228

ASIR-PF 1.48e+04 0.3412 18.9508 0.0534 0.2001 0.0218

AFPF 2.13e-05 31.2837 0.0088 2.8147 0.0133 1.0635

GORPF 8.41e+03 1.0278 44.9217 0.1130 0.0598 0.0421

IPF 1.40e-05 0.4356 1.00e-04 0.0402 1.17e-04 0.0156

Proposed 3.29e-05 0.0504 1.08e-04 0.0099 6.55e-05 0.0040

69

Table 4.7 Average MAEs in multidimensional state estimation

PF xk yk ẋk ẏ
k
 ẍk ÿ

k

SIR-PF 638.8815 1.3520 36.8528 0.5081 4.0521 0.3221

ASIR-PF 631.8755 1.2914 36.7499 0.4965 4.8917 0.3135

AFPF 0.0869 11.6129 0.4703 3.8337 0.5396 2.3859

GORPF 504.1201 1.6742 34.0662 0.6211 2.2201 0.3880

IPF 0.0519 1.1483 0.0924 0.4166 0.0733 0.2584

Proposed 0.0470 0.4319 0.0652 0.1760 0.0483 0.1107

Table 4.8 Variances of MAEs in multidimensional state estimation

PF xk yk ẋk ẏ
k
 ẍk ÿ

k

SIR-PF 5.41e+03 0.3515 20.3666 0.0480 0.1516 0.0179

ASIR-PF 8.24e+03 0.2637 14.0046 0.0419 0.1413 0.0171

AFPF 1.72e-04 24.5280 0.0045 1.6823 0.0079 0.6363

GORPF 4.43e+03 0.8193 31.6699 0.0874 0.0479 0.0328

IPF 1.01e-05 0.3087 5.08e-05 0.0242 6.53e-05 0.0092

Proposed 2.38e-05 0.0353 6.65e-05 0.0070 3.30e-05 0.0028

 The numerical results in Tables 4.5-4.8 show that the SIR-PF, the ASIR-PF and

the GORPF faced severe problems in estimating the x-axis state values by having

significantly high average errors and high error variances. The GORPF provided the

less erroneous x-axis state estimates compared to the SIR-PF and the ASIR-PF.

However, the y-axis state estimation performance of the GORPF was inferior to that of

the SIR-PF and the ASIR-PF. The AFPF provided very good x-axis state estimates but

the performance in estimating the y-axis state values was inferior to all other

algorithms. The IPF was superior to the other state-of-the-art algorithms in terms of

average errors with the exception of the proposed PF which provided the lowest average

errors for every state variable. Although the variances of the errors from the proposed

PF are not better (or lower) than those of the IPF for every state variable, they were

quite low and were considered acceptable.

70

 Table 4.9 provides the computation time (measured according to Equation 4.6)

for each PF algorithm in multidimensional state estimation.

Table 4.9 Computation time in multidimensional state estimation

PF Min(Time) Avg(Time) Max(Time)
Var(Time)

(× 10-5)

SIR-PF 0.0209 0.0274 0.0633 1.3563

ASIR-PF 0.0313 0.0413 0.0826 3.4192

AFPF 0.0667 0.0851 0.1913 9.7741

GORPF 0.0265 0.0544 0.2191 55.9023

IPF 0.0248 0.0386 0.1661 15.9022

Proposed 0.0218 0.0319 0.0815 3.1469

 In multidimensional state estimation, every PF algorithm except the SIR-PF

suffered from the larger size of state vectors because each vector component (i.e., state

value) of each original particle must be perturbed to find the new particles. The size of

state vectors affected the SIR-PF only at the state evolution of the 𝑁 particles. The SIR-

PF, thus, required the shortest computation time. Although the minimum computation

time of the ASIR-PF was not lower than that of the GA-based PF algorithms in this

experiment, the variance of computation time of the ASIR-PF was still low. This could

be due to the increased number of particles 𝑁 employed in this experiment and the

increased size of state vectors 𝑑𝑥. Recall that the ASIR-PF perturbed all of 𝑁 × 𝑑𝑥 state

values of 𝑁 resampled auxiliary particles, while GA-based PF algorithms needed to

find only 𝑁𝐾𝐿 new offspring particles, where 𝑁𝐾𝐿 < 𝑁. Besides larger state vectors, the

AFPF also suffered from the total number of new particles (i.e., replicas with perturbed

state values) that exceeded 𝑁. Thus, the minimum and average of the AFPF

computation time spent was the longest, while the maximum computation time of AFPF

was slightly lower than only that of the GORPF.

 Recall that the GORPF creates offspring only when the 𝐸𝑆𝑆𝑘 value is lower

than the preset threshold with every GA operator implemented sequentially. The

maximum and variance of the computation time of the GORPF were then larger than

those of the other algorithms. The minimum and average of the computation time of

71

the GORPF were also larger than those of the IPF and the new PF. Among non-SIR PF

algorithms, the minimum and average of the computation time of the IPF were larger

than only those of our method. However, the maximum computation time of IPF was

larger than not only that of the new method but also of that of the ASIR-PF. Weight

sorting could be a factor that caused a high maximum computation time in the AFPF,

GORPF and IPF, especially when the number of particles 𝑁 increased. The difference

between the maximum computation time of the new method and that of the IPF then

became larger. The new method was also shown in this experiment to work faster than

other state-of-the art PF algorithms except for the SIR-PF, while the variance of the

computation time was also significantly low.

 While employing GAs increased computation time and its variance as seen in

Tables 4.3 and 4.9, the numerical errors shown in Tables 4.2 and 4.5-4.8 demonstrate

the importance of efforts in finding new high-weight state values that addresses the

problem of a particle swarm getting trapped at a local maximum. Our method not only

prevented low-quality offspring particles but also employed high-quality offspring

particles as new high-weight parents. Our method was shown to be efficient and

provided results that are superior to those of state-of-the-art GA-based PF algorithms,

GORPF and IPF.

72

CHAPTER 5

APPLICATION

 This chapter provides details of employing the new approach to estimate the

state in a real-world application. We select the application of estimating spectra of time-

varying signals in non-linear systems studied by Aunsri and Chamnongthai (2021). A

broadband signal is emitted from the source located underwater (i.e., the ocean). Then,

the signal propagates through the medium and is recorded by a hydrophone. We

perform the signal analyses in the time-frequency domain to investigate the changes of

frequencies with time in terms of the number of the modal waves (i.e., modes) that

arrives at the different time and their peak frequency values (i.e., instantaneous modal

frequency). Tracks of such changes contain useful information for the analysis of the

dispersion characteristics of the propagation medium.

 In practice, the signal received at the hydrophone can be corrupted by noise.

Although the time-domain noise can be assumed to be additive white Gaussian,

property of the noise that corrupts the time-frequency representation (TFR) is non-

Gaussian, as to be discussed later. This necessitates the implementation of PFs for the

modal frequency estimation. The accuracy of the modal frequency estimation affects

the validity of further research work related to the environmental studies.

5.1 Time-frequency Analysis of Underwater Broadband Signals

 In theory, we calculate the sound pressure against time of a broadband time-

series that propagates in the ocean as:

𝑝(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝑡) =
1

2𝜋
∑ ∫ 𝜇(𝜔′)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′)exp {𝑗 (𝜔′𝑡 − 𝑘𝑚𝑟 −

𝜋
4

)} 𝑑𝜔′𝑚 ,

 (5.1)

where quantity 𝑟 denotes the distance between the source and the receiver (i.e.,

hydrophone), quantities 𝑑𝑠 and 𝑑𝑟 denote the source and receiver depths, respectively,

73

quantity 𝑘𝑚 denotes the modal wave number, 𝜇(𝜔′) denotes the source spectrum, 𝜔 =

2𝜋𝑓 denotes the angular frequency in radians per second (rad/s), and 𝑓 denotes the

frequency in Hertz (Hz) (Aunsri & Chamnongthai, 2021; Yang, 1984). Function

𝐺𝑛(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′) is the mode transfer function that can be expressed as:

 𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟, 𝜔) =
𝑗√𝜋

𝜌(𝑑𝑟)√2𝑘𝑚𝑟
𝛹𝑚(𝑑𝑠)𝛹𝑚(𝑑𝑟), (5.2)

where 𝛹𝑚(∙) denotes the orthogonal and normalized depth-dependent functions, and

𝜌(𝑑𝑟) denotes the medium density. When the signal has only one mode (i.e., the 𝑚-th

mode), the spectrum of a finite segment of such a signal can be computed as:

 𝑃𝑚(𝜔, 𝑡) = ∫ 𝑝𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜏)exp(−𝑗𝜔𝜏)𝑑𝜏
𝑡+∆𝑡

𝑡−∆𝑡
, (5.3)

which starts and ends at time 𝑡 − ∆𝑡 and 𝑡 + ∆𝑡, respectively. Consequently, we obtain

