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ABSTRACT 

             Particle filtering is a scheme under sequential Bayesian framework widely 

employed to estimate state of desired information from the observation data outputted 

from non-linear, non-Gaussian systems. We proposed an adaptive genetic algorithm-

based scheme to enhance quality of the drawn sample vectors of state variables (called 

particles). Each low-weight parent pairs with a randomly selected high-weight parent. 

The newly created offspring particle is allowed to replace its low-weight parent only if 

the weight of the offspring is higher than the weight of the low-weight parent. The 

accepted offspring particles with high weights can also be paired with the other low-

weight parents in order to promote particle diversity. Simulation results show that the 

new method is superior to state-of-the-art algorithms in estimating one-dimensional and 

multidimensional state estimation. The new method is also tested in an application 

under the multiple-model particle filter (MMPF) framework of spectrum and dispersion 

curve estimation of a time-varying acoustics propagated through an ocean waveguide. 

The new method still can perform well in capturing the modal frequency. However, the 

new method is also sensitive to high-intensity time-domain noise where such severe 

noise causes false frequency contents to be more likely to be misidentified as modal 

frequency. Such a pilot study of testing the new method on the MMPF indicates that 

further research and improvements of GAs still be needed. 
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CHAPTER 1 

INTRODUCTION 

1.1  Research Rationale 

 In scientific and engineering problems and applications, we need to obtain the 

state of the desired information (e.g., target parameters) from any system. These 

parameters, however, cannot be measured directly because they are hidden in 

observation data. Also, the hidden state can be assumed time-varying because the 

observation values can change as time goes. To extract the state of targeted parameters 

from the sequential observation data, we need a function that relates the state 

parameters and the observation data together. While such a function can be designed 

according to our related prior knowledge, there can be uncertainties (or random noise) 

that occur during the output measurements. A direct inversion process that finds the 

state by inverting the designed function and employing the observation data can be 

inefficient (Cappé et al., 2007; Krumm, 2010). Therefore, estimating states of time-

varying parameters from noisy sequential observations is a challenging but important 

task in order to understand the nature of any system. 

 Bayesian approaches find the probability density function (PDF) of targeted 

parameters that is conditional on observation data. This PDF is called the posterior PDF 

because we must first obtain the observation data before the PDF can be created (Candy, 

2016). However, we cannot obtain the full posterior PDF because it requires all possible 

state values of the parameters. Also, the posterior PDF does not stay fixed because 

parameter states evolve with time. 
 Kalman (1960) proposed the Kalman filtering (KF) as a sequential Bayesian 

filtering approach that is optimal for systems with a linear relationship between states 

and the observation data that are corrupted with additive, uncorrelated, and zero-mean 

normally distributed noise (or additive white zero-mean Gaussian noise). It fully 

characterizes the Gaussian posterior PDFs by estimating their means and covariances 

at each time step. There are also variants of KFs proposed to improve the performance 
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of original KFs. Ensemble KFs (EnKFs) act as the approximation version of the original 

KF by drawing samples (or ensembles) to estimate the mean and the covariance of the 

Gaussian posterior PDF at each time step (Evensen, 1994); Katzfuss et al., 2016; van 

Leeuwan, 2020), while Unscented KFs (UKFs) employ only a few selected samples (or 

points) to capture the mean and the covariance (Julier, 1997; Wan & van der Merwe, 

2000). Extended KFs (EKFs) were proposed to work with non-linear systems by using 

a linearization processes (Maybeck, 1982). However, KFs are not the optimal methods 

for estimating states from highly non-linear systems with non-Gaussian posterior PDFs 

(Candy, 2016; Gordon et al., 1993; Ristic et al., 2004; Roonizi, 2022). 

 Particle filtering (PF) is a sequential Monte Carlo (SMC) method that randomly 

draws independent and identically distributed (i.i.d.) sample vectors of values of state 

variables from the prior PDF of initial state values; these sample vectors are called 

“particles”. Next, we find the importance weight of each particle and normalize these 

weights to obtain probability masses (or normalized weighted particles), which partially 

represent the posterior PDF of state given noisy observations. Finally, we infer (or 

estimate) the hidden state from this approximated posterior PDF (Candy, 2016; Ristic 

et al., 2004). PF is proved effective in many applications, for example, signal processing 

(Andrieu et al., 2003; Aunsri & Chamnongthai, 2019; Aunsri & Chamnongthai 2021; 

Aunsri & Michalopoulou, 2014; Michalopoulou & Aunsri, 2018; Yardim et al., 2011; 

Zorych & Michalopoulou, 2008), agriculture (Saenmuang & Aunsri, 2019), fault 

detection (Yin & Zhu, 2015; Yu et al., 2019), moving object tracking (Bhat et al., 2021; 

Han et al., 2011; Park et al., 2009; Wang et al., 2020), and non-destructive evaluation 

(Zafar et al., 2020). 

 Drawing particles in great numbers causes the approximated posterior PDF to 

get closer to the true PDF, but a higher cost is required. Also, because all particles are 

randomly drawn, sometimes there can be only a few high-weight particles while the 

rest have low weights. Consequently, the posterior PDF and state may be poorly 

estimated (Candy, 2016; Gordon et al., 1993; Ristic et al., 2004). We should reshape 

the approximated posterior PDF by altering the state values of the particles that are 

located in low-probability regions in order to relocate them. After we relocate the low-

weight particles, their weights must be re-evaluated according to their new state values 

in order to verify whether or not they become high-weight particles. However, we 
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should employ the state values of high-weight particles that are available on-hand as 

clues for finding high-probability regions, instead of relocating the low-weight particles 

blindly. 

 Holland (1992) proposed the Genetic algorithm (GA) to imitate the “survival-

of-the-fittest” scheme that treats each sample (i.e., state vector) as an individual and 

performs a selection process to keep high-fit individuals. The high-fit individuals that 

survive are then employed as parents to produce new offspring state vectors with high 

diversity among state values (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996). 

During the offspring creation process, GA blindly creates pairs of two survived particles 

as parents. In each pair, the state values of two parent vectors are employed to calculate 

state values of the two new offspring vectors that then replace their parents. 

 Yin and Zhu (2015) suggested that particles should first be classified as high-

weight and low-weight parents. Each low-weight parent must pair with a randomly 

selected high-weight parent. Only one offspring particle is found from each pair and 

this offspring particle then replaces its low-weight parent. This ensures existence of 

high weight parents. However, if the number of high-weight parents is small, diversity 

of state values of to-be-created offspring particles can be low. Consequently, the 

chances of discovering new high-probability state values are limited. Also, the weight 

of the offspring particle may be lower than the weights of their parents. The new set of 

particles that we obtain after the GA approach is employed may consist of inferior 

particles whose weights are lower than those of the particles in the old set (or parents’ 

generation). Consequently, the state estimation performance may be unsatisfactory 

(Kuptametee et al., 2024). Thus, an efficient scheme must be employed in order to 

ensure that the GA method actually improves the state estimation performance when 

being integrated in PF algorithms. 
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1.2  Objectives 

 1.2.1 To propose a more efficient scheme of employing GA, ensuring quality 

and diversity of created offspring state vectors in a particle filtering framework. 

 1.2.2 To employ the developed adaptive GA in a PF algorithm to achieve better 

state estimation performance for non-linear system, both in one-dimensional and 

multidimensional systems. 

1.3  Scope 

 1.3.1 This research employs only arithmetic GA operators to improve the 

performance of the PF framework. 

 1.3.2 The algorithms and experiments will be implemented in MATLAB. 

1.4  Contributions 

 In our proposed adaptive GA, all original particles (i.e., high-weight parents and 

low-weight parents) are always prevented from being replaced by inferior offspring 

particles. This ensures that the state estimation performance will not be degraded. Some 

offspring particles have weights that can be considered as high according to the 

threshold employed to classify the original parents before offspring creation. To fix a 

shortage of high-weight parents, such high-quality offspring particles can then be 

employed as new high-weight parents. That is, low-weight parents will have more 

choices of high-weight parents to randomly pair with. Adding new high-weight parents 

does not increase the complexity of employing the proposed method. 

 In addition, the proposed adaptive GA does not require too many parameters. 

Our method can then be employed with ease to enhance performance in any state-space 

system. 
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1.5  Dissertation Structure 

 The remainder of this dissertation is organized as follows: 

 Chapter 2: Literature Review. This chapter provides the related background 

theories including sequential Bayesian filtering, PF, and GA. Related previous research 

is also discussed. 

Chapter 3: Proposed Method. This chapter proposes a scheme that ensures 

efficient employment of an adaptive GA in a PF algorithm. 

 Chapter 4: Simulation Results. This chapter presents the results of employing 

the proposed adaptive GA in simulation state-space models. The performance of our 

proposed method will be compared with that of other state-of-the-art algorithms in 

cases of a one-dimensional (1-D) and a multidimensional system. 

 Chapter 5: Application. This chapter presents the results of employing the 

proposed adaptive GA algorithm to estimate time-varying spectra of a broadband 

acoustics signal that propagates through the ocean; the likelihood function is non-

Gaussian. The experiment is based on the scenario where: (1) the number of frequency 

modes (or dispersion curves) can vary with time, and (2) the intensity of the additive 

white Gaussian observation noise that corrupts the time-domain acoustics is unknown. 

 Chapter 6: Conclusions. This chapter provides conclusions from the overall 

work. Limitations and future work are also discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Sequential Bayesian Filtering 

 In order to estimate hidden states of time-varying targeted parameters of any 

system, we must first obtain a sequence of observation data as shown in Figure 2.1. In 

practice, any observation can be corrupted by many kinds of undesired random noise, 

while observation data can also be time-varying. State-space models are then employed 

to describe the systems (Candy, 2016). At time step 𝑘 ∈ I, let 𝐱𝑘 ∈ 𝐑
𝑑𝑥 be the 𝑑𝑥-

dimensional vector of state variables that are hidden in the 𝑑𝑦-dimensional vector of 

measurable values (i.e., observation) 𝐲𝑘 ∈ 𝐑
𝑑𝑦. There are two functions in the state-

space model: (1) the state evolution function 𝐟𝑘(∙) and (2) the observation function 

𝐠𝑘(∙). These two functions are not necessarily linear and are respectively expressed as: 

 𝐱𝑘 = 𝐟𝑘−1(𝐱𝑘−1, 𝐮𝑘−1) (2.1) 

 𝐲𝑘 = 𝐠𝑘(𝐱𝑘, 𝐯𝑘), (2.2) 

where 𝐮𝑘−1 ∈ 𝐑
𝑑𝑢 is a 𝑑𝑢-dimensional vector of state evolution noise (as independent 

and identically distributed (i.i.d.) random values) that updates values of state 𝐱𝑘−1 to 

obtain new values 𝐱𝑘, while vector 𝐯𝑘 ∈ 𝐑
𝑑𝑣  is a 𝑑𝑣-dimensional vector of i.i.d. random 

noise that corrupts the observation 𝐲𝑘 (Candy, 2016; Ristic et al., 2004). 

 

Figure 2.1  State variables hidden in sequential observable data 
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 As previously mentioned, the true state variables cannot be obtained directly 

due to contaminating observation noise which sometimes can be too severe to be 

handled with denoising tools. A Bayesian approach is a method employed to find the 

posterior probability density function (PDF) of state variables conditional on the 

observation (Candy, 2016). Suppose that we need to find the full posterior PDF at time 

step 𝑘. Let 𝐗𝑘 = {𝐱1, … , 𝐱𝑘} be a set of all states up to time step 𝑘 and 𝐘𝑘 = {𝐲1, … , 𝐲𝑘} 

be a set of data obtained from all observations up to time step 𝑘. The posterior PDF can 

be expressed by decomposition via Bayes’ rule as: 

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐗𝑘,𝐘𝑘)
𝑝(𝐘𝑘)

=
𝑝(𝐗𝑘,𝐲𝑘,𝐘𝑘−1)
𝑝(𝐲𝑘,𝐘𝑘−1)

=
𝑝(𝐲𝑘|𝐗𝑘,𝐘𝑘−1)𝑝(𝐗𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)
   

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐗𝑘)𝑝(𝐗𝑘|𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
, (2.3) 

where 𝑝(𝐲𝑘|𝐗𝑘) is the likelihood function expressing the PDF of the observation 𝐲𝑘 

conditional on the set of all states 𝐗𝑘 (Candy, 2016). Function 𝑝(𝐗𝑘|𝐘𝑘−1) is the prior 

PDF employed in state prediction and expressed via the Chapman-Kolmogorov 

equation as: 

 𝑝(𝐗𝑘|𝐘𝑘−1) = ∫𝑝(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘−1)𝑝(𝐗𝑘−1|𝐘𝑘−1)𝑑𝐗𝑘−1, (2.4) 

and 𝑝(𝐲𝑘|𝐘𝑘−1) is the normalizing denominator expressed as: 

 𝑝(𝐲𝑘|𝐘𝑘−1) = ∫𝑝(𝐲𝑘|𝐗𝑘 , 𝐘𝑘−1)𝑝(𝐗𝑘|𝐘𝑘−1)𝑑𝐗𝑘. (2.5) 

 We can assume that all observations in 𝐘𝑘 are mutually independent from each 

other because each observation 𝐲𝑘 is contaminated with i.i.d. random noise. Also, each 

observation 𝐲𝑘 is assumed to be conditional on only the hidden state vector 𝐱𝑘 at the 

same time step (Candy, 2016). We can then reduce Equation 2.3 as follows: 

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐗𝑘|𝐘𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
.  (2.6) 

 After the posterior PDF is obtained, the state can be estimated (or inferred) as 

the maximum a posteriori (MAP) estimate or the conditional mean (CM) of the 

posterior PDF expressed as: 
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 𝐗̂𝑘

𝑀𝐴𝑃 = argmax
𝐗𝑘

𝑝(𝐗𝑘|𝐘𝑘) (2.7) 

and 

 𝐗̂𝑘
𝐶𝑀 = ∫𝐗𝑘𝑝(𝐗𝑘|𝐘𝑘)𝑑𝐗𝑘. (2.8) 

 Alternatively, we can express the full posterior PDF in a recursive form by 

starting from expressing it via Bayes’ rule as: 

 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐘𝑘|𝐗𝑘)𝑝(𝐗𝑘)

𝑝(𝐘𝑘)
, (2.9) 

where the functions 𝑝(𝐘𝑘|𝐗𝑘), 𝑝(𝐗𝑘), and 𝑝(𝐘𝑘), denote the full likelihood function, 

the full prior distribution, and the evidence or the normalizing denominator, 

respectively (Candy, 2016). The full likelihood function 𝑝(𝐘𝑘|𝐗𝑘) can be decomposed 

via Bayes’ rule as: 

  𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘 , 𝐘𝑘−1|𝐱𝑘, 𝐗𝑘−1) 

  𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘|𝐘𝑘−1, 𝐱𝑘 , 𝐗𝑘−1)𝑝(𝐘𝑘−1|𝐱𝑘, 𝐗𝑘−1) 

  𝑝(𝐘𝑘|𝐗𝑘) = 𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐘𝑘−1|𝐗𝑘−1), (2.10) 

where the observations are assumed to be not conditional on the state in the future 

(Candy, 2016). The full prior distribution 𝑝(𝐗𝑘) can be decomposed via Bayes’ rule as: 

  𝑝(𝐗𝑘) = 𝑝(𝐱𝑘|𝐗𝑘−1)𝑝(𝐗𝑘−1), (2.11) 

where 𝑝(𝐱𝑘|𝐗𝑘−1) is the state evolution distribution. We can also decompose the 

evidence 𝑝(𝐘𝑘) via Bayes’ rule as: 

  𝑝(𝐘𝑘) = 𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1). (2.12) 

 Finally, according to Equations 2.10 – 2.12, we can rewrite Equation 2.9 in the 

recursive form as: 
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 𝑝(𝐗𝑘|𝐘𝑘) =
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐘𝑘−1|𝐗𝑘−1)𝑝(𝐱𝑘|𝐗𝑘−1)𝑝(𝐗𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)𝑝(𝐘𝑘−1)
  

 𝑝(𝐗𝑘|𝐘𝑘) = 𝑝(𝐗𝑘−1|𝐘𝑘−1)
𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐗𝑘−1)

𝑝(𝐲𝑘|𝐘𝑘−1)
, (2.13) 

where 𝑝(𝐗𝑘−1|𝐘𝑘−1) is the previous posterior PDF for 𝑘 ∈ {2,… }. If 𝑘 = 1, 

 𝑝(𝐱1|𝐲1) = 𝑝(𝐱0)
𝑝(𝐲1|𝐱1)𝑝(𝐱1|𝐱0)

𝑝(𝐲1)
, (2.14) 

where 𝑝(𝐱0) = 𝑝(𝐱0|𝐲0) is the initial prior PDF because observation 𝐲0 does not exist 

(Candy, 2016). We can also rewrite Equation 2.14 as: 

 𝑝(𝐗𝑘|𝐘𝑘) = 𝑝(𝐱0)
∏ 𝑝(𝐲𝑚|𝐱𝑚)𝑝(𝐱𝑚|𝐗𝑚−1)
𝑘
𝑚=1

𝑝(𝐲𝑘|𝐘𝑘−1)
. (2.15) 

2.2  Particle Filtering 

 Any posterior PDFs are continuous which cause Bayesian approaches 

impractical to implement computing devices. Particle filtering (PF) is a sequential 

Monte Carlo (SMC) method which generates samples of hidden states (called particles) 

to approximate the posterior PDF as: 

  𝑝(𝐗𝑘|𝐘𝑘) ≈ ∑ 𝑤̂0:𝑘
𝑖 𝛿(𝐗𝑘 − 𝐗𝑘

𝑖 )𝑁
𝑖=1 , (2.16) 

where 𝑤̂0:𝑘
𝑖  is the probability value of the 𝑖-th sample state matrix at time step 𝑘, 𝐗𝑘

𝑖 . 

Quantity 𝑁 is the number of particles set by the user and 𝛿(∙) is the Dirac delta function 

(Candy, 2016; Ristic et al., 2004). That is, 𝑤̂0:𝑘
𝑖  denotes the normalized importance 

weight of particle 𝐗𝑘
𝑖  as: 

  𝑤̂0:𝑘
𝑖 =

𝑤0:𝑘
𝑗

∑ 𝑤0:𝑘
𝑗𝑁

𝑗=1

, (2.17) 

where 𝑤0:𝑘
𝑖  represents the true importance weight of particle 𝐗𝑘

𝑖  that can be found from 
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  𝑤0:𝑘
𝑖 ∝

𝑝(𝐗𝑘
𝑖
|𝐘𝑘)

𝑞(𝐗𝑘
𝑖
|𝐘𝑘)

, (2.18) 

where 𝑞(𝐗𝑘|𝐘𝑘) is the proposal distribution that draws particles 𝐗𝑘
𝑖  because we cannot 

directly draw particles from the true posterior PDF 𝑝(𝐗𝑘|𝐘𝑘). The approximated 

posterior PDF gets closer to the true posterior PDF as 𝑁 increases (Candy, 2016; Ristic 

et al., 2004). 

 2.2.1  Sequential Importance Sampling 

 In case states and observations are sequential, we require particles that 

approximate the posterior PDF at a previous time step. In other words, particle weights 

need to be updated for each time step. Sequential importance sampling (SIS) is an 

algorithm derived from the concept of particle filtering for such a case (Candy, 2016; 

Ristic et al., 2004). The marginal importance distribution which is employed to draw 

particles 𝐗𝑘
𝑖  can be obtained by decomposing the importance distribution 𝑞(𝐗𝑘|𝐘𝑘) 

with Bayes’ rule as: 

  𝑞(𝐗𝑘|𝐘𝑘) = 𝑞(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘)𝑞(𝐗𝑘−1|𝐘𝑘−1), (2.19) 

where 𝑞(𝐱𝑘|𝐗𝑘−1, 𝐘𝑘) is the proposal distribution employed to draw sample vector 𝐱𝑘
𝑖  

which can be added to sample matrix 𝐗𝑘−1
𝑖  to obtain particle 𝐗𝑘

𝑖 . According to 

Equations 2.13 and 2.19, we can rewrite Equation 2.18 to express the recursive weight 

updating equation as: 

  𝑤0:𝑘
𝑖 ∝

𝑝(𝐗𝑘−1
𝑖 |𝐘𝑘−1)𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖 )

𝑞(𝐗𝑘−1
𝑖 |𝐘𝑘−1)𝑞(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖 ,𝐘𝑘)𝑝(𝐲𝑘|𝐘𝑘−1)

 

  𝑤0:𝑘
𝑖 ∝ 𝑤0:𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐗𝑘−1
𝑖 )

𝑞(𝐱𝑘
𝑖 |𝐗𝑘−1

𝑖 ,𝐘𝑘)
, (2.20) 

where 𝑤0
𝑖 = 1/𝑁 is the initial weight assigned to all initial particles that are drawn from 

the initial proposal distribution 𝑞(𝐱0). We discard term 1/[𝑝(𝐲𝑘|𝐘𝑘−1)] and express 

𝑤0:𝑘
𝑖  in proportionality because all 𝑁 particles are conditional on the same set of 

observations 𝐘𝑘  (Candy, 2016). First-order Markovian systems are systems where state 

𝐱𝑘 is conditional on only 𝐱𝑘−1. Thus, sets 𝐗𝑘−1 and 𝐘𝑘−1 are not necessary (Ristic et 
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al., 2004). If we need to estimate only state 𝐱𝑘 of such a system, we can reduce Equation 

2.20 to: 

  𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖 )

𝑞(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 ,𝐲
𝑘
)

, (2.21) 

where 𝑤𝑘
𝑖  denotes the true non-normalized weight of the sample state vector 𝐱𝑘

𝑖  (Ristic 

et al., 2004). We can also reduce Equation 2.16 in case we draw particles 𝐱𝑘
𝑖  instead of 

𝐗𝑘
𝑖  as: 

  𝑝(𝐱𝑘|𝐘𝑘) ≈ ∑ 𝑤̂𝑘
𝑖δ(𝐱𝑘 − 𝐱𝑘

𝑖 )𝑁
𝑖=1 , (2.22) 

where the state 𝐱𝑘 can be computed with MAP estimation or with a weighted mean 

(WM) expressed as3: 

 𝐱̂𝑘
𝑀𝐴𝑃 = argmax

𝐱𝑘
𝑖
𝑝(𝐱𝑘

𝑖 |𝐘𝑘), (2.23) 

and 

 𝐱̂𝑘
𝑊𝑀 = ∑ 𝑤̂𝑘

𝑖𝐱𝑘
𝑖𝑁

𝑖=1 . (2.24) 

 The variance of particle weights grows as time increased, even after a few time 

steps. Particle degeneracy can then occur where only few particles have substantial 

weights while those of the other particles tend to zero as shown in Figure 2.2. Particle 

degeneracy causes poor performance in the posterior PDF approximation and state 

estimation. In the worst case, there can be only one particle with a non-zero weight (or 

unity normalized weight) (Candy, 2016; Ristic et al., 2004). The variance of particle 

weights can be found as: 

 Var(𝑤𝑘
𝑖 ) = (𝑤𝑘−1

𝑖 )
2
[∫
𝑝2(𝐲𝑘|𝐱𝑘)𝑝

2(𝐱𝑘|𝐱𝑘−1
𝑖 )

𝑞(𝐱𝑘|𝐱𝑘−1
𝑖 ,𝐲

𝑘
)

𝑑𝐱𝑘 − 𝑝
2(𝐲𝑘|𝐱𝑘−1

𝑖 )], (2.25) 

where 𝑞(𝐱𝑘|𝐱𝑘−1
𝑖 , 𝐲𝑘) represents the proposal distribution which can be chosen by the 

user (Candy, 2016; Doucet, 2000; Ristic et al., 2004). 
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Note  (a) A particle swarm of low-weight particles with true weights 

          (b) A particle swarm of low-weight particles with normalized weights 

Figure 2.2  Low-weight particles with severe degeneracy 

 To obtain the minimum variance of weights as Var(𝑤𝑘
𝑖 ) = 0, we draw particles 

from the proposal distribution 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 , 𝐲𝑘) (Candy, 2016; Doucet, 2000). However, 

this PDF cannot be obtained directly because state 𝐱𝑘 is not only conditional on the 

latest observation but also the previous state. Furthermore, it causes weight updating in 

Equation 2.20 to be expressed as: 

 𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝐲𝑘|𝐱𝑘
𝑖 )𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖 )

𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 ,𝐲
𝑘
)

= 𝑤𝑘−1
𝑖 𝑝(𝐲𝑘|𝐱𝑘

𝑖 )𝑝(𝐱𝑘
𝑖 |𝐗𝑘−1

𝑖 )𝑝(𝐲𝑘|𝐱𝑘−1
𝑖 )

𝑝(𝐲𝑘|𝐱𝑘
𝑖 ,𝐱𝑘−1

𝑖 )𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 )𝑝(𝐱𝑘−1
𝑖 )

  

  𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝐲𝑘|𝐱𝑘−1
𝑖 ), (2.26) 

where 

 𝑝(𝐲𝑘|𝐱𝑘−1
𝑖 ) = ∫𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐱𝑘−1

𝑖 )𝑑𝐱𝑘, (2.27) 

which requires evaluating an integral and is, therefore, impractical (Doucet, 2000; 

Ristic et al., 2004). Note that 𝑝(𝐱𝑘−1
𝑖 ) = 1/𝑁 for 𝑖 ∈ {1,… ,𝑁} is a constant according 

to the assumption of “perfect sampling” and it can also be canceled out because we 

express Equation 2.26 in proportionality (Candy, 2016). 

