

**EFFICACY OF 0.1% TOPICAL FINASTERIDE SPRAY SOLUTION
FOR MALE EYEBROW ENHANCEMENT: A RANDOMIZED,
DOUBLE-BLIND, PLACEBO-CONTROLLED, SPLIT-FACE
COMPARATIVE STUDY**

KITTINUT CHITTIPORNSAN

MASTER OF SCIENCE
IN
DERMATOLOGY

**SCHOOL OF ANTI-AGING AND REGENERATIVE MEDICINE
MAE FAH LUANG UNIVERSITY**

2025

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

**EFFICACY OF 0.1% TOPICAL FINASTERIDE SPRAY SOLUTION
FOR MALE EYEBROW ENHANCEMENT: A RANDOMIZED,
DOUBLE-BLIND, PLACEBO-CONTROLLED, SPLIT-FACE
COMPARATIVE STUDY**

KITTINUT CHITTIPORNSAN

**THIS THESIS IS A PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
DERMATOLOGY**

**SCHOOL OF ANTI-AGING AND REGENERATIVE MEDICINE
MAE FAH LUANG UNIVERSITY
2025**

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

THEESIS APPROVAL
MAE FAH LUANG UNIVERSITY
FOR
MASTER OF SCIENCE IN DERMATOLOGY

Thesis Title: Efficacy of 0.1% Topical Finasteride Spray Solution for Male Eyebrow Enhancement: A Randomized, Double-blind, Placebo-controlled, Split-face Comparative Study

Author: Kittinut Chittipornsan

Examination Committee:

Tanomkit Pawcsuntorn, M. D.	Chairperson
Bhakinai Temnithikul, M. D.	Member
Associate Professor Wongdyan Pandii, Dr. P. H.	Member

Advisor:

Bhakinai
..... Advisor
(Bhakinai Temnithikul, M. D.)

Dean:

.....
(Jaraphol Rintra, M. D.)

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Bhakinai Temnithikul, for his unwavering support, invaluable guidance, and insightful advice throughout the course of this research. His expertise and encouragement have been instrumental in shaping this study and helping me navigate the challenges I encountered. I am profoundly grateful for his commitment to my academic and professional growth.

I would also like to extend my heartfelt thanks to my family for their unconditional love, understanding, and support during this journey. Their encouragement and belief in me have been a constant source of motivation and strength, allowing me to persevere through the most challenging moments. I am deeply thankful for their patience and for always being there for me.

This study was supported by a research grant from Mae Fah Luang University. The author gratefully acknowledges Mae Fah Luang University for its generous financial support, which made the conduct of this research and the completion of this work possible.

Without the support of Dr. Bhakinai Temnithikul and my family, this research would not have been possible.

Kittinut Chittipornsan

Thesis Title	Efficacy of 0.1% Topical Finasteride Spray Solution for Male Eyebrow Enhancement: A Randomized, Double-blind, Placebo-controlled, Split-face Comparative Study
Author	Kittinut Chittipornsan
Degree	Master of Science (Dermatology)
Advisor	Bhakinai Temnithikul, M. D.

ABSTRACT

Objective: Eyebrow hypotrichosis is a growing aesthetic concern with limited non-invasive treatment options. Finasteride, a 5-alpha-reductase inhibitor, is effective in androgenetic alopecia through dihydrotestosterone suppression. Given the presence of androgen receptors in eyebrow follicles, topical finasteride may offer localized therapeutic benefit. However, no clinical studies have assessed its use for eyebrow enhancement. This pilot trial aimed to evaluate the efficacy and safety of 0.1% topical finasteride spray in men with mild to moderate eyebrow hypotrichosis.

Materials and Methods: In a randomized, double-blind, placebo-controlled, split-face study, eight healthy Thai males applied 0.1% topical finasteride to one eyebrow and placebo to the contralateral side twice daily for 12 weeks. Primary outcome was photographic assessment using the Global Eyebrow Assessment (GEBA) scale. Secondary outcomes included eyebrow hair count, hair diameter, patient satisfaction, and safety monitoring.

Results: Eight male participants (mean age 37.9 ± 2.5 years) completed the study. The finasteride-treated side showed significantly higher global photographic scores than placebo from week 4 onward ($p=0.008$ to 0.002), with a mean score of 2.0 ± 0.76 at weeks 8 and 12. Hair count increased significantly in the finasteride group. Mean hair shaft diameter showed no significant change in either group. No serious adverse events occurred; with only mild transient pruritus reported in isolated cases during the trial.

Conclusions: Topical 0.1% finasteride appears to be a safe, non-invasive option for enhancing male eyebrow density. These results support further investigation in larger, more diverse populations, with integrated assessment of both clinical efficacy and aesthetic perception.

Keywords: Eyebrow Hypotrichosis, Male Eyebrow Enhancement, Topical Finasteride, Placebo, Split-face Study

TABLE OF CONTENTS

CHAPTER	Page
1 INTRODUCTION	1
1.1 Background and Importance of the Research Problem	1
1.2 Research Questions	2
1.3 Research Objectives	3
1.4 Research Hypothesis	3
1.5 Scope of Research	4
1.6 Limitation of the Study	4
1.7 Terminology Definition	4
1.8 Conceptual Framework	8
2 LITERATURE REVIEW	9
2.1 The Biology, Structure, and Function of Eyebrow	9
2.2 Overview of Eyebrow Hypotrichosis	12
2.3 Current Treatments for Eyebrow Hypotrichosis	17
2.4 Overview of Finasteride	21
2.5 Topical Finasteride for Hair Loss	24
2.6 Rationale for Eyebrow Enhancement with Topical Finasteride: Potential Mechanism	27
3 RESEARCH METHODOLOGY	29
3.1 Study Design	29
3.2 Population and Sample Determination	29
3.3 Randomization and Double-blind Technique	34
3.4 Tools Used for Data Collection	35
3.5 Materials and Equipment	36
3.6 Research Procedures	37
3.7 Data Analysis and Statistics	42

TABLE OF CONTENTS

CHAPTER	Page
4 RESEARCH RESULTS	43
4.1 Demographic Data of the Participants	43
4.2 Primary Outcome: Global Photographic Assessment	44
4.3 Secondary Outcome	47
5 CONCLUSION AND DISCUSSION	53
5.1 Conclusion	53
5.2 Discussion	53
5.3 Limitations	56
5.4 Suggestions	56
REFERENCES	58
APPENDICES	62
APPENDIX A DOCUMENT CERTIFYING HUMAN ETHICS	62
APPENDIX B CASE RECORD FORM	66
APPENDIX C FIGURES	70
APPENDIX D INFORMED CONSENT FORM	71

LIST OF TABLES

Table	Page
3.1 Data collection	35
3.2 Research procedure	41
4.1 Demographic data	43
4.2 Comparison global photographic scores of both eyebrows	45
4.3 Comparison global photographic scores of both eyebrows	46
4.4 Pictures comparing eyebrows treated with finasteride and placebo at baseline and week 12	47
4.5 Comparison of hair count between finasteride and placebo	48
4.6 Comparison of change in hair count from baseline between finasteride and placebo	49
4.7 Comparison of the hair diameter between finasteride and placebo	50
4.8 Comparison of the satisfaction of participants	51
4.9 Side effects	51

LIST OF FIGURES

Figure	Page
1.1 A sequential representation of the Global Eyebrow Assessment (GEBA) grades from left to right: Grade I, Grade II, Grade III, Grade IV	6
1.2 Conceptual framework	8

CHAPTER 1

INTRODUCTION

1.1 Background and Importance of the Research Problem

Eyebrow hair serves several vital biological functions, such as sensory transmission and shielding from environmental elements. Additionally, it plays a significant role in enhancing cosmesis, facial symmetry, expression, and overall appearance (Cunningham et al., 1995; Nguyen, 2014). While the pursuit of eyebrow enhancement has historically been associated with women, there is a growing trend among men seeking to improve the appearance of their eyebrows (Cunningham et al., 1995). Eyebrow hypotrichosis, characterized by sparse or thinning eyebrows, can result from various factors including idiopathic, genetics, aging, and underlying medical conditions. The impact of eyebrow hypotrichosis extends beyond physical appearance, often affecting an individual's self-esteem and psychological well-being (Suchonwanit et al., 2020).