𝑃𝑚(𝜔, 𝑡) =
exp(−𝑗𝜔𝑡)

2𝜋
∫ 𝜇(𝜔′)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′)

sin(𝜔′ − 𝜔) ∆𝑡

(𝜔′ − 𝜔)

 × exp {𝑗 (𝜔′𝑡 − 𝑘𝑚𝑟 −
𝜋
4

)} 𝑑𝜔′, (5.4)

whose instantaneous power spectrum can be obtained by squaring the spectrum

approximated via stationary phase approximation as:

 |𝑃𝑚(𝜔, 𝑡)|2 =
𝜋

|𝑘𝑚
′′

|
2 |𝜇(𝜔𝑚)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔𝑚)|2 |

sin(𝜔−𝜔𝑚)∆𝑡
(𝜔−𝜔𝑚)

|
2

 |𝑃𝑚(𝜔, 𝑡)|2 =
𝜋(∆𝑡)

2

|𝑘𝑚
′′

|
2 |𝜇(𝜔𝑚)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔𝑚)|2 |

sin(𝜔−𝜔𝑚)∆𝑡
(𝜔−𝜔𝑚)∆𝑡

|
2

, (5.5)

for |𝜔 − 𝜔𝑚| < 𝜋/∆𝑡. That is, the power spectrum of the 𝑚-th single-mode signal in

Equation 5.5 has a peak at the angular frequency 𝜔𝑚 which is regarded as the

instantaneous modal frequency. Consequently, the power spectrum can be

approximated as a summation of squared sinc pulses (Aunsri & Chamnongthai, 2021;

Yang, 1984).

74

 In this experiment, we employ a short-time Fourier transform (STFT) to

compute the TFR of a time-varying input signal. The reason is that the STFT does not

introduce false frequency modes called “cross-terms” which negatively affect the

readability of the TFR (Boashash, 2016). Suppose that we have an input signal:

 𝑥(𝜏) = 𝑠(𝜏) + 𝑛(𝜏), (5.6)

where 𝑠(𝜏) and 𝑛(𝜏) represent a noise-free signal and a series of additive white

Gaussian noise values. We compute the STFT of the signal 𝑥(𝜏) and time 𝑡 and

frequency 𝑓 as:

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫[𝑠(𝜏) + 𝑛(𝜏)]𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = 𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓) + 𝑆𝑇𝐹𝑇𝑛(𝑡, 𝑓), (5.7)

where 𝑤(𝜏) denotes a window function employed in the STFT calculation. Terms

𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓) and 𝑆𝑇𝐹𝑇𝑛(𝑡, 𝑓) represent the STFT of the noise-free signal 𝑠(𝜏) and the

STFT of the noise 𝑛(𝜏), respectively. Sometimes we can find the term 𝑤(𝜏 − 𝑡) written

as 𝑤(𝑡 − 𝜏) in Equation 5.7 because the employed window function 𝑤(𝜏) is normally

an even function where 𝑤(𝜏) = 𝑤(−𝜏) (Boashash, 2016).

 For simplicity, we assume that the term 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) is a Gaussian random

variable:

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) ~ 𝑁(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓), 𝜎2), (5.8)

where 𝜎2 is an unknown variance. Because 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) is a complex number, we can

then assume that the real part:

 Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) cos(−𝑗2𝜋𝑓𝜏) 𝑑𝜏 (5.9)

and the imaginary part:

 Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) sin(−𝑗2𝜋𝑓𝜏) 𝑑𝜏, (5.10)

are corrupted by additive white Gaussian noise with the same variance at 𝜎2/2. That

is,

75

 Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) ~ 𝑁(Re(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)), 𝜎2/2), (5.11)

and

 Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) ~ 𝑁(Im(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)), 𝜎2/2). (5.12)

 The spectrogram at time 𝑡 and frequency 𝑓 of the signal 𝑥(𝜏) can be found as

the squared magnitude of its STFT:

𝑆𝑃𝑥(𝑡, 𝑓) = |∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏|
2

 𝑆𝑃𝑥(𝑡, 𝑓) = [Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓))]
2

+ [Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓))]
2
, (5.13)

where the PDF of the squared STFT, 𝑆𝑃𝑠(𝑡, 𝑓), becomes a noncentral chi-squared PDF

with two degrees of freedom; the parts of the noise-free STFT (i.e., Re(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓))

and Im(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)) in Equations 5.11-5.12) are not necessarily zero for each time 𝑡

and frequency 𝑓 (Aunsri & Chamnongthai, 2021; Boashash, 2016).

 In practice, any input signal is discrete because it is recorded with a preset

sampling rate. The spectrogram of such a signal at time step 𝑘 and frequency 𝑓 can be

found as:

 𝑆𝑃𝑥(𝑘, 𝑓) = [Re(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓))]
2

+ [Im(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓))]
2
, (5.14)

where

 Re(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓)) = ∑ 𝑥[𝑙]𝑤[𝑘 − 𝑙] cos (−2𝜋𝑓
𝑙

𝐿𝐷𝐹𝑇(𝑥)
)𝐿𝑤−1

𝑙=0 (5.15)

and

 Im(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓)) = ∑ 𝑥[𝑙]𝑤[𝑘 − 𝑙] sin (−2𝜋𝑓
𝑙

𝐿𝐷𝐹𝑇(𝑥)
)𝐿𝑤−1

𝑙=0 , (5.16)

are the real part and imaginary parts of the STFT at time step 𝑘 and frequency 𝑓,

respectively (Aunsri, 2019; Huillery et al., 2008; Kuptametee & Aunsri, 2022c; Tan &

Jiang, 2019). Quantity 𝑙 denotes time, while 𝐿𝐷𝐹𝑇(𝑥) and 𝐿𝑤 represent the length of the

76

discrete Fourier transform (DFT) of the input signal 𝑥[𝑙] and the length of the employed

window function 𝑤[𝑙], respectively.

5.2 Particle Filtering Formulation for Spectra Estimation

 5.2.1 PF Initialization

 Because we do not know the true states at the initialization, we can draw

particles to predict the state vector 𝐱1 and find their weights according to the first

observation 𝐲1. Note that this application differs from the experiments presented in

Chapter 4 where the initial state vector 𝐱0 was known and employed to initialize the

state evolution function.

 In case of the first time step (i.e., 𝑘 = 1), we need to draw the number of modes

𝑟1
𝑖 for each 𝑖-th initial particle 𝐱1

𝑖 as:

 𝑟1
𝑖 ~ 𝑈{𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥}, (5.17)

where 𝑈{𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥} denotes a discrete uniform distribution. Quantities 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥

are the minimum and maximum of the number of modes, respectively.

 Next, we draw 𝑟1
𝑖 modal frequencies for each initial particle 𝐱1

𝑖 and store them

as a state vector 𝐟1
𝑖 . Each 𝑚-th modal frequency where 𝑚 ∈ {1, … , 𝑟1

𝑖} can be drawn as:

 𝑓1,𝑚
𝑖 ~ 𝑈{𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥}, (5.18)

where 𝑓1,𝑚
𝑖 denotes the modal frequency of the 𝑚-th mode of the 𝑖-th initial particle 𝐱1

𝑖 .

Quantities 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are a preset minimum modal frequency and a preset maximum

modal frequency, respectively.

 Next, we set the initial prior PDF of the modal amplitude (i.e., peak amplitude)

for each initial particle 𝐱1
𝑖 and store them as a state vector 𝐚1

𝑖 . Each 𝑚-th modal

amplitude where 𝑚 ∈ {1, … , 𝑟1
𝑖} can be drawn as a positive real-numbered value:

 𝑎1,𝑚
𝑖 ~ 𝑈(0, max(𝐲1)], (5.19)

77

where max(𝐲1) denotes the maximum amplitude value searched through the

observation 𝐲1.

 Also, we draw the initial STFT noise variance value for each particle initial

particle 𝐱1
𝑖 as:

 𝜎1
2,𝑖 ~ 𝑈(0, 𝜎𝑚𝑎𝑥

2], (5.20)

where 𝜎𝑚𝑎𝑥
2 denotes the preset upper bound of the noise variance values; the noise

variance must be greater than zero.

 5.2.2 State Vector Evolution

 At time step 𝑘 ≥ 2, we update the modal frequencies of each particle as:

 𝐟𝑘
𝑖 ~ 𝑁(𝐟𝑘−1

𝑖 , 𝚺𝑓,𝑘−1), (5.21)

where 𝚺𝑓,𝑘−1 denotes a covariance matrix with the dimension 𝑟𝑘−1
𝑖 × 𝑟𝑘−1

𝑖 employed to

update the frequency values.

 Next, we update modal amplitudes for each particle 𝐱𝑘
𝑖 as:

 𝐚𝑘
𝑖 ~ 𝑁(𝐚𝑘−1

𝑖 , 𝚺𝑎,𝑘−1), (5.22)

where 𝚺𝑎,𝑘−1 denotes a covariance matrix with the dimension 𝑟𝑘−1
𝑖 × 𝑟𝑘−1

𝑖 employed to

update the amplitude values.