 For simplicity, we prefer to draw each new particle 𝐱𝑘
𝑖  from the state evolution 

PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ) (Candy, 2016). We can then approximate the state prediction PDF 
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𝑝(𝐱𝑘|𝐘𝑘−1) by modifying the Chapman-Kolmogorov equation that was shown in 

Equation 2.4 as: 

  𝑝(𝐱𝑘|𝐘𝑘−1) = ∫𝑝(𝐱𝑘|𝐱𝑘−1, 𝐘𝑘−1)𝑝(𝐱𝑘−1|𝐘𝑘−1)𝑑𝐱𝑘−1 

  𝑝(𝐱𝑘|𝐘𝑘−1) ≈ ∫𝑝(𝐱𝑘|𝐱𝑘−1)∑ 𝑤̂𝑘−1
𝑖 𝛿(𝐱𝑘−1 − 𝐱𝑘−1

𝑖 )𝑁
𝑖=1 𝑑𝐱𝑘−1  

  𝑝(𝐱𝑘|𝐘𝑘−1) ≈ ∑ 𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖 )𝑁
𝑖=1 , (2.28) 

which is the summation of 𝑁 weighted state evolution PDFs as shown in Figure 2.3 

where the state evolution function is assumed to be non-linear but with Gaussian noise, 

for simplicity. To be accurate, we select the weighted state evolution PDF 

𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖 ) as the proposal distribution and this simplifies the weight calculation 

in Equation 2.20 as: 

  𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖
𝑝(𝐲𝑘|𝐱𝑘

𝑖
)𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖 )

𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘

𝑖 |𝐱𝑘−1
𝑖 )

 

  𝑤𝑘
𝑖 ∝ 𝑝(𝐲𝑘|𝐱𝑘

𝑖 ), (2.29) 

because 𝑤𝑘−1
𝑖 /𝑤̂𝑘−1

𝑖  is the constant obtained from weight normalization. Choosing the 

weighted state evolution PDF 𝑤̂𝑘−1
𝑖 𝑝(𝐱𝑘|𝐱𝑘−1

𝑖 ) as the proposal distribution means that 

each PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ) is expected to draw 𝑁𝑤̂𝑘−1

𝑖  new prediction particles 𝐱𝑘
𝑖  at the 

beginning of time step 𝑘. That is, state values of high-weight particles are employed to 

form state evolution PDFs that are allowed to draw new particles in greater numbers at 

the next time step (Candy, 2016; Kuptametee & Aunsri, 2022a; Li et al., 2015). 

However, quantity 𝑁𝑤̂𝑘−1
𝑖  can be any non-negative, non-integer value. We can then 

force each state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ) to draw only one new particle 𝐱𝑘

𝑖  as shown 

in Figure 2.4 by setting 𝑤𝑘−1
𝑖 = 1/𝑁 and 𝑤̂𝑘−1

𝑖 = 1/𝑁 for every PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ) in 

order to satisfy Equation 2.29 (Kuptametee & Aunsri, 2023). 
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Note  (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1) 

          (b) Weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥𝑘−1
𝑖 ) 

          (c) Theoretical state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1) 

Figure 2.3  A theoretical process of state prediction in SIS 
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Note  (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1) 

          (b) Equally weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥𝑘−1
𝑖 ) 

          (c) A created state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1) and newly drawn particles 𝑥𝑘
𝑖  

Figure 2.4  A practical process of state evolution in SIS 

 2.2.2  Particle Resampling 

 As previously discussed, quantity 𝑁𝑤̂𝑘−1
𝑖 , the expected number of new 

prediction particles to be drawn from each state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ), is not 

always an integer. Thus, we employ a random selection method called “resampling” to 

draw new particles (Kuptametee & Aunsri, 2022a; Li et al., 2015). High-weight 

particles are more likely to be selected multiple times, while low-weight particles are 

more likely to not be selected. Consequently, the particle swarm will consist of replicas 

of high-weight particles and low-weight particles will be eliminated or reduced. Also, 

each particle weight must be reset to 1/𝑁 because these particles are no longer i.i.d. 
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and their state values will be employed to construct the new prior PDF that draws new 

particles that belong to the next time step (Candy, 2016). The state evolution of 

resampled particles is shown in Figure 2.5. For example, the normalized weight of the 

green particle is 0.3 when 𝑁 = 10. Three green proposal PDFs that are weighted by 

term 1/𝑁 can then be summed and three green new particles can be drawn. 

 

Note  (a) An approximated posterior PDF 𝑝(𝑥𝑘−1|𝑌𝑘−1) 

          (b) A swarm of resampled particles 𝑥̃𝑘−1
𝑖  

          (c) Weighted proposal PDFs with new mean values 𝑓𝑘−1(𝑥̃𝑘−1
𝑖 ) 

          (d) A created state prediction PDF 𝑝(𝑥𝑘|𝑌𝑘−1) and newly drawn particles 𝑥𝑘
𝑖  

Figure 2.5  State evolution of resampled particles 

 Multinomial resampling is the most basic scheme that employs the roulette 

wheel selection (RWS) algorithm to resample the particles (Larose, 2006; Ristic et al., 
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2004). First, we find the cumulative distribution function (CDF) of the normalized 

weights of particles 𝐱𝑘−1
𝑖  as: 

   𝐶𝑊̂𝑘−1
𝑖 = ∑ 𝑤̂𝑘−1

𝑛𝑖
𝑛=1 , (2.30) 

where 𝐶𝑊̂𝑘−1
0 = 0 and 𝐶𝑊̂𝑘−1

𝑁 = 1. The state values of the 𝑖-th particle 𝐱𝑘−1
𝑖  are then 

assigned to the 𝑗-th resampled particle 𝐱̃𝑘−1
𝑗

 as: 

   𝐱̃𝑘−1
𝑗

= 𝐱𝑘−1
𝑖 , if  𝐶𝑊̂𝑘−1

𝑖−1 < 𝑢𝑘−1
𝑗

≤ 𝐶𝑊̂𝑘−1
𝑖 , (2.31) 

where 𝑢𝑘−1
𝑗

 is a random value employed to find the resampled particle 𝐱̃𝑘−1
𝑗

. It is drawn 

as 𝑢𝑘
𝑗
 ~ 𝑈(0, 1) where each real number between 0 to 1 excluding the bounds has 

uniform probability to be drawn (Candy, 2016; Ristic et al., 2004). Then, we draw only 

one new particle 𝐱𝑘
𝑖  from each state evolution PDF 𝑝(𝐱𝑘|𝐱̃𝑘−1

𝑖 ) as previously shown in 

Figure 2.5. If the normalized weight of particle 𝐱𝑘−1
𝑖  is high, the particle will have a 

high probability to be selected because the difference 𝐶𝑊̂𝑘−1
𝑖 − 𝐶𝑊̂𝑘−1

𝑖−1 (which 

represents a part of a roulette wheel) is high. 

 Carpenter et al. (1999) proposed the systematic resampling that employs the 

stochastic universal sampling (SUS) algorithm (which was proposed by Baker (1987)) 

as an alternative to the RWS to reduce the selection bias (Ristic et al., 2004). The 

random value 𝑢𝑘−1
𝑗

 employed in Equation 2.31 for this scheme is also modified as: 

   𝑢𝑘−1
𝑗

= 𝑢𝑘−1
1 +

𝑗−1
𝑁

,  (2.32) 

where 𝑢𝑘−1
1  ~ 𝑈(0, 1/𝑁) is the only one freely drawn random value. That is, systematic 

resampling is a quasi-random resampling scheme (Kuptametee & Aunsri, 2022a; Li et 

al., 2015). Figure 2.6 presents a pseudocode for employing RWS and SUS algorithms. 
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Input:    𝑁 particles (𝐱𝑘−1

𝑖 ) and their normalized weights (𝑤̂𝑘−1
𝑖 ) 

Output: 𝑁 resampled particles (𝐱̃𝑘−1
𝑖 ) 

𝐶𝑊̂𝑘−1
1 ← 𝑤̂𝑘−1

1     %Initialize the CDF of 𝑁 normalized weights 

for 𝑖 ∈ {2,… ,𝑁} do 

 𝐶𝑊̂𝑘−1
𝑖 ← 𝐶𝑊̂𝑘−1

𝑖−1 + 𝑤̂𝑘−1
𝑖  %Find the next value of the CDF 

end for       

If SUS is employed then 

 𝑢1~ 𝑈(0, 1/𝑁)   %A randomly drawn first resampling point  

end if 

for 𝑗 ∈ {1,… ,𝑁} do 

 If RWS is employed then 

  𝑢𝑗 ~ 𝑈(0, 1)  %Draw each resampling point 

 end if 

 If SUS is employed then 

  𝑢𝑗 ← 𝑢1 + (𝑗 − 1)/𝑁 %Find the next resampling point 

 end if 

 𝑎 ← 1    %Start from the first value of the CDF 

 while 𝑢𝑗 > 𝐶𝑊̂𝑘−1
𝑎  do 

  𝑎 ← 𝑎 + 1  %Move to the next value of the CDF 

 end while 

  𝐱̃𝑘−1
𝑗

← 𝐱𝑘−1
𝑎   % 𝑗-th resampled particle 

end for 

Figure 2.6  A pseudocode for RWS and SUS algorithms 

 Both RWS and SUS consume substantial computation time because they 

employ values of the CDF of all 𝑁 normalized weights (found via Equation 2.30) to 

select each particle sequentially as shown in Equation 2.31. Li et al. (2013) then 

proposed the rounding-copy resampling that allows each of 𝑁 original particles 𝐱𝑘−1
𝑖  

to create [𝑁𝑤̂𝑘−1
𝑖 ] replicas where [∙] is a rounding symbol (e.g., [8.4] = 8 and [8.5] =

9) and 𝑤̂𝑘−1
𝑖  is the normalized weight of each particle 𝐱𝑘−1

𝑖 . While this scheme does 

not require the CDF of all 𝑁 normalized weights, the total number of particles obtained 

after resampling may not be 𝑁. In case the total number of resampled particles is greater 
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than 𝑁, we keep only the first 𝑁 best particles and we then reset the weights of these 

particles to 1/𝑁. If the total number of resampled particles is less than 𝑁, we must 

create more replicas of some resampled particles in order to obtain 𝑁 resampled 

particles in total. 

 Aunsri et al. (2021) proposed the percentile-based resampling that modifies 

rounding-copy resampling by allowing only high-weight particles to replicate 

themselves while the others are eliminated from the swarm. After all 𝑁 original 

particles 𝐱𝑘−1
𝑖  are sorted by their weights in descending order, only the first 𝑁𝑃𝐵𝑅,𝑘−1 

particles are kept while the others are eliminated from the swarm. Quantity 𝑁𝑃𝐵𝑅,𝑘−1 is 

the smallest number of particles that satisfies the condition that summation of the 

weights of the surviving 𝑁𝑃𝐵𝑅,𝑘−1 particles must not be less than a preset percentage of 

the summation of weights of the 𝑁 original particles 𝐱𝑘−1
𝑖 . That is, 𝑁𝑃𝐵𝑅,𝑘−1 ≤ 𝑁 and 

we must normalize weights of the surviving 𝑁𝑃𝐵𝑅,𝑘−1 particles as: 

  𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖 =

𝑤𝑘−1,𝑑𝑠𝑐
𝑖

∑ 𝑤𝑘−1,𝑑𝑠𝑐
𝑗𝑁𝑃𝐵𝑅,𝑘−1

𝑗=1

, (2.33) 

where 𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖  denote the weights of the 𝑖-th sorted particles and 𝑖 ∈ {1,… ,𝑁𝑃𝐵𝑅,𝑘−1}. 

The number of replicas of each surviving particle is suggested to be ⌈𝑁𝑤̂𝑘−1,𝑑𝑠𝑐
𝑖 ⌉ where 

⌈∙⌉ is the ceiling symbol (e.g., ⌈8.1⌉ = 9). This ensures that the total number of particles 

obtained after resampling can only be equal to or greater than 𝑁 (Aunsri et al., 2021). 

More resampling schemes are reviewed and discussed by Kuptametee and Aunsri 

(2022a) and Li et al. (2015). 

 The main side effect of employing particle resampling is that the state values of 

particles will have reduced diversity. This problem is called particle impoverishment 

where the particle swarm converges to only one or just a few state values and the 

opportunity to discover high-weight state values decreases. This problem can be severe 

if the variance of the state evolution noise or the width of each weighted proposal PDF 

in Figure 2.5(c) is too small. Consequently, the particle swarm may not be able to 

discover high-weight state values effectively at the next time steps (Candy, 2016; 

Kuptametee et al., 2024; Ristic et al., 2004). 
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 The effective sample size (ESS) is employed to measure particle degeneracy 

and to decide whether or not resampling should be employed. The ESS at time step 𝑘 −

1 can be calculated as: 

  𝐸𝑆𝑆𝑘−1 =
𝑁

1+Var(𝑤𝑘−1
𝑖 )

, (2.34) 

where 1 ≤ 𝐸𝑆𝑆𝑘−1 ≤ 𝑁 and a low 𝐸𝑆𝑆𝑘−1 denotes highly severe particle degeneracy 

where only a few particles have high weights (Candy, 2016; Martino et al., 2017; Ristic 

et al., 2004). That is, we may resample particles when 𝐸𝑆𝑆𝑘−1 is lower than a preset 

threshold. As shown in Equation 2.25, Var(𝑤𝑘−1
𝑖 ) cannot be found easily because it 

requires an integral evaluation. Quantity 𝐸𝑆𝑆𝑘−1 can then be approximated as: 

 𝐸𝑆𝑆𝑘−1 ≈
(∑ 𝑤𝑘−1

𝑖𝑁
𝑖=1 )

2

∑ (𝑤𝑘−1
𝑖
)𝑁

𝑖=1

2 =
1

∑ (𝑤̂𝑘−1
𝑖 )

2
𝑁
𝑖=1

, (2.35) 

which can be found from either the normalized weights or the true non-normalized 

weights (Ahwiadi & Wang, 2020; Kuptametee & Aunsri, 2022a; Ristic et al., 2004). 

 Some particles are considered as “high-weight particles” because the weights of 

the others are significantly lower or are near-zero, but their true non-normalized weights 

may be low, as previously shown in Figure 2.2. That is, the local maximum state values 

(i.e., the best particles that we have on hand) may have low true weights. In a particle 

swarm with maximum ESS (i.e., 𝐸𝑆𝑆𝑘−1 = 𝑁), all true weights 𝑤𝑘−1
𝑖  are equal but can 

be low, while their state values are not necessarily the same. That is, a high 𝐸𝑆𝑆𝑘−1 

value does not mean that the hidden state will be estimated effectively (Kuptametee et 

al., 2024). 

 Sequential importance resampling (SIR) always performs particle resampling 

to eliminate low-weight particles at every time step regardless of the ESS value 

(Arulampalam et al., 2002; Gordon et al., 1993; Ristic et al., 2004). To fix the 

impoverishment that can occur after resampling is employed, we can perturb the state 

values of the resampled particles to regain particle diversity. In other words, we need 

to find completely new state vectors that are different from the local maximum state 

vectors. Weights of the new state vectors are also expected to be higher than the original 



21 

 
non-reset weights of the resampled particles (Candy, 2016; Kuptametee & Aunsri, 

2022a; Ristic, 2004). 

 Pitt and Shephard (1999) proposed the auxiliary particle filter that draws 

auxiliary particles that assist in finding the high-weight state vectors at the next time 

step. For simplicity, suppose that the state evolution function is a Gaussian PDF: 

 𝐱𝑘 = 𝐟𝑘−1(𝐱𝑘−1) + 𝐮𝑘−1, (2.36) 

where 𝐮𝑘−1 ~ 𝑁(0, 𝐐𝑘−1) and 𝐐𝑘−1 is a 𝑑𝑢 × 𝑑𝑢 covariance matrix of state evolution 

noise that is employed to find new state values at time step 𝑘. We employ particles x𝑘−1
𝑖  

to find each new state vector x𝑘,𝑎𝑢𝑥
𝑖 = 𝐟𝑘−1(x𝑘−1

𝑖 ) as an auxiliary particle that contains 

mean values of the Gaussian state evolution PDF at time step 𝑘. We employ the 

likelihood value 𝑝(𝐲𝑘|x𝑘,𝑎𝑢𝑥
𝑖 ) as the weight of each auxiliary particle x𝑘,𝑎𝑢𝑥

𝑖  and we can 

then resample these 𝑁 auxiliary particles. Finally, we find each particle x𝑘
𝑖  by adding 

state evolution noise u𝑘−1
𝑖  to each resampled auxiliary particle 𝐱̃𝑘,𝑎𝑢𝑥

𝑖  (according to 

Equation 2.36) and we evaluate the weight of every particle x𝑘
𝑖  (according to Equation 

2.29) to obtain the approximated posterior PDF at time step 𝑘 (Pitt & Shephard, 1999). 

However, the variance values of covariance matrix 𝐐𝑘−1 must be carefully set. If the 

variance values of 𝐐𝑘−1 are too high, particles x𝑘
𝑖  may be blindly located at regions of 

state values that have low weights. On the other hand, if variance values of 𝐐𝑘−1 are 

too low, the diversity of state vectors may still be low and particle impoverishment may 

not be properly remedied (Kuptametee & Aunsri, 2022a; Ristic, 2004). 

 Musso et al. (2001) proposed the regularized particle filter to regain the 

diverisity of the post-resampling particles. Regularized particle filter employs state 

values of each resampled particle 𝐱̃𝑘−1
𝑖  to construct a symmetric continuous kernel 

function that is centered at state values of 𝐱̃𝑘−1
𝑖 . Then, we draw each new particle 

𝐱𝑘−1,𝑟𝑒𝑔
𝑖  from each created 𝑖-th kernel function to obtain a new set of 𝑁 particles with 

regained diversity. Finally, we evaluate the weight of each new particle 𝐱𝑘−1,𝑟𝑒𝑔
𝑖  as the 

likelihood value 𝑝(𝐲𝑘−1|𝐱𝑘−1,𝑟𝑒𝑔
𝑖 ) to obtain the new approximated posterior PDF at the 

same time step 𝑘 − 1 (Musso et al., 2001). There are many choices of kernel functions 

that can be employed, for example, Epanechnikov, box (or uniform), Gaussian and 



22 

 
triangle (Candy, 2016; Gordon et al., 1993; Kuptametee et al., 2024). However, kernel 

functions must be designed carefully in order to ensure that particle impoverishment 

will be properly addressed and new particles 𝐱𝑘−1,𝑟𝑒𝑔
𝑖  will not be located at regions of 

low-weight state values. 

 The roughening scheme perturbs state values of each of 𝑁 resampled particles 

𝐱̃𝑘−1
𝑖  at time step 𝑘 − 1 by adding zero-mean Gaussian random values that are drawn 

from the diagonal covariance matrix 𝚺𝑘−1 = diag(𝜎𝑘−1,1
2 , … , 𝜎𝑘−1,𝑑𝑥

2 ) (Gordon et al., 

1993). Each variance value 𝜎𝑘−1,𝑚
2  for perturbing the state value of the 𝑚-th vector 

component where 𝑚 ∈ {1,… , 𝑑𝑥} is found as: 

 𝜎𝑘−1,𝑚
2 = [𝛽(𝑥̃𝑘−1,𝑚,𝑚𝑎𝑥 − 𝑥̃𝑘−1,𝑚,𝑚𝑖𝑛)𝑁

−
1

𝑑𝑥]

2

, (2.37) 

where 𝛽 > 0 is a preset tuning parameter. Quantities 𝑥̃𝑘−1,𝑚,𝑚𝑖𝑛 and 𝑥̃𝑘−1,𝑚,𝑚𝑎𝑥 are the 

minimum and maximum state values of the 𝑚-th vector component at time step 𝑘 − 1 

that must be found from the swarm of 𝑁 resampled particles (Gordon et al., 1993). 