Currently, no standardized treatment exists for eyebrow hypotrichosis. Treatment options for eyebrow enhancement include topical medications such as bimatoprost and minoxidil, as well as makeup, eyebrow transplants, and tattooing. However, these methods yield variable results (Chanasumon et al., 2018; Suchonwanit et al., 2020).

Finasteride, a 5-alpha-reductase inhibitor, is widely recognized for its efficacy in treating androgenetic alopecia in men. By inhibiting the conversion of testosterone to dihydrotestosterone (DHT), finasteride reduces DHT levels, which are implicated in shrinking hair follicles and contributing to hair loss. Oral finasteride, typically taken in a 1 mg daily dose, has been extensively studied and shown to effectively promote hair regrowth and increase hair density on the scalp over a period of several months to 5-10 years (Piraccini et al., 2022).

Topical formulations of finasteride have also been explored as an alternative to oral administration. These formulations aim to deliver finasteride directly to the scalp,

targeting the hair follicles while potentially minimizing systemic side effects associated with oral intake. Studies on topical finasteride have demonstrated promising results in terms of hair regrowth and maintenance, suggesting it as a viable option for patients who prefer topical treatments or experience adverse effects from oral finasteride (Piraccini et al., 2022).

Despite the established efficacy of finasteride for scalp hair loss, its application for eyebrow enhancement remains relatively unexplored. Investigating the potential and safety of a 0.1% topical finasteride spray solution specifically for eyebrow hypotrichosis could provide a novel, non-invasive treatment option, expanding therapeutic possibilities for individuals seeking eyebrow enhancement. This research aims to study the efficacy of this solution in male eyebrow enhancement, contributing to the existing knowledge of finasteride's use beyond scalp treatment. Additionally, it provides valuable information on optimal dosage adjustments and potential side effects when applied to a different area. Expanding this scientific understanding not only broadens the application of finasteride in dermatology and aesthetic medicine but also paves the way for the development of novel treatment formulations.

1.2 Research Questions

1.2.1 Primary Research Questions

Is the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement superior to placebo by comparing treatment results from global photographic score between the experimental group and the control group?

1.2.2 Secondary Research Questions

1.2.2.1 Is the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement superior to placebo by comparing the treatment results from the changes in average diameter of eyebrow hair, changes in the average number of eyebrow hairs, and patient satisfaction between the experimental group and the control group.?

1.2.2.2 Is 0.1% finasteride spray solution safe for topical use in male eyebrow enhancement?

1.3 Research Objectives

1.3.1 Primary Objectives

To study the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement by comparing treatment outcomes from global photographic score between the experimental group and the control group.

1.3.2 Secondary Objectives

1.3.2.1 To study the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement by comparing treatment outcomes from the changes in average hair diameter, changes in average hair count, and patient satisfaction between the experimental group and the control group.

1.3.2.2 To study the safety of 0.1% topical finasteride spray solution for male eyebrow enhancement.

1.4 Research Hypothesis

1.4.1 Primary Objectives Hypothesis

The 0.1% topical finasteride spray solution for male eyebrow enhancement is more effective than a placebo, as demonstrated by comparing treatment results from global photographic assessment between the experimental group and the control group.

1.4.2 Secondary Objectives Hypothesis

1.4.2.1 The 0.1% topical finasteride spray solution for male eyebrow enhancement is more effective than a placebo. This is demonstrated by comparing the treatment results based on the average diameter of the hairs and the average number of hairs. Additionally, patients in the experimental group are more satisfied with the results than those in the control group.

1.4.2.2 The 0.1% topical finasteride spray solution for male eyebrow enhancement is safe to use, with no significant difference in the incidence of adverse effects compared with the placebo.

1.5 Scope of Research

Patients aged 18-45 years with eyebrow hypotrichosis of either grade one or two on the GEBA scale who received treatment at the Dermatology Clinic of Mae Fah Luang University Hospital in Bangkok. The GEBA scale classifies eyebrow hypotrichosis into four grades, as follows: grade I, very sparse; grade II, sparse; grade III, full; and grade IV, very full.

1.6 Limitation of the Study

1.6.1 Single-Center Study: Conducting the study at a single dermatology clinic limits the geographic and demographic diversity of participants. The results may not be applicable to other populations with different backgrounds or conditions.

1.6.2 No evaluation of serum and scalp DHT levels

1.7 Terminology Definition

1.7.1 Eyebrow Hypotrichosis

Eyebrow hypotrichosis refers to a condition characterized by an abnormal eyebrow hair pattern, primarily manifesting as reduction in the amount of hair and lack of hair growth. The loss of hair of either or both eyebrows and eyelashes is called madarosis (Chanasumon et al., 2018).

1.7.1.1 Classification

Eyebrow hypotrichosis can be categorized as primary or secondary. Primary type is a physiological condition, while secondary type arises from underlying disorders. These underlying causes can be broadly classified as: Primary dermatoses, Endocrinopathies, Autoimmune diseases, Infections, Trauma, Neoplasms, Exposure to external agents (chemicals, medications), Nutritional disorders, Genodermatoses (Chanasumon et al., 2018).

1.7.1.2 Clinical Evaluation

Eyebrow hypotrichosis may present as the sole presenting symptom or be incidentally discovered during a physical examination. A thorough medical history, physical examination, and appropriate investigations are crucial to identify potential underlying causes (Chanasumon et al., 2018).

1.7.1.3 Investigations

Depending on the suspected underlying cause, investigations may include: antibody test (ANA) for autoimmune diseases, Syphilis tests, Thyroid function tests, Slit skin smear for infections like tuberculosis, Trichoscopy: A magnified examination of hair follicles to differentiate between different types of hair loss., Skin biopsy: May be required in cases with unclear diagnosis (Chanasumon et al., 2018).

1.7.1.4 Treatment

There is currently no standardized treatment for eyebrow hypotrichosis. The primary goals are to promote eyebrow hair growth and address any underlying medical conditions. Treatment modalities include:

1.7.1.4.1 Medications: Topical medications like minoxidil and bimatoprost are preferred for their non-invasive nature and ability to provide natural-looking results. Minoxidil and bimatoprost has been shown to be effective in promoting eyebrow growth in clinical studies (Chanasumon et al., 2018; Zaky et al., 2023).

1.7.1.4.2 Surgical procedures: May be considered in specific cases, such as eyebrow transplantation. (Chanasumon et al., 2018)

1.7.1.4.3 Cosmetic camouflage: Options like makeup or eyebrow tattoos can offer aesthetic improvement (Chanasumon et al., 2018).

1.7.2 Androgenetic Alopecia

Androgenetic alopecia (AGA), also known as male pattern baldness, is a genetically determined condition characterized by progressive hair loss. This loss is caused by the susceptibility of hair follicles to a process called androgenic miniaturization, primarily affecting the scalp vertex. AGA is a highly prevalent disorder, impacting over half of all men under the age of 50. Significantly, even hair loss that may not be readily apparent can be correlated with a decrease in quality of life for affected individuals (Piraccini et al., 2022).

The underlying mechanism of AGA involves an increased conversion of testosterone to dihydrotestosterone (DHT) within hair follicles of genetically predisposed men. This conversion is mediated by an enzyme known as type II 5 α -reductase (Piraccini et al., 2022).

1.7.3 Topical Finasteride Spray Solution

Topical finasteride spray solution is a formulation of the drug finasteride designed for direct application to the skin. Finasteride is a 5-alpha-reductase inhibitor commonly used in oral form to treat androgenetic alopecia by reducing the levels of dihydrotestosterone (DHT), which is implicated in hair loss. The topical formulation aims to deliver finasteride directly to the target area, such as the scalp or eyebrows, to stimulate hair growth and increase hair density while potentially minimizing systemic side effects associated with oral administration (Piraccini et al., 2022).

1.7.4 Placebo

Placebo refers to a substance designed to resemble the active treatment (0.1% topical finasteride spray solution) but does not contain any active pharmaceutical ingredients. In this research, the placebo consists of intervention solvent (ethanol/propylene glycol/water base) and is administered in the same manner as the finasteride spray. The placebo serves as a control to compare the effects of the active treatment, allowing researchers to determine whether the observed changes in eyebrow growth are due to the finasteride solution or psychological factors (the placebo effect).