 Next, we update the noise variance value of each particle 𝐱𝑘
𝑖 as:

 𝜎𝑘
2,𝑖 ~ 𝑁(𝜎𝑘−1

2,𝑖 , 𝜁2), (5.23)

where 𝜁2 denotes the preset variance of the noise variance updating function.

 Recall that the number of modes can vary with time because each mode arrives

the receiver at the different time. The size of each vector 𝐟𝑘
𝑖 and the size of each vector

𝐚𝑘
𝑖 (i.e., number of modes 𝑟𝑘

𝑖) must then be further updated. The state evolution of modal

frequencies is then encompassed within the multiple-model particle filter (MMPF)

framework (Aunsri & Michalopoulou, 2014; Aunsri, 2018b). In this work, we assume

that the number of modes can stay the same, can decrease by one, or can increase by

https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1
https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1

78

one. The transition matrix of the probabilities of change of the number of modes can

then be employed and expressed as:

 𝑃 = [

𝑝 1 − 𝑝 0

(1 − 𝑝)/2 𝑝 (1 − 𝑝)/2
0 1 − 𝑝 𝑝

], (5.24)

where 𝑝 denotes the probability that the number of modes will remain the same (i.e.,

𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖); 0 ≤ 𝑝 ≤ 1. The probabilities in the first row of the matrix 𝑃 are employed

when the number of modes of a particle is at the minimum; the number of modes will

increase by one with the probability 1 − 𝑝. The probabilities in the second row of the

matrix 𝑃 are employed when the number of modes of a particle is at neither the

minimum nor the maximum; the probability that the number of modes will decrease by

one and the probability that the number of modes will increase by one are the same at

(1 − 𝑝)/2. The probabilities in the third row of the matrix 𝑃 are employed when the

number of modes of a particle is at the maximum; the number of modes will decrease

by one with the probability 1 − 𝑝 (Aunsri & Michalopoulou, 2014).

 When 𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖 + 1, we can simply draw the (𝑟𝑘−1
𝑖 + 1)-th new modal

frequency as:

 𝑓
𝑘,𝑟𝑘−1

𝑖 +1

𝑖 ~ 𝑈{𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥}, (5.25)

which can be appended to the vector 𝐟𝑘
𝑖 previously found via Equation 5.21. The modal

amplitude of the newly added mode can also be drawn as a positive real-numbered

value:

 𝑎
𝑘,𝑟𝑘−1

𝑖 +1

𝑖 ~ 𝑈[min(𝐚𝑘−1
𝑖), max(𝐚𝑘−1

𝑖)], (5.26)

which can be appended to the vector 𝐚𝑘
𝑖 previously found via Equation 5.22. Quantities

min(𝐚𝑘−1
𝑖) and max(𝐚𝑘−1

𝑖) denote the minimum and the maximum amplitude value of

the particle 𝐱𝑘−1
𝑖 .

 When 𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖 − 1, we can simply remove the 𝑟𝑘−1
𝑖 -th modal frequency and

the 𝑟𝑘−1
𝑖 -th modal amplitude from the vectors 𝐟𝑘

𝑖 and 𝐚𝑘
𝑖 previously found via Equations

5.21 and 5.22, respectively.

79

 5.2.3 Particle Weights Calculation

 Let we first consider a noncentral chi-squared PDF of a 1-D random variable

𝑧 ~ ∑ 𝑥𝑖
2𝑑𝑓

𝑖=1 ; quantity 𝑑𝑓 denotes the degree of freedom and 𝑥𝑖 ~ 𝑁(𝜇𝑖, 𝜎2). Such a

PDF can be expressed as16,62:

 𝑓(𝑧; 𝑑𝑓, 𝜆) =
1

2𝜎
2 (

𝑧
𝜆

)
(𝑑𝑓−2)/4

exp (− (𝑧+𝜆)

2𝜎
2) 𝐼(𝑑𝑓−2)/2 (

√𝑧𝜆
𝜎2), (5.27)

where

 𝜆 = ∑ 𝜇𝑖
2𝑑𝑓

𝑖=1 , (5.28)

denotes the noncentrality parameter. 𝐼𝑛(∙) denotes the 𝑛-th order modified Bessel

function of the first kind.

 To calculate weight of each particle at each time step 𝑘, we must first construct

the spectrum replica of each particle as:

 𝐬𝑘
𝑖 = ∑ 𝑎𝑘,𝑚

𝑖 sinc2(𝑓 − 𝑓𝑘,𝑚
𝑖)

𝑟𝑘
𝑖

𝑚=1 , (5.29)

where quantity 𝑎𝑘,𝑚
𝑖 denotes the modal amplitude of the 𝑚-th mode (i.e., the 𝑚-th

squared sinc function) at time step 𝑘. Note that, when there is only one mode (i.e., 𝑟𝑘
𝑖 =

1), Equation 5.29 can be considered as a simplification of Equation 5.5.

 The prior PDF of the number of modal frequencies is 𝑝(𝑟𝑘) = 1/(𝑟𝑚𝑎𝑥 −

𝑟𝑚𝑖𝑛 + 1). That is, the probability is the same for every value of 𝑟𝑘, where 𝑟𝑘 ∈

{𝑟𝑚𝑖𝑛, … , 𝑟𝑚𝑎𝑥}. The prior PDF of each modal frequency is 𝑝(𝑓𝑘,𝑚) = 1/𝐿; quantity 𝐿

represents the length of the spectrum. If a particle has 𝑟𝑘 modes, the prior PDF can be

generalized as 𝑝(𝑓𝑘,𝑚, 𝑟𝑘) = 1/𝐿𝑟𝑘. The prior PDF of each modal amplitude is non-

informative because each modal amplitude can be any non-negative real number. Recall

that the magnitude the spectrogram at time step 𝑘 and frequency 𝑓, 𝑆𝑃𝑥(𝑘, 𝑓), in

Equation 5.14 can be considered as a noncentral chi-squared random variable with two

degrees of freedom and variance at 𝜎2/2. The likelihood function can then be expressed

as:

80

 𝑤𝑘
𝑖 =

1

𝐿𝑟𝑘
𝑖

1

(𝜎𝑘
2,𝑖

)
𝐿 ∏ exp (−

(𝑦𝑘,𝑓+𝑠𝑘,𝑓
𝑖)

𝜎𝑘
2,𝑖) 𝐼0 (

√𝑦𝑘,𝑓×𝑠𝑘,𝑓
𝑖

𝜎𝑘
2,𝑖/2

)𝐿
𝑓=1 , (5.30)

where quantities 𝑦𝑘,𝑓 and 𝑠𝑘,𝑓
𝑖 represent the magnitude at time step 𝑘 and frequency 𝑓

of the observation and that of the spectrum replica, respectively (Aunsri &

Chamnongthai, 2021).

 5.2.4 Employment of Our Proposed Method

 Because the number of modes can vary with time, the size of each state vector

(i.e., particle) can be different. Suppose that each 𝑙-th low-weight parent 𝐱𝑘𝐿
𝑙 is paired

with the randomly selected ℎ-th high-weight parent 𝐱𝑘𝐻
ℎ , where 𝑙 ∈ {1, … , 𝑁𝑘𝐿},

ℎ ~ 𝑈{1, … , 𝑁𝑘𝐻}, 𝑁𝑘𝐿 < 𝑁, and 𝑁𝑘𝐻 < 𝑁. Quantities 𝑟𝑘𝐻
ℎ and 𝑟𝑘𝐿

𝑙 denote the number

of modes of the high-weight parent 𝐱𝑘𝐻
ℎ and that of the low-weight parent 𝐱𝑘𝐿

𝑙 ,

respectively. Only one of two GA operators (i.e., flat crossover proposed by Radcliffe

(1990) or modified Gaussian mutation proposed by Zhang et al. (2021)) is randomly

chosen according to quantity 𝐸𝑆𝑆𝑘 of all 𝑁 pre-classification parents (i.e., parameter

𝛾𝑘 calculated via Equation 3.2) and employed to calculate only new modal frequencies

and new modal amplitudes for each offspring. Regardless of the choice of GA

operators, each offspring must inherit the noise variance value 𝜎𝑘
2,𝑖

 of its own low-

weight parent 𝐱𝑘𝐿
𝑙 without perturbing it. The reason is to obtain fair comparison of the

weight of the spectrum replica generated from state values of the offspring particle and

the weight of the spectrum replica generated from state values of the low-weight parent

with the same noise variance value.