 Han et al. (2015) proposed the adaptive fission particle filter (AFPF) that 

modifies rounding-copy resampling by diversifying state values of replicas of 𝑁 

original particles. Each 𝑗-th replica of the original particle 𝐱𝑘−1
𝑖  is drawn from a 

Gaussian PDF as: 

   𝐱𝑘−1,𝑟𝑒𝑝(𝑖)
𝑗

 ~ 𝑁(𝐱𝑘−1
𝑖 , 𝜆𝑘−1

𝑖 𝚺),  (2.38) 

where 𝑗 ∈ {1,… , [𝑁𝑤̂𝑘−1
𝑖 ] + 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛}; 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛 ≥ 0 the preset minimum number of 

replicas that will be created from each original particle, 𝚺 is a symmetric 𝑑𝑥 × 𝑑𝑥 

covariance matrix that is designed by the user, and 

  𝜆𝑘−1
𝑖 =

1

1+exp(
𝑤𝑘−1
𝑖 −Avg(𝑤𝑘−1

𝑖 )

max(𝑤𝑘−1
𝑖

)−Avg(𝑤𝑘−1
𝑖 )

)

, (2.39) 

represents a parameter called “fission factor” that is exclusively found for each original 

particle 𝐱𝑘−1
𝑖  (Han et al., 2015). Function exp(∙) denotes the exponential function. 
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Quantities max(𝑤𝑘−1

𝑖 ) and Avg(𝑤𝑘−1
𝑖 ) are the maximum and average values of the non-

normalized weights of 𝑁 original particles 𝐱𝑘−1
𝑖 , respectively. Parameter 𝜆𝑘−1

𝑖  tunes the 

variance values of the covariance matrix 𝚺 that is employed to perturb the state values 

of replicas of the original particle 𝐱𝑘−1
𝑖 . If the weight 𝑤𝑘−1

𝑖  is high, 𝜆𝑘−1
𝑖  will be low 

and replicas will be created in a great number and are located close to their parent. If 

the weight 𝑤𝑘−1
𝑖  is low, 𝜆𝑘−1

𝑖  will be high and replicas will be created in a low number 

and are located away from their parent. The theoretical minimum value of 𝜆𝑘−1
𝑖  in 

Equation 2.39 is at 1/[1 + exp(1)], while its theoretical maximum value approaches 1 

asymptotically. After every new replica is found, the 𝑁 original particles are gathered 

along with all created replicas forming the new set of particles. Finally, weight sorting 

must be done to keep only the 𝑁 best particles from this set that are then further 

employed in state estimation (Han et al., 2015). 

2.3  Genetic Algorithms 

 Genetic Algorithms (GAs) are proposed by Holland (1992) as the methods 

employed to randomly find the best solution for optimization problems. GAs are 

inspired by the natural selection process where the fittest individuals have increased 

chances to survive. Then, the survived individuals produce new offspring individuals 

with high diversity and greater fitness. In offspring creation, a chromosome of a parent 

and that of another parent are employed to create a pair of new offspring chromosomes. 

However, mutation may occur where some genes of the offspring chromosomes alter. 

 In traditional GAs, we treat a binary string as a chromosome where bits (zeros 

and ones) denote genes. However, state values in practical applications are real 

numbers. These state values must first be converted into binary strings, where the 

number of bits must be carefully considered. Longer length mitigates loss of 

information that is due to conversions between real numbers and binary strings and vice 

versa, but a higher computational cost is required (Larose, 2006). We can alternatively 

employ arithmetic GAs which directly treat a vector of real number state values as a 

chromosome, while each real number state value of the vector represents a gene. Thus, 
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binary GAs are out of scope in this dissertation; more information about binary GAs 

can be found in work by Katoch et al. (2021), Larose (2006), and Michalewicz (1996). 

 After new offspring state vectors are produced, the state vector with the highest 

fitness value is chosen as the best solution for the problem. GAs can be employed in, 

for example, shortest path planning, localization, prices prediction, neural networks, 

and video processing (Alam et al., 2020; Drachal & Pawłowski, 2021; Michalewicz, 

1996). 

 2.3.1  Parent Selection 

 High-fit individuals have high probabilities to survive the selection process. The 

most basic selection process is to employ the RWS algorithm which is also employed 

in multinomial resampling as discussed in Subsection 2.2.2. That is, particle weights 

found according to Equation 2.29 are employed as fitness values, while normalized 

weights can be employed as selection probabilities (Larose, 2006; Ristic et al., 2004). 

There are also other selection schemes that can be employed. Rank selection and 

tournament ranking involve competitions between individuals that are not necessarily 

based on the natural selection process (Katoch et al., 2021; Kuptametee et al., 2024; 

Larose, 2006). De Jong (1975) proposed the elitism technique which ensures that the 

state values of the individuals with the highest weights will appear in the next 

generation without being altered during offspring creation (Kuptametee et al., 2024; 

Larose, 2006). 

 If there is an individual that dominates one significantly large part of the 

selection wheel while the other parts are very small, the parents will consist of too many 

replicas of this high-fit individual and diversity of parents will be low (Larose, 2006). 

The Sigma scaling technique ensures diversity of individuals by modifying each fitness 

value of the 𝑖-th individual (i.e., particle 𝐱𝑘
𝑖 ) that will be employed in the selection 

process as: 

   𝑤𝑘,𝑆𝑆
𝑖 = 1 +

𝑤𝑘
𝑖  − Avg(𝑤𝑘)
Std(𝑤𝑘)

, (2.40) 

where 𝑤𝑘
𝑖  denotes the original fitness value of the 𝑖-th individual (or particle weight 

found according to Equation 2.29) and Avg(𝑤𝑘) denotes the average of all 𝑁 original 

fitness values (Katoch et al., 2021; Larose, 2006). If the standard deviation of all 𝑁 
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original fitness values, Std(𝑤𝑘), is high, the sigma-scaled fitness values of unfit 

individuals will increase. Consequently, unfit individuals have a higher chance to be 

selected as parents. On the contrary, if Std(𝑤𝑘) is low, high-fit individuals will gain 

greater dominance in offspring creation by having higher sigma-scaled fitness values. 

Note that we must first normalize the modified fitness values of every individual to 

obtain the modified selection probability values that can be employed in any selection 

schemes (Larose, 2006). 

 Boltzmann selection initially widens the exploration scope on the search space 

in order to promote diversity of individuals. Then, it narrows the search scope to make 

GA converge to the optimal solution more quickly at later generations (Katoch et al., 

2021; Larose, 2006). That is, selection probabilities of unfit individuals are almost as 

high as those of high-fit individuals in the beginning generations. Then, selection 

probabilities of unfit individuals decrease at later generations (Katoch et al., 2021; 

Larose, 2006). The modified fitness values in Boltzmann selection can be found as: 

   𝑤𝑘,𝐵𝑆
𝑖 =

exp(𝑤𝑘
𝑖 /𝑇)

Avg[exp(𝑤𝑘/𝑇)]
, (2.41) 

where 𝑇 is a parameter called “temperature” that is initially set to be high and decreases 

with time. If 𝑇 decreases, the high-fit individuals are more likely to be selected as 

parents. Again, we must first normalize each modified fitness value to obtain the 

modified selection probability of each individual (Larose, 2006). 

 The effects of employing the modified fitness values found with the Sigma 

scaling and Boltzmann selection techniques can be significant if the number of 

generations is set to be high (Katoch et al., 2021; Larose, 2006). However, the diversity 

of individuals and the number of generations must be carefully considered and be 

balanced with computation time. Also, recall that the modified fitness values can only 

be employed in the selection process. We must employ the original fitness values to 

consider the optimality of each individual to be the best solution of the optimization 

problem (Kuptametee et al., 2024). 

 2.3.2  Offspring Creation 

 Suppose that there are 𝑁 individuals that survive and are included in the set of 

parents. We can randomly create up to ⌊𝑁/2⌋ pairs of parents where ⌊∙⌋ is the floor 



26 

 
symbol (e.g., ⌊9.9⌋ = 9). When the quantity 𝑁 is odd, the number of individuals that 

skip the offspring creation (or do not pair with any other individuals) must also be odd 

and be at least one. These skipped individuals should have the highest fitness values 

according to the principle of the elitism technique and their state values definitely 

appear in the next generation of the population (De Jong, 1975). There are two steps in 

calculating new state values of the to-be-created offspring vectors, crossover and 

mutation (Katoch et al., 2021; Larose, 2006; Michalewicz, 1996). 

 In the crossover process, two parent chromosomes exchange some of their genes 

in order to produce two new offspring chromosomes. Discrete crossover follows the 

principle of natural offspring chromosome creation (Larose, 2006). Suppose that there 

are two parent vectors with length of five state values, {0.4, 0.7, 0.5, 0.8, 1.1} and 

{0.6, 0.3, 1.2, 1.0, 0.9}. For example, the first state value of the first offspring vector can 

be either 0.4 or 0.6 with equal probability. If the first offspring vector is 

{0.6, 0.7, 0.5, 1.0, 1.1}, another offspring vector must then be {0.4, 0.3, 1.2, 0.8, 0.9}. 

However, the number of possible patterns of offspring vectors in this example is only 

25 = 32. That is, the diversity of individuals can still be limited (Larose, 2006).  

 Arithmetic crossover creates two offspring vectors with state values that can be 

completely different from those of their two parents in order to ensure diversity (Larose, 

2006). Suppose that there are two parent vectors, 𝐱𝑘
𝑎 and 𝐱𝑘

𝑏, where 𝑎 ∈ {1,… ,𝑁} and 

𝑏 ∈ {1,… ,𝑁} but 𝑎 ≠ 𝑏. Two new offspring vectors can be found as: 

  𝐱𝑘
𝑎,𝑜𝑓𝑓

= {
𝛼𝐱𝑘

𝑏 + (1 − 𝛼)𝐱𝑘
𝑎, 𝑢 ≤ 𝑝𝑐

𝐱𝑘
𝑎, 𝑢 > 𝑝𝑐

 (2.42a) 

  𝐱𝑘
𝑏,𝑜𝑓𝑓

= {
𝛼𝐱𝑘

𝑎 + (1 − 𝛼)𝐱𝑘
𝑏, 𝑢 ≤ 𝑝𝑐

𝐱𝑘
𝑏 , 𝑢 > 𝑝𝑐,

 (2.42b) 

where 𝛼 ~ 𝑈(0, 1) is a uniform random value that tunes the state values of the two 

offspring vectors. Parameter 𝑝𝑐 represents the probability of crossover (𝑝𝑐) where 0 ≤

𝑝𝑐 ≤ 1 and 𝑢 ~ 𝑈(0, 1). Parameter 𝑝𝑐 is normally set to be high because individuals 

are encouraged to create new offspring (Katoch et al., 2021; Larose, 2006; 

Michalewicz, 1996). That is, the expected number of pairs that will create new offspring 

is 𝑝𝑐 × ⌊𝑁/2⌋ pairs. 
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 Parameter 𝛼 can be independently drawn for each pair of two parents. When 

each parent is a one-dimensional (1-D) state value, the two linear equations for finding 

new offspring state values cross each other at 𝛼 = 0.5 as shown in Figure 2.7. Circles 

denote state values of two new offspring according to the parameter 𝛼 (shown as a 

magenta dashed line). State values of the two offspring vectors are located between 

those of their two parents and are also located within bounds (i.e., minimum and 

maximum state values) of the population (Larose, 2006). 

 

Figure 2.7  Two new offspring state values found via arithmetic crossover 

 If two parent vectors are identical, the two new offspring vectors that are created 

by employing arithmetic crossover will be exact copies of their parents. Radcliffe 

(1990) proposed the flat crossover that creates only one new offspring to save 

computation time. First, we need to compare fitness values of the two parents. Then, 

the one created offspring replaces the less-fit parent, while the fitter parent is kept 

unchanged. Suppose that there are two parent vectors, a high-fit parent 𝐱𝑘
ℎ𝑖𝑔ℎ

 and an 

unfit parent 𝐱𝑘
𝑙𝑜𝑤. We can then find the offspring vector as: 

  𝐱𝑘
𝑜𝑓𝑓

= 𝛼𝐱𝑘
ℎ𝑖𝑔ℎ

+ (1 − 𝛼)𝐱𝑘
𝑙𝑜𝑤, (2.43) 

where a large value of parameter 𝛼 tunes the state values of the offspring vector to 

become closer to those of its high-fit parent (Radcliffe, 1990). 

 Mutation ensures the diversity of individuals in the new generation by randomly 

altering some genes of the two offspring chromosomes created in the crossover step. In 

traditional GAs, each state value of all offspring vectors will be perturbed with the 

probability of mutation (𝑝𝑚). That is, the expected total number of state values of the 
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whole offspring generation that will mutate after crossover is employed is 𝑝𝑚 × 𝑁 × 𝑑𝑥 

values where 0 ≤ 𝑝𝑚 ≤ 1 and 𝑑𝑥 represents length of state vector (Larose, 2006; 

Michalewicz, 1996). Parameter 𝑝𝑚 can also be defined as the probability that all state 

values of an offspring vector will mutate, while the probability that none of state values 

of the offspring vector will mutate is 1 − 𝑝𝑚 (Katoch et al., 2021). The reason is that, 

depending on the application, a state vector can consist of state values with different 

units. If some state values of such vectors are mutated while the rest are not, the 

optimization results can be highly erroneous because each new state value is 

inconsistently found. However, there can be cases where the mutated offspring vectors 

will contain abnormal state values that are located out of bounds. Also, any offspring 

state vector found by employing crossover may be replaced by its mutated replica with 

the lower weight. Thus, the parameter 𝑝𝑚 should be set to a low value (Larose, 2006). 

 Gaussian mutation perturbs the offspring vectors by adding zero-mean Gaussian 

random values to offspring state values. In other words, the state values of the offspring 

vector are employed as mean values of the Gaussian PDF for drawing another new state 

vector (Larose, 2006). Suppose that a whole offspring vector 𝒙𝑘
𝑜𝑓𝑓

 mutates. The new 

state vector can then be found as: 

  𝐱𝑘
𝑜𝑓𝑓_𝑚

 ~ 𝑁(𝐱𝑘
𝑜𝑓𝑓
, 𝚺), if 𝑢 ≤ 𝑝𝑚, (2.44) 

where 𝚺 is a 𝑑𝑥 × 𝑑𝑥 symmetric covariance matrix and 𝑢 ~ 𝑈(0, 1). We can choose a 

diagonal matrix as the covariance matrix 𝚺 when there are no correlations between each 

state value of the vector. However, variance values must be carefully set in order to 

prevent abnormally high or low state values (Kuptametee et al., 2024; Larose, 2006). 

 Uniform mutation can be employed in case the minimum and the maximum of 

the acceptable state values are known (Michalewicz, 1996). That is, 

  𝑥𝑘,𝑚
𝑜𝑓𝑓_𝑚

 ~ 𝑈[𝑥𝑘,𝑚
𝐿𝐵 , 𝑥𝑘,𝑚

𝑈𝐵 ], if 𝑢 ≤ 𝑝𝑚, (2.45) 

where 𝑥𝑘,𝑚
𝑜𝑓𝑓_𝑚

 denotes the 𝑚-th vector component of the mutated offspring vector 

𝐱𝑘
𝑜𝑓𝑓_𝑚

, 𝑢 ~ 𝑈(0, 1) and 𝑚 ∈ {1,… , 𝑑𝑥}. 𝑈[𝑥𝑘,𝑚
𝐿𝐵 , 𝑥𝑘,𝑚

𝑈𝐵 ] denotes a uniform distribution 

where each real number between 𝑥𝑘,𝑚
𝐿𝐵  and 𝑥𝑘,𝑚

𝑈𝐵  (including both) can be drawn. 
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Quantities 𝑥𝑘,𝑚

𝐿𝐵  and 𝑥𝑘,𝑚
𝑈𝐵  denote the lower and upper bounds of the state values of the 

𝑚-th vector component that must be set by the user, respectively (Michalewicz, 1996). 

While the new mutated state values are not located out of bounds, the original state 

values of the offspring vector 𝐱𝑘
𝑜𝑓𝑓

 found in the crossover step can be destroyed. More 

crossover and mutation schemes are discussed and can be found in work by Katoch et 

al. (2021). 

 After we obtain new offspring individuals (where some of them mutate) at the 

desired number, we re-evaluate the fitness value of every individual in the most recent 

generation and repeat the overall GA process to find the next-generation individuals 

until our termination criteria are met. The termination criteria can be, for example, when 

a preset maximum number of generations (i.e., attempts of finding new high-fit state 

vectors) per time step is reached or when the average of fitness values of every 

individual no longer increases (Garzelli et al., 2008; Kuptametee et al., 2024; Larose, 

2006). 

2.4  Related Work 

 Resampling in generic PF algorithms replicates high-weight particles and 

eliminates low-weight particles. The resampled particles then are employed to predict 

the state at the next time step. The selection process in GAs also replicates high-fit 

individuals for creating new offspring values that belong to the same time step, while 

unfit individuals are eliminated. That is, particle resampling is technically similar to the 

selection process in GAs, while their objectives are different (Kuptametee et al., 2024). 

 Because parent selection reduces the diversity of the parent state vectors, Park 

et al. (2009) suggested that crossover and mutation should be employed to diversify the 

state values of 𝑁 resampled particles 𝐱̃𝑘−1
𝑖  (i.e., replicas of selected parents) before 

entering the state evolution function. If the diversity of new particles 𝐱̃𝑘−1,𝐺𝐴
𝑖  was high, 

the diversity of the new mean values 𝐟𝑘−1(𝐱̃𝑘−1,𝐺𝐴
𝑖 ) and that of the new prediction 

particles 𝐱𝑘
𝑖  would also be high. Consequently, there could be high likelihoods of 

discovering high-weight state vectors at time step 𝑘. However, recall that the true 

posterior PDF can be time-varying because both true state and observation data can 
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evolve with time. There could still be a chance that all of the new particles 𝐱𝑘

𝑖  would 

have low true weights. 

 Zhou et al. (2021) employed roughening on 𝑁 resampled particles 𝐱̃𝑘
𝑖  (that are 

selected via the RWS algorithm) to obtain a set of 𝑁 new parents 𝐱̃𝑘,𝐺𝐴
𝑖  with regained 

diversity. Also, the weight of each new parent 𝐱̃𝑘,𝐺𝐴
𝑖  had to be re-evaluated as the new 

likelihood value 𝑝(𝐲𝑘|𝐱̃𝑘,𝐺𝐴
𝑖 ) (according to Equation 2.29). The 𝑁 weighted parents 

could then be employed to create new offspring at the same time step 𝑘. That is, 

enhancing state estimation performance by reshaping the posterior PDF is the main 

rationale for employing offspring creation schemes (i.e., crossover and mutation) in PF 

algorithms (Kuptametee et al., 2024). 

 Wang et al. (2020) and Zhou et al. (2021) suggested that offspring particles 

should be created only when particle degeneracy of the parent-generation swarm is 

severe or when quantity 𝐸𝑆𝑆𝑘 (found via Equation 2.35) is lower than the preset 

threshold. However, as previously discussed, a high 𝐸𝑆𝑆𝑘 value does not mean that the 

true non-normalized particle weights are also high. Thus, regardless of the value 𝐸𝑆𝑆𝑘, 

offspring particles must be created to ensure that the particle swarm will not be trapped 

at local maximum state values. 

 To save computation time and to not destroy particle diversity, Yin and Zhu 

(2015) suggested that all 𝑁 original particles can be instantly employed as parents 

without implementing any selection scheme. All 𝑁 parents at each time step 𝑘, 

however, must first be classified as 𝑁𝑘𝐻 high-weight parents and 𝑁𝑘𝐿 low-weight 

parents where 𝑁𝑘𝐻 + 𝑁𝑘𝐿 = 𝑁; 𝑁𝑘𝐻  is not necessarily equal to 𝑁𝑘𝐿. 

 According to studies by Yin and Zhu (2015), Yin et al. (2016), Yu et al. (2019), 

Zhang et al. (2021), and Zhou et al. (2021), the 𝑁 parents were first sorted by their 

weights in descending order. The weight of the [𝐸𝑆𝑆𝑘]-th particle that was selected 

from this new set was then employed as the weight threshold where [𝐸𝑆𝑆𝑘] was the 

rounded value of 𝐸𝑆𝑆𝑘 that was found via Equation 2.35. Recall that a low 𝐸𝑆𝑆𝑘 value 

denotes severe particle degeneracy as previously shown in Figure 2.2 and the number 

of high-weight parents 𝑁𝑘𝐻 must then be low. 

 Zhou et al. (2021) also employed arithmetic crossover to modify the set of 𝑁𝑘𝐻 

high-weight parents before any offspring particle was found. That is, two new high-
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weight parents were created from each of ⌊𝑁𝑘𝐻/2⌋ randomly created pairs of original 

high-weight parents where ⌊∙⌋ is the floor symbol. Suppose that high-weight parent 𝐱𝑘𝐻
𝑎  

is paired with another high-weight parent 𝐱𝑘𝐻
𝑏 . Parameter 𝑝𝑐 for this pair could be 

modified and found as: 

𝑝𝑐 =

{
 

 
𝑝𝑐,𝑚𝑎𝑥, max(𝑤𝑘𝐻

𝑎 , 𝑤𝑘𝐻
𝑏 ) < Avg(𝑤𝑘𝐻)

𝑝𝑐,𝑚𝑖𝑛 +
𝑝𝑐,𝑚𝑎𝑥−𝑝𝑐,𝑚𝑖𝑛

1+exp{𝜀[
2[max(𝑤𝑘𝐻

𝑎 ,𝑤𝑘𝐻
𝑏 )−Avg(𝑤𝑘𝐻)]

max(𝑤𝑘𝐻)−Avg(𝑤𝑘𝐻)
−1]}

, max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏 ) ≥ Avg(𝑤𝑘𝐻), 

    (2.46) 

where 𝑝𝑐,𝑚𝑎𝑥 and 𝑝𝑐,𝑚𝑖𝑛 denote the upper and lower bounds of parameter 𝑝𝑐, 

respectively. Parameter 𝜀 adjusts the shape of the employed sigmoid function and it 

must be set carefully by the user. Avg(𝑤𝑘𝐻) and max(𝑤𝑘𝐻) denote the average and the 

maximum values of the weights of the 𝑁𝑘𝐻 original high-weight parents, respectively 

(Zhou et al., 2021). Parameter 𝛼 for arithmetic crossover in Equation 2.42 was also 

modified as: 

 𝛼 = max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏 ) /(𝑤𝑘𝐻
𝑎 + 𝑤𝑘𝐻

𝑏 ), (2.47) 

where 𝛼 depends on weights of the two original parents 𝐱𝑘𝐻
𝑎  and 𝐱𝑘𝐻

𝑏  (Zhou et al., 

2021). Furthermore, Zhou et al. (2021) modified the Metropolis-Hasting (M-H) method 

(proposed by Hastings (1970)) to find the probability of acceptance for the two new 

high-weight parents as: 

  POA(𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎 , 𝐱𝑘𝐻

𝑎 ) = min (1,
𝑤𝑘𝐻.𝑛𝑒𝑤
𝑎

max(𝑤𝑘𝐻
𝑎 ,𝑤𝑘𝐻

𝑏 )
) (2.48a) 

  POA(𝐱𝑘𝐻,𝑛𝑒𝑤
𝑏 , 𝐱𝑘𝐻

𝑏 ) = min (1,
𝑤𝑘𝐻.𝑛𝑒𝑤
𝑏

max(𝑤𝑘𝐻
𝑎 ,𝑤𝑘𝐻

𝑏 )
), (2.48b) 

where, for example, 𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎  will always replace 𝐱𝑘𝐻

𝑎  if its weight is greater than the 

weights of both original high-weight parents. Otherwise, the probability that 𝐱𝑘𝐻,𝑛𝑒𝑤
𝑎  

will be accepted can be low if its weight is much lower than max(𝑤𝑘𝐻
𝑎 , 𝑤𝑘𝐻

𝑏 ). Note that 

the weights of the two new high-weight parents and those of the two original high-

weight parents must be evaluated according to the same observation 𝐲𝑘. After 
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arithmetic crossover was employed, all of 2 × ⌊𝑁𝑘𝐻/2⌋ new particles (and the one 

unpaired original high-weight parent in case quantity 𝑁𝑘𝐻 is odd) were then gathered 

together as a set of new high-weight parents (Zhou et al., 2021). However, the weights 

of some newly found high-weight parents could be lower than the previously found 

weight threshold and these new inferior particles did not qualify to be employed as 

high-weight parents. 