1.7.5 Global Eyebrow Assessment Scale (GEBA Scale)

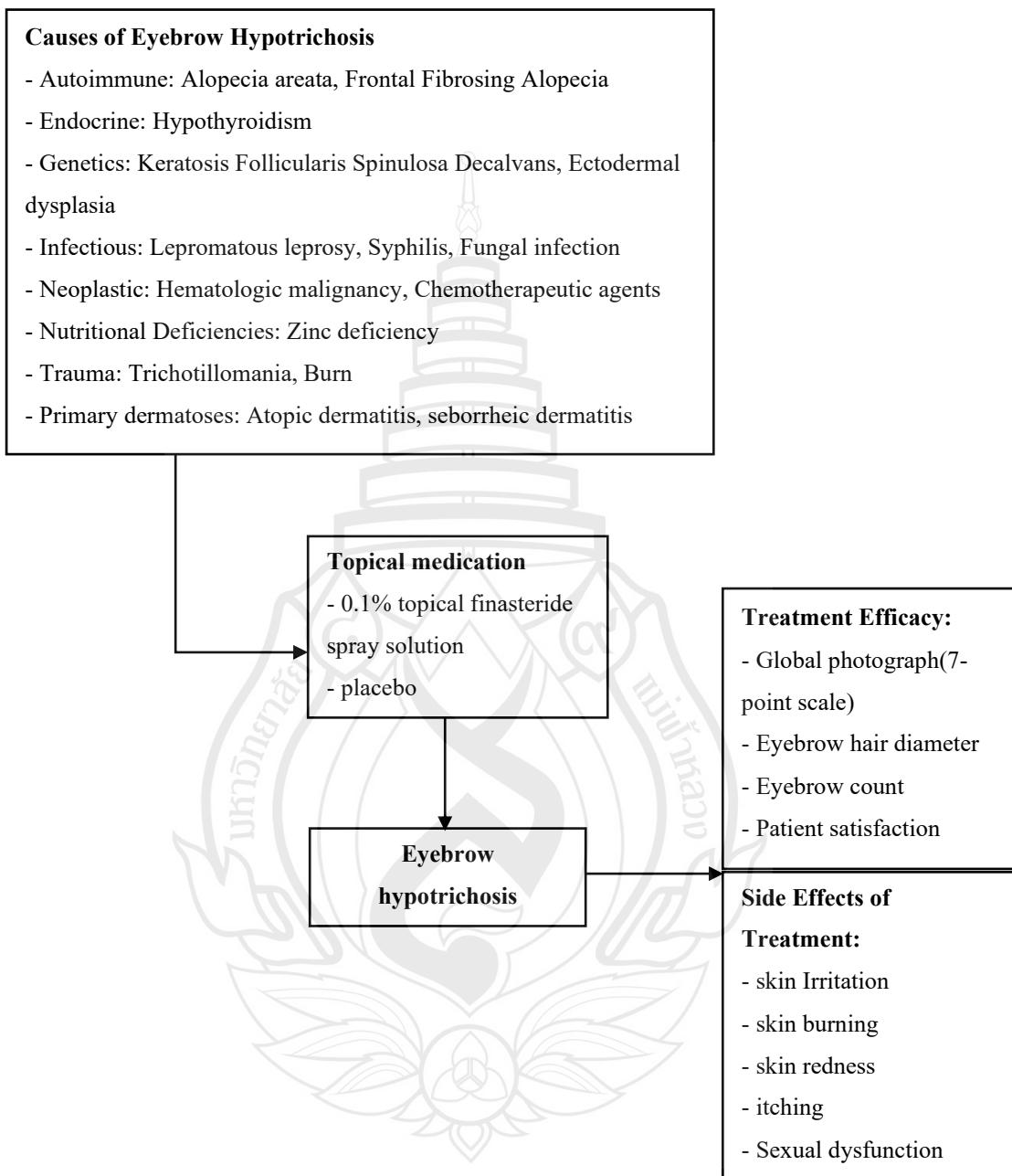
The GEBA scale classified eyebrow hypotrichosis into four grades, as follows: grade I, very sparse; grade II, sparse; grade III, full; grade IV, very full (Carruthers et al., 2016; Zaky et al., 2023).

Source Carruthers et al. (2016), Lee et al. (2014)

Figure 1.1 A sequential representation of the Global Eyebrow Assessment (GEBA) grades from left to right: Grade I, Grade II, Grade III, Grade IV

1.7.6 Efficacy

Efficacy refers to the ability of the 0.1% topical finasteride spray solution to produce the desired therapeutic outcome, specifically the enhancement of eyebrow overall appearance, density, and thickness in individuals with eyebrow hypotrichosis. In the context of this research, efficacy is measured by the degree of improvement in eyebrow hair growth, as assessed through several methods. One key method is the global photographic assessment scale, which evaluates changes in eyebrow appearance based on standardized photographs taken before, during, and after treatment. Additionally, efficacy is measured by the average number of eyebrow hairs (eyebrow count) and the average diameter of these hairs, both of which are crucial indicators of density and fullness. These measurements are performed over a defined treatment period to provide a comprehensive assessment of the treatment's impact on eyebrow hypotrichosis.


1.7.7 Side Effect

A side effect is any unintended or adverse reaction that occurs in response to the use of the 0.1% topical finasteride spray solution. In this study, side effects may include, but are not limited to, local skin reactions such as skin irritation, skin burning, redness and itching in the area of application, as well as potential systemic effects if the medication is absorbed into the bloodstream for example erectile dysfunction. The identification and monitoring of side effects are crucial for evaluating the safety profile of the treatment.

1.7.8 Patient Satisfaction

Patient satisfaction in this study refers to the subjective evaluation of the treatment experience and perceived outcomes by participants using a 7-point scale. This assessment is based on comparing photographs taken before and after the 12-week treatment period, allowing patients to rate their level of satisfaction with changes in their eyebrow appearance, including overall enhancement, density, and thickness. This approach provides valuable insights into the participants' personal perspectives on the effectiveness and aesthetic benefits of the 0.1% topical finasteride spray solution.

1.8 Conceptual Framework

Figure 1.2 Conceptual framework

CHAPTER 2

LITERATURE REVIEW

In this research, the researchers reviewed the following relevant research and documentation:

- 2.1 The Biology, Structure, and Function of Eyebrow
- 2.2 Overview of Eyebrow Hypotrichosis
- 2.3 Current Treatments for Eyebrow Hypotrichosis
- 2.4 Overview of Finasteride
- 2.5 Topical Finasteride for Hair loss
- 2.6 Rationale for Eyebrow Enhancement with Topical Finasteride: Potential Mechanism

2.1 The Biology, Structure, and Function of Eyebrow

2.1.1 Biology of Eyebrows

Eyebrows consist of terminal hairs, which are more pigmented, coarser, and shorter than the vellus hairs found elsewhere on the body. The hair growth cycle of eyebrows is distinct from that of scalp hair, primarily due to the shorter duration of the anagen (growth) phase. While scalp hairs can remain in the anagen phase for several years, allowing significant length growth, eyebrow hairs typically remain in this phase for only 2 to 3 months. This limited anagen phase restricts the length of eyebrow hairs, making them much shorter than scalp hairs (Nguyen, 2014).

Following the anagen phase, eyebrow hairs enter the catagen phase, which is a brief period of follicle regression lasting about 2 to 3 weeks. During this phase, the lower part of the follicle regresses, and the hair shaft ceases to grow. The telogen phase follows, lasting about 2 to 3 months, during which the hair remains attached but is not actively growing. Finally, the hair is shed during the exogen phase, and the follicle re-enters anagen, beginning the cycle anew (Mumford et al., 2023).

The hormonal regulation of eyebrow hair growth is complex and involves several endocrine factors, including androgens, estrogens, and thyroid hormones. Androgens, such as testosterone and dihydrotestosterone (DHT), play a critical role in the development and maintenance of terminal hair follicles. Although the effect of androgens on eyebrow hair is less pronounced than on scalp hair, the presence of androgen receptors in the dermal papilla of eyebrow follicles indicates that these hormones may still influence eyebrow density and thickness, albeit to a lesser extent (Nguyen, 2014).