 In flat crossover, only modal frequencies and modal amplitudes of the first

through the min(𝑟𝑘𝐻
ℎ , 𝑟𝑘𝐿

𝑙)-th mode of the high-weight parent 𝐱𝑘𝐻
ℎ and those of the low-

weight parent 𝐱𝑘𝐿
𝑙 are employed to calculate offspring state values. In case 𝑟𝑘𝐿

𝑙 > 𝑟𝑘𝐻
ℎ ,

modal frequencies and modal amplitudes of the (𝑟𝑘𝐻
ℎ + 1)-th through the 𝑟𝑘𝐿

𝑙 -th mode

of the low-weight parent 𝐱𝑘𝐿
𝑙 will be assigned to the offspring without being changed.

In case 𝑟𝑘𝐿
𝑙 < 𝑟𝑘𝐻

ℎ , 𝑟𝑘𝐿
𝑙 modal frequencies and 𝑟𝑘𝐿

𝑙 modal amplitudes of the new offspring

can be completely different from those of its two parents. Modal frequencies and modal

81

amplitudes of the (𝑟𝑘𝐿

𝑙 + 1)-th through the 𝑟𝑘𝐻
ℎ -th mode of the high-weight parent 𝐱𝑘𝐻

ℎ

are left unpaired and unemployed in this case.

 When modified Gaussian mutation is employed, the size of the offspring vector

must be same as that of its high-weight parent 𝐱𝑘𝐻
ℎ . That is, the offspring in this case

can be found by: (1) creating a copy of its low-weight parent 𝐱𝑘𝐿
𝑙 , (2) replacing the old

modal frequencies and modal amplitudes with those of its high-weight parent 𝐱𝑘𝐻
ℎ , and

(3) perturbing the newly assigned modal frequencies and modal amplitudes.

 After new modal frequencies and new modal amplitudes are obtained for an

offspring, we need to find the new spectrum replica and the new weight of that offspring

(with the inherited unchanged noise variance 𝜎𝑘
2,𝑖

) according to Equations 5.29-5.30.

We accept the new offspring only if its weight is higher than that of its low-weight

parent 𝐱𝑘𝐿
𝑙 . Recall that, before the first offspring is found at any time step, 𝑁𝑘𝐿 + 𝑁𝑘𝐻 =

𝑁. Because our method suggests that any offspring particle whose weight is not lower

than the weight threshold employed to classify the 𝑁 parents should be employed as a

new high-weight parent, quantity 𝑁𝑘𝐻 must be increased by one every time such an

offspring is found.

 5.2.5 Spectra Estimation

 After GA is employed, some original high-weight parents may have weights

that are lower than those of their respective offspring. In this application, we also

perform resampling to eliminate low-weight particles and to ensure the existence of

high-weight particles.

 Suppose that the resampled particle 𝐱̃𝑘
𝑖 has 𝑟̃𝑘

𝑖 modes where 𝑟𝑚𝑖𝑛 ≤ 𝑟̃𝑘
𝑖 < 𝑟𝑚𝑎𝑥.

We select the most frequently obtained number of modes as the number of modes of

the estimated spectrum to be created at time step 𝑘:

 𝑟̂𝑘 = MAP
𝑖

(𝑟̃𝑘
𝑖). (5.31)

 Next, we find the most frequently obtained non-zero modal frequency of each

mode at time step 𝑘:

 𝑓𝑘.𝑚 = MAP
𝑖

(𝑓𝑘,𝑚
𝑖), (5.32)

82

where 𝑚 ∈ {1, … , 𝑟̂𝑘}.

 Next, we find the modal amplitude of each estimated modal frequency 𝑓𝑘.𝑚 at

time step 𝑘. In this step, we first need to find resampled particles 𝐱̃𝑘
𝑖 whose modal

frequencies 𝑓𝑘,𝑚
𝑖 are equal to 𝑓𝑘,𝑚 (computed via Equation 5.32). Let 𝑁𝑓̂𝑘,𝑚

 denote the

number of resampled particles whose modal frequencies 𝑓𝑘,𝑚
𝑖 satisfy the condition

𝑓𝑘,𝑚
𝑖 = 𝑓𝑘,𝑚, where 𝑁𝑓̂𝑘,𝑚

≤ 𝑁; quantity 𝑁𝑓̂𝑘,𝑚
 can be different for each 𝑚-th mode.

The 𝑚-th modal amplitude 𝑎̃𝑘,𝑚
𝑖 of such resampled particles is kept unchanged, while

those of the rest are set as zero, because modal amplitudes 𝑎̃𝑘,𝑚
𝑖 of resampled particles

whose modal frequencies 𝑓𝑘,𝑚
𝑖 do not satisfy the condition 𝑓𝑘,𝑚

𝑖 = 𝑓𝑘,𝑚 will be excluded.

Then, we can find each 𝑚-th modal amplitude of the estimated spectrum at time step 𝑘

as

 𝑎̂𝑘.𝑚 = ∑
𝑎̃𝑘,𝑚

𝑖

𝑁𝑓̂𝑘,𝑚

𝑁
𝑖=1 , (5.33)

which is equivalent to finding an average of the 𝑚-th modal amplitude 𝑎̃𝑘,𝑚
𝑖 that

belongs to the 𝑁𝑓̂𝑘,𝑚
 resampled particles. That is, the denominator in Equation 5.33

must be 𝑁𝑓̂𝑘,𝑚
 instead of 𝑁, while quantity 𝑎̃𝑘,𝑚

𝑖 of each unused resampled particle has

already been set to zero.

 Finally, we create the estimated spectrum at time step 𝑘 as

 𝐬𝑘 = ∑ 𝑎̂𝑘,𝑚sinc2(𝑓 − 𝑓𝑘,𝑚)
𝑟̂𝑘
𝑚=1 (5.34)

which is a summation of 𝑟̂𝑘 squared sinc functions with their respective modal

frequencies 𝑓𝑘,𝑚 (found via Equation 5.32) and respective modal amplitudes 𝑎̂𝑘,𝑚

(found via Equation 5.33).

5.3 Experimental Results

 A time-varying broadband signal emitted and from a sound source received at

a hydrophone in the ocean (shown in Figure 5.1) is chosen as the input signal. The

83

sampling rate employed in recording the signal was 2000 Hz. A spectrogram of the

signal is also shown in Figure 5.2. We selected a Hamming window as suggested by

Aunsri (2018a) with a length at 180 milliseconds (ms). However, we choose to perform

state estimation only between 451 to 1050 ms of the spectrogram where the dispersion

curves (i.e., tracks of the modal waves) seem well-separated as shown in Figure 5.3.

Figure 5.4 shows the zoomed version of such a portion of the spectrogram at frequency

200 to 600 Hz.

Figure 5.1 A noise-free acoustic time-series

84

Figure 5.2 A spectrogram of the noise-free acoustic time-series

Figure 5.3 A portion of the spectrogram

85

Figure 5.4 A zoomed portion of the spectrogram

 The spectrum estimation performance of our method will be compared with that

of the traditional sequential importance resampling particle filter (SIR-PF) and the

percentile-based resampling particle filter (PBR-PF) proposed by Aunsri et al. (2021).

According to the PF formulation discussed in Section 5.2, at each time step, the SIR-

PF and PBR-PF perform Steps 5.2.1-5.2.3 and then skip to Step 5.2.5 because these PF

algorithms do not employ GA. At the beginning of Step 5.2.5, the SIR-PF and the

proposed method employ a systematic resampling scheme. The PBR-PF, however,

keeps and replicates only the 𝑁𝑃𝐵𝑅,𝑘 best particles with the summation of their weights

not less 90% of the summation of all 𝑁 weights at time step 𝑘, while the rest are

eliminated (Aunsri et al., 2021). Recall that 𝑁𝑃𝐵𝑅,𝑘 < 𝑁 and 𝑁𝑃𝐵𝑅,𝑘 must be the lowest

integer that satisfies such a condition and preset percentage. Also, the weights of the

selected and sorted 𝑁𝑃𝐵𝑅,𝑘 particles must first be normalized according to Equation

2.34. Figure 5.5 shows a squared sinc function employed in this experiment to calculate

the replica of the spectrum according to Equation 5.29.

86

Figure 5.5 A squared sinc function used in spectrum estimation

 Table 5.1 presents the related parameters preset for the PF algorithms. The

proposed method employs modified Gaussian mutation with covariance matrices 𝚺𝑓 =

𝐈
𝑟𝑘𝐻

ℎ and 𝚺𝑎 = 10−3𝐈
𝑟𝑘𝐻

ℎ to find new modal frequencies and new modal amplitudes,

respectively. Matrix 𝐈
𝑟𝑘𝐻

ℎ denotes an identity matrix with dimension 𝑟𝑘𝐻
ℎ × 𝑟𝑘𝐻

ℎ where

𝑟𝑘𝐻
ℎ is the number of modes of the high-weight parent 𝐱𝑘𝐻

ℎ .