 To create offspring particles, Yin and Zhu (2015) suggested that each low-

weight parent must first be paired with a randomly selected high-weight parent; there 

would be in total 𝑁𝑘𝐿 pairs of parents. The reason was to prevent pairs of any two parent 

vectors that had the same state values or equal weights. To follow the principle of GA, 

Zhou et al. (2021) created a CDF of normalized weights of 𝑁𝑘𝐻 parent particles and 

employed the RWS to randomly select a high-weight parent for each low-weight parent. 

That is, the best high-weight parent had the greatest chance to be selected. However, 

computation time must be considered. Yin and Zhu (2015), Yin et al. (2016), Yu et al. 

(2019), Zhang et al. (2021), and Zhou et al. (2021) forced each pair to create a new 

offspring particle via flat crossover to replace its low-weight parent while its high-

weight parent was kept unchanged. That is, parameter 𝑝𝑐 in flat crossover was neglected 

(or set as 𝑝𝑐 = 1) because the likelihood of finding new high-weight state vectors must 

be maximized. 

 Studies by Yin et al. (2016) and Zhou et al. (2021) adaptively adjusted the range 

of the tuning parameter 𝛼 for flat crossover in Equation 2.43 as 𝛼 ~ 𝑈(𝐸𝑆𝑆𝑘/𝑁, 1). If 

particle degeneracy is severe (or the 𝐸𝑆𝑆𝑘 value is low), the bound of 𝛼 would be large 

in order to maximize the diversity of offspring particles. On the contrary, if the 𝐸𝑆𝑆𝑘 

value is high, the state values of each offspring particle would be close to those of its 

high-weight parent. However, Zhang et al. (2021) used 𝛼 ~ 𝑈(1 − (𝐸𝑆𝑆𝑘/𝑁), 1) to 

ensure that state values of each offspring particle will be located around state values of 

its high-weight parent, especially in case the 𝐸𝑆𝑆𝑘 value is low. On the contrary, if the 

𝐸𝑆𝑆𝑘 value is high, offspring particles could be more freely found within a larger bound 

for parameter 𝛼. A side effect of employing an adaptive bound for parameter 𝛼 is that 

new high-weight state vectors may not be searched thoroughly because the search scope 

sometimes can be very narrow. Consequently, the new population still has chances to 

be trapped at the local maximum state values of a few high-weight parents. 
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 In traditional GAs, crossover is followed by mutation. Zhou et al. (2021) 

suggested that all new offspring particles (found via flat crossover) and all high-weight 

parents (found via arithmetic crossover) should be gathered as a set of 𝑁 new offspring 

particles and should enter the mutation process in order to ensure particle diversity. 

Parameter 𝑝𝑚 (which was defined by Katoch et al. (2021) as the probability that the 

whole offspring vector will mutate), however, was modified to be adaptively calculated 

for each 𝑖-th new offspring particle 𝐱𝑘,𝑜𝑓𝑓
𝑖  as: 

𝑝𝑚 =

{
 
 

 
 𝑝𝑚,𝑚𝑎𝑥, 𝑤𝑘,𝑜𝑓𝑓

𝑖 < Avg(𝑤𝑘,𝑜𝑓𝑓)

𝑝𝑚,𝑚𝑖𝑛 +
𝑝𝑚,𝑚𝑎𝑥−𝑝𝑚,𝑚𝑖𝑛

1+exp{𝜀[
2[𝑤𝑘,𝑜𝑓𝑓

𝑖 −Avg(𝑤𝑘,𝑜𝑓𝑓)]

max(𝑤𝑘,𝑜𝑓𝑓)−Avg(𝑤𝑘,𝑜𝑓𝑓)
−1]}

, 𝑤𝑘,𝑜𝑓𝑓
𝑎 ≥ Avg(𝑤𝑘,𝑜𝑓𝑓), 

   (2.49) 

where 𝑝𝑚,𝑚𝑎𝑥 and 𝑝𝑚,𝑚𝑖𝑛 denote the upper and lower bounds of parameter 𝑝𝑚, 

respectively. Parameter 𝜀 adjusts the shape of the employed sigmoid function and it 

must be set carefully by the user. Avg(𝑤𝑘,𝑜𝑓𝑓) and max(𝑤𝑘,𝑜𝑓𝑓) denote the average 

and the maximum values of the weights of the 𝑁 new offspring particles, respectively 

(Zhou et al., 2021). Zhou et al. (2021) also suggested that a mutated replica of each 

offspring should not be immediately accepted. Thus, the M-H method was also applied 

to find the probability of acceptance of the new mutated offspring as: 

  POA(𝐱𝑘,𝑜𝑓𝑓_𝑚
𝑖 , 𝐱𝑘,𝑜𝑓𝑓

𝑖 ) = min (1,
𝑤𝑘,𝑜𝑓𝑓_𝑚
𝑖

𝑤𝑘,𝑜𝑓𝑓
𝑖 ), (2.50) 

where 𝐱𝑘,𝑜𝑓𝑓
𝑖  is the original offspring particle that is found via flat crossover (Zhou et 

al, 2021). Note that the weight of offspring 𝐱𝑘,𝑜𝑓𝑓
𝑖  and that of its mutated replica 

𝐱𝑘,𝑜𝑓𝑓_𝑚
𝑖  must be evaluated according to the same observation 𝐲𝑘. 

 To save computational cost and to ensure diversity, Park et al. (2009), Wang et 

al. (2020), and Zhang et al. (2021) suggested that some offspring particles could be 

found only via crossover while the rest of offspring particles could be found only via 

mutation. That is, offspring particles that were found by employing only crossover and 

those found by employing only mutation should coexist within the new-generation 
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swarm. If every offspring was found only via crossover, the bounds of the swarm could 

get narrower in the next generation, while undiscovered high-weight state values might 

be actually located outside the swarm. If only mutation was employed to find every 

offspring, the algorithm could become inefficient because every new offspring would 

be found blindly (Kuptametee et al., 2024). 

 Park et al. (2009) and Wang et al. (2020) manually set the number of crossover-

based offspring particles 𝑁𝑜𝑓𝑓_𝑐 and the number of mutation-based offspring particles 

𝑁𝑜𝑓𝑓_𝑚. These studies, however, had the constraint 𝑁𝑜𝑓𝑓_𝑐+𝑁𝑜𝑓𝑓_𝑚 ≤ 𝑁 because parent 

particles in these studies were not classified as high-weight parents and low-weight 

parents. This constraint cannot be applied with algorithms that first classify parents by 

their weights.  

 Zhang et al. (2021) suggested that the number of offspring particles in each of 

these two types should depend on the 𝐸𝑆𝑆𝑘 value of the parent-generation swarm, while 

the total number of offspring particles from both types must be equal to the number of 

low-weight parents 𝑁𝑘𝐿 where 𝑁𝑘𝐿 < 𝑁. When quantity 𝐸𝑆𝑆𝑘 is high, there should be 

no particle whose weight is significantly higher than the weights of the other particles. 

In this case, flat crossover has greater probability of being selected and employed. On 

the other hand, when quantity 𝐸𝑆𝑆𝑘 is low, the expected number of mutation-based 

offspring particles should be high. Because the 𝐸𝑆𝑆𝑘 value of the parent-generation 

swarm can be different at each time step, fixed quantities 𝑁𝑜𝑓𝑓_𝐶 and 𝑁𝑜𝑓𝑓_𝑀 cannot be 

employed. Thus, Zhang et al. (2021) set the probability that flat crossover would be 

chosen to 𝐸𝑆𝑆𝑘/𝑁, while probability that the Gaussian mutation would be chosen was 

set to 1 − (𝐸𝑆𝑆𝑘/𝑁). Note that work by Zhang et al. (2021) neglected parameters 𝑝𝑐 

and 𝑝𝑚 in order to maximize the likelihood of finding new high-weight state vectors. 

That is, for each pair of two parents, if crossover is chosen, an offspring must always 

be created with 𝑝𝑐 = 1. In the same way, if mutation is chosen for that pair of parents, 

an offspring must always be created with 𝑝𝑚 = 1. 

 Recall that Zhang et al. (2021) employed mutation to find a new state vector to 

directly replace the low-weight parent rather than the offspring found by employing flat 

crossover. Suppose that a high-weight parent 𝐱𝑘
ℎ𝑖𝑔ℎ

 is paired with a low-weight parent 

𝐱𝑘
𝑙𝑜𝑤 and mutation is randomly chosen for the pair. Gaussian mutation (as shown in 
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Equation 2.44) was then modified by setting the mean values of the Gaussian PDF as 

the state values of the high-weight parent. That is, 

  𝐱𝑘
𝑜𝑓𝑓_𝑚

~ 𝑁(𝐱𝑘
ℎ𝑖𝑔ℎ

, 𝚺), (2.51) 

where the covariance matrix 𝚺 must be carefully designed in order to prevent out-of-

bound state values. This ensured that state values of the offspring vector would be 

located around those of its high-weight parent, while the weight of this new state vector 

was also expected to have a high value (Zhang et al. 2021). 

 After we obtain the new population that consists of new 𝑁𝑘𝐿 offspring particles 

(that replace their respective low-weight parent) and original 𝑁𝑘𝐻 high-weight parents, 

Yin and Zhu (2015) suggested that resampling (or selection) should be employed in 

order to eliminate particles that are re-considered as having low weights (or low 

selection probabilities). That is, former high-weight parents whose weights are re-

considered as low and new low-weight offspring particles must be eliminated. 

 Yin et al. (2016) modified work of Yin and Zhu (2015) by removing the 

resampling step after employing crossover and mutation to obtain a new set of particles. 

Also, the weight of every particle in this new set was simply reset to be 1/𝑁 before 

advancing to the next time step via the state evolution function. Although particle 

diversity could be preserved and computational cost could be reduced, low-weight 

particles could still exist and state estimation performance might not be acceptable. 

 In practice, we should validate the weight of every new offspring particle in 

order to ensure good state estimation performance. For each pair of two parents, if the 

weight of an offspring particle is higher than that of its low-weight parent, this offspring 

will definitely replace its low-weight parent. Otherwise, this offspring should not 

qualify to exist and state values of its low-weight parent are kept unchanged 

(Kuptametee et al., 2024; Michalewicz, 1996). Zhang et al, (2021) suggested that an 

inferior offspring particle (i.e., an offspring particle whose weight is lower than the 

weight of its low-weight parent) should have a certain likelihood to be accepted and to 

replace its low-weight parent in order to ensure particle diversity. The probability of 

acceptance of an offspring particle can be found by applying the M-H method: 



36 

 

  POA(𝐱𝑘
𝑜𝑓𝑓
, 𝐱𝑘
𝑙𝑜𝑤) = min(1,

𝑤𝑘
𝑜𝑓𝑓

𝑤𝑘
𝑙𝑜𝑤), (2.52) 

where 𝐱𝑘
𝑜𝑓𝑓

 is the offspring that can be found by employing either only crossover or 

only mutation (Zhang et al., 2021). If there are too many accepted inferior offspring 

particles, the state estimation performance can be negatively impacted. Ahwiadi and 

Wang (2020) and Kuptametee and Aunsri (2022b) suggested that, for each pair of 

parents, we can retry finding a new offspring particle 𝐱𝑘
𝑜𝑓𝑓

 until we obtain the one 

whose weight is higher than the weight of its low-weight parent. Increasing 

computational time and cost, however, must be considered. 

 According to Figure 2.2, severe particle degeneracy can also mean a shortage 

of high-weight parents. Each low-weight parent then has only a few cases of high-

weight parents to pair with. Consequently, the particle swarm can still be trapped at the 

local maximum state values. Each new offspring particle stays unused after being 

computed until the last offspring particle is calculated from of the last low-weight 

parent and its paired high-weight parent. Finally, we can gather all 𝑁𝑘𝐿 offspring 

particles (with new evaluated weights) and all unchanged 𝑁𝑘𝐻 high-weight parents as 

the new swarm of 𝑁 particles to estimate the hidden state. That is, we lose the 

opportunity to employ high-weight offspring particles as new high-weight parents to 

further promote diversity of state values in the new generation of the particle swarm. 
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CHAPTER 3 

PROPOSED METHOD 

 In this dissertation, we modify a GA to ensure particle diversity and the 

likelihood of discovering new high-weight state vectors. The modified GA is also 

designed to be adaptive to the original parent generation of particle swarm (i.e., the set 

of 𝑁 original weighted particles) instead of requiring too many parameters that must be 

carefully preset. We then integrate the proposed GA into a generic PF algorithm to 

improve state estimation performance. The following sections in this chapter present 

the steps of the proposed method. 

3.1  Parent Classification 

 At the beginning of each time step 𝑘, each particle 𝐱𝑘
𝑖  is first drawn from the 

state evolution PDF 𝑝(𝐱𝑘|𝐱𝑘−1
𝑖 ); its weight 𝑤𝑘

𝑖  is found as 𝑝(𝐲𝑘|𝐱𝑘
𝑖 ) (as per Equation 

2.29). As suggested by Yin and Zhu (2015), all 𝑁 weighted particles should participate 

in offspring creation without employing a selection process to ensure particle diversity. 

All particles, however, must first be classified as high-weight or low-weight parents. 

The benefits of particle classification are: (1) to prevent having pairs of any two 

identical parents and (2) to prevent high-weight parents from being replaced by new 

offspring particles. The proposed method computes the weight threshold for classifying 

parents at time step 𝑘 as: 

  𝑤𝑘
𝑡ℎ𝑟 =

1
𝑁

∑ 𝑤𝑘
𝑖𝑁

𝑖 = 1 , (3.1) 

which is the average of the true non-normalized weights of all 𝑁 particles in the original 

parent generation at time step 𝑘. Particles whose weights are not lower than 𝑤𝑘
𝑡ℎ𝑟 will 

be classified as high-weight parents, while the others are classified as low-weight 

parents. Equation 3.1 does not require weight sorting and computation time can then be 

saved. Furthermore, the weight threshold found in work by Yin and Zhu (2015), Yin et 
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al. (2016), Yu et al. (2019), Zhang et al. (2021), and Zhou et al. (2021) as the weight of 

the [𝐸𝑆𝑆𝑘]-th best particle is not always adequately high. Suppose that there are 10 

particles whose weights are sorted in a descending order as: 0.28, 0.19, 0.14, 0.12, 0.08, 

0.06, 0.05, 0.04, 0.03 and 0.01. The ESS value of this swarm calculated according to 

Equation 2.35 will be approximately 6.1125 and [6.1125] = 6. Thus, the weight of the 

sixth best particle, 0.06, is then employed as weight threshold, while the value 0.06 is 

lower than the average of all ten weights, 0.1. 

 Note that the number of low-weight parents and the number of high-weight 

parents can be different and time-varying. We denote the number of low-weight parents 

at time step 𝑘 and the number of high-weight parents at time step 𝑘 as variables 𝑁𝑘𝐿 

and 𝑁𝑘𝐻, respectively. The pseudocode for parent classification is also provided in 

Figure 3.1. 

 

Input:    𝑁 particles (𝐱𝑘) and their true weights (𝑤𝑘) 

Output: 𝑁𝑘𝐿 low-weight parents (𝐱𝑘𝐿) and 𝑁𝑘𝐻 high-weight parents (𝐱𝑘𝐻) where 

  𝑁𝑘𝐿 + 𝑁𝑘𝐻 = 𝑁 

𝑤𝑘
𝑡ℎ𝑟 ← ∑ 𝑤𝑘

𝑖𝑁
𝑖=1   %Employ average of all true weights as the threshold 

𝑙 ← 0    %Initialize the index number of low-weight parents  

ℎ ← 0    %Initialize the index number of high-weight parents 

for 𝑖 ∈ {1, … , 𝑁} do 

 if 𝑤𝑘
𝑖 ≥ 𝑤𝑘

𝑡ℎ𝑟 then %Classify the particle as a high-weight parent 

  ℎ ← ℎ + 1 

  𝐱𝑘𝐻
ℎ ← 𝐱𝑘,𝑜𝑙𝑑

𝑖  

  𝑤𝑘𝐻
ℎ ← 𝑤𝑘,𝑜𝑙𝑑

𝑖  

 else   %Classify the particle as a low-weight parent 

  𝑙 ← 𝑙 + 1 

  𝐱𝑘𝐿
𝑙 ← 𝐱𝑘

𝑖  

  𝑤𝑘𝐿
𝑙 ← 𝑤𝑘

𝑖  

 end if 

end for 

Figure 3.1  A pseudocode for parent classification 
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3.2  Parent Pairing 

 Each pair of parents is created sequentially. Each low-weight parent randomly 

selects a high-weight parent to pair with. We allow each high-weight parent to be 

selected multiple times. Otherwise, in case particle degeneracy occurs when the number 

of high-weight parents is smaller than that of low-weight parents as shown in Figure 

2.2, some low-weight parents will not have any high-weight parents to pair with. 

 According to the traditional principle of GAs, the fittest individual has the 

highest chances to survive and to produce new offspring individuals (Katoch et al., 

2021; Larose,2006; Michalewicz, 1996). Thus, the parent particle with the maximum 

weight is supposed to be selected most often or to pair with low-weight parents in 

greatest numbers (Zhou et al., 2021). However, the state values of the maximum-weight 

particle that we have on hand are not necessarily located around the global maximum 

state values (that are located at the highest peak of the true unknown posterior PDF). 

That is, the true weight of the maximum-weight particle that we have on hand may be 

actually low (Kuptametee et al., 2024). 

 Suppose that we need to create the 𝑎-th pair of parents where 𝑎 ∈ {1, … , 𝑁𝑘𝐿}. 

We draw an index number 𝑏 ~ 𝑈{1, … , 𝑁𝑘𝐻} to select the 𝑏-th high-weight parent 𝐱𝑘𝐻
𝑏  

to pair with the 𝑎-th low-weight parent 𝐱𝑘𝐿
𝑎 . That is, we set the selection probability of 

each high-weight parent to be the same because we need to mitigate the chances that 

the new offspring particles will be trapped around the state values of the maximum-

weight particle (or local maximum state values). Note that each index number 𝑏 does 

not denote ranking orders of the high-weight parents because weight sorting was not 

employed during particle classification. 

3.3  Offspring Creation 

 Zhang et al. (2021) suggested that there are two types of offspring particles that 

should be computed together in order to obtain the new generation of particle swarm: 

(1) offspring particles that are calculated using only flat crossover (proposed by 

Radcliffe (1990) as in Equation 2.43), and (2) offspring particles that are computed 
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using only modified Gaussian mutation (proposed by Zhang et al. (2021) as in Equation 

2.51). This scheme ensures that new high-weight state vectors will be identified in the 

search space. However, the number of offspring particles from each type should depend 

on the 𝐸𝑆𝑆𝑘 value of the original parent-generation particle swarm. When the 𝐸𝑆𝑆𝑘 

value is high, the variance of all particle weights is supposed to be low and flat 

crossover should be preferred to find new offspring particles whose state values are 

located within the bounds of the swarm. On the other hand, when the 𝐸𝑆𝑆𝑘 value is low 

(or particle degeneracy is severe), there are only few particles whose weights are 

significantly higher than the weights of the other particles, as previously shown in 

Figure 2.2. Modified Gaussian mutation should be preferred to find new offspring 

particles that are located around the state values of these few high-weight parents. Thus, 

we adopt the Gaussian mutation modified by Zhang et al. (2021) by setting the 

probability of choosing flat crossover for each pair at time step 𝑘 as: 

  𝛾𝑘 =
(∑ 𝑤𝑘

𝑖𝑁
𝑖=1 )

2

𝑁×∑ (𝑤𝑘
𝑖𝑁

𝑖=1 )
2 , (3.2) 

while the probability of choosing modified Gaussian mutation for each pair at time step 

𝑘 is 1 − 𝛾𝑘. That is, the expected number of crossover-based offspring particles to be 

found at time step 𝑘 is: 

 𝑁𝑘𝐶,𝑒𝑥𝑝 = 𝑁𝑘𝐿 × 𝛾𝑘, (3.3) 

and the expected number of mutation-based offspring particles to be found at time step 

𝑘 is: 

 𝑁𝑘𝑀,𝑒𝑥𝑝 = 𝑁𝑘𝐿 × (1 − 𝛾𝑘). (3.4) 

 All high-weight parents are always kept unchanged, while each low-weight 

parent is supposed to be replaced with its offspring in case the latter has a higher weight. 

However, the new state vector may not always have a higher weight. We must first find 

the offspring candidate particle 𝐱𝑐𝑎𝑛𝑑 from a pair of the low-weight parent 𝐱𝑘𝐿
𝑎  and the 

high-weight parent 𝐱𝑘𝐻
𝑏 . 
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 Let a random number 𝑢 ~ 𝑈(0,1) be drawn for selecting a GA operator for 

offspring creation. If 𝑢 ≤ 𝛾𝑘, flat crossover will be chosen and the offspring candidate 

can be calculated as: 

 𝐱𝑐𝑎𝑛𝑑 = 𝛼𝐱𝑘𝐻
𝑏 + (1 − 𝛼)𝐱𝑘𝐿

𝑎 , (3.5) 

where variable 𝛼 ~ 𝑈(0, 1) is the state value tuning parameter. If 𝛼 is low, the state 

values of the candidate 𝐱𝑐𝑎𝑛𝑑 will be close to those of the low-weight parent 𝐱𝑘𝐿
𝑎 . In 

contrast, the state values of the candidate 𝐱𝑐𝑎𝑛𝑑 will be close to those of the high-weight 

parent 𝐱𝑘𝐻
𝑏  if 𝛼 is high. Equation 3.5 can be employed only when the two parent vectors 

have the same size. Equation 3.5 can then be generalized for finding each 𝑚-th new 

state value as: 

 𝑥𝑐𝑎𝑛𝑑,𝑚 = 𝛼𝑥𝑘𝐻,𝑚
𝑏 + (1 − 𝛼)𝑥𝑘𝐿,𝑚

𝑎 , (3.6) 

where tuning value 𝛼 must be the same for every 𝑚-th vector component, where 𝑚 ∈

{1, … , min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏 )}. Quantities 𝑑𝑘𝐿
𝑎  and 𝑑𝑘𝐻

𝑏  denote the size of the low-weight parent 

𝐱𝑘𝐿
𝑎  and the size of the high-weight parent 𝐱𝑘𝐻

𝑏 , respectively. That is, only the first 

min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏 ) vector components of the two parents can be paired. Note that the two 

parent state values 𝑥𝑘𝐿,𝑚
𝑎  and 𝑥𝑘𝐻,𝑚

𝑏  must have same data type or unit, while the whole 

vector may consist of state values with different data types or units. 