Additionally, molecular signaling pathways, such as the Wnt/β-catenin pathway, are crucial for hair follicle development and cycling. This pathway is particularly important during the initiation of the anagen phase, promoting the proliferation of hair follicle cells and the growth of new hair shafts. Disruptions in these signaling pathways can lead to various hair growth disorders, including eyebrow hypotrichosis (Nguyen, 2014).

2.1.2 Structure of Eyebrows

Eyebrow hair follicles are similar in structure to other terminal hair follicles but have adaptations that suit their specific location and function on the face. Each follicle comprises several layers, including the outer root sheath (ORS), inner root sheath (IRS), and the hair shaft itself, which is produced by rapidly dividing matrix cells within the hair bulb. The dermal papilla, located at the base of the follicle, plays a crucial role in regulating hair growth by controlling the proliferation of matrix cells (Mumford et al., 2023).

A unique feature of eyebrow follicles is that each typically produces a single terminal hair, unlike scalp follicles that can produce multiple hairs per follicular unit. This singular growth pattern contributes to the distinct appearance of eyebrows, which are shorter, denser, and more curved than scalp hair. The hair shafts of eyebrows are also thicker and have a higher concentration of melanin, which gives them their characteristic color and texture (Nguyen, 2014).

The eyebrows are anatomically divided into three segments: the head (closest to the nose), the body (the central portion), and the tail (the outermost part). Each segment has hairs with distinct growth patterns and orientations. The head segment contains hairs that grow almost vertically, while the body and tail segments have hairs

that grow in an oblique direction. This orientation helps in framing the eyes and contributes significantly to facial symmetry and aesthetics (Mumford et al., 2023).

Beneath the skin, eyebrow hair follicles are surrounded by sebaceous glands that secrete sebum, an oily substance that helps to keep the hair and surrounding skin moisturized. The follicles are also richly supplied with blood vessels, which provide essential nutrients for hair growth, and are innervated by nerves that contribute to sensory perception and reflexive actions, such as blinking when the eyebrows are touched (Nguyen, 2014).

2.1.3 Function of Eyebrows

Eyebrows serve several essential functions, both protective and communicative. The primary biological function of eyebrows is to protect the eyes from moisture, such as sweat, and particulate matter like dust. The arched shape of the eyebrows channels moisture away from the eyes and down the sides of the face, preventing it from impairing vision. This protective function is particularly important in environments where moisture and debris are prevalent, such as during physical activity or in windy conditions (Nguyen, 2014).

In addition to their protective role, eyebrows are crucial for non-verbal communication. They play a significant role in expressing emotions such as surprise, anger, and concern. The movement and positioning of the eyebrows are key components of facial expression, making them important for social interactions. For example, raised eyebrows can indicate surprise or curiosity, while furrowed eyebrows may signal confusion or anger (Mumford et al., 2023). The ability to express these emotions through eyebrow movement enhances interpersonal communication and helps convey subtle emotional cues.

Eyebrows also contribute significantly to the aesthetic appearance of the face. Their shape, density, and color are important factors in defining facial identity and beauty. Cultural and social perceptions of beauty often emphasize well-defined, symmetrical eyebrows, and deviations from this ideal, such as thinning or loss of eyebrows, can lead to significant psychological and social impacts. Individuals with eyebrow hypotrichosis may experience decreased self-esteem and confidence, as well as increased self-consciousness in social situations (Mumford et al., 2023).

2.2 Overview of Eyebrow Hypotrichosis

2.2.1 Definition and Prevalence of Eyebrow Hypotrichosis

2.2.1.1 Definition of Eyebrow Hypotrichosis

Eyebrow hypotrichosis, also referred to as madarosis, involves the partial or complete loss of eyebrow hair. This condition can be due to various etiologies including autoimmune disorders, endocrinologic imbalances, genetic conditions, infections, neoplastic processes, nutritional deficiencies, and trauma (Mumford et al., 2023). Eyebrow hypotrichosis can present as an isolated condition or as part of a broader systemic issue, with presentations ranging from mild thinning to complete hair loss.

2.2.1.2 Prevalence of Eyebrow Hypotrichosis

The prevalence of eyebrow hypotrichosis varies widely based on the underlying cause and the population studied. Specific prevalence data for eyebrow hypotrichosis is limited, but insights can be derived from the prevalence of associated conditions:

1. Alopecia Areata (AA): In a cross-sectional study of 587 Japanese patients with AA, 19.8% reported current eyebrow hair loss, while in a Danish cohort of 1494 patients, approximately 62.8% reported current eyebrow loss (Mumford et al., 2023). Severity of the condition varied, with 36.2% of Danish patients reporting no or barely any eyebrow hairs, and 16.3% reporting minimal gaps or thinning (Mumford et al., 2023).

2. Frontal Fibrosing Alopecia (FFA): Eyebrow loss occurs in up to 96% of patients with FFA. A cohort study of 58 Asian females with FFA reported 69.0% had eyebrow loss, with 3.4% indicating eyebrow alopecia as the first symptom of FFA (Mumford et al., 2023; Nguyen et al., 2023).

3. Chemotherapy-Induced Alopecia: In cancer patients undergoing chemotherapy, eyebrow hypotrichosis is a significant issue, with one study reporting 28.3% of women on endocrine therapies experiencing eyebrow involvement (Nguyen et al., 2023).

4. Genetic Disorders: Conditions like ectodermal dysplasia and hereditary hair loss syndromes can result in sparse or absent eyebrows (Mumford et al., 2023).

5. Infections: Eyebrow loss due to lepromatous leprosy occurs in approximately 9.3-36.5% of patients (Mumford et al., 2023).

6. Nutritional Deficiencies: Zinc deficiency-related eyebrow hypotrichosis is relatively rare and often associated with specific conditions like acrodermatitis enteropathica (Nguyen et al., 2023).

7. Trauma and External Factors: Repetitive plucking, burns, and radiotherapy can cause permanent eyebrow hair loss (Mumford et al., 2023).

2.2.2 Etiologies of Eyebrow Hypotrichosis

Eyebrow hypotrichosis, characterized by the partial or complete loss of eyebrow hair, has multiple underlying causes, ranging from autoimmune diseases to nutritional deficiencies. Each etiology presents distinct features and diagnostic challenges, making early and accurate diagnosis critical for effective treatment.

2.2.2.1 Autoimmune Conditions:

1. Alopecia Areata (AA):

This autoimmune disorder is marked by patchy, bilateral eyebrow loss. It may also involve the eyelashes, particularly in severe cases. Trichoscopy of AA typically reveals subtle features, such as cadaverized hairs and yellow dots. Diagnosis can be aided by clinician-reported outcomes (ClinRO) and patient-reported outcomes (PRO), which rate the severity of eyebrow and eyelash loss on a scale from 0 (no involvement) to 3 (complete loss) (Nguyen et al., 2023).

2. Frontal Fibrosing Alopecia (FFA):

FFA, a cicatricial alopecia, causes the loss of frontoparietal hair and affects bilateral eyebrows in up to 96% of patients. Trichoscopy findings include tapered and broken hairs, multiple pinpoint dots, and yellow dots. Eyebrow loss often begins laterally and progresses to complete loss in severe cases (Nguyen et al., 2023).

2.2.2.2 Endocrine Disorders:

1. Hypothyroidism:

Known for the Hertoghe sign, hypothyroidism can cause the loss of the lateral third of the eyebrows. Severe cases may also involve eyelash alopecia. The restoration of normal hair proportions can occur with adequate treatment, although specific documentation of eyebrow regrowth in hypothyroidism treatment is limited (Nguyen et al., 2023).

2.2.2.3 Genetic Factors:

1. Keratosis Follicularis Spinulosa Decalvans (KFSD):

This X-linked disorder of keratinization results in follicular hyperkeratosis and scarring alopecia affecting the eyebrows, eyelashes, and scalp. Trichoscopy of KFSD shows yellow dots and dystrophic hairs (Nguyen et al., 2023).

2. Ectodermal dysplasia

Other genetic conditions causing eyebrow hypotrichosis include ectodermal dysplasia, characterized by abnormalities in tissues derived from the ectoderm, and inherited biotinidase deficiency, which causes erythroderma and eyebrow alopecia (Nguyen et al., 2023).