87

Table 5.1 Parameters used in spectrum estimation

Symbol Meaning Value

𝐿 Length of spectrum 800

𝑟𝑚𝑖𝑛 Minimum number of modes 2

𝑟𝑚𝑎𝑥 Maximum number of modes 6

𝑓𝑚𝑖𝑛 Minimum modal frequency 200

𝑓𝑚𝑎𝑥 Maximum modal frequency 600

𝜎𝑚𝑎𝑥
2 Maximum noise variance value 10-4

𝑡𝑓𝑖𝑟𝑠𝑡 First time step (ms) 451

𝑡𝑙𝑎𝑠𝑡 Last time step (ms) 1050

𝑝 Probability that variable 𝑟𝑘−1 stays unchanged 0.6

𝚺𝑓,𝑘−1 Covariance matrix of PDF of modal frequencies 𝐈𝑟𝑘−1

𝚺𝑎,𝑘−1 Covariance matrix of PDF of modal amplitudes 10−3𝐈𝑟𝑘−1

𝜁2 Variance of PDF of noise variance 10-6

𝑁 Number of particles 2000

𝐾 Number of time steps 600

𝑅 Number of simulation runs 50

 In this experiment, the time-domain observation noise is additive white

Gaussian with a fixed but unknown variance. The SNR for each case, however, cannot

be obtained as a constant because the signal fades out with time as shown in Figures

5.1-5.2.

 Figure 5.6 shows the spectrogram of the acoustic time series that is corrupted

by the time-domain additive white Gaussian noise at an average SNR of 15 dB. The

dispersion curve tracking at such an average SNR delivered by the SIR-PF, PBR-PF,

and the new method are shown in Figures 5.7-5.9. The white dots represent positions

of the estimated center frequency of modal waves that form the dispersion curves. At

the beginning of the tracking, some modes merge and ambiguity in tracking is high.

There are no significant differences between tracking results delivered by all filters at

500-650 ms. Figure 5.10 shows a comparison of spectrum estimation delivered by the

three filters at time 485 ms. The leftmost, wide and non-symmetric mode is estimated

https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1

88

by two or more squared sinc functions. The rightmost mode, however, cannot be

tracked by any filter. Also, most of the modal amplitudes estimated by each filter seem

to not differ much from each other. At time 700-900 ms, the new method seems to

overestimate the number of dispersion curves as shown in Figure 5.9. Figure 5.11,

however, shows a proof of the superior performance of the new method as it can capture

the 344-Hz and the 371-Hz frequency modes at time 715 ms, while the others cannot.

Figures 5.12-5.14 show the probability mass function (PMF) of the number of modes

delivered from the SIR-PF, PBR-PF, and the new method, respectively.

Figure 5.6 The noisy spectrogram at an average SNR of 15 dB

89

Figure 5.7 Dispersion curves at an average SNR of 15 dB as tracked by the SIR-PF

Figure 5.8 Dispersion curves at an average SNR of 15 dB as tracked by the PBR-PF

90

Figure 5.9 Dispersion curves at an average SNR of 15 dB as tracked by the proposed

method

Figure 5.10 Spectrum estimation at time 485 ms for an average SNR of 15 dB

91

Figure 5.11 Spectrum estimation at time 715 ms for an average SNR of 15 dB

Figure 5.12 PMF of the number of modes for an average SNR of 15 dB delivered from

the SIR-PF

92

Figure 5.13 PMF of the number of modes for an average SNR of 15 dB delivered from

the PBR-PF

Figure 5.14 PMF of the number of modes for an average SNR of 15 dB delivered from

the proposed method

 Next, we show the results at an average SNR of 5 dB. The noisy spectrogram at

such an average SNR is shown in Figure 5.15, while the dispersion curve tracking

results are shown in Figures 5.16-5.18. For all filters, curves at the beginning of the

spectrogram are not well tracked. The SIR-PF, delivers the poorest tracking at such

time when compared to the PBR-PF and the new method. Both the SIR-PF and the

93

PBR-PF started to miss tracking the topmost mode at time 900 ms, as shown in Figures

5.16 and 5.17, respectively. The new method can capture such a mode; however, a false

high-frequency mode shortly occurs between 900 and 950 ms as shown in Figure 5.18.

This stems from the fact that GAs tries to find the new state vectors with higher

likelihoods, while the likelihood value mainly affected by the closeness to the

observation (i.e., noisy spectrum slices) as shown in Equation 5.30. Figure 5.19 shows

the superior performance in spectrum slice estimation at time 950 ms of the new

method. The shown stronger amplitude of false modes (i.e., observation noise) proves

the side-effect of the new method, while only the new method can capture a 362-Hz

frequency mode. Figures 5.20-5.22 show the probability mass function (PMF) of the

number of modes delivered from the SIR-PF, PBR-PF, and the new method,

respectively.

Figure 5.15 The noisy spectrogram at an average SNR of 5 dB

94

Figure 5.16 Dispersion curves at an average SNR of 5 dB as tracked by the SIR-PF

Figure 5.17 Dispersion curves at an average SNR of 5 dB as tracked by the PBR-PF

95

Figure 5.18 Dispersion curves at an average SNR of 5 dB as tracked by the proposed

method

Figure 5.19 Spectrum estimation at time 950 ms for an average SNR of 5 dB

96

Figure 5.20 PMF of the number of modes for an average SNR of 5 dB delivered from

the SIR-PF

Figure 5.21 PMF of the number of modes for an average SNR of 5 dB delivered from

the PBR-PF

97

Figure 5.22 PMF of the number of modes for an average SNR of 5 dB delivered from

the proposed method

 Next, we perform the experiment when the average SNR is 0 dB where the noisy

spectrogram at such an average SNR is shown in Figure 5.23. The dispersion curve

tracking results are shown in Figures 5.24-5.26. The bottommost curve tracked by the

SIR-PF has a discontinuity at around 900 ms, as shown in Figure 5.24. This

discontinuity does not appear in the results delivered by the PBR-PF (in Figure 5.25)

and the new method (in Figure 5.26). The dispersion curves at around 650 to 750 ms

delivered by the new method (in Figure 5.26). look better than those delivered by the

SIR-PF (in Figure 5.24). and the PBR-PF (in Figure 5.25) because the former has better

continuity of the curves. However, the new method faces the most severe problem about

delivering false modes as shown as short curves appearing on the TFR. This stems from

the fact that the false modes can have higher amplitudes when the average SNR is low

and they can be more likely to be misidentified as modal frequency. Figures 5.27-5.28

shows the exemplar comparison of spectrum estimation at time 729 ms and 927 ms,

respectively. The new method is shown being able to capture all modes at such

exemplar time steps, but the side-effect of misidentifying noise as false modes remains.

Figures 5.29-5.31 show the probability mass function (PMF) of the number of modes

delivered from the SIR-PF, PBR-PF, and the new method, respectively. Lower average

SNRs cause the new method to prefer the big number of modes.

98

Figure 5.23 The extremely noisy spectrogram at an average SNR of 0 dB

Figure 5.24 Dispersion curves at an average SNR of 0 dB as tracked by the SIR-PF

99

Figure 5.25 Dispersion curves at an average SNR of 0 dB as tracked by the PBR-PF

Figure 5.26 Dispersion curves at an average SNR of 0 dB as tracked by the proposed

method

100

Figure 5.27 Spectrum estimation at time 729 ms for an average SNR of 0 dB

Figure 5.28 Spectrum estimation at time 927 ms for an average SNR of 0 dB

101

Figure 5.29 PMF of the number of modes for an average SNR of 0 dB delivered from

the SIR-PF

Figure 5.30 PMF of the number of modes for an average SNR of 0 dB delivered from

the PBR-PF

102

Figure 5.31 PMF of the number of modes for an average SNR of 0 dB delivered from

the proposed method

 Finally, we evaluate the performance in term of the root-mean-square errors

which can be found as:

 Avg(RMSE) =
1
𝑅

∑ √
1

(𝑡𝑙𝑎𝑠𝑡−𝑡𝑓𝑖𝑟𝑠𝑡)+1
∑ ||𝐬𝑘 – 𝐬𝑘,𝑟||2𝑡𝑙𝑎𝑠𝑡

𝑘=𝑡𝑓𝑖𝑟𝑠𝑡

𝑅
𝑟=1 , (5.35)

where 𝐬𝑘 denotes the true spectrum at time step 𝑘, while 𝐬𝑘,𝑟 denotes the inferred

spectrum at time step 𝑘 of the 𝑟-th simulation run (found via Equation 5.34). Symbol

‖∙‖2 denotes the squared 𝑙2 norm. Recall that 𝑡𝑓𝑖𝑟𝑠𝑡 and 𝑡𝑙𝑎𝑠𝑡 represent the first and the

last time step selected according to Table 5.1 (Aunsri & Chamnongthai, 2021).