 In case 𝑑𝑘𝐻
𝑏 > 𝑑𝑘𝐿

𝑎 , the [min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏 ) + 1]-th through the 𝑑𝑘𝐻
𝑏 -th components 

of the high-weight parent 𝐱𝑘𝐻
𝑏  will be left unused. In case 𝑑𝑘𝐻

𝑏 < 𝑑𝑘𝐿
𝑎 , every vector 

component of the high-weight parent 𝐱𝑘𝐻
𝑏  will be employed in Equation 3.6. Then, the 

[min(𝑑𝑘𝐿
𝑎 , 𝑑𝑘𝐻

𝑏 ) + 1]-th through the 𝑑𝑘𝐿
𝑎 -th components of the low-weight parent 𝐱𝑘𝐿

𝑎  

will be concatenated to the newly found candidate 𝐱𝑐𝑎𝑛𝑑 without being changed. That 

is, the size of the candidate 𝐱𝑐𝑎𝑛𝑑 that is found using flat crossover must be the same 

as that of the low-weight parent 𝐱𝑘𝐿
𝑎 . Note that, although the two parent vectors have 

different sizes in this case, all of their respective state values must have the same data 

type or unit. 
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 Recall that the random value 𝑢 ~ 𝑈(0,1) is drawn to select a GA operator for 

offspring creation. If 𝑢 > 𝛾𝑘, modified Gaussian mutation will be chosen and the 

offspring candidate can be found as: 

  𝐱𝑐𝑎𝑛𝑑 ~ 𝑁(𝐱𝑘𝐻
𝑏 , 𝚺), (3.7) 

where 𝚺 is a 𝑑𝑘𝐻
𝑏 × 𝑑𝑘𝐻

𝑏  covariance matrix that can be designed by the user. Recall that, 

in this mutation scheme, the state values of the high-weight parent 𝐱𝑘𝐻
𝑏  are employed 

as mean values of the Gaussian PDF. Thus, the size of the candidate 𝐱𝑐𝑎𝑛𝑑 that is found 

using modified Gaussian mutation must be same to that of the high-weight parent 𝐱𝑘𝐻
𝑏 . 

 Finally, we find the 𝑎-th offspring particle that will replace its low weight parent 

𝐱𝑘𝐿
𝑎  as: 

  𝐱𝑘
𝑎,𝑜𝑓𝑓

= {
𝐱𝑐𝑎𝑛𝑑, 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑)  >  𝑝(𝐲𝑘|𝐱𝑘𝐿

𝑎 )

𝐱𝑘𝐿
𝑎 , 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑) ≤  𝑝(𝐲𝑘|𝐱𝑘𝐿

𝑎 ),
 (3.8) 

where state values of the candidate 𝐱𝑐𝑎𝑛𝑑  will be accepted and assigned to the offspring 

particle only if the weight of the candidate 𝐱𝑐𝑎𝑛𝑑 is higher than the weight of the low-

weight parent 𝐱𝑘𝐿
𝑎 . Otherwise, the low-weight particle 𝐱𝑘𝐿

𝑎  assigns its state values to the 

offspring particle without being changed. 

3.4  Evolution of High-weight Offspring Particles 

 Initially, particles are classified according to the threshold 𝑤𝑘
𝑡ℎ𝑟 that is 

calculated using Equation 3.1. Consequently, there are two disjoint sets of particles: 

high-weight particles (red-line circles) and low-weight particles (blue-line circles) as 

shown in Figure 3.2. When offspring particles are found, a set of offspring particles 

(yellow-line circle) must be created. Some offspring particles are actually new state 

vectors while the others are just replicas of their respective low-weight parents. That is, 

the set of replicas of low-weight particles is a subset of the set of offspring particles. 

Also, some offspring particles may have weights that are not smaller than the threshold 

𝑤𝑘
𝑡ℎ𝑟. That is, these offspring particles satisfy the condition of being classified as high-

weight parents and they can then be employed along with original members of the set 
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of high-weight parents. Thus, the set of high-weight particles and the set of offspring 

particles are not disjoint. When all 𝑁𝑘𝐿 offspring particles are found, the original set of 

low-weight particles becomes an empty set and can be removed. Recall that the weight 

threshold 𝑤𝑘
𝑡ℎ𝑟 must stay fixed once it is calculated via Equation 3.1. 

 

Figure 3.2  Euler diagrams of sets of particles before and after employing GA 

 As previously discussed, when particle degeneracy is severe, each low-weight 

parent has a few choices of high-weight parents to randomly choose and pair with. 

Normally, each offspring particle can be obtained sequentially from each pair and the 

computed offspring particles are stored unused until we obtain all 𝑁𝑘𝐿 offspring 

particles. Some of the stored offspring particles may have high weights and we should 

make use of them to ensure diversity of the rest of the offspring particles. In other 

words, the low-weight parents should be offered more choices of high-weight parents 

to pair with. 

 Figure 3.3 demonstrates the process of finding the first offspring particle (i.e., 

particle 𝐱𝑘
𝑎,𝑜𝑓𝑓

 with index number 𝑎 = 1) where the digit on each particle denotes its 

index number. The selected low-weight parent also generates a replica that is employed 

during weight comparison against its offspring. If the weight of the offspring is smaller 

than or equal to the weight of its low-weight parent, this offspring will be rejected and 



44 

 
the state values of its low-weight parents will replace the new state values. Then, this 

offspring is regarded as the replica of its low-weight parent. 

 If the weight of the offspring is higher than the weight of its low-weight parent, 

this offspring will be accepted. Also, if the weight of the offspring is not smaller than 

the preset threshold 𝑤𝑘
𝑡ℎ𝑟 (computed via Equation 3.1), it will evolve to a new high-

weight parent with an additional probability to be selected and paired with the rest of 

the low-weight parents. Otherwise, the offspring will be stored unused because its 

weight is not high enough for it to be promoted as a new high-weight parent. 

 

Figure 3.3  The process of finding an offspring particle in the proposed method 

 We iterate the overall process in Figure 3.3 until there are no original low-

weight parents (not their replicas) left. Finally, we gather all 𝑁 weighted particles from 

all three sets (high-weight particles, offspring particles, and low-weight parent replicas) 

as the new-generation population (or particle swarm) at time step 𝑘 and we employ this 

new population to infer (or estimate) the true state at time step 𝑘. The pseudocode for 

improving the low-weight parents (i.e., offspring creation) in the proposed method is 

also shown in Figure 3.4. 
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Input:    𝑁𝑘𝐿 low-weight parents (𝐱𝑘𝐿) and 𝑁𝑘𝐻 high-weight parents (𝐱𝑘𝐻) 

Output: 𝑁𝑘𝐿 offspring particles and 𝑁𝑘𝐻 original high-weight parents (𝐱𝑘𝐻) 

𝛾𝑘 ← (∑ 𝑤𝑘
𝑖𝑁

𝑖=1 )
2

/ [𝑁 × ∑ (𝑤𝑘
𝑖 )

2𝑁
𝑖=1 ]  %Probability of choosing flat crossover  

ℎ ← 𝑁𝑘𝐻     %Initial number of high-weight parents 

for 𝑎 ∈ {1, … , 𝑁𝑘𝐿} do 

 𝑏 ~ 𝑈{1, … , ℎ} 

 𝑢 ~ 𝑈(0,1) 

 if 𝑢 ≤ 𝛾𝑘  then    %Employ flat crossover 

  𝛼 ~ 𝑈(0,1) 

  𝑑 ← min (𝑑𝑥𝐿 , 𝑑𝑥𝐻)  %Number of pairable vector components 

  for 𝑚 ∈ {1, … , 𝑑} do 

   𝑥𝑐𝑎𝑛𝑑,𝑚
𝑎 ← 𝛼𝑥𝑘𝐻,𝑚

𝑏 + (1 − 𝛼)𝑥𝑘𝐿,𝑚
𝑎  

  end for 

  if 𝑑𝑥𝐿 > 𝑑   %In case low-weight parent is longer 

   for 𝑚 ∈ {𝑑 + 1, … , 𝑑𝑥𝐿} do 

   𝑥𝑐𝑎𝑛𝑑,𝑚
𝑎 ← 𝑥𝑘𝐿,𝑚

𝑎   %Inherit unpaired vector components 

   end for 

  end if 

 else     %Employ mutation 

  𝐱𝑐𝑎𝑛𝑑
𝑎  ~ 𝑁(𝐱𝑘𝐻,𝑚

𝑏 , 𝚺𝐺𝑀) 

 end if 

 𝑤𝑐𝑎𝑛𝑑
𝑎 ← 𝑝(𝐲𝑘|𝐱𝑐𝑎𝑛𝑑

𝑎 )   %Weight of the 𝑎-th offspring candidate 

 if 𝑤𝑐𝑎𝑛𝑑 ≥ 𝑤𝑘
𝑡ℎ𝑟  then   %Add new high-weight parent 

  ℎ ← ℎ + 1 

  𝐱𝑘𝐻
ℎ ← 𝐱𝑐𝑎𝑛𝑑

𝑎  

  𝑤𝑘𝐻
ℎ ← 𝑤𝑐𝑎𝑛𝑑

𝑎  

 else if 𝑤𝑐𝑎𝑛𝑑
𝑎 ≥ 𝑤𝑘𝐿

𝑎  then   %Replace the low-weight parent 

  𝐱𝑘𝐿
𝑎 ← 𝐱𝑐𝑎𝑛𝑑

𝑎  

  𝑤𝑘𝐿
𝑎 ← 𝑤𝑐𝑎𝑛𝑑

𝑎  

 else 

  Keep the low-weight parent 𝐱𝑘𝐿
𝑎  and its weight unchanged 

 end if 

end for 

Figure 3.4  A pseudocode for offspring creation 
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 Suppose that the number of the original high-weight parents at time step 𝑘 is 

𝑁𝑘𝐻,𝑜𝑙𝑑 and the number of the new high-weight offspring particles at time step 𝑘 whose 

weights are not lower than the threshold as computed by Equation 3.1 is 𝑁𝑘𝐻,𝑛𝑒𝑤 (which 

is initially zero). In theory, the computational complexity of adding a new high-weight 

offspring into an array (or a set) of high-weight parents is 𝑂(𝑁𝑘𝐻,𝑜𝑙𝑑 + 𝑁𝑘𝐻,𝑛𝑒𝑤) 

because we have to create a new array with a larger size before we move the 𝑁𝑘𝐻,𝑜𝑙𝑑 +

𝑁𝑘𝐻,𝑛𝑒𝑤 high-weight particles (excluding the newest high-weight offspring at the 

moment) to the new array (Lewis & Chase, 2014). It is possible that all 𝑁𝑘𝐿 new 

candidates will not only be accepted as new offspring but also evolve to be new high-

weight parents. Thus, we can create an array with size 𝑁 × 𝑑𝑥 in advance to store both 

the original and the new high-weight particles. The complexity of adding (or pushing) 

a new particle into this “maximum size” array is only 𝑂(1) because we do not need to 

create a new array once each high-weight offspring is obtained (Lewis & Chase, 2014). 
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CHAPTER 4 

SIMULATION RESULTS 

 This chapter presents results of state estimation of the proposed method in 

simulation state-space models. There are two experiments conducted where the state-

space model is: (1) one-dimensional, and (2) multidimensional. The size of the state 

vectors in each of these experiments is, however, not time-varying. 

 The state-of-the-art algorithms selected for experiments in this chapter are as 

follows. 

 The traditional particle filter called sequential importance resampling particle 

filter (SIR-PF) employs stochastic universal sampling (SUS) (i.e., systematic 

resampling) to eliminate low-weight particles at every time step. This selection scheme 

is also employed by the auxiliary SIR particle filter (ASIR-PF) proposed by Pitt and 

Shephard (1999) to resample the auxiliary particles. 

 The adaptive fission particle filter (AFPF) proposed by Han et al. (2015) sets 

the minimum number of replicas to be created from each of 𝑁 particles (excluding 

themselves) to 𝑁𝑟𝑒𝑝,𝑚𝑖𝑛 = 2. A fission factor is also employed to tune variance values 

according to the weight of each original particle according to Equation 2.39. 

 The genetic optimization resampling particle filter (GORPF) proposed by Zhou 

et al. (2021) creates new offspring only when the effective sample size (ESS) found 

according to the new weights of 𝑁 post-roughening parents is lower than 0.7𝑁. 

Roughening is employed according to Equation 2.38 with a tuning parameter 𝛽 = 0.2 

as suggested by Gordon et al. (1993). In parent classification, the number of high-

weight parents is 𝑁𝑘𝐻 = [𝐸𝑆𝑆𝑘] where [∙] is the rounding symbol, e.g., [3.4] = 3 and 

[3.5] = 4. Arithmetic crossover is employed to create new high-weight parents with 

parameters set as: 𝑝𝑐,𝑚𝑖𝑛 = 0.6, 𝑝𝑐,𝑚𝑎𝑥 = 0.9 and 𝜀 = 9.903438, according to 

Equation 2.46, while Equations 2.48a and 2.48b are employed to accept or reject the 

two new high-weight parents. The 𝐸𝑆𝑆𝑘 of all 𝑁 particles must be re-evaluated and flat 

crossover (in Equation 2.43) can then be employed with 𝛼 ~ 𝑈(𝐸𝑆𝑆𝑘/𝑁, 1) where each 

new offspring must replace its low-weight parent, while each high-weight parent is 
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randomly selected according to a CDF of the normalized weights of 𝑁𝑘𝐻 high-weight 

parents. Finally, Gaussian mutation is employed to perturb state values of every particle 

(including 𝑁𝑘𝐻 high-weight parents and 𝑁𝑘𝐿 new offspring particles) according to 

Equation 2.44 with the parameter 𝑝𝑚 calculated via Equation 2.49. Equation 2.49 is 

employed with the following parameters: 𝑝𝑐,𝑚𝑖𝑛 = 0.6, 𝑝𝑐,𝑚𝑎𝑥 = 0.9, and 𝜀 =

9.903438. Finally, Equation 2.50 is employed to accept or reject the mutated replica 

of each particle. 

 The intelligent particle filter (IPF) proposed by Zhang et al. (2021) treats the 

[𝐸𝑆𝑆𝑘] best particles as high-weight parents while the rest are treated as low-weight 

parents, similar to GORPF. The probability that each of 𝑁𝑘𝐻 high-weight parents will 

be selected is set to be uniform, similar to our proposed method. If flat crossover is 

chosen with probability 𝐸𝑆𝑆𝑘/𝑁, flat crossover will be employed according to Equation 

2.43 with 𝛼 ~ 𝑈(1 − (𝐸𝑆𝑆𝑘/𝑁), 1). Modified Gaussian mutation can be chosen and 

employed according to Equation 2.51 with probability 1 − (𝐸𝑆𝑆𝑘/𝑁). Equation 2.52 is 

employed for allowing the new offspring to replace its low-weight parent or not. 

4.1  One-dimensional State Estimation 

 In this section, we choose a benchmark non-linear state-space model from work 

by Gordon et al. (1993) to perform a one-dimensional (1-D) state estimation 

experiment. The state evolution function and the observation function of this model are: 

 𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘−1) = 0.5𝑥𝑘−1 +
25𝑥𝑘−1

1+𝑥𝑘−1
2 + 8cos[1.2(𝑘 − 1)] + 𝑢𝑘−1, (4.1) 

and 

 𝑦𝑘 = 𝑔𝑘(𝑥𝑘, 𝑣𝑘) = 0.05𝑥𝑘
2 + 𝑣𝑘, (4.2) 

where quantity 𝑢𝑘−1 is additive state evolution noise that updates old state values at 

time step 𝑘 − 1 and quantity 𝑣𝑘 is additive observation noise at time step 𝑘, 

respectively. The weight of each particle 𝑥𝑘
𝑖  in this system can be found from the 

likelihood function: 
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 𝑤𝑘
𝑖 = exp(

−(𝑦𝑘−𝑔𝑘(𝑥𝑘
𝑖 ))

2

2𝜎𝑣𝑘
2 ), (4.3) 

where 𝑔𝑘(𝑥𝑘
𝑖 ) denotes the 𝑖-th predicted observation data value and 𝜎𝑣𝑘

2  denotes the 

variance of observation noise 𝑣𝑘. The parameters configured for this 1-D state-space 

model are provided in Table 4.1 

Table 4.1  Parameters for the 1-D state estimation experiment 

Symbol Meaning Value 

𝑥0 Initial state 0 

𝑝(𝑥0) Initial prior PDF 𝑁(0, 2) 

𝑢𝑘−1 State evolution noise Draw from 𝑁(0, 2) 

𝑣𝑘 Observation noise Draw from 𝑁(0, 2) 

𝐾 Number of time steps 100 

𝑅 Number of simulation runs 50 

 Some configurations in this experiment were specifically made for selected 

state-of-the-art algorithms. The AFPF employs a variance 𝜎2 of 2 for perturbing the 

state values of each created replica. The GORPF, IPF and the proposed method also 

employ a variance 𝜎2 of 2 in their respective mutation schemes. 

 In this experiment, the state was inferred using the weighted mean (WM) of 

sample state values. To obtain a fair state estimation comparison using WM, the weight 

of each new particle in the final set that was obtained after resampling in SIR-PF and 

ASIR-PF, after roughening in GORPF (only when 𝐸𝑆𝑆𝑘 ≥ 0.7𝑁), after offspring 

creation in GORPF (only when 𝐸𝑆𝑆𝑘 < 0.7𝑁), IPF and the proposed method, must be 

re-evaluated via Equation 2.29 before we estimate the state at the end of any time step 

𝑘, instead of leaving particle weights as 1/𝑁. 

 The results of 1-D state estimation using WM with 𝑁 = 100 particles are shown 

in Figures 4.1 and 4.2, where the true states (shown as a black curve with black dots) 

are plotted against estimated tracks of 50 simulation runs (shown as magenta curves). 

Figure 4.1 shows comparison results obtained from non-GA-based PF algorithms (i.e., 
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SIR-PF, ASIR-PF and AFPF), while Figure 4.2 shows comparison results obtained 

from GA-based PF algorithms (i.e., GORPF, IPF and the proposed PF). 

 

Figure 4.1 Comparison of 1-D state estimations via WM by employing non-GA-based 

PF algorithms 

 In Figure 4.1, results obtained from non-GA-based PF algorithms (i.e., SIR-PF, 

ASIR-PF and AFPF show significant errors: the estimated tracks deviate from the true 

state track. In ASIR-PF, the estimated tracks are more erroneous than those of the SIR-

PF at, for example, around time steps 17-18, time steps 51-52, and time steps 79-80. 

The reason is that the ASIR-PF further perturbs state values of resampled auxiliary 
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particles blindly. The AFPF, however, delivered the most erroneous estimation results: 

many parts of the estimated tracks clearly deviate from the track of the true state. In 

AFPF, each high-weight particle created replicas at higher numbers, but the state values 

of these replicas were not perturbed much from the state values of their original copy 

because the fission factor tuned the variance of the Gaussian PDF that was employed 

for drawing random perturbing values to be low. Each of the low-weight particles, in 

contrast, created fewer replicas where the fission factor value and the variance of the 

Gaussian PDF were high. Thus, the particle swarm in AFPF, even after weight sorting 

and keeping only the 𝑁 best particles, still could be trapped at the local maximum state 

values. 
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Figure 4.2 Comparison of 1-D state estimations via WM by employing GA-based PF 

algorithms 

 Figure 4.2 compares results of 1-D state estimation using WM obtained from 

GA-based PF algorithms: GORPF, IPF and the new method. The GORPF, at some time 

steps, employed only roughening to diversify the state values of the selected parents (or 

resampled particles) because quantity 𝐸𝑆𝑆𝑘 was not smaller than the preset threshold. 

As previously discussed, a high 𝐸𝑆𝑆𝑘 does not mean that all (or most of) particles are 

located at regions of high-weight state values. Thus, the GORPF lost the opportunity to 

find new and better particles to enhance state estimation at some time steps and, 
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consequently, delivered erroneous results, as shown in time steps 8-15 and 30-36. The 

IPF accepted some new inferior low-weight particles to be members of the new 

generation of swarm. These inferior particles then participated in the state estimation 

and negatively affected its performance, as shown in time steps 30-36. Thus, the new 

method is obviously superior to the others because this method always rejected every 

offspring candidate that was inferior to its respective low-weight parent. Also, potential 

offspring particles were employed as new high-weight parents instead of being kept 

unused until we needed to estimate the state. 

 Figure 4.3 shows the effects of employing the proposed method for posterior 

PDF reshaping at selected time steps of one run. To keep the values of the y-axis scale 

(i.e., normalized weights) consistent as before and after employing our method, we 

normalized the weights of pre-reshaping the posterior PDFs (shown on the left-hand 

side). The dark gray lines denote the normalized weight threshold at the average (or 

1/𝑁 where 𝑁 = 100). Some low-weight particles can be seen to have been relocated 

to the new positions where high-weight state values existed because they were replaced 

by offspring particles that had higher weights. Note that the weights of particles in post-

reshaping PDFs (shown on the right-hand side) had not been re-normalized because we 

need to present clear comparisons between before and after employing the new method. 
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Note  (a) Time step 𝑘 = 6, (b) Time step 𝑘 = 31, (c) Time step 𝑘 = 86 

Figure 4.3  Posterior PDFs are reshaped after employing the proposed method 

 Table 4.2 presents a comparison of the 1-D state estimation performance 

previously shown in Figures 4.1 and 4.2 in terms of numerical error measurements. 

Root-mean-squared errors (RMSE) and mean absolute errors (MAE) were employed to 

assess the state estimation performance. We employ their averages values that can be 

found as: 

 Avg(RMSE) =
1
𝑅

∑ √
1

𝐾
∑ |𝑥𝑘 − 𝑥̂𝑘,𝑟|2

𝐾
𝑘=1

𝑅
𝑟=1  (4.4) 

and 

 Avg(MAE) =
1

𝐾𝑅
∑

1

𝐾
∑ |𝑥𝑘 − 𝑥̂𝑘,𝑟|

𝐾
𝑘=1

𝑅
𝑟=1 , (4.5) 
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where 𝑥𝑘 denotes the true state at time step 𝑘 from all 𝐾 time steps, while 𝑥̂𝑘,𝑟 denotes 

the estimated state at time step 𝑘 of the 𝑟-th simulation run from all 𝑅 runs (Aunsri et 

al., 2021; Kuptametee & Aunsri, 2022b). 

Table 4.2  Numerical error measurements in 1-D state estimation 

PF Avg(RMSE) Var(RMSE) Avg(MAE) Var(MAE) 

SIR-PF 3.1113 0.1471 1.6290 0.0277 

ASIR-PF 3.1922 0.1790 1.5644 0.0348 

AFPF 4.0221 1.0266 2.2174 0.2540 

GORPF 2.9023 0.2758 1.5145 0.0461 

IPF 2.6131 0.1692 1.4481 0.0286 

Proposed 2.4507 0.0185 1.3998 0.0077 

 The average numerical errors of non-GA-based PF algorithms were higher than 

those of GA-based PF algorithms. The average RMSE of the SIR-PF was lower than 

that of the ASIR-PF but the average MAE of the SIR-PF was higher than that of the 

ASIR- PF. However, the variances of the numerical errors of the SIR-PF were lower 

than those of the ASIR-PF for both RMSEs and MAEs. The AFPF yielded the highest 

averages of errors and the highest variances of errors. This showed that blind state value 

perturbation was ineffective. 