2.2.2.4 Infectious Causes:

1. Lepromatous Leprosy:

This condition can interfere with hair growth, leading to early loss of eyebrows and eyelashes, often preceding characteristic facial changes. Trichoscopy findings include reduced hair density and multiple vellus hairs. Standard treatment with dapsone, rifampin, and clofazimine is essential, though eyebrow regrowth is rare (Nguyen et al., 2023).

2. Syphilis:

Secondary syphilis can cause patchy alopecia of the eyebrows, particularly affecting the lateral sides (omnibus sign). Trichoscopy and clinical diagnosis followed by benzathine penicillin G treatment can lead to complete regrowth (Nguyen et al., 2023).

3. Fungal Infections:

Tinea faciei, tinea blepharo-ciliaris, and periocular tinea are fungal infections that can cause unilateral or bilateral hair loss of the eyebrows and eyelashes. Trichoscopy may show comma hairs, corkscrew hairs, and bent hairs. Empiric treatment with topical and/or oral antifungals is often initiated prior to culture results (Nguyen et al., 2023).

2.2.2.5 Neoplastic Conditions:

1. Hematologic Malignancies:

Conditions like mycosis fungoides and chronic lymphocytic leukemia (CLL) can present with eyebrow alopecia (Nguyen et al., 2023).

2. Chemotherapeutic agents:

Chemotherapeutic agents such as taxanes and doxorubicin are known to cause hair loss, including eyebrows, typically within 1 week to 1 month after initiation. Radiation therapy for ocular tumors can also trigger hair loss in the anagen stage (B. Nguyen et al., 2023).

2.2.2.6 Nutritional Deficiencies:

Zinc Deficiency:

Both acquired and inherited zinc deficiencies, such as acrodermatitis enteropathica, can result in diffuse eyebrow and eyelash loss. Treatment involves supplementation with oral zinc, which can lead to significant improvement in hair health (Nguyen et al., 2023).

2.2.2.7 Trauma:

1. Trichotillomania:

This condition involves repetitive hair pulling or over-plucking, leading to irregular, patchy alopecia of the eyebrows and/or eyelashes. Trichoscopy shows broken hairs of different lengths and black dots. Treatment typically involves psychotherapy, and in some cases, hair transplantation has been successful (Nguyen et al., 2023).

2. Burn Injuries:

Trauma from burns can cause permanent loss of eyebrow hair due to scar formation. Follicular unit extraction (FUE) has been used successfully in such cases, with pretreatment using non-ablative fractional laser and microfat injection to improve outcomes (Nguyen et al., 2023).

2.2.2.8 Primary Dermatoses:

1. Atopic Dermatitis:

This condition can cause loss of the lateral third of the eyebrows (Hertoghe sign) and may also involve the eyelashes. Treatment includes emollients and topical corticosteroids, which have shown partial regrowth in some cases (Nguyen et al., 2023).

2. Seborrheic Dermatitis:

Presents with scaling and erythema of the eyebrows, often leading to hair loss due to repeated scratching. Trichoscopy reveals casts surrounding the

eyelashes. Topical antifungals and low-potency corticosteroids are effective treatments (Nguyen et al., 2023).

2.2.3 Impact of Eyebrow Hypotrichosis on Individuals Self Esteem and Psychological Well-being

Eyebrows are a crucial element of facial expression and aesthetics, and they play a significant role in non-verbal communication and gender identification. The absence or thinning of eyebrows, known as eyebrow hypotrichosis, can profoundly affect an individual's self-esteem and psychological well-being. While hair loss on the scalp has been extensively studied, the impact of eyebrow hypotrichosis is less understood, despite its potentially severe psychological consequences.

2.2.3.1 Psychological and Social Impact of Eyebrow Hypotrichosis

The loss or thinning of eyebrows can lead to significant psychological distress. Eyebrows contribute to facial symmetry and expressions, which are important for social interactions and perceived attractiveness. When individuals experience eyebrow hypotrichosis, they often report feelings of embarrassment, self-consciousness, and diminished confidence, especially in social settings. The importance of eyebrows in facial recognition and the expression of emotions means that their absence can alter the way others perceive an individual, further exacerbating the psychological impact (Mumford et al., 2023; Riahi & Cohen, 2018). A study by Riahi and Cohen (2018) emphasizes that the aesthetic significance of eyebrows is not only related to beauty but also to the protection of the eyes and non-verbal communication. The absence of eyebrows can therefore lead to a perceived loss of identity and social isolation (Riahi & Cohen, 2018). Moreover, the societal pressures to conform to certain beauty standards can intensify the distress experienced by individuals with eyebrow hypotrichosis, leading to a negative body image and, in some cases, contributing to the development of mental health conditions such as anxiety and depression (Mumford et al., 2023).

2.2.3.2 Self-Esteem and Body Image

Eyebrow hypotrichosis often results in a negative body image, which is closely linked to self-esteem. Individuals with this condition may avoid social interactions or become overly concerned with hiding their condition using makeup or other cosmetic interventions. This preoccupation with appearance can detract from

other aspects of life, leading to a diminished quality of life. Studies have shown that body image dissatisfaction, which is common among individuals with eyebrow hypotrichosis, can lead to low self-esteem and increase the risk of developing depressive symptoms (Lee et al., 2014).

2.2.3.3 Gender Differences in the Psychological Impact

The psychological impact of eyebrow hypotrichosis can vary by gender. In women, thinning or loss of eyebrows is particularly distressing due to the societal emphasis on beauty and grooming. Women may experience a significant decline in self-esteem and may resort to frequent cosmetic procedures to restore the appearance of their eyebrows. In contrast, men, although also affected, may experience a different type of social pressure, as thick and well-defined eyebrows are often associated with masculinity and strength (Mumford et al., 2023; Nguyen, 2014).

2.3 Current Treatments for Eyebrow Hypotrichosis

2.3.1 Introduction

Eyebrow hypotrichosis, defined as the reduction or absence of eyebrow hair, is a condition that can have significant aesthetic and psychological impacts. This condition can be idiopathic or secondary to various medical conditions such as autoimmune diseases, dermatological disorders, endocrine abnormalities, or result from trauma and other exogenous factors (Riahi & Cohen, 2018). The desire for fuller, well-defined eyebrows has led to the exploration of various treatment options, both medical and surgical. This literature review focuses on the current treatments available for eyebrow hypotrichosis, detailing their efficacy, safety, and mechanisms of action.

2.3.2 Medical Treatments

2.3.2.1 Minoxidil

Minoxidil, originally developed as an antihypertensive agent, has been repurposed for hair regrowth treatments due to its vasodilatory properties that enhance blood flow to hair follicles. It is available in various concentrations for the treatment of hair loss (Otberg & Shapiro, 2012).

1. 1% Minoxidil Lotion

Worapunpong et al. (2017) conducted a prospective, randomized, double-blind, placebo-controlled trial to assess the efficacy of 1% minoxidil lotion for eyebrow enhancement. The study included 42 subjects aged 18-60 with eyebrow hypotrichosis. Subjects applied 1% minoxidil on one eyebrow and placebo on the other side twice daily for 16 weeks. The primary efficacy endpoint was the change in global photographic scores, with secondary endpoints including changes in eyebrow diameter, hair count, and patient satisfaction. The study found that 1% minoxidil significantly improved eyebrow growth compared to placebo, with no significant difference in side effects between the groups (Worapunpong & Tanglertsampan, 2017).

2. 2% Minoxidil Lotion

Lee et al. (2014) performed a similar study with 2% minoxidil lotion. This randomized, double-blind, placebo-controlled, split-face study involved 40 subjects who applied 2% minoxidil on one eyebrow and placebo on the other side for 16 weeks. Results showed significant improvement in all measured outcomes (global photographic scores, eyebrow diameter, and hair count) in the minoxidil group compared to the placebo group. The efficacy of minoxidil was noticeable from the 8th week of treatment, with continued improvement throughout the study period (Lee et al., 2014).