 Table 5.2 presents a comparison of average RMSEs computed for each PF

algorithm at different SNRs. At the average SNR of 15 dB. The new method yields the

lowest RMSEs compared to those of the SIR-PF and the PBR-PF. However, as the

average SNR decreases, the SIR-PF yields the lowest RMSEs compared to the PBR-PF

and the new method. Recall that the PBR-PF prefers keeping and replicating high-

weight particles without considering particle diversity. That is, the PBR-PF and the new

method are sensitive to the high intensity noise where false modes are more likely to be

misidentified. If the misidentified false modes can be eliminated by additional

103

techniques by the experts, the RMSEs delivered from the new method is supposed to

be reduced.

Table 5.2 Average RMSEs

SNR SIR-PF PBR-PF Proposed

15 0.6539 0.6511 0.6342

10 0.6780 0.6813 0.6881

5 0.7440 0.7528 0.7577

0 0.8996 0.9054 0.9127

 104

CHAPTER 6

CONCLUSIONS

6.1 Conclusions

 This dissertation presents a novel scheme for employing an adaptive GA

efficiently in improving sequential state estimation performance under PF framework.

To ensure diversity of new offspring particles, diversity of parents must be high. Recall

that procedure of parent selection is similar to resampling but their objectives are

different. High-weight particles that survive parent selection will be employed to create

new offspring particles that belong to the same time step. In resampling, after low-

weight particles are eliminated and high-weight particles are replicated, state values of

copies of the latter will be updated via state evolution function in order to predict the

true state at the next time step. While diversity of parents could be regained via

roughening, particle degeneracy might return because some resampled particles might

have lower weights after their state values were perturbed. Also, roughening could be

employed only when size of state vectors was constant, according to the variance values

found via Equation 2.37. Thus, instead of employing parent selection as done in

traditional GAs and in GORPF, all of 𝑁 weighted particles can be instantly employed

as parents but they must first be classified as high-weight parents and low-weight

parents.

 Offspring state vectors calculation must be done for every pair of parents at

every time step regardless of particle degeneracy measured as effective sample size

(ESS) of the 𝑁 parents. Recall that the maximum ESS denotes that each parent has the

same weight, but it does not mean that this weight is actually high. In GORPF, offspring

creation will be done only when ESS (found according to re-evaluated weights of the

𝑁 post-roughening parents) is less than the preset threshold. According to simulation

results in Chapter 4, the estimation performance delivered from GORPF was proved

less reliable than those of our proposed method by having higher averages and variances

of numerical errors, while our proposed method does not require as many preset GA

 105

parameters as GORPF does. Also, averages and variances of computation time spent

by GORPF were significantly higher than those of our proposed method.

 Each low-weight parent must pair with a randomly selected high-weight parent

in order to prevent any pair of two identical parents. Because number of low-weight

parents and high-weight parents can be uneven, each high-weight parent may be

repeatedly selected to pair with more than one low-weight parent. We set the probability

of being selected of each high-weight parent to be uniform. The reasons are to ensure

that: (1) the maximum-weight parent will not be preferred in order to ensure diversity

of offspring particles, and (2) computation time can be saved because CDF of weights

of high-weight parents is not required. Also, each created pair randomly selects only

either flat crossover or modified Gaussian mutation (where mean values of the Gaussian

PDF are state values of the high-weight parent) to find one new offspring particle in

order to save computation time. That is, we treat state values of the high-weight parent

as clues in finding the offspring state vector. Both GA operators are more efficient than

blind perturbation done on state values of each particle. As presented in Chapter 4,

performances of ASIR-PF and AFPF in estimating states from simulation state-space

models were proved inferior to that of our proposed method by delivering higher

RMSEs. Furthermore, GORPF selected each high-weight parent according to the CDF

of weights of high-weight parents. This caused computation time of GORPF to be

longer than those of IPF and our proposed method.

 To ensure accuracy of state estimation, our proposed method accepts an

offspring to replace its low-weight parent only if its weight is higher than that of its

low-weight parent. As demonstrated in posterior PDFs reshaping in simulation one-

dimensional state estimation (presented in Section 4.1), each low-weight parent in our

proposed method could only either stay unchanged or randomly move to any new

region where high-weight state values exist. Furthermore, our proposed method treats

offspring particles whose weights are not lower than the weight threshold (which is

found according to weights of all 𝑁 parents and employed in parent classification) as

additional high-weight parents. This scheme combats shortage of high-weight parents,

especially in case of severe particle degeneracy. In IPF, Metropolis-Hastings (M-H)

method was employed to randomly accept or reject the new offspring, while there were

no any schemes for fixing shortage of high-weight parents. Average RMSEs of IPF

 106

then were higher than those of our proposed method for simulation results in Chapter

4, while IPF and our proposed method delivered significant low variances of errors

compared to those of the other state-of-the-art methods.

 We also tested performance of the new method in estimating spectrum of an

acoustics that disperses through an ocean waveguide in Chapter 5. GA operators were

employed to find new offspring modal frequencies and new offspring modal amplitudes

to ensure particle diversity. According to the results, stronger time-domain observation

noise creates more false modes to be misidentified as the modal frequency. In other

words, false dispersion curves are more likely to appear in the tracking results delivered

by the new method. Although the new method showed superior performance in

capturing the modal frequencies, the misidentification of false modes seems to be a

side-effect of employing the new method. Consequently, the RMSEs of the new method

are higher than those delivered from the SIR-PF and the PBR-PF for such low SNRs.

The RMSEs should be reduced if the problem of the false mode misidentification can

be solved.

6.2 Limitations

 Adaptive GAs can be employed only when the condition 𝐸𝑆𝑆𝑘 < 𝑁 is satisfied.

When 𝐸𝑆𝑆𝑘 = 𝑁 or weights of all 𝑁 parents are same (but not necessarily high), parent

classification will be impossible. In practice, it is difficult to achieve such maximum

ESS, especially when size of state vector is high or number of particles 𝑁 is sufficient.

However, bigger state vectors decrease probability of finding the offspring whose

weight is higher than that of its low-weight parent. Such curse of dimensionality also

leads to spending more computation time in finding new offspring state values. This is

an unavoidable tradeoff between state estimation performance and computation time.

As previously shown in Chapter 4, SIR-PF spent the shortest computation time for both

one-dimensional state and multidimensional state estimation, while RMSEs delivered

from SIR-PF were higher than those of our proposed method.

 Classifying parents as high-weight parents and low-weight parents can prevent

any pair of two identical parents. However, in case the parents are state vectors, it can

 107

be possible that 𝑚-th vector component of the low-weight parent and 𝑚-th vector

component of the high-weight parent have same state value. If such case happens, the

new offspring state value found using flat crossover for that 𝑚-th vector component,

according to Equation 2.43, will be same to those of the two parents. If all state values

in a vector have different units, we cannot swap the order of the state values and

diversity of state values of that 𝑚-th vector component can be low.

 Shortage of high-weight parents in case particle degeneracy is severe could be

mitigated by adding new offspring particles whose weights were not less than the preset

threshold as new members of set of high-weight parents. However, all pairs of parents

cannot be created in advance because each pair must create an offspring sequentially

and the newly added high-weight parent can be available to be selected to form the next

pair of parents.

 The new method prevents the parent particles from being replaced by the low-

quality offspring particles. However, there are no schemes in GAs for ensuring that the

weight of the new offspring candidate will always be higher than the weight of its low-

weight parent. At any time step, there can be chances that the post-GA particle swarm

will be the same as the original population because every new offspring has its weight

which is lower than the weight of their respective low-weight parent; all of these

offspring particles are then rejected.

6.3 Future Work

 State values of any two parent particles can affect search space of the to-be-

drawn offspring state values. If difference between the two parent state values is high,

flat crossover should be preferred because search space is sufficiently large. On the

contrary, if difference between the two parent state values is low, modified Gaussian

mutation can be employed to find new state values that are located outside the small

search space. That is, size of difference between the two parent state values should also

be considered in randomly choosing a GA operator, not just ESS found according to

weights of the 𝑁 parents. Furthermore, bounds of the population (i.e., minimum and

maximum state values of the particle swarm) should also be taken into consideration.

 108

 New schemes should be proposed and incorporated with GAs to ensure that the

new offspring will be better than its low-weight parent in order to save computation

time for offspring weight checking.

 According to the results in Chapter 5, the new method could be employed under

the MMPF framework where size of each particle (i.e., state vector) is uneven. This

pilot study can then be extended to the employment on more complicated systems and

applications.

109

REFERENCES

Ahwiadi, M., & Wang, W. (2020). An adaptive particle filter technique for system

state estimation and prognosis. IEEE Transactions on Instrumentation and

Measurement, 69(9), 6756-6765. https://doi.org/10.1109/TIM.2020.2973850

Alam, T., Qamar, S., Dixit, A., & Benaida, M. (2020). Genetic algorithms: Reviews,

implementations and applications. International Journal of Engineering

Pedagogy, 10(6), 57-77. https://doi.org/10.3991/ijep.v10i6.14567

Andrieu, C., Davy, M., & Doucet, A. (2003). Efficient particle filtering for jump

 Markov systems. Application to time-varying autoregressions. IEEE

Transactions on Signal Processing, 51(7), 1762-1770.

https://doi.org/10.1109/TSP.2003.810284

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking.