 Results obtained from the GORPF were more erroneous than results delivered 

from the other two GA-based PF algorithms, the IPF and the proposed method. 

Although the average errors of the GORPF were lower than those of the SIR-PF and 

ASIR-PF, the variance of RMSEs and MAEs of the GORPF were higher than not only 

those of the SIR-PF and the ASIR-PF but also those of the IPF and the proposed PF. In 

roughening which was employed in the GORPF, the state values of 𝑁 resampled 

particles were perturbed according to the same set of adaptive variance values, which 

could be different for each vector component at each time step via Equation 2.37. That 

is, variance values in roughening could vary for each time step. This showed that the 

adaptability of the IPF and the proposed PF without pre-setting too many GA 

parameters provided better performance compared to the GORPF. The average RMSE 

and MAE obtained by the IPF were lower than those of the SIR-PF, but the variance of 
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RMSEs and MAEs of the IPF are higher than those of the SIR-PF. The reason was that 

the IPF sometimes accepted candidate particles as new offspring particles, while their 

weights were lower than those of their respective low-weight parents. The performance 

of the proposed method was better and more reliable than the other algorithms as shown 

by having the lowest averages and variances of errors in this experiment. 

 The computation time for 1-D state estimation for each PF algorithm where 𝑁 =

100 was also measured and provided in Table 4.3. The average computation time can 

be found as: 

 Avg(Time) =
1

𝐾𝑅
∑ ∑ 𝑡𝑘,𝑟

𝐾
𝑘=1

𝑅
𝑟=1 , (4.6) 

where 𝑡𝑘,𝑟 denotes the computation time (measured in seconds) at time step 𝑘 of the    

𝑟-th simulation run. Quantities 𝐾 and 𝑅 denote the total number of time steps and the 

total number of simulation runs, respectively (Aunsri et al., 2021). 

Table 4.3  Computation time in 1-D state estimation 

PF Minimum Average Maximum 
Variance 

(× 10-6) 

SIR-PF 0.0013 0.0022 0.0175 2.1685 

ASIR-PF 0.0017 0.0031 0.0190 3.2025 

AFPF 0.0019 0.0040 0.0436 11.2781 

GORPF 0.0023 0.0048 0.1587 81.8221 

IPF 0.0016 0.0038 0.0431 9.4376 

Proposed 0.0014 0.0031 0.0420 3.8568 

 The SIR-PF runtime was the shortest because, after resampling and state 

estimation, the SIR-PF just moved to next time step by updating state values of 𝑁 

resampled particles via the state evolution function. This differs from perturbing the 

state values to estimate the state with diversified particles. The ASIR-PF required 

slightly longer computation time compared to the SIR-PF because the ASIR-PF blindly 

perturbed the state values of the 𝑁 resampled auxiliary particles to obtain the 𝑁 new 

particles employed in state estimation. In the GORPF resampling (i.e., parent selection) 

and roughening were always employed at every time step. This scheme is more 
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complicated than perturbing the state values of 𝑁 resampled particles with fixed-

variance Gaussian random values as implemented in the ASIR-PF. Thus, the minimum 

computation time spent by the GORPF was the largest. The AFPF, IPF and the 

proposed PF did not employ any traditional selection (or resampling) scheme. 

However, the AFPF required substantial time to find new state values of replicas of 

each of the 𝑁 original particles. The total number of newly created replicas (with 

perturbed state values) could exceed 𝑁, while weight sorting was also required to keep 

the best 𝑁 particles. Also, the AFPF calculated the fission factor value of each of the 𝑁 

original particles which depended on the particle weights as in Equation 2.39. 

 The maximum computation time of the GORPF was the longest, especially 

when the 𝐸𝑆𝑆𝑘 value was lower than the preset threshold where parent selection, 

roughening, crossover and mutation were sequentially employed. The variance of the 

computation time spent by the GORPF was the largest because crossover and mutation 

were employed only at some time steps. The IPF and the proposed PF employed only 

crossover or mutation to find an offspring from each of the 𝑁𝑘𝐿 pairs of parents where 

𝑁𝑘𝐿 < 𝑁 to save computation time. However, the GORPF and IPF sorted weights to 

find the weight threshold for parent classification, while the proposed method did not 

require weight sorting. The computation time of the new PF then was shorter than that 

of the AFPF, GORPF and IPF. However, the variance of computation time of the AFPF 

and that of all GA-based PF algorithms were higher than those of the SIR-PF and ASIR-

PF in this experiment. The reason was that the number of the created offspring particles 

in the AFPF and that in GA-based PF algorithms could be different at each time step. 

Nevertheless, variance of computation time of the new PF was close to that of the 

ASIR-PF. 

 Figure 4.4 shows a comprehensive comparison of 1-D state estimation in terms 

of RMSEs where the variance of the Gaussian observation noise was 𝜎𝑣𝑘
2 = 2 with 

different number of particles 𝑁. Figure 4.5 shows another comparison of 1-D state 

estimation performance in terms of average RMSEs with different levels of observation 

noise in signal-to-noise ratios (SNRs) where 𝑁 = 100. 
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Figure 4.4  RMSEs plotted against number of particles in 1-D state estimation 

 

Figure 4.5  RMSEs plotted against SNRs in 1-D state estimation 

 The AFPF was shown to be the least effective method in this experiment as it 

led to the highest RMSEs for every case. The results also illustrated the importance of 

employing GA to find new and better particles to enhance state estimation. The trend 

of RMSEs of the IPF seemed more consistent than the trend of RMSEs of the GORPF 

when the number of particles varied as shown in Figure 4.4 and the RMSEs of the IPF 



59 

 
were lower than those of all non-GA-based methods (i.e., SIR-PF, ASIR-PF and AFPF). 

However, the trend of RMSEs against varying SNRs obtained with the GORPF seemed 

more consistent than the trend of RMSEs of the IPF as shown in Figure 4.5. Also, the 

GORPF yielded lower RMSEs compared to those of the IPF when the SNRs of the 

observation noise were low. Nevertheless, the new algorithm was shown to be robust 

for low numbers of particles (shown in Figure 4.4) and for severe observation noise 

(shown in Figure 4.5) by leading to the lowest RMSEs for every case. 

4.2  Multidimensional State Estimation 

 In this section, we further test the state estimation performance on the problem 

of tracking the movement of a maneuvering anti-ship missile adopted from work by 

Zhou et al. (2019). The target state variables now become a multidimensional vector. 

The state evolution function and the observation function of this model are: 

 𝐬𝑘 = 𝐟𝑘−1(𝐬𝑘−1, 𝐮𝑘−1) = 𝚽𝐬𝑘−1 + 𝚪𝐮𝑘−1 (4.7) 

and 

 𝐳𝑘 = 𝐠𝑘(𝐬𝑘, 𝐯𝑘) = [√𝑥𝑘
2 + 𝑦𝑘

2 arctan (
𝑦𝑘

𝑥𝑘
)]

𝑇

+ 𝐯𝑘, (4.8) 

where 

 𝐬𝑘 = [𝑥𝑘 𝑦𝑘 𝑥̇𝑘 𝑦̇𝑘 𝑥̈𝑘 𝑦̈𝑘]
𝑇 (4.9) 

is the state vector of the missile that contains: the x-axis position, the y-axis position, 

the x-axis velocity, the y-axis velocity, the x-axis acceleration and the y-axis 

acceleration, respectively. Matrices 𝚽 and 𝚪 denote the normal state evolution matrix 

and the state evolution noise matrix, respectively, and they are expressed as 



60 

 

  𝚽 =

[
 
 
 
 
 
 
 
 1 0 𝑇 0

𝑇
2

2
0

0 1 0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅
0

1−cos(𝜔̅̅̅𝑇)

𝜔̅̅̅2

0 0 1 0 𝑇 0

0 0 0 cos(𝜔̅𝑇) 0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅
0 0 0 0 1 0
0 0 0 −𝜔̅ sin(𝜔̅𝑇) 0 cos(𝜔̅𝑇) ]

 
 
 
 
 
 
 
 

 (4.10) 

and 

  𝚪 =

[
 
 
 
 
 
 
 
 
 
 𝑇

3

6
0

0
𝜔̅̅̅𝑇−sin(𝜔̅̅̅𝑇)

𝜔̅̅̅3

𝑇2

2
0

0
1−cos(𝜔̅̅̅𝑇)

𝜔̅̅̅2

𝑇 0

0
sin(𝜔̅̅̅𝑇)

𝜔̅̅̅ ]
 
 
 
 
 
 
 
 
 
 

, (4.11) 

where 𝑇 is the sampling period (in seconds) and ω̅ is the maneuvering frequency (in 

radians). That is, the multiplication 𝚽𝐬𝑘−1 delivers a vector of the updated x-axis 

position, y-axis position, x-axis velocity, y-axis velocity, x-axis acceleration and y-axis 

acceleration. The multiplication 𝚪𝐮𝑘−1 provides a vector of x-axis jolt and y-axis jolt 

(i.e., rate of acceleration change) that perturbs the multiplication 𝚽𝐬𝑘−1 to compute the 

new state vector 𝐬𝑘 as in Equation 4.7 (Zhou et al., 2019). The weight of each particle 

𝐬𝑘
𝑖  in this system can be found from the likelihood function: 

 𝑤𝑘
𝑖 = exp(

−(𝐳𝑘−𝐠𝑘(𝐬𝑘
𝑖 ))

𝑇
𝐑𝑘

−1(𝐳𝑘−𝐠𝑘(𝐬𝑘
𝑖 ))

2
), (4.12) 

where 𝐠𝑘(𝐬𝑘
𝑖 ) denotes the 𝑖-th predicted observation data value and 𝐑𝑘 denotes the 

covariance matrix of the observation noise vector 𝐯𝑘. The radar that tracks the 

maneuvering missile is assumed to be static and is located at the xy-position (0, 0). 

Parameter configurations are also provided in Table 4.4. 
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Table 4.4  Parameters set for multidimensional state estimation experiment 

Symbol Meaning Value 

𝐬0 Initial state [30000 3000 1450 0 0 −2𝜋2]𝑇 

𝑝(𝐬0) Initial prior PDF 𝑁(𝐬0, 0.1𝐈6) 

𝐮𝑘−1 State evolution noise Draw from 𝑁(𝟎, 0.1𝐈2) 

𝐯𝑘 Observation noise Draw from 𝑁(𝟎, 0.01𝐈2) 

𝑇 Sampling period 0.1 seconds 

𝜔̅ Maneuvering frequency 0.2𝜋 radians 

𝑁 Number of particles 300 

𝐾 Time steps 400 

𝑅 Simulation runs 50 

 In this experiment, the selection of the state inference method was also WM. 

There were only a few additional parameter configurations for this experiment as 

follows. The AFPF employs the covariance matrix 𝚺 = 0.1𝐈6 for perturbing the state 

values of each created replica. The GORPF, IPF and the proposed PF also employ the 

covariance matrix 𝚺 = 0.1𝐈6 in their respective mutation schemes. 

 The missile tracking simulation results obtained from non-GA-based PF 

algorithms (i.e., SIR-PF, ASIR-PF and AFPF) are shown in Figures 4.6-4.8. The missile 

tracking simulation results computed with the GA-based PF algorithms (i.e., GORPF, 

IPF and the new method) are shown in Figures 4.9-4.11. Fifty magenta curves denote 

curves of the estimated state and are plotted against the true state (shown as a black 

curve). 
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Figure 4.6  The state of the maneuvering missile tracked by the SIR-PF 
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Figure 4.7  The state of the maneuvering missile tracked by the ASIR-PF 
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Figure 4.8  The state of the maneuvering missile tracked by the AFPF 

 In the SIR-PF, the x-axis acceleration was poorly estimated, and it negatively 

affected the x-axis velocity and position estimation as shown in Figure 4.6. The curves 

of the estimated x-axis acceleration kept decreasing since the beginning until the time 

around 10 s. Then, the estimated x-axis acceleration kept increasing and reached 0 m/s2 

at around 25 s. This caused the estimated x-axis position (or the x-axis maneuvered 

distance) to become shorter than the true one starting at the x-axis position of 60000 m. 

 The ASIR-PF mitigated the x-axis positional errors of the SIR-PF as shown in 

Figure 4.7. At position 80000 m on the x-axis, the curves of the estimated position 
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became closer to the true one. However, this was due to the overestimated x-axis 

accelerations that are higher than those of the SIR-PF. Thus, this position estimation 

cannot be considered effective. The problem was due to particle impoverishment where 

particles got trapped in local maxima. The AFPF led to curves of the estimated x-axis 

velocity and acceleration which were significantly more accurate than those of the SIR-

PF and ASIR-PF, as shown in Figure 4.8. However, the AFPF resulted in the most 

severe errors in the y-axis state estimation. That is, the x-axis position was estimated 

well but most of the curves of the estimated y-axis positions clearly deviate from the 

true one. 

 

Figure 4.9  The State of the maneuvering missile tracked by the GORPF 
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Figure 4.10  The state of the maneuvering missile tracked by the IPF 
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Figure 4.11  The state of the maneuvering missile tracked by the proposed PF 

 The GORPF faced a similar problem as the SIR-PF and ASIR-PF, providing 

results with erroneous estimates of x-axis positions, especially at the end of the track, 

as shown in Figure 4.9. Although the estimated tracks of the x-axis acceleration 

deviated less from the true track, the estimated x-axis accelerations were negative 

longer than those of the SIR-PF and ASIR-PF. Consequently, the estimated x-axis 

velocities were lower than the true velocity value at all times for almost every run. The 

estimated traveled x-axis distances of the missile were lower than the true one at the 

final time step (88000 m) for every run. 
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 The IPF and the proposed method were superior to all other algorithms. While 

the estimated x-axis velocities and x-axis accelerations obtained from the IPF (shown 

in Figure 4.10) seem to not be significantly different from those computed with the new 

proposed method (shown in Figure 4.11), the superior accuracy of the proposed method 

is illustrated via the estimated position tracks. The estimated y-axis positions are clearly 

more accurate than those from the IPF because of more accurately estimated y-axis 

velocities and y-axis accelerations. Thus, our proposed method is proved more reliable 

than all of the other state-of-the-art algorithms. 

 Numerical errors were also calculated for performance evaluation of each PF 

algorithm in multidimensional state estimation. The average and variances of RMSEs 

are shown in Tables 4.5 and 4.6, respectively. The average and variances of MAEs are 

also shown in Tables 4.7 and 4.8 respectively. 

Table 4.5  Average RMSEs in multidimensional state estimation 

PF xk yk ẋk ẏ
k
 ẍk ÿ

k
 

SIR-PF 830.8774 1.6024 43.4959 0.5992 4.9619 0.3808 

ASIR-PF 797.6756 1.5498 43.0944 0.5812 6.0826 0.3674 

AFPF 0.1085 14.6709 0.6180 4.8250 0.6943 3.0276 

GORPF 682.9181 2.0176 39.5444 0.7311 2.5575 0.4575 

IPF 0.0655 1.4557 0.1178 0.5225 0.0941 0.3265 

Proposed 0.0625 0.5396 0.0838 0.2137 0.0621 0.1349 

Table 4.6  Variances of RMSEs in multidimensional state estimation 

PF xk yk ẋk ẏ
k
 ẍk ÿ

k
 

SIR-PF 9.98e+03 0.3838 28.5326 0.0607 0.2326 0.0228 

ASIR-PF 1.48e+04 0.3412 18.9508 0.0534 0.2001 0.0218 

AFPF 2.13e-05 31.2837 0.0088 2.8147 0.0133 1.0635 

GORPF 8.41e+03 1.0278 44.9217 0.1130 0.0598 0.0421 

IPF 1.40e-05 0.4356 1.00e-04 0.0402 1.17e-04 0.0156 

Proposed 3.29e-05 0.0504 1.08e-04 0.0099 6.55e-05 0.0040 
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Table 4.7  Average MAEs in multidimensional state estimation 

PF xk yk ẋk ẏ
k
 ẍk ÿ

k
 

SIR-PF 638.8815 1.3520 36.8528 0.5081 4.0521 0.3221 

ASIR-PF 631.8755 1.2914 36.7499 0.4965 4.8917 0.3135 

AFPF 0.0869 11.6129 0.4703 3.8337 0.5396 2.3859 

GORPF 504.1201 1.6742 34.0662 0.6211 2.2201 0.3880 

IPF 0.0519 1.1483 0.0924 0.4166 0.0733 0.2584 

Proposed 0.0470 0.4319 0.0652 0.1760 0.0483 0.1107 

Table 4.8  Variances of MAEs in multidimensional state estimation 

PF xk yk ẋk ẏ
k
 ẍk ÿ

k
 

SIR-PF 5.41e+03 0.3515 20.3666 0.0480 0.1516 0.0179 

ASIR-PF 8.24e+03 0.2637 14.0046 0.0419 0.1413 0.0171 

AFPF 1.72e-04 24.5280 0.0045 1.6823 0.0079 0.6363 

GORPF 4.43e+03 0.8193 31.6699 0.0874 0.0479 0.0328 

IPF 1.01e-05 0.3087 5.08e-05 0.0242 6.53e-05 0.0092 

Proposed 2.38e-05 0.0353 6.65e-05 0.0070 3.30e-05 0.0028 

 

 The numerical results in Tables 4.5-4.8 show that the SIR-PF, the ASIR-PF and 

the GORPF faced severe problems in estimating the x-axis state values by having 

significantly high average errors and high error variances. The GORPF provided the 

less erroneous x-axis state estimates compared to the SIR-PF and the ASIR-PF. 

However, the y-axis state estimation performance of the GORPF was inferior to that of 

the SIR-PF and the ASIR-PF. The AFPF provided very good x-axis state estimates but 

the performance in estimating the y-axis state values was inferior to all other 

algorithms. The IPF was superior to the other state-of-the-art algorithms in terms of 

average errors with the exception of the proposed PF which provided the lowest average 

errors for every state variable. Although the variances of the errors from the proposed 

PF are not better (or lower) than those of the IPF for every state variable, they were 

quite low and were considered acceptable. 
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 Table 4.9 provides the computation time (measured according to Equation 4.6) 

for each PF algorithm in multidimensional state estimation. 

Table 4.9  Computation time in multidimensional state estimation 

PF Min(Time) Avg(Time) Max(Time) 
Var(Time) 

(× 10-5) 

SIR-PF 0.0209 0.0274 0.0633 1.3563 

ASIR-PF 0.0313 0.0413 0.0826 3.4192 

AFPF 0.0667 0.0851 0.1913 9.7741 

GORPF 0.0265 0.0544 0.2191 55.9023 

IPF 0.0248 0.0386 0.1661 15.9022 

Proposed 0.0218 0.0319 0.0815 3.1469 

 In multidimensional state estimation, every PF algorithm except the SIR-PF 

suffered from the larger size of state vectors because each vector component (i.e., state 

value) of each original particle must be perturbed to find the new particles. The size of 

state vectors affected the SIR-PF only at the state evolution of the 𝑁 particles. The SIR-

PF, thus, required the shortest computation time. Although the minimum computation 

time of the ASIR-PF was not lower than that of the GA-based PF algorithms in this 

experiment, the variance of computation time of the ASIR-PF was still low. This could 

be due to the increased number of particles 𝑁 employed in this experiment and the 

increased size of state vectors 𝑑𝑥. Recall that the ASIR-PF perturbed all of 𝑁 × 𝑑𝑥 state 

values of 𝑁 resampled auxiliary particles, while GA-based PF algorithms needed to 

find only 𝑁𝐾𝐿 new offspring particles, where 𝑁𝐾𝐿 < 𝑁. Besides larger state vectors, the 

AFPF also suffered from the total number of new particles (i.e., replicas with perturbed 

state values) that exceeded 𝑁. Thus, the minimum and average of the AFPF 

computation time spent was the longest, while the maximum computation time of AFPF 

was slightly lower than only that of the GORPF. 

 Recall that the GORPF creates offspring only when the 𝐸𝑆𝑆𝑘 value is lower 

than the preset threshold with every GA operator implemented sequentially. The 

maximum and variance of the computation time of the GORPF were then larger than 

those of the other algorithms. The minimum and average of the computation time of 
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the GORPF were also larger than those of the IPF and the new PF. Among non-SIR PF 

algorithms, the minimum and average of the computation time of the IPF were larger 

than only those of our method. However, the maximum computation time of IPF was 

larger than not only that of the new method but also of that of the ASIR-PF. Weight 

sorting could be a factor that caused a high maximum computation time in the AFPF, 

GORPF and IPF, especially when the number of particles 𝑁 increased. The difference 

between the maximum computation time of the new method and that of the IPF then 

became larger. The new method was also shown in this experiment to work faster than 

other state-of-the art PF algorithms except for the SIR-PF, while the variance of the 

computation time was also significantly low. 

 While employing GAs increased computation time and its variance as seen in 

Tables 4.3 and 4.9, the numerical errors shown in Tables 4.2 and 4.5-4.8 demonstrate 

the importance of efforts in finding new high-weight state values that addresses the 

problem of a particle swarm getting trapped at a local maximum. Our method not only 

prevented low-quality offspring particles but also employed high-quality offspring 

particles as new high-weight parents. Our method was shown to be efficient and 

provided results that are superior to those of state-of-the-art GA-based PF algorithms, 

GORPF and IPF. 
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CHAPTER 5 

APPLICATION 

 This chapter provides details of employing the new approach to estimate the 

state in a real-world application. We select the application of estimating spectra of time-

varying signals in non-linear systems studied by Aunsri and Chamnongthai (2021). A 

broadband signal is emitted from the source located underwater (i.e., the ocean). Then, 

the signal propagates through the medium and is recorded by a hydrophone. We 

perform the signal analyses in the time-frequency domain to investigate the changes of 

frequencies with time in terms of the number of the modal waves (i.e., modes) that 

arrives at the different time and their peak frequency values (i.e., instantaneous modal 

frequency). Tracks of such changes contain useful information for the analysis of the 

dispersion characteristics of the propagation medium. 

 In practice, the signal received at the hydrophone can be corrupted by noise. 

Although the time-domain noise can be assumed to be additive white Gaussian, 

property of the noise that corrupts the time-frequency representation (TFR) is non-

Gaussian, as to be discussed later. This necessitates the implementation of PFs for the 

modal frequency estimation. The accuracy of the modal frequency estimation affects 

the validity of further research work related to the environmental studies. 