3. Comparative Efficacy

Comparative studies have demonstrated that minoxidil is effective in promoting eyebrow growth. Suwanchatchai et al. (2012) compared the efficacy of 3% minoxidil with bimatoprost 0.03%, showing that both treatments were effective, but minoxidil had a higher incidence of contact dermatitis (Suwanchatchai et al., 2012). Minoxidil's effectiveness in enhancing eyebrow growth is attributed to its ability to prolong the anagen (growth) phase of hair follicles, although the precise mechanism remains unclear (Otberg & Shapiro, 2012).

2.3.2.2 Bimatoprost

Bimatoprost, a synthetic prostaglandin F2 α analog, was initially developed for glaucoma treatment. It was later found to stimulate hair growth, leading to its approval for treating eyelash hypotrichosis. Bimatoprost works by increasing the

duration of the anagen phase and promoting the transition of hair follicles from the telogen (resting) phase to the anagen phase (Chanasumon et al., 2018).

1. 0.01% vs. 0.03% Bimatoprost

Suchonwanit et al. (2020) conducted a randomized, double-blind, split-face comparative study to evaluate the efficacy of 0.01% versus 0.03% bimatoprost in treating eyebrow hypotrichosis. Thirty patients applied 0.01% bimatoprost on one eyebrow and 0.03% on the other for six months. Both concentrations significantly improved eyebrow density and diameter, but the 0.03% concentration showed slightly better results in terms of patient satisfaction and clinical improvement, although these differences were not statistically significant (Suchonwanit et al., 2020).

2. Clinical Studies

Several clinical studies have supported the use of 0.03% bimatoprost for eyebrow enhancement. Riahi and Cohen (2018) reported a case where a 60-year-old woman achieved significant eyebrow regrowth after eight months of daily application of 0.03% bimatoprost, with no reported side effects (Riahi & Cohen, 2018). Similarly, Beer et al. (2013) found that bimatoprost 0.03% significantly increased eyebrow hair growth and density in a randomized, double-blind, vehicle-controlled study involving 45 subjects (Beer et al., 2013).

3. Comparative Efficacy

Suwanchatchai et al. (2012) compared the efficacy of bimatoprost 0.03% and minoxidil 2% in enhancing eyebrow growth. The study concluded that both treatments were effective, with no significant differences in the primary outcomes. However, bimatoprost was associated with fewer cases of contact dermatitis compared to minoxidil (Suwanchatchai et al., 2012). Bimatoprost's mechanism involves stimulating the prostamide receptor, leading to downstream effects that promote hair growth and pigmentation (Cohen, 2010).

2.3.3 Surgical Treatments

2.3.3.1 Hair Transplantation

Hair transplantation for eyebrows involves relocating hair follicles from a donor site (typically the scalp) to the eyebrow area. This procedure provides a permanent solution for eyebrow hypotrichosis and can produce natural-looking results (Epstein, 2013).

1. Procedure and Efficacy

Epstein (2013) described the technique of eyebrow transplantation, emphasizing the importance of precise angling and placement of hair follicles to mimic natural eyebrow hair growth. The procedure involves extracting individual hair follicles from the donor site and implanting them into the eyebrow area. Post-transplantation, the new eyebrow hairs grow naturally and can be groomed or trimmed as desired (Epstein, 2013).

2. Advantages and Disadvantages

While hair transplantation offers a permanent solution with natural results, it is a more invasive and expensive option compared to topical treatments. The procedure requires surgical expertise and can involve a lengthy recovery period. Potential complications include infection, scarring, and the need for follow-up procedures to achieve the desired density and shape (Epstein, 2013).

2.3.3.2 Micropigmentation

Micropigmentation, also known as cosmetic tattooing, involves implanting pigment into the skin to create the appearance of fuller eyebrows. This procedure can provide immediate aesthetic improvements and is often used as a complement to other treatments (Mumford et al., 2023).

1. Procedure and Efficacy

Micropigmentation is performed using a fine needle to deposit pigment into the dermal layer of the skin. The procedure can create a natural-looking eyebrow by mimicking the appearance of individual hairs. Micropigmentation can be a suitable option for individuals who are not candidates for hair transplantation or those looking for a less invasive solution (Mumford et al., 2023).

2. Advantages and Disadvantages

Micropigmentation offers the advantage of immediate results and can significantly improve the aesthetic appearance of thin or sparse eyebrows. However, the results are semi-permanent and may require touch-ups over time. Potential risks include allergic reactions to the pigment, infection, and dissatisfaction with the cosmetic outcome (Mumford et al., 2023).

2.4 Overview of Finasteride

2.4.1 Introduction

Finasteride is a 5α -reductase inhibitor that has been widely used in the treatment of androgenetic alopecia (AGA) and benign prostatic hyperplasia (BPH). By inhibiting the enzyme 5α -reductase, finasteride decreases the conversion of testosterone to dihydrotestosterone (DHT), a potent androgen that contributes to hair follicle miniaturization and prostate enlargement. This literature review provides a comprehensive overview of finasteride, including its pharmacology, efficacy in treating hair loss, safety profile, and emerging applications.

2.4.2 Pharmacology of Finasteride

Finasteride is a synthetic 4-aza-3-oxosteroid compound that selectively inhibits the type II isoform of 5α -reductase, an enzyme that plays a critical role in the conversion of testosterone to DHT. The inhibition of this enzyme leads to a significant reduction in serum and scalp DHT levels, thereby mitigating the effects of DHT on hair follicles and the prostate gland. The bioavailability of finasteride ranges from 26% to 70%, and it has a terminal half-life of approximately 5 to 6 hours in men aged 18 to 60 years (Mysore & Shashikumar, 2016). The standard oral dose for treating AGA is 1 mg/day, which has been shown to significantly reduce DHT levels by approximately 60% (Gupta et al., 2021).

2.4.3 Efficacy in Androgenetic Alopecia

Finasteride is one of the few FDA-approved treatments for male pattern baldness (androgenetic alopecia). Its efficacy in slowing hair loss and promoting hair regrowth has been extensively documented in clinical studies. According to a review by Gupta et al. (2021), finasteride 1 mg/day significantly increased total hair count compared to placebo after 24 weeks (mean difference = 12.4 hairs/cm², $p < .05$) and 48 weeks (mean difference = 16.4 hairs/cm², $p < .05$). This indicates that finasteride is effective in both the short and long term for treating hair loss in men with AGA (Gupta et al., 2021).

The efficacy of finasteride is particularly noted when treatment is initiated early in the course of hair loss. Younger men with higher levels of serum DHT responded

better to finasteride treatment, demonstrating more significant improvements in hair density and coverage (Mysore & Shashikumar, 2016). Additionally, studies comparing finasteride with other treatments, such as minoxidil, have shown that finasteride can enhance the efficacy of hair regrowth when used in combination with other therapies (Gupta et al., 2021).

2.4.4 Safety and Adverse Effects

While finasteride is generally well-tolerated, its safety profile has been a topic of extensive research, particularly concerning its sexual side effects. The most commonly reported adverse effects include reduced libido, erectile dysfunction, and decreased ejaculate volume. These side effects are believed to be related to the drug's reduction of DHT, which is necessary for normal sexual function. Although most of these side effects are reversible upon discontinuation of the drug, there are reports of persistent sexual dysfunction, a condition referred to as post-finasteride syndrome (Gupta et al., 2021; Mysore & Shashikumar, 2016).

Despite these concerns, large-scale studies have indicated that the incidence of these adverse effects is relatively low and comparable to placebo. Kaufman et al. (1999) reported that sexual side effects occurred in less than 2 % of men treated with finasteride, and the incidence decreased with continued use over time (Gupta et al., 2021). However, the possibility of persistent side effects has led regulatory bodies like the FDA to mandate warnings on finasteride packaging (Gupta et al., 2021).

2.4.5 Emerging Applications and Research

Recent research has explored the use of finasteride in conditions beyond AGA and BPH. For example, finasteride has been investigated for its potential in treating female pattern hair loss (FPHL). However, the results have been mixed, with some studies showing limited efficacy, particularly in postmenopausal women. A meta-analysis by Kim et al. 2021 evaluated the efficacy of finasteride in FPHL and found that while finasteride was associated with a high response rate, it did not significantly increase hair density (Kim et al., 2021).