 IEEE Transactions on Signal Processing, 50(2), 174-188.

https://doi.org/10.1109/78.978374

Aunsri, N. (2018a). Effects of window functions on the sequential Bayesian filtering

based frequency estimation. In 21st International Symposium on Wireless

Personal Multimedia Communications (WPMC) (pp. 411-415). IEEE.

https://doi.org/10.1109/WPMC.2018.8713162

Aunsri, N. (2018b). Seismic events estimation under noisy environments using

multiple model particle filter. In 15th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON) (pp. 793-797). IEEE.

https://doi.org/10.1109/ECTICon.2018.8620047

Aunsri, N. (2019). Sequential Bayesian filtering with particle smoother for improving

frequency estimation in frequency domain approach. In 22nd International

Symposium on Wireless Personal Multimedia Communications (WPMC)

(pp. 1-5). IEEE. https://doi.org/10.1109/WPMC48795.2019.9096101

110

Aunsri, N., & Chamnongthai, K. (2019). Particle filtering with adaptive resampling

scheme for modal frequency identification and dispersion curves estimation in

ocean acoustics. Applied Acoustics, 154, 90-98.

https://doi.org/10.1016/j.apacoust.2019.04.018

Aunsri, N., & Chamnongthai, K. (2021). Stochastic description and evaluation of

ocean acoustics time-series for frequency and dispersion estimation using

particle filtering approach. Applied Acoustics, 178, Article 108010.

https://doi.org/10.1016/j.apacoust.2021.108010

Aunsri, N., & Michalopoulou, Z.-H. (2014). Sequential filtering for dispersion

tracking and sediment sound speed inversion. The Journal of the Acoustical

Society of America, 136(5), 2665-2674. https://doi.org/10.1121/1.4897400

Aunsri, N., Pipatphol, K., Thikeaw, B., Robroo, S., & Chamnongthai, K. (2021).

A novel adaptive resampling scheme for sequential Bayesian filtering to

improve frequency estimation of time-varying signals. Heliyon, 7(4),

 Article e06768. https://doi.org/10.1016/j.heliyon.2021.e06768

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In J. J.

Grefenstette (Ed.), Genetic Algorithms and Their Applications: Proceedings of

the Second International Conference on Genetic Algorithms (pp. 14-21).

Psychology Press. https://doi.org/10.4324/9780203761595

Bhat, P. G., Subudhi, B. N., Veerakumar, T., Di Caterina, G., & Soraghan, J. J.

(2021). Target tracking using a mean-shift occlusion aware particle filter.

IEEE Sensors Journal, 21(8), 10112-10121.

https://doi.org/10.1109/JSEN.2021.3054815

Boashash, B. (2016). Heuristic formulation of time-frequency distributions.

In B. Boashash (Ed.), Time-frequency signal analysis and processing:

A comprehensive reference (2nd ed., pp. 65-102). Academic Press.

Candy, J. V. (2016). Bayesian signal processing: Classical, modern and particle

 filtering methods (2nd ed.). John Wiley & Sons.

https://doi.org/10.1002/9781119125495

Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods

and recent advances in sequential Monte Carlo. Proceedings of the IEEE,

95(5), 899-924. https://doi.org/10.1109/JPROC.2007.893250

111

Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Improved particle filter for

nonlinear problems. IEE Proceedings, (Radar and Signal Processing), 146(1),

2-7. https://doi.org/10.1049/ip-rsn:19990255

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems [Doctoral dissertation, University of Michigan]. Deep Blue

Documents.

https://deepblue.lib.umich.edu/items/4f34b899-06d6-456e-a69e-43fea0d8b43b

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling

methods for Bayesian filtering. Statistics and Computing, 10(3), 197-208.

https://doi.org/10.1023/A:1008935410038

Drachal, K., & Pawłowski, M. (2021). A review of the applications of genetic

algorithms to forecasting prices of commodities. Economies, 9(1), Article 6.

https://doi.org/10.3390/economies9010006

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. Journal of

Geophysical Research, 99(C5), 10143-10162.

https://doi.org/10.1029/94JC00572

Garzelli, A., Capobianco, L., & Nencini, F. (2008). Fusion of multispectral and

panchromatic images as an optimisation problem. In T. Stathaki (Ed.),

Image fusion: Algorithms and applications (pp. 223-250). Academic Press.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar

and Signal Processing), 140(2), 107-113.

https://doi.org/10.1049/ip-f-2.1993.0015

Han, H., Ding, Y.-S., Hao, K.-R., & Liang, X. (2011). An evolutionary particle filter

with the immune genetic algorithm for intelligent video target tracking.

Computers and Mathematics with Applications, 62(7), 2685-2695.
https://doi.org/10.1016/j.camwa.2011.06.050

Han, X., Lin, H., Li, Y., Ma, H., & Zhao, X. (2015). Adaptive fission particle filter for

seismic random noise attenuation. IEEE Geoscience and Remote Sensing

Letters, 12(9), 1918-1922. https://doi.org/10.1109/LGRS.2015.2438229

112

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1), 97-109. https://doi.org/10.2307/2334940

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.

http://doi.org/10.1038/scientificamerican0792-66

Huillery, J., Millioz, F., & Martin, N. (2008). On the description of spectrogram

probabilities with a chi-squared law. IEEE Transactions on Signal Processing,

56(6), 2249-2258. https://doi.org/10.1109/TSP.2007.916125

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to

nonlinear systems. In I. Kadar (Ed.), Signal Processing, Sensor Fusion, and

Target Recognition VI (pp. 182-193). SPIE. https://doi.org/10.1117/12.280797

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1), 35-45. https://doi.org/10.1115/1.3662552

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past,

present, and future. Multimedia Tools and Applications, 80(5), 8091-8126.

https://doi.org/10.1007/s11042-020-10139-6

Katzfuss, M., Stroud, J. R., & Wikle, C. K. (2016). Understanding the ensemble

Kalman filter. The American Statistician, 70(4), 350-357.

https://doi.org/10.1080/00031305.2016.1141709

Krumm, J. (2010). Processing sequential sensor data. In J. Krumm (Ed.),

 Ubiquitous computing fundamentals (pp. 353-380). Chapman & Hall/CRC.

https://doi.org/10.1201/9781420093612

Kuptametee, C., & Aunsri, N. (2022a). A review of resampling techniques in particle

filtering framework. Measurement, 193, Article 110836.

https://doi.org/10.1016/j.measurement.2022.110836

Kuptametee, C., & Aunsri, N. (2022b). Particle filtering with adaptive diversifying

scheme for abruptly changing hidden states estimation. In 6th International

Conference on Information Technology (InCIT) (pp. 358-362). IEEE.

https://doi.org/10.1109/InCIT56086.2022.10067827

Kuptametee, C., & Aunsri, N. (2022c). Sequential frequency estimation using

auxiliary particle filter. In 6th International Conference on Information

Technology (InCIT) (pp. 363-367). IEEE.

https://doi.org/10.1109/InCIT56086.2022.10067382

113

Kuptametee, C., & Aunsri, N. (2023). Intelligent genetic crossover algorithm for

improving state estimation in particle filtering. In 7th International

Conference on Information Technology (InCIT) (pp. 550-555). IEEE.

https://doi.org/10.1109/InCIT60207.2023.10413189

Kuptametee, C., Michalopoulou, Z.-H., & Aunsri, N. (2024). A review of efficient

applications of genetic algorithms to improve particle filtering optimization

problems. Measurement, 224, Article 113952.

https://doi.org/10.1016/j.measurement.2023.113952

Larose, D. T. (2006). Genetic algorithms. Data mining methods and models

(pp. 240-264). John Wiley & Sons. https://doi.org/10.1002/0471756482

Lewis, J. & Chase, J. (2014). Java software structures: Designing and using data

structures (4th international ed.). Pearson Education.

Li, T., Bolić, M., & Djurić, P. M. (2015). Resampling methods for particle filtering:

Classification, implementation, and strategies. IEEE Signal Processing

Magazine, 32(3), 70-86. https://doi.org/10.1109/MSP.2014.2330626

Li, T., Sattar, T. P., & Tang, D. (2013). A fast resampling scheme for particle filters.

In 2013 Constantinides International Workshop on Signal Processing

(CIWSP) (pp. 1-4). IEEE. https://doi.org/10.1049/ic.2013.0002

Martino, L., Elvira, V., & Louzada, F. (2017). Effective sample size for importance

sampling based on discrepancy measures. Signal Processing, 131, 386-401.

Maybeck, P. S. (1982). Stochastic models, estimation and control (Vol. 2).