5.1  Time-frequency Analysis of Underwater Broadband Signals 

 In theory, we calculate the sound pressure against time of a broadband time-

series that propagates in the ocean as: 

𝑝(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝑡) =
1

2𝜋
∑ ∫ 𝜇(𝜔′)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′)exp {𝑗 (𝜔′𝑡 − 𝑘𝑚𝑟 −

𝜋
4

)} 𝑑𝜔′𝑚 , 

   (5.1) 

where quantity 𝑟 denotes the distance between the source and the receiver (i.e., 

hydrophone), quantities 𝑑𝑠 and 𝑑𝑟 denote the source and receiver depths, respectively, 
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quantity 𝑘𝑚 denotes the modal wave number, 𝜇(𝜔′) denotes the source spectrum, 𝜔 =

2𝜋𝑓 denotes the angular frequency in radians per second (rad/s), and 𝑓 denotes the 

frequency in Hertz (Hz) (Aunsri & Chamnongthai, 2021; Yang, 1984). Function 

𝐺𝑛(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′) is the mode transfer function that can be expressed as: 

  𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟, 𝜔) =
𝑗√𝜋

𝜌(𝑑𝑟)√2𝑘𝑚𝑟
𝛹𝑚(𝑑𝑠)𝛹𝑚(𝑑𝑟), (5.2) 

where 𝛹𝑚(∙) denotes the orthogonal and normalized depth-dependent functions, and 

𝜌(𝑑𝑟) denotes the medium density. When the signal has only one mode (i.e., the 𝑚-th 

mode), the spectrum of a finite segment of such a signal can be computed as: 

  𝑃𝑚(𝜔, 𝑡) = ∫ 𝑝𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜏)exp(−𝑗𝜔𝜏)𝑑𝜏
𝑡+∆𝑡

𝑡−∆𝑡
, (5.3) 

which starts and ends at time 𝑡 − ∆𝑡 and 𝑡 + ∆𝑡, respectively. Consequently, we obtain 

𝑃𝑚(𝜔, 𝑡) =
exp(−𝑗𝜔𝑡)

2𝜋
∫ 𝜇(𝜔′)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔′)

sin(𝜔′ − 𝜔) ∆𝑡

(𝜔′ − 𝜔)
 

  × exp {𝑗 (𝜔′𝑡 − 𝑘𝑚𝑟 −
𝜋
4

)} 𝑑𝜔′, (5.4) 

whose instantaneous power spectrum can be obtained by squaring the spectrum 

approximated via stationary phase approximation as: 

  |𝑃𝑚(𝜔, 𝑡)|2 =
𝜋

|𝑘𝑚
′′

|
2 |𝜇(𝜔𝑚)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔𝑚)|2 |

sin(𝜔−𝜔𝑚)∆𝑡
(𝜔−𝜔𝑚)

|
2

  

  |𝑃𝑚(𝜔, 𝑡)|2 =
𝜋(∆𝑡)

2

|𝑘𝑚
′′

|
2 |𝜇(𝜔𝑚)𝐺𝑚(𝑟, 𝑑𝑠, 𝑑𝑟 , 𝜔𝑚)|2 |

sin(𝜔−𝜔𝑚)∆𝑡
(𝜔−𝜔𝑚)∆𝑡

|
2

, (5.5) 

for |𝜔 − 𝜔𝑚| < 𝜋/∆𝑡. That is, the power spectrum of the 𝑚-th single-mode signal in 

Equation 5.5 has a peak at the angular frequency 𝜔𝑚 which is regarded as the 

instantaneous modal frequency. Consequently, the power spectrum can be 

approximated as a summation of squared sinc pulses (Aunsri & Chamnongthai, 2021; 

Yang, 1984). 
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 In this experiment, we employ a short-time Fourier transform (STFT) to 

compute the TFR of a time-varying input signal. The reason is that the STFT does not 

introduce false frequency modes called “cross-terms” which negatively affect the 

readability of the TFR (Boashash, 2016). Suppose that we have an input signal: 

  𝑥(𝜏) = 𝑠(𝜏) + 𝑛(𝜏), (5.6) 

where 𝑠(𝜏) and 𝑛(𝜏) represent a noise-free signal and a series of additive white 

Gaussian noise values. We compute the STFT of the signal 𝑥(𝜏) and time 𝑡 and 

frequency 𝑓 as:  

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏  

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫[𝑠(𝜏) + 𝑛(𝜏)]𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏  

 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = 𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓) + 𝑆𝑇𝐹𝑇𝑛(𝑡, 𝑓), (5.7) 

where 𝑤(𝜏) denotes a window function employed in the STFT calculation. Terms 

𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓) and 𝑆𝑇𝐹𝑇𝑛(𝑡, 𝑓) represent the STFT of the noise-free signal 𝑠(𝜏) and the 

STFT of the noise 𝑛(𝜏), respectively. Sometimes we can find the term 𝑤(𝜏 − 𝑡) written 

as 𝑤(𝑡 − 𝜏) in Equation 5.7 because the employed window function 𝑤(𝜏) is normally 

an even function where 𝑤(𝜏) = 𝑤(−𝜏) (Boashash, 2016). 

 For simplicity, we assume that the term 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) is a Gaussian random 

variable: 

  𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) ~ 𝑁(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓), 𝜎2), (5.8) 

where 𝜎2 is an unknown variance. Because 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) is a complex number, we can 

then assume that the real part: 

 Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) cos(−𝑗2𝜋𝑓𝜏) 𝑑𝜏 (5.9) 

and the imaginary part: 

 Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) sin(−𝑗2𝜋𝑓𝜏) 𝑑𝜏, (5.10) 

are corrupted by additive white Gaussian noise with the same variance at 𝜎2/2. That 

is, 
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  Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) ~ 𝑁(Re(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)), 𝜎2/2), (5.11) 

and 

  Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)) ~ 𝑁(Im(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)), 𝜎2/2). (5.12) 

 The spectrogram at time 𝑡 and frequency 𝑓 of the signal 𝑥(𝜏) can be found as 

the squared magnitude of its STFT: 

𝑆𝑃𝑥(𝑡, 𝑓) = |∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏) exp(−𝑗2𝜋𝑓𝜏) 𝑑𝜏|
2

 

 𝑆𝑃𝑥(𝑡, 𝑓) = [Re(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓))]
2

+ [Im(𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓))]
2
, (5.13) 

where the PDF of the squared STFT, 𝑆𝑃𝑠(𝑡, 𝑓), becomes a noncentral chi-squared PDF 

with two degrees of freedom; the parts of the noise-free STFT (i.e., Re(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)) 

and Im(𝑆𝑇𝐹𝑇𝑠(𝑡, 𝑓)) in Equations 5.11-5.12) are not necessarily zero for each time 𝑡 

and frequency 𝑓 (Aunsri & Chamnongthai, 2021; Boashash, 2016). 

 In practice, any input signal is discrete because it is recorded with a preset 

sampling rate. The spectrogram of such a signal at time step 𝑘 and frequency 𝑓 can be 

found as: 

 𝑆𝑃𝑥(𝑘, 𝑓) = [Re(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓))]
2

+ [Im(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓))]
2
, (5.14) 

where 

 Re(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓)) = ∑ 𝑥[𝑙]𝑤[𝑘 − 𝑙] cos (−2𝜋𝑓
𝑙

𝐿𝐷𝐹𝑇(𝑥)
 )𝐿𝑤−1

𝑙=0  (5.15) 

and 

 Im(𝑆𝑇𝐹𝑇𝑥(𝑘, 𝑓)) = ∑ 𝑥[𝑙]𝑤[𝑘 − 𝑙] sin (−2𝜋𝑓
𝑙

𝐿𝐷𝐹𝑇(𝑥)
 )𝐿𝑤−1

𝑙=0 , (5.16) 

are the real part and imaginary parts of the STFT at time step 𝑘 and frequency 𝑓, 

respectively (Aunsri, 2019; Huillery et al., 2008; Kuptametee & Aunsri, 2022c; Tan & 

Jiang, 2019). Quantity 𝑙 denotes time, while 𝐿𝐷𝐹𝑇(𝑥) and 𝐿𝑤 represent the length of the 
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discrete Fourier transform (DFT) of the input signal 𝑥[𝑙] and the length of the employed 

window function 𝑤[𝑙], respectively. 

5.2  Particle Filtering Formulation for Spectra Estimation 

 5.2.1  PF Initialization 

 Because we do not know the true states at the initialization, we can draw 

particles to predict the state vector 𝐱1 and find their weights according to the first 

observation 𝐲1. Note that this application differs from the experiments presented in 

Chapter 4 where the initial state vector 𝐱0 was known and employed to initialize the 

state evolution function. 

 In case of the first time step (i.e., 𝑘 = 1), we need to draw the number of modes 

𝑟1
𝑖 for each 𝑖-th initial particle 𝐱1

𝑖  as: 

 𝑟1
𝑖 ~ 𝑈{𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥}, (5.17) 

where 𝑈{𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥} denotes a discrete uniform distribution. Quantities 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 

are the minimum and maximum of the number of modes, respectively. 

 Next, we draw 𝑟1
𝑖 modal frequencies for each initial particle 𝐱1

𝑖  and store them 

as a state vector 𝐟1
𝑖 . Each 𝑚-th modal frequency where 𝑚 ∈ {1, … , 𝑟1

𝑖} can be drawn as: 

 𝑓1,𝑚
𝑖  ~ 𝑈{𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥}, (5.18) 

where 𝑓1,𝑚
𝑖  denotes the modal frequency of the 𝑚-th mode of the 𝑖-th initial particle 𝐱1

𝑖 . 

Quantities 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are a preset minimum modal frequency and a preset maximum 

modal frequency, respectively. 

 Next, we set the initial prior PDF of the modal amplitude (i.e., peak amplitude) 

for each initial particle 𝐱1
𝑖  and store them as a state vector 𝐚1

𝑖 . Each 𝑚-th modal 

amplitude where 𝑚 ∈ {1, … , 𝑟1
𝑖} can be drawn as a positive real-numbered value: 

 𝑎1,𝑚
𝑖  ~ 𝑈(0, max(𝐲1)], (5.19) 



77 

 
where max(𝐲1) denotes the maximum amplitude value searched through the 

observation 𝐲1. 

 Also, we draw the initial STFT noise variance value for each particle initial 

particle 𝐱1
𝑖  as: 

 𝜎1
2,𝑖 ~ 𝑈(0, 𝜎𝑚𝑎𝑥

2 ], (5.20) 

where 𝜎𝑚𝑎𝑥
2  denotes the preset upper bound of the noise variance values; the noise 

variance must be greater than zero. 

 5.2.2  State Vector Evolution 

 At time step 𝑘 ≥ 2, we update the modal frequencies of each particle as: 

 𝐟𝑘
𝑖  ~ 𝑁(𝐟𝑘−1

𝑖 , 𝚺𝑓,𝑘−1), (5.21) 

where 𝚺𝑓,𝑘−1 denotes a covariance matrix with the dimension 𝑟𝑘−1
𝑖 × 𝑟𝑘−1

𝑖  employed to 

update the frequency values. 

 Next, we update modal amplitudes for each particle 𝐱𝑘
𝑖  as: 

 𝐚𝑘
𝑖  ~ 𝑁(𝐚𝑘−1

𝑖 , 𝚺𝑎,𝑘−1), (5.22) 

where 𝚺𝑎,𝑘−1 denotes a covariance matrix with the dimension 𝑟𝑘−1
𝑖 × 𝑟𝑘−1

𝑖  employed to 

update the amplitude values. 

  Next, we update the noise variance value of each particle 𝐱𝑘
𝑖  as: 

 𝜎𝑘
2,𝑖 ~ 𝑁(𝜎𝑘−1

2,𝑖 , 𝜁2), (5.23) 

where 𝜁2 denotes the preset variance of the noise variance updating function. 

 Recall that the number of modes can vary with time because each mode arrives 

the receiver at the different time. The size of each vector 𝐟𝑘
𝑖  and the size of each vector 

𝐚𝑘
𝑖  (i.e., number of modes 𝑟𝑘

𝑖) must then be further updated. The state evolution of modal 

frequencies is then encompassed within the multiple-model particle filter (MMPF) 

framework (Aunsri & Michalopoulou, 2014; Aunsri, 2018b). In this work, we assume 

that the number of modes can stay the same, can decrease by one, or can increase by 

https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1
https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1


78 

 
one. The transition matrix of the probabilities of change of the number of modes can 

then be employed and expressed as: 

  𝑃 = [

𝑝 1 − 𝑝 0

(1 − 𝑝)/2 𝑝 (1 − 𝑝)/2
0 1 − 𝑝 𝑝

], (5.24) 

where 𝑝 denotes the probability that the number of modes will remain the same (i.e., 

𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖 ); 0 ≤ 𝑝 ≤ 1. The probabilities in the first row of the matrix 𝑃 are employed 

when the number of modes of a particle is at the minimum; the number of modes will 

increase by one with the probability 1 − 𝑝. The probabilities in the second row of the 

matrix 𝑃 are employed when the number of modes of a particle is at neither the 

minimum nor the maximum; the probability that the number of modes will decrease by 

one and the probability that the number of modes will increase by one are the same at 

(1 − 𝑝)/2. The probabilities in the third row of the matrix 𝑃 are employed when the 

number of modes of a particle is at the maximum; the number of modes will decrease 

by one with the probability 1 − 𝑝 (Aunsri & Michalopoulou, 2014). 

 When 𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖 + 1, we can simply draw the (𝑟𝑘−1
𝑖 + 1)-th new modal 

frequency as: 

 𝑓
𝑘,𝑟𝑘−1

𝑖 +1

𝑖  ~ 𝑈{𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥}, (5.25) 

which can be appended to the vector 𝐟𝑘
𝑖  previously found via Equation 5.21. The modal 

amplitude of the newly added mode can also be drawn as a positive real-numbered 

value: 

 𝑎
𝑘,𝑟𝑘−1

𝑖 +1

𝑖  ~ 𝑈[min(𝐚𝑘−1
𝑖 ), max(𝐚𝑘−1

𝑖 )], (5.26) 

which can be appended to the vector 𝐚𝑘
𝑖  previously found via Equation 5.22. Quantities 

min(𝐚𝑘−1
𝑖 ) and max(𝐚𝑘−1

𝑖 ) denote the minimum and the maximum amplitude value of 

the particle 𝐱𝑘−1
𝑖 . 

 When 𝑟𝑘
𝑖 = 𝑟𝑘−1

𝑖 − 1, we can simply remove the 𝑟𝑘−1
𝑖 -th modal frequency and 

the 𝑟𝑘−1
𝑖 -th modal amplitude from the vectors 𝐟𝑘

𝑖  and 𝐚𝑘
𝑖  previously found via Equations 

5.21 and 5.22, respectively. 
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 5.2.3  Particle Weights Calculation 

 Let we first consider a noncentral chi-squared PDF of a 1-D random variable 

𝑧 ~ ∑ 𝑥𝑖
2𝑑𝑓

𝑖=1 ; quantity 𝑑𝑓 denotes the degree of freedom and 𝑥𝑖  ~ 𝑁(𝜇𝑖, 𝜎2). Such a 

PDF can be expressed as16,62: 

  𝑓(𝑧; 𝑑𝑓, 𝜆) =
1

2𝜎
2 (

𝑧
𝜆

)
(𝑑𝑓−2)/4

exp (− (𝑧+𝜆)

2𝜎
2 ) 𝐼(𝑑𝑓−2)/2 (

√𝑧𝜆
𝜎2 ), (5.27) 

where 

  𝜆 = ∑ 𝜇𝑖
2𝑑𝑓

𝑖=1 , (5.28) 

denotes the noncentrality parameter. 𝐼𝑛(∙) denotes the 𝑛-th order modified Bessel 

function of the first kind. 

 To calculate weight of each particle at each time step 𝑘, we must first construct 

the spectrum replica of each particle as: 

 𝐬𝑘
𝑖 = ∑ 𝑎𝑘,𝑚

𝑖 sinc2(𝑓 − 𝑓𝑘,𝑚
𝑖 )

𝑟𝑘
𝑖

𝑚=1 , (5.29) 

where quantity 𝑎𝑘,𝑚
𝑖  denotes the modal amplitude of the 𝑚-th mode (i.e., the 𝑚-th 

squared sinc function) at time step 𝑘. Note that, when there is only one mode (i.e., 𝑟𝑘
𝑖 =

1), Equation 5.29 can be considered as a simplification of Equation 5.5. 

 The prior PDF of the number of modal frequencies is 𝑝(𝑟𝑘) = 1/(𝑟𝑚𝑎𝑥 −

𝑟𝑚𝑖𝑛 + 1). That is, the probability is the same for every value of 𝑟𝑘, where 𝑟𝑘 ∈

{𝑟𝑚𝑖𝑛, … , 𝑟𝑚𝑎𝑥}. The prior PDF of each modal frequency is 𝑝(𝑓𝑘,𝑚) = 1/𝐿; quantity 𝐿 

represents the length of the spectrum. If a particle has 𝑟𝑘 modes, the prior PDF can be 

generalized as 𝑝(𝑓𝑘,𝑚, 𝑟𝑘) = 1/𝐿𝑟𝑘. The prior PDF of each modal amplitude is non-

informative because each modal amplitude can be any non-negative real number. Recall 

that the magnitude the spectrogram at time step 𝑘 and frequency 𝑓, 𝑆𝑃𝑥(𝑘, 𝑓), in 

Equation 5.14 can be considered as a noncentral chi-squared random variable with two 

degrees of freedom and variance at 𝜎2/2. The likelihood function can then be expressed 

as: 
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  𝑤𝑘
𝑖 =

1

𝐿𝑟𝑘
𝑖

1

(𝜎𝑘
2,𝑖

)
𝐿 ∏ exp (−

(𝑦𝑘,𝑓+𝑠𝑘,𝑓
𝑖 )

𝜎𝑘
2,𝑖 ) 𝐼0 (

√𝑦𝑘,𝑓×𝑠𝑘,𝑓
𝑖

𝜎𝑘
2,𝑖/2

)𝐿
𝑓=1 , (5.30) 

where quantities 𝑦𝑘,𝑓 and 𝑠𝑘,𝑓
𝑖  represent the magnitude at time step 𝑘 and frequency 𝑓 

of the observation and that of the spectrum replica, respectively (Aunsri & 

Chamnongthai, 2021). 

 5.2.4  Employment of Our Proposed Method 

 Because the number of modes can vary with time, the size of each state vector 

(i.e., particle) can be different. Suppose that each 𝑙-th low-weight parent 𝐱𝑘𝐿
𝑙  is paired 

with the randomly selected ℎ-th high-weight parent 𝐱𝑘𝐻
ℎ , where 𝑙 ∈ {1, … , 𝑁𝑘𝐿}, 

ℎ ~ 𝑈{1, … , 𝑁𝑘𝐻}, 𝑁𝑘𝐿 < 𝑁, and 𝑁𝑘𝐻 < 𝑁. Quantities 𝑟𝑘𝐻
ℎ  and 𝑟𝑘𝐿

𝑙  denote the number 

of modes of the high-weight parent 𝐱𝑘𝐻
ℎ  and that of the low-weight parent 𝐱𝑘𝐿

𝑙 , 

respectively. Only one of two GA operators (i.e., flat crossover proposed by Radcliffe 

(1990) or modified Gaussian mutation proposed by Zhang et al. (2021)) is randomly 

chosen according to quantity 𝐸𝑆𝑆𝑘 of all 𝑁 pre-classification parents (i.e., parameter 

𝛾𝑘 calculated via Equation 3.2) and employed to calculate only new modal frequencies 

and new modal amplitudes for each offspring. Regardless of the choice of GA 

operators, each offspring must inherit the noise variance value 𝜎𝑘
2,𝑖

 of its own low-

weight parent 𝐱𝑘𝐿
𝑙  without perturbing it. The reason is to obtain fair comparison of the 

weight of the spectrum replica generated from state values of the offspring particle and 

the weight of the spectrum replica generated from state values of the low-weight parent 

with the same noise variance value. 

 In flat crossover, only modal frequencies and modal amplitudes of the first 

through the min(𝑟𝑘𝐻
ℎ , 𝑟𝑘𝐿

𝑙 )-th mode of the high-weight parent 𝐱𝑘𝐻
ℎ  and those of the low-

weight parent 𝐱𝑘𝐿
𝑙  are employed to calculate offspring state values. In case 𝑟𝑘𝐿

𝑙 > 𝑟𝑘𝐻
ℎ , 

modal frequencies and modal amplitudes of the (𝑟𝑘𝐻
ℎ + 1)-th through the 𝑟𝑘𝐿

𝑙 -th mode 

of the low-weight parent 𝐱𝑘𝐿
𝑙  will be assigned to the offspring without being changed. 

In case 𝑟𝑘𝐿
𝑙 < 𝑟𝑘𝐻

ℎ , 𝑟𝑘𝐿
𝑙  modal frequencies and 𝑟𝑘𝐿

𝑙  modal amplitudes of the new offspring 

can be completely different from those of its two parents. Modal frequencies and modal 
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amplitudes of the (𝑟𝑘𝐿

𝑙 + 1)-th through the 𝑟𝑘𝐻
ℎ -th mode of the high-weight parent 𝐱𝑘𝐻

ℎ  

are left unpaired and unemployed in this case. 

 When modified Gaussian mutation is employed, the size of the offspring vector 

must be same as that of its high-weight parent 𝐱𝑘𝐻
ℎ . That is, the offspring in this case 

can be found by: (1) creating a copy of its low-weight parent 𝐱𝑘𝐿
𝑙 , (2) replacing the old 

modal frequencies and modal amplitudes with those of its high-weight parent 𝐱𝑘𝐻
ℎ , and 

(3) perturbing the newly assigned modal frequencies and modal amplitudes. 

 After new modal frequencies and new modal amplitudes are obtained for an 

offspring, we need to find the new spectrum replica and the new weight of that offspring 

(with the inherited unchanged noise variance 𝜎𝑘
2,𝑖

) according to Equations 5.29-5.30. 

We accept the new offspring only if its weight is higher than that of its low-weight 

parent 𝐱𝑘𝐿
𝑙 . Recall that, before the first offspring is found at any time step, 𝑁𝑘𝐿 + 𝑁𝑘𝐻 =

𝑁. Because our method suggests that any offspring particle whose weight is not lower 

than the weight threshold employed to classify the 𝑁 parents should be employed as a 

new high-weight parent, quantity 𝑁𝑘𝐻 must be increased by one every time such an 

offspring is found. 

 5.2.5  Spectra Estimation 

 After GA is employed, some original high-weight parents may have weights 

that are lower than those of their respective offspring. In this application, we also 

perform resampling to eliminate low-weight particles and to ensure the existence of 

high-weight particles. 

 Suppose that the resampled particle 𝐱̃𝑘
𝑖  has 𝑟̃𝑘

𝑖  modes where 𝑟𝑚𝑖𝑛 ≤ 𝑟̃𝑘
𝑖 < 𝑟𝑚𝑎𝑥. 

We select the most frequently obtained number of modes as the number of modes of 

the estimated spectrum to be created at time step 𝑘: 

  𝑟̂𝑘 = MAP
𝑖

(𝑟̃𝑘
𝑖). (5.31) 

 Next, we find the most frequently obtained non-zero modal frequency of each 

mode at time step 𝑘: 

 𝑓𝑘.𝑚 = MAP
𝑖

(𝑓𝑘,𝑚
𝑖 ), (5.32) 
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where 𝑚 ∈ {1, … , 𝑟̂𝑘}. 