Moreover, there is growing interest in topical formulations of finasteride, which aim to reduce systemic exposure while maintaining efficacy. Studies comparing topical finasteride with oral finasteride for AGA therapy have shown decreased systemic absorption (up to 15 times) of the topical form, suggesting a lower risk of systemic side

effects. However, further research is needed to identify the optimal drug-delivery vehicle, dose, frequency of application, and safety profile for topical finasteride (Gupta et al., 2021).

2.4.6 Mechanism of Action

The mechanism of action of finasteride involves the inhibition of the 5α -reductase enzyme, specifically the type II isoform, which is primarily responsible for the conversion of testosterone to DHT in the prostate and hair follicles. By reducing DHT levels, finasteride decreases the miniaturization of hair follicles, which is the hallmark of androgenetic alopecia. This action helps to prolong the anagen (growth) phase of the hair cycle, thereby increasing hair density and reducing hair loss (Gupta et al., 2021).

Studies have also explored the role of the type III isoform of 5α -reductase, which is expressed in various tissues, including the prostate and scalp. However, the exact contribution of this isoform to hair loss and the therapeutic effects of finasteride remains less clear (Gupta et al., 2021).

2.4.7 Long-term Efficacy

The long-term efficacy of finasteride has been demonstrated in several studies, with sustained benefits observed over periods of up to 10 years. In a study involving 523 Japanese men with androgenetic alopecia, finasteride 1 mg/day was found to maintain or increase hair density over a 10-year period, with a low incidence of adverse effects (Gupta et al., 2021).

In another long-term study, finasteride 1 mg/day was shown to significantly reduce the likelihood of further visible hair loss in men with AGA over a 5-year period. This study also highlighted the importance of early intervention, as men who started finasteride treatment at the early stages of hair loss experienced the greatest benefits (Gupta et al., 2021).

2.4.8 Comparison with Other Treatments

Finasteride has been compared with other 5α -reductase inhibitors, such as dutasteride, which inhibits both type I and type II isoforms of the enzyme. Dutasteride has been found to be more effective than finasteride in increasing hair count and reducing hair loss in men with AGA. However, dutasteride is associated with a higher

incidence of adverse effects, particularly sexual dysfunction, which may limit its use (Gupta et al., 2021).

In addition to oral finasteride, other treatments for androgenetic alopecia include minoxidil, hair transplantation, and low-level laser therapy. While these treatments can be effective, finasteride remains a cornerstone of AGA management due to its ability to target the underlying hormonal cause of hair loss (Gupta et al., 2021).

2.5 Topical Finasteride for Hair Loss

2.5.1 Introduction

Finasteride is a 5α -reductase inhibitor widely known for its oral formulation, primarily used in the treatment of androgenetic alopecia (AGA) and benign prostatic hyperplasia (BPH). By inhibiting the conversion of testosterone to dihydrotestosterone (DHT), finasteride reduces DHT levels, thereby mitigating its effects on hair follicles. Recently, topical finasteride has emerged as a promising alternative to oral finasteride, aiming to provide similar efficacy with reduced systemic side effects. This review explores the pharmacology, efficacy, safety, and future prospects of topical finasteride based on current literature.

2.5.2 Pharmacology of Topical Finasteride

Topical finasteride is designed to inhibit 5α -reductase locally at the hair follicle level, thereby decreasing DHT production in the scalp with minimal systemic absorption. Studies have shown that the plasma concentration of finasteride after topical application is significantly lower compared to oral administration, thereby reducing the risk of systemic side effects. For instance, a study reported that the serum concentration of finasteride was 10 times lower after the application of a combined 5% minoxidil and 0.1% finasteride lipid solution twice daily for 14 days compared to oral finasteride at a similar dosage (Suchonwanit et al., 2022).

Pharmacokinetic studies have demonstrated that the reduction in scalp DHT levels with topical finasteride is comparable to oral finasteride. A study with a 0.25% topical solution applied twice daily resulted in a 47% reduction in scalp DHT levels, compared to a 51% reduction with oral finasteride 1 mg daily (Caserini et al., 2014).

The suppression of serum DHT levels, however, was less pronounced with topical finasteride, making it a preferable option for patients concerned about systemic side effects (Caserini et al., 2014).

The drug delivery system plays a crucial role in the efficacy of topical finasteride. Advanced formulations such as finasteride liposomal gel and polymeric nanoparticles have shown higher skin penetration at the application site with minimal systemic absorption, making them ideal for future topical finasteride therapies (Gupta & Talukder, 2022).

2.5.3 Efficacy of Topical Finasteride

Multiple clinical studies have demonstrated the efficacy of topical finasteride in treating AGA and female pattern hair loss (FPHL). Mazzarella et al. (1997) conducted a preliminary placebo-controlled trial in 52 patients, showing significant hair regrowth and a reduction in hair loss after 16 months of twice-daily application of a 0.005% finasteride solution (Mazzarella et al., 1997). Another randomized controlled trial (RCT) comparing a 0.1% finasteride solution to a placebo in 20 men with moderate-to-severe AGA found greater hair count increases in the finasteride group (Charuwichitratana et al., 2003).

Further evidence from a double-blind controlled trial by Hajheydari et al. (2009) involving 45 males with AGA demonstrated comparable efficacy between 1% finasteride gel and 1 mg oral finasteride tablets over six months. Although patients taking oral tablets showed faster improvement, the therapeutic response was not statistically different between the two groups, indicating that topical finasteride can be as effective as its oral counterpart (Hajheydari et al., 2009).

The combination of topical finasteride with topical minoxidil has also been explored to enhance therapeutic efficacy. A study by Tanglertsampan (2012) compared 3% minoxidil lotion with a combination of 3% minoxidil and 0.1% finasteride lotion in 40 men with AGA. The combined treatment group showed significant improvements in hair counts and global photographic assessments compared to the minoxidil-only group (Tanglertsampan, 2012). Recent studies further supported these findings, with the combination of 3% minoxidil and 0.25% finasteride (FMX) twice daily demonstrating superior efficacy in increasing hair density and diameter compared to minoxidil alone (Suchonwanit et al., 2018, 2022).

2.5.4 Safety Profile of Topical Finasteride

One of the main advantages of topical finasteride over oral administration is the reduced risk of systemic side effects. Oral finasteride is associated with sexual dysfunction, including decreased libido, erectile dysfunction, and ejaculation disorders, which are thought to result from systemic DHT reduction. In contrast, topical finasteride exhibits a more favorable safety profile, with most side effects localized to the application site, such as scalp pruritus, burning sensation, irritation, contact dermatitis, and erythema (Gupta & Talukder, 2022).

A phase III randomized clinical trial comparing the safety of topical and oral finasteride found that 96.9% of treatment-emergent adverse events (TEAEs) were mild or moderate. The incidence of TEAEs was lower in the topical group compared to the oral group, with fewer patients discontinuing treatment due to adverse events (Piraccini et al., 2022). Moreover, serum testosterone levels remained within normal physiological ranges throughout the treatment period, further highlighting the safety of topical finasteride (Piraccini et al., 2022).

2.5.5 Future Prospects and Considerations

Topical finasteride is emerging as a promising alternative to oral finasteride, especially for patients concerned about the systemic side effects of oral therapy. The development of advanced drug delivery systems that enhance skin penetration while minimizing systemic absorption is likely to improve the efficacy and safety of topical finasteride. Additionally, the combination of topical finasteride with other hair loss treatments, such as minoxidil, may offer synergistic effects, making it a valuable option in the management of AGA and FPHL.

However, further research is needed to establish the long-term efficacy and safety of topical finasteride. Studies exploring the optimal concentration, application frequency, and formulation of topical finasteride will be crucial in determining its role in hair loss treatment. As more clinical trials and real-world evidence become available, topical finasteride may become a standard treatment option alongside oral finasteride.

2.6 Rationale for Eyebrow Enhancement with Topical Finasteride: Potential Mechanism

Despite the classification of eyebrows as an androgen-insensitive area, there is a rationale for considering the use of topical finasteride in the treatment of eyebrow hypotrichosis. This rationale is based on several potential mechanisms that, although speculative, are supported by our understanding of hair biology and the pharmacodynamics of finasteride.

2.6.1 Presence of Androgen Receptors in Eyebrow Hair Follicles

Androgen Receptor Expression: Eyebrow hair follicles, like other hair follicles, contain androgen receptors in the dermal papilla. Even though the impact of androgens on eyebrow hair growth is less pronounced compared to androgen-sensitive areas like the scalp, the presence of these receptors suggests that androgens could still exert some influence over eyebrow hair growth. By inhibiting the local conversion of testosterone to dihydrotestosterone (DHT), topical finasteride could reduce any negative effects that DHT might have on eyebrow hair follicles, potentially promoting longer, thicker and denser eyebrows (Kaufman, 2002; Suchonwanit et al., 2022).

2.6.2 Inhibition of Subclinical Androgen Effects

Subclinical Androgen Sensitivity: While the eyebrows are not typically subject to the same androgen-driven miniaturization process as scalp hair in androgenetic alopecia, it is possible that subclinical androgen sensitivity still plays a role in eyebrow hair density and length. In some individuals, even low levels of DHT could subtly influence the eyebrow hair cycle, leading to shorter, thinner, less dense hairs. Topical finasteride could inhibit these subclinical effects, thereby enhancing eyebrow hair growth (Gupta & Talukder, 2022).

2.6.3 Enhancement of the Anagen Phase

Prolonging the Growth Phase: One of the key effects of finasteride on hair is its ability to prolong the anagen (growth) phase of the hair cycle. By applying topical finasteride to the eyebrows, it may be possible to extend the anagen phase of eyebrow hair follicles, resulting in longer and thicker eyebrows. This effect could be independent

of androgen sensitivity and instead related to finasteride's broader impact on hair follicle biology (Caserini et al., 2014; Gupta & Talukder, 2022).

2.6.4 Improving Local Follicular Environment

Anti-Inflammatory Effects: Finasteride may have anti-inflammatory properties that could improve the local follicular environment, even in androgen-insensitive areas. Inflammation can contribute to hair follicle miniaturization and hair loss. By reducing local inflammation, topical finasteride might help create a more favorable environment for hair growth, potentially enhancing the appearance of eyebrows (Suchonwanit et al., 2022).

2.6.5 Synergistic Effects with Other Treatments

Combination Therapy Potential: 0.1% Topical finasteride could be used in combination with other treatments known to promote hair growth, such as minoxidil. While finasteride reduces DHT levels, minoxidil can enhance blood flow and stimulate follicle activity. Together, these treatments might have a synergistic effect, improving the thickness and density of eyebrow hair (Suchonwanit et al., 2022; Tanglertsampan, 2012).

2.6.6 Conclusion

The rationale for using 0.1% topical finasteride for eyebrow enhancement, despite the eyebrows being traditionally considered an androgen-insensitive area, is grounded in the potential presence of androgen receptors in eyebrow hair follicles, the inhibition of subclinical androgen effects, and finasteride's ability to enhance the anagen phase and improve the local follicular environment. While these mechanisms are speculative and require further research, they provide a basis for exploring the use of topical finasteride in the treatment of eyebrow hypotrichosis, particularly when combined with other hair growth-promoting therapies.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Study Design

The research is a randomized controlled trial studying the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement. The control group used a placebo. The study utilized a split-face design and was double-blind, with both patients and evaluating physicians unaware of treatment assignments. The study population included individuals 18-45 years old with grade one or two eyebrow hypotrichosis according to the GEBA scale. Participants were recruited from the dermatology clinic at Mae Fah Luang University Hospital, Bangkok. The study compared the treatment efficacy between the 0.1% finasteride solution group and the placebo group through global photographic assessments, average eyebrow hair diameter, average hair count, and patient satisfaction. Side effects were also monitored between the treatment and control groups.

3.2 Population and Sample Determination

3.2.1 Study Population

Male population aged 18-45 years who attend the dermatology clinic at Mae Fah Luang University Hospital in Bangkok.

3.2.2 Sample Selection Criteria

3.2.2.1 Inclusion criteria

1. Patients who are receiving treatment at the dermatology clinic of Mae Fah Luang University Hospital, Bangkok.
2. Male patients aged 18-45 years.
3. Patients with eyebrow hypotrichosis at levels one or two according to the GEBA (Global Eyebrow Assessment) scale.

4. Willing to participate in the research.

3.2.2.2 Exclusion criteria

1. Certain diseases or conditions may cause eyebrow hypotrichosis, such as severe or poorly controlled systemic diseases, alopecia areata, trichotillomania, frontal fibrosing alopecia, thyroid disease, hematologic malignancies, reviewing chemotherapeutic agents, zinc deficiency, eye diseases, atopic dermatitis, seborrheic dermatitis, lupus erythematosus, scleroderma, leprosy, syphilis, fungal infections and a history of eye and periorbital surgery.

2. Conditions that may interfere with treatment outcomes, such as previous treatments for eyebrow hypotrichosis or hair loss within the past 6 months with Minoxidil, Finasteride, Bimatoprost, antiandrogen, light/laser treatment or eyebrow transplantation.

3. Contraindications for Topical Finasteride for example patients with known hypersensitivity or allergy to finasteride or any of its components, a history of infertility or difficulty fathering children, or a history of varicocele.

3.2.3 Discontinuation Criteria

3.2.3.1 Severe Adverse drug reactions (ADR)

1. Severe Local Skin Reactions:

1) Participants develop severe local skin irritation (LI) directly associated with the application of the topical finasteride solution, such as significant redness, swelling, burning sensations, dryness, numbness, or intense pain at the application site.

2) Symptoms of skin inflammation, blistering, or peeling that resemble a chemical burn or cause visible damage to the skin.

2. Systemic Adverse Reactions:

1) Participants exhibit systemic adverse reactions, including cardiovascular symptoms such as palpitations or chest pain.

2) Gastrointestinal symptoms, such as severe bloating or abdominal discomfort.

3) Neurological symptoms, such as severe headaches, dizziness, or any adverse reaction impacting daily life and significantly affecting quality of life.

3. Erectile Dysfunction:

Participants report significant issues related to erectile dysfunction, assessed by the International Index of Erectile Function (IIEF-5) questionnaire, suggesting that finasteride is negatively affecting sexual health.

4. Safety Concerns:

Any adverse effect that, in the opinion of the investigator, poses a safety risk to the participant, requiring the discontinuation of treatment to avoid further harm.

5. Other Adverse Effects:

Any other significant adverse drug reaction (ADR) that is considered severe enough by the investigator to warrant discontinuation for the participant's safety and well-being.

In cases where any of the above discontinuation criteria are met, the investigator will stop the treatment immediately and offer appropriate medical care to ensure the safety of the participant.

3.2.3.2 Voluntary Withdrawal: Participants may voluntarily withdraw from the study at any time without any penalty or loss of benefits.

3.2.3.3 Non-Compliance: Participants who fail to adhere to the study requirements or protocol, such as missing treatment applications or failing to provide accurate information, may be withdrawn if deemed necessary by the investigator.

3.2.3.4 Missed Appointments: Participants who miss at least two consecutive follow-up visits without valid reasons, or fail to meet the study's appointment schedule, will be considered for discontinuation.

3.2.3.5 Use of External Products: If participants use other products or treatments that are not part of the study (e.g., other hair growth treatments or topical medications) and the investigator believes these could influence the study's outcomes, they will be discontinued from participation.

These discontinuation criteria are established to ensure the safety of the participants and the integrity of the study results. If any of the criteria are met, the participant will be withdrawn from the study, and appropriate follow-up care will be provided.

3.2.4 Early Termination of Study Criteria

Early termination of the study may occur if the research is deemed to be of no benefit or poses greater risks to the participants than initially anticipated. The decision will be made by the Principal Investigator and relevant regulatory bodies, such as the Ethics Committee.

3.2.4.1 Safety Risks to Participants

The study will be terminated early if participants experience serious adverse events (SAEs) or unexpected adverse drug reactions (ADRs) related to 0.1% Topical Finasteride Spray that could pose significant health risks. The conditions for early termination include:

1. Severe Local Adverse Effects: If more than 20% of participants develop severe localized side effects, such as severe dermatitis, burning sensation, numbness, or blistering.
2. Systemic Adverse Effects: If participants experience systemic side effects such as arrhythmia, chest pain, severe dizziness, or severe erectile