Academic Press.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs

(3rd ed.). Springer-Verlag. https://doi.org/10.1007/978-3-662-03315-9

Michalopoulou, Z.-H., & Aunsri, N. (2018). Environmental inversion using dispersion

tracking in a shallow environment. The Journal of the Acoustical Society of

America, 143(3), EL188-EL193. https://doi.org/10.1121/1.5026245

Musso, C., Oudjane N., & Le Gland, F. (2001). Improving regularised particle filters.

In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential Monte Carlo

methods in practice (pp. 247-272). Springer.

https://doi.org/10.1007/978-1-4757-3437-9

114

Park, S., Hwang, J. P., Kim, E., & Kang, H.-J. (2009). A new evolutionary particle

filter for the prevention of sample impoverishment. IEEE Transactions on

Evolutionary Computation, 13(4), 801-809.

https://doi.org/10.1109/TEVC.2008.2011729

Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters.

Journal of the American Statistical Association, 94(446), 590-599.

https://doi.org/10.2307/2670179

Radcliffe, N. J. (1990). Genetic neural networks on MIMD computers [Doctoral

dissertation, University of Edinburgh]. Edinburgh Research Archive.

https://era.ed.ac.uk/handle/1842/11288

Ristic, B., Arulampalam, M. S., & Gordon, N. (2004). Beyond the Kalman Filter:

Particle Filters for Tracking Applications. Artech House.

Roonizi, A. K. (2022). Kalman filtering in non-Gaussian model errors: A new

perspective [Tips & Tricks], IEEE Signal Processing Magazine, 39(3),

105-114. https://doi.org/10.1109/MSP.2021.3134635

Saenmuang, S., & Aunsri, N. (2019). A new spinach respiratory prediction method

using particle filtering approach. IEEE Access, 7, 131559-131566.

https://doi.org/10.1109/ACCESS.2019.2941176

Tan, L., & Jiang, J. (2019). Digital signal processing: Fundamental and applications

(3rd ed.). Academic Press. https://doi.org/10.1016/C2017-0-02319-4

van Leeuwen, P. J. (2020). A consistent interpretation of the stochastic version of the

ensemble Kalman filter. Quarterly Journal of the Royal Meteorological

Society, 146(731), 2815-2825. https://doi.org/10.1002/qj.3819

Wan, E. A., & van der Merwe, R. (2000). The unscented Kalman filter for nonlinear

estimation. In IEEE 2000 Adaptive Systems for Signal Processing,

Communications, and Control Symposium (pp. 153-158). IEEE.

https://doi.org/10.1109/ASSPCC.2000.882463

Wang, Y., Wang, X., Shan, Y., & Cui, N. (2020). Quantized genetic resampling

particle filtering for vision-based ground moving target tracking. Aerospace

Science and Technology, 103, Article 105925.

https://doi.org/10.1016/j.ast.2020.105925

115

Yang, T. C. (1984). A method for measuring the frequency dispersion for broadband

pulses propagated to long ranges. The Journal of the Acoustical Society of

America, 76(1), 253-261. https://doi.org/10.1121/1.391102

Yardim, C., Michalopoulou, Z.-H., & Gerstoft, P. (2011). An overview of sequential

Bayesian filtering in ocean acoustics. IEEE Journal of Oceanic Engineering,

36(1), 71-89. https://doi.org/10.1109/JOE.2010.2098810

Yin, S., & Zhu, X. (2015). Intelligent particle filter and its application to fault

detection of nonlinear system. IEEE Transactions on Industrial Electronics,

62(6), 3852-3861. https://doi.org/10.1109/TIE.2015.2399396

Yin, S., Zhu, X., Qiu, J., & Gao, H. (2016). State estimation in nonlinear system using

sequential evolutionary filter. IEEE Transactions on Industrial Electronics,

63(6), 3786-3794. https://doi.org/10.1109/TIE.2016.2522382

Yu, M., Li, H., Jiang, W., Wang, H., & Jiang, C. (2019). Fault diagnosis and RUL

prediction of nonlinear mechatronic system via adaptive genetic algorithm-

particle filter. IEEE Access, 7, 11140-11151.

https://doi.org/10.1109/ACCESS.2019.2891854

Zafar, T., Mairaj, T., Alam, A., & Rasheed, H. (2020). Hybrid resampling scheme for

particle filter-based inversion. IET Science, Measurement and Technology,

14(4), 396-406. https://doi.org/10.1049/iet-smt.2018.5531

Zhang, X., Liu, D., Yang, Y., & Liang, J. (2021). An intelligent particle filter with

adaptive M-H resampling for liquid-level estimation during silicon crystal

growth. IEEE Transactions on Instrumentation and Measurement, 70,

Article 3502812. https://doi.org/10.1109/TIM.2020.3026760

Zhou, N., Lau, L., Bai, R., & Moore, T. (2021). A genetic optimization resampling

based particle filtering algorithm for indoor target tracking. Remote Sensing,

13(1), Article 132. https://doi.org/10.3390/rs13010132

Zhou, W., Liu, L., & Hou, J. (2019). Firefly algorithm-based particle filter for

nonlinear systems. Circuits, Systems, and Signal Processing, 38(4),

1583-1595. https://doi.org/10.1007/s00034-018-0927-0

Zorych, I., & Michalopoulou, Z.-H. (2008). Particle filtering for dispersion curve

tracking in ocean acoustics. The Journal of the Acoustical Society of America,

124(2), EL45-EL50. https://doi.org/10.1121/1.2947628

116

CURRICULUM VITAE

NAME Chanin Kuptametee

EDUCATIONAL BACKGROUND

2019 Bachelor of Engineering

Information and Communication Engineering

Mae Fah Luang University

SCHOLARSHIP

2022 Mae Fah Luang University Dissertation

Support Grant

2020 Mae Fah Luang University Graduate

Scholarship

PUBLICATION

ARTICLES

Kuptametee, C., Michalopoulou, Z.-H., & Aunsri, N. (2025). Adaptive genetic

algorithm for modal frequency and dispersion curve estimation in particle

filtering framework [Manuscript in preparation]. School of Applied Digital

Technology, Mae Fah Luang University.

Kuptametee, C., Michalopoulou, Z.-H., & Aunsri, N. (2024). A review of efficient

applications of genetic algorithms to improve particle filtering optimization

problems. Measurement, 224, Article 113952.

https://doi.org/10.1016/j.measurement.2023.113952

Kuptametee, C., Michalopoulou, Z.-H., & Aunsri, N. (2023). Adaptive genetic

algorithm-based particle herding scheme for mitigating particle

impoverishment. Measurement, 214, Article 112785.

https://doi.org/10.1016/j.measurement.2023.112785

Kuptametee, C., & Aunsri, N. (2022). A review of resampling techniques in

particle filtering framework. Measurement, 193, Article 110836.
https://doi.org/10.1016/j.measurement.2022.110836

117

PUBLICATION (continued)

PRESENTATIONS

Kuptametee, C., & Aunsri, N. (2023). Intelligent genetic crossover algorithm for

improving state estimation in particle filtering. In 7th International

Conference on Information Technology (InCIT) (pp. 550-555). IEEE.

Thailand. https://doi.org/10.1109/InCIT60207.2023.10413189

 (Best paper award)

Khine, M. H. H., Kuptametee, C., & Aunsri, N. (2023). Improving reliability of

state estimation by particle filter with Cauchy likelihood function. In 7th

International Conference on Information Technology (InCIT)

(pp. 556-561), Chiang Rai, Thailand.

https://doi.org/10.1109/InCIT60207.2023.10413186

Kuptametee, C., & Aunsri, N. (2023). Sequential abruptly changing hidden states

estimation using adaptive particle impoverishment mitigation scheme.

In 2023 Joint International Conference on Digital Arts, Media and

Technology with ECTI Northern Section Conference on Electrical,

Electronics, Computer and Telecommunications Engineering (ECTI DAMT

& NCON) (pp. 302-307). IEEE.

https://doi.org/10.1109/ECTIDAMTNCON57770.2023.10139728

Kuptametee, C., & Aunsri, N. (2022). Particle filtering with adaptive diversifying

scheme for abruptly changing hidden states estimation. In 6th International

Conference on Information Technology (InCIT) (pp. 358-362). IEEE.

https://doi.org/10.1109/InCIT56086.2022.10067827 (Best paper award)

Kuptametee, C., & Aunsri, N. (2022). Sequential frequency estimation using

auxiliary particle filter. In 6th International Conference on Information

Technology (InCIT) (pp. 363-367). IEEE.

https://doi.org/10.1109/InCIT56086.2022.10067382

	1.Cover
	2.Introduction
	3.Abstract
	4.Contents
	5.Chapter 1
	6.Chapter 2
	7.Chapter 3
	8.Chapter 4
	9.Chapter 5
	10.Chapter 6
	11.Reference
	12.Vitae