 Next, we find the modal amplitude of each estimated modal frequency 𝑓𝑘.𝑚 at 

time step 𝑘. In this step, we first need to find resampled particles 𝐱̃𝑘
𝑖  whose modal 

frequencies 𝑓𝑘,𝑚
𝑖  are equal to 𝑓𝑘,𝑚 (computed via Equation 5.32). Let 𝑁𝑓̂𝑘,𝑚

 denote the 

number of resampled particles whose modal frequencies 𝑓𝑘,𝑚
𝑖  satisfy the condition 

𝑓𝑘,𝑚
𝑖 = 𝑓𝑘,𝑚, where 𝑁𝑓̂𝑘,𝑚

≤ 𝑁; quantity 𝑁𝑓̂𝑘,𝑚
 can be different for each 𝑚-th mode. 

The 𝑚-th modal amplitude 𝑎̃𝑘,𝑚
𝑖  of such resampled particles is kept unchanged, while 

those of the rest are set as zero, because modal amplitudes 𝑎̃𝑘,𝑚
𝑖  of resampled particles 

whose modal frequencies 𝑓𝑘,𝑚
𝑖  do not satisfy the condition 𝑓𝑘,𝑚

𝑖 = 𝑓𝑘,𝑚 will be excluded. 

Then, we can find each 𝑚-th modal amplitude of the estimated spectrum at time step 𝑘 

as 

 𝑎̂𝑘.𝑚 = ∑
𝑎̃𝑘,𝑚

𝑖

𝑁𝑓̂𝑘,𝑚

𝑁
𝑖=1 , (5.33) 

which is equivalent to finding an average of the 𝑚-th modal amplitude 𝑎̃𝑘,𝑚
𝑖  that 

belongs to the 𝑁𝑓̂𝑘,𝑚
 resampled particles. That is, the denominator in Equation 5.33 

must be 𝑁𝑓̂𝑘,𝑚
 instead of 𝑁, while quantity 𝑎̃𝑘,𝑚

𝑖  of each unused resampled particle has 

already been set to zero. 

 Finally, we create the estimated spectrum at time step 𝑘 as 

 𝐬𝑘 = ∑ 𝑎̂𝑘,𝑚sinc2(𝑓 − 𝑓𝑘,𝑚)
𝑟̂𝑘
𝑚=1  (5.34) 

which is a summation of 𝑟̂𝑘 squared sinc functions with their respective modal 

frequencies 𝑓𝑘,𝑚 (found via Equation 5.32) and respective modal amplitudes 𝑎̂𝑘,𝑚 

(found via Equation 5.33). 

5.3  Experimental Results 

 A time-varying broadband signal emitted and from a sound source received at 

a hydrophone in the ocean (shown in Figure 5.1) is chosen as the input signal. The 
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sampling rate employed in recording the signal was 2000 Hz. A spectrogram of the 

signal is also shown in Figure 5.2. We selected a Hamming window as suggested by 

Aunsri (2018a) with a length at 180 milliseconds (ms). However, we choose to perform 

state estimation only between 451 to 1050 ms of the spectrogram where the dispersion 

curves (i.e., tracks of the modal waves) seem well-separated as shown in Figure 5.3. 

Figure 5.4 shows the zoomed version of such a portion of the spectrogram at frequency 

200 to 600 Hz. 

 

Figure 5.1  A noise-free acoustic time-series 
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Figure 5.2  A spectrogram of the noise-free acoustic time-series 

 

Figure 5.3  A portion of the spectrogram 
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Figure 5.4  A zoomed portion of the spectrogram 

 The spectrum estimation performance of our method will be compared with that 

of the traditional sequential importance resampling particle filter (SIR-PF) and the 

percentile-based resampling particle filter (PBR-PF) proposed by Aunsri et al. (2021). 

According to the PF formulation discussed in Section 5.2, at each time step, the SIR-

PF and PBR-PF perform Steps 5.2.1-5.2.3 and then skip to Step 5.2.5 because these PF 

algorithms do not employ GA. At the beginning of Step 5.2.5, the SIR-PF and the 

proposed method employ a systematic resampling scheme. The PBR-PF, however, 

keeps and replicates only the 𝑁𝑃𝐵𝑅,𝑘 best particles with the summation of their weights 

not less 90% of the summation of all 𝑁 weights at time step 𝑘, while the rest are 

eliminated (Aunsri et al., 2021). Recall that 𝑁𝑃𝐵𝑅,𝑘 < 𝑁 and 𝑁𝑃𝐵𝑅,𝑘 must be the lowest 

integer that satisfies such a condition and preset percentage. Also, the weights of the 

selected and sorted 𝑁𝑃𝐵𝑅,𝑘 particles must first be normalized according to Equation 

2.34. Figure 5.5 shows a squared sinc function employed in this experiment to calculate 

the replica of the spectrum according to Equation 5.29. 
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Figure 5.5  A squared sinc function used in spectrum estimation 

 Table 5.1 presents the related parameters preset for the PF algorithms. The 

proposed method employs modified Gaussian mutation with covariance matrices 𝚺𝑓 =

𝐈
𝑟𝑘𝐻

ℎ  and 𝚺𝑎 = 10−3𝐈
𝑟𝑘𝐻

ℎ  to find new modal frequencies and new modal amplitudes, 

respectively. Matrix 𝐈
𝑟𝑘𝐻

ℎ  denotes an identity matrix with dimension 𝑟𝑘𝐻
ℎ × 𝑟𝑘𝐻

ℎ  where 

𝑟𝑘𝐻
ℎ  is the number of modes of the high-weight parent 𝐱𝑘𝐻

ℎ . 
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Table 5.1  Parameters used in spectrum estimation 

Symbol Meaning Value 

𝐿 Length of spectrum 800 

𝑟𝑚𝑖𝑛 Minimum number of modes 2 

𝑟𝑚𝑎𝑥 Maximum number of modes 6 

𝑓𝑚𝑖𝑛 Minimum modal frequency 200 

𝑓𝑚𝑎𝑥  Maximum modal frequency 600 

𝜎𝑚𝑎𝑥
2  Maximum noise variance value 10-4 

𝑡𝑓𝑖𝑟𝑠𝑡 First time step (ms) 451 

𝑡𝑙𝑎𝑠𝑡  Last time step (ms) 1050 

𝑝 Probability that variable 𝑟𝑘−1 stays unchanged 0.6 

𝚺𝑓,𝑘−1 Covariance matrix of PDF of modal frequencies 𝐈𝑟𝑘−1
 

𝚺𝑎,𝑘−1 Covariance matrix of PDF of modal amplitudes 10−3𝐈𝑟𝑘−1
 

𝜁2 Variance of PDF of noise variance 10-6 

𝑁 Number of particles  2000 

𝐾 Number of time steps 600 

𝑅 Number of simulation runs 50 

 In this experiment, the time-domain observation noise is additive white 

Gaussian with a fixed but unknown variance. The SNR for each case, however, cannot 

be obtained as a constant because the signal fades out with time as shown in Figures 

5.1-5.2. 

 Figure 5.6 shows the spectrogram of the acoustic time series that is corrupted 

by the time-domain additive white Gaussian noise at an average SNR of 15 dB. The 

dispersion curve tracking at such an average SNR delivered by the SIR-PF, PBR-PF, 

and the new method are shown in Figures 5.7-5.9. The white dots represent positions 

of the estimated center frequency of modal waves that form the dispersion curves. At 

the beginning of the tracking, some modes merge and ambiguity in tracking is high. 

There are no significant differences between tracking results delivered by all filters at 

500-650 ms. Figure 5.10 shows a comparison of spectrum estimation delivered by the 

three filters at time 485 ms. The leftmost, wide and non-symmetric mode is estimated 

https://www.bing.com/ck/a?!&&p=6147d89494ecd008c7980bba6348da2c2a478c3ad62c12e33aff2bcdcf01c738JmltdHM9MTc1NTczNDQwMA&ptn=3&ver=2&hsh=4&fclid=27a9b7c5-0855-6b4f-22d8-a18a09926a48&psq=zeta+greek+letter&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWmV0YQ&ntb=1
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by two or more squared sinc functions. The rightmost mode, however, cannot be 

tracked by any filter. Also, most of the modal amplitudes estimated by each filter seem 

to not differ much from each other. At time 700-900 ms, the new method seems to 

overestimate the number of dispersion curves as shown in Figure 5.9. Figure 5.11, 

however, shows a proof of the superior performance of the new method as it can capture 

the 344-Hz and the 371-Hz frequency modes at time 715 ms, while the others cannot. 

Figures 5.12-5.14 show the probability mass function (PMF) of the number of modes 

delivered from the SIR-PF, PBR-PF, and the new method, respectively. 

 

Figure 5.6  The noisy spectrogram at an average SNR of 15 dB 
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Figure 5.7  Dispersion curves at an average SNR of 15 dB as tracked by the SIR-PF 

 

Figure 5.8  Dispersion curves at an average SNR of 15 dB as tracked by the PBR-PF 
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Figure 5.9 Dispersion curves at an average SNR of 15 dB as tracked by the proposed 

method 

 

Figure 5.10  Spectrum estimation at time 485 ms for an average SNR of 15 dB 
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Figure 5.11  Spectrum estimation at time 715 ms for an average SNR of 15 dB 

 

Figure 5.12 PMF of the number of modes for an average SNR of 15 dB delivered from 

the SIR-PF 
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Figure 5.13 PMF of the number of modes for an average SNR of 15 dB delivered from 

the PBR-PF 

 

Figure 5.14 PMF of the number of modes for an average SNR of 15 dB delivered from 

the proposed method 

 Next, we show the results at an average SNR of 5 dB. The noisy spectrogram at 

such an average SNR is shown in Figure 5.15, while the dispersion curve tracking 

results are shown in Figures 5.16-5.18. For all filters, curves at the beginning of the 

spectrogram are not well tracked. The SIR-PF, delivers the poorest tracking at such 

time when compared to the PBR-PF and the new method. Both the SIR-PF and the 
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PBR-PF started to miss tracking the topmost mode at time 900 ms, as shown in Figures 

5.16 and 5.17, respectively. The new method can capture such a mode; however, a false 

high-frequency mode shortly occurs between 900 and 950 ms as shown in Figure 5.18.  

This stems from the fact that GAs tries to find the new state vectors with higher 

likelihoods, while the likelihood value mainly affected by the closeness to the 

observation (i.e., noisy spectrum slices) as shown in Equation 5.30. Figure 5.19 shows 

the superior performance in spectrum slice estimation at time 950 ms of the new 

method. The shown stronger amplitude of false modes (i.e., observation noise) proves 

the side-effect of the new method, while only the new method can capture a 362-Hz 

frequency mode. Figures 5.20-5.22 show the probability mass function (PMF) of the 

number of modes delivered from the SIR-PF, PBR-PF, and the new method, 

respectively. 

 

Figure 5.15  The noisy spectrogram at an average SNR of 5 dB 
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Figure 5.16  Dispersion curves at an average SNR of 5 dB as tracked by the SIR-PF 

 

Figure 5.17  Dispersion curves at an average SNR of 5 dB as tracked by the PBR-PF 
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Figure 5.18 Dispersion curves at an average SNR of 5 dB as tracked by the proposed 

method 

 

Figure 5.19  Spectrum estimation at time 950 ms for an average SNR of 5 dB 
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Figure 5.20 PMF of the number of modes for an average SNR of 5 dB delivered from 

the SIR-PF 

 

Figure 5.21 PMF of the number of modes for an average SNR of 5 dB delivered from 

the PBR-PF 
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Figure 5.22 PMF of the number of modes for an average SNR of 5 dB delivered from 

the proposed method 

 Next, we perform the experiment when the average SNR is 0 dB where the noisy 

spectrogram at such an average SNR is shown in Figure 5.23. The dispersion curve 

tracking results are shown in Figures 5.24-5.26. The bottommost curve tracked by the 

SIR-PF has a discontinuity at around 900 ms, as shown in Figure 5.24. This 

discontinuity does not appear in the results delivered by the PBR-PF (in Figure 5.25) 

and the new method (in Figure 5.26). The dispersion curves at around 650 to 750 ms 

delivered by the new method (in Figure 5.26). look better than those delivered by the 

SIR-PF (in Figure 5.24). and the PBR-PF (in Figure 5.25) because the former has better 

continuity of the curves. However, the new method faces the most severe problem about 

delivering false modes as shown as short curves appearing on the TFR. This stems from 

the fact that the false modes can have higher amplitudes when the average SNR is low 

and they can be more likely to be misidentified as modal frequency. Figures 5.27-5.28 

shows the exemplar comparison of spectrum estimation at time 729 ms and 927 ms, 

respectively. The new method is shown being able to capture all modes at such 

exemplar time steps, but the side-effect of misidentifying noise as false modes remains. 

Figures 5.29-5.31 show the probability mass function (PMF) of the number of modes 

delivered from the SIR-PF, PBR-PF, and the new method, respectively. Lower average 

SNRs cause the new method to prefer the big number of modes. 
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Figure 5.23  The extremely noisy spectrogram at an average SNR of 0 dB 

 

Figure 5.24  Dispersion curves at an average SNR of 0 dB as tracked by the SIR-PF 
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Figure 5.25  Dispersion curves at an average SNR of 0 dB as tracked by the PBR-PF 

 

Figure 5.26 Dispersion curves at an average SNR of 0 dB as tracked by the proposed 

method 
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Figure 5.27  Spectrum estimation at time 729 ms for an average SNR of 0 dB 

 

Figure 5.28  Spectrum estimation at time 927 ms for an average SNR of 0 dB 
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Figure 5.29 PMF of the number of modes for an average SNR of 0 dB delivered from 

the SIR-PF 

 

Figure 5.30 PMF of the number of modes for an average SNR of 0 dB delivered from 

the PBR-PF 
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Figure 5.31 PMF of the number of modes for an average SNR of 0 dB delivered from 

the proposed method 

 Finally, we evaluate the performance in term of the root-mean-square errors 

which can be found as: 

  Avg(RMSE) =
1
𝑅

∑ √
1

(𝑡𝑙𝑎𝑠𝑡−𝑡𝑓𝑖𝑟𝑠𝑡)+1
∑ ||𝐬𝑘 – 𝐬𝑘,𝑟||2𝑡𝑙𝑎𝑠𝑡

𝑘=𝑡𝑓𝑖𝑟𝑠𝑡

𝑅
𝑟=1 , (5.35) 

where 𝐬𝑘 denotes the true spectrum at time step 𝑘, while 𝐬𝑘,𝑟 denotes the inferred 

spectrum at time step 𝑘 of the 𝑟-th simulation run (found via Equation 5.34). Symbol 

‖∙‖2 denotes the squared 𝑙2 norm. Recall that 𝑡𝑓𝑖𝑟𝑠𝑡 and 𝑡𝑙𝑎𝑠𝑡 represent the first and the 

last time step selected according to Table 5.1 (Aunsri & Chamnongthai, 2021). 

 Table 5.2 presents a comparison of average RMSEs computed for each PF 

algorithm at different SNRs. At the average SNR of 15 dB. The new method yields the 

lowest RMSEs compared to those of the SIR-PF and the PBR-PF. However, as the 

average SNR decreases, the SIR-PF yields the lowest RMSEs compared to the PBR-PF 

and the new method. Recall that the PBR-PF prefers keeping and replicating high-

weight particles without considering particle diversity. That is, the PBR-PF and the new 

method are sensitive to the high intensity noise where false modes are more likely to be 

misidentified. If the misidentified false modes can be eliminated by additional 
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techniques by the experts, the RMSEs delivered from the new method is supposed to 

be reduced. 

Table 5.2  Average RMSEs 

SNR SIR-PF PBR-PF Proposed 

15 0.6539 0.6511 0.6342 

10 0.6780 0.6813 0.6881 

5 0.7440 0.7528 0.7577 

0 0.8996 0.9054 0.9127 
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CHAPTER 6 

CONCLUSIONS 

6.1  Conclusions 

 This dissertation presents a novel scheme for employing an adaptive GA 

efficiently in improving sequential state estimation performance under PF framework. 

To ensure diversity of new offspring particles, diversity of parents must be high. Recall 

that procedure of parent selection is similar to resampling but their objectives are 

different. High-weight particles that survive parent selection will be employed to create 

new offspring particles that belong to the same time step. In resampling, after low-

weight particles are eliminated and high-weight particles are replicated, state values of 

copies of the latter will be updated via state evolution function in order to predict the 

true state at the next time step. While diversity of parents could be regained via 

roughening, particle degeneracy might return because some resampled particles might 

have lower weights after their state values were perturbed. Also, roughening could be 

employed only when size of state vectors was constant, according to the variance values 

found via Equation 2.37. Thus, instead of employing parent selection as done in 

traditional GAs and in GORPF, all of  𝑁 weighted particles can be instantly employed 

as parents but they must first be classified as high-weight parents and low-weight 

parents. 

 Offspring state vectors calculation must be done for every pair of parents at 

every time step regardless of particle degeneracy measured as effective sample size 

(ESS) of the 𝑁 parents. Recall that the maximum ESS denotes that each parent has the 

same weight, but it does not mean that this weight is actually high. In GORPF, offspring 

creation will be done only when ESS (found according to re-evaluated weights of the 

𝑁 post-roughening parents) is less than the preset threshold. According to simulation 

results in Chapter 4, the estimation performance delivered from GORPF was proved 

less reliable than those of our proposed method by having higher averages and variances 

of numerical errors, while our proposed method does not require as many preset GA 
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parameters as GORPF does. Also, averages and variances of computation time spent 

by GORPF were significantly higher than those of our proposed method. 

 Each low-weight parent must pair with a randomly selected high-weight parent 

in order to prevent any pair of two identical parents. Because number of low-weight 

parents and high-weight parents can be uneven, each high-weight parent may be 

repeatedly selected to pair with more than one low-weight parent. We set the probability 

of being selected of each high-weight parent to be uniform. The reasons are to ensure 

that: (1) the maximum-weight parent will not be preferred in order to ensure diversity 

of offspring particles, and (2) computation time can be saved because CDF of weights 

of high-weight parents is not required. Also, each created pair randomly selects only 

either flat crossover or modified Gaussian mutation (where mean values of the Gaussian 

PDF are state values of the high-weight parent) to find one new offspring particle in 

order to save computation time. That is, we treat state values of the high-weight parent 

as clues in finding the offspring state vector. Both GA operators are more efficient than 

blind perturbation done on state values of each particle. As presented in Chapter 4, 

performances of ASIR-PF and AFPF in estimating states from simulation state-space 

models were proved inferior to that of our proposed method by delivering higher 

RMSEs. Furthermore, GORPF selected each high-weight parent according to the CDF 

of weights of high-weight parents. This caused computation time of GORPF to be 

longer than those of IPF and our proposed method. 

 To ensure accuracy of state estimation, our proposed method accepts an 

offspring to replace its low-weight parent only if its weight is higher than that of its 

low-weight parent. As demonstrated in posterior PDFs reshaping in simulation one-

dimensional state estimation (presented in Section 4.1), each low-weight parent in our 

proposed method could only either stay unchanged or randomly move to any new 

region where high-weight state values exist. Furthermore, our proposed method treats 

offspring particles whose weights are not lower than the weight threshold (which is 

found according to weights of all 𝑁 parents and employed in parent classification) as 

additional high-weight parents. This scheme combats shortage of high-weight parents, 

especially in case of severe particle degeneracy. In IPF, Metropolis-Hastings (M-H) 

method was employed to randomly accept or reject the new offspring, while there were 

no any schemes for fixing shortage of high-weight parents. Average RMSEs of IPF 
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then were higher than those of our proposed method for simulation results in Chapter 

4, while IPF and our proposed method delivered significant low variances of errors 

compared to those of the other state-of-the-art methods. 

 We also tested performance of the new method in estimating spectrum of an 

acoustics that disperses through an ocean waveguide in Chapter 5. GA operators were 

employed to find new offspring modal frequencies and new offspring modal amplitudes 

to ensure particle diversity. According to the results, stronger time-domain observation 

noise creates more false modes to be misidentified as the modal frequency. In other 

words, false dispersion curves are more likely to appear in the tracking results delivered 

by the new method. Although the new method showed superior performance in 

capturing the modal frequencies, the misidentification of false modes seems to be a 

side-effect of employing the new method. Consequently, the RMSEs of the new method 

are higher than those delivered from the SIR-PF and the PBR-PF for such low SNRs. 

The RMSEs should be reduced if the problem of the false mode misidentification can 

be solved. 

6.2  Limitations 

 Adaptive GAs can be employed only when the condition 𝐸𝑆𝑆𝑘 < 𝑁 is satisfied. 

When 𝐸𝑆𝑆𝑘 = 𝑁 or weights of all 𝑁 parents are same (but not necessarily high), parent 

classification will be impossible. In practice, it is difficult to achieve such maximum 

ESS, especially when size of state vector is high or number of particles 𝑁 is sufficient. 

However, bigger state vectors decrease probability of finding the offspring whose 

weight is higher than that of its low-weight parent. Such curse of dimensionality also 

leads to spending more computation time in finding new offspring state values. This is 

an unavoidable tradeoff between state estimation performance and computation time. 

As previously shown in Chapter 4, SIR-PF spent the shortest computation time for both 

one-dimensional state and multidimensional state estimation, while RMSEs delivered 

from SIR-PF were higher than those of our proposed method. 

 Classifying parents as high-weight parents and low-weight parents can prevent 

any pair of two identical parents. However, in case the parents are state vectors, it can 
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be possible that 𝑚-th vector component of the low-weight parent and 𝑚-th vector 

component of the high-weight parent have same state value. If such case happens, the 

new offspring state value found using flat crossover for that 𝑚-th vector component, 

according to Equation 2.43, will be same to those of the two parents. If all state values 

in a vector have different units, we cannot swap the order of the state values and 

diversity of state values of that 𝑚-th vector component can be low. 

 Shortage of high-weight parents in case particle degeneracy is severe could be 

mitigated by adding new offspring particles whose weights were not less than the preset 

threshold as new members of set of high-weight parents. However, all pairs of parents 

cannot be created in advance because each pair must create an offspring sequentially 

and the newly added high-weight parent can be available to be selected to form the next 

pair of parents. 

 The new method prevents the parent particles from being replaced by the low-

quality offspring particles. However, there are no schemes in GAs for ensuring that the 

weight of the new offspring candidate will always be higher than the weight of its low-

weight parent. At any time step, there can be chances that the post-GA particle swarm 

will be the same as the original population because every new offspring has its weight 

which is lower than the weight of their respective low-weight parent; all of these 

offspring particles are then rejected. 

6.3  Future Work 

 State values of any two parent particles can affect search space of the to-be-

drawn offspring state values. If difference between the two parent state values is high, 

flat crossover should be preferred because search space is sufficiently large. On the 

contrary, if difference between the two parent state values is low, modified Gaussian 

mutation can be employed to find new state values that are located outside the small 

search space. That is, size of difference between the two parent state values should also 

be considered in randomly choosing a GA operator, not just ESS found according to 

weights of the 𝑁 parents. Furthermore, bounds of the population (i.e., minimum and 

maximum state values of the particle swarm) should also be taken into consideration. 
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 New schemes should be proposed and incorporated with GAs to ensure that the 

new offspring will be better than its low-weight parent in order to save computation 

time for offspring weight checking. 

 According to the results in Chapter 5, the new method could be employed under 

the MMPF framework where size of each particle (i.e., state vector) is uneven. This 

pilot study can then be extended to the employment on more complicated systems and 

applications. 
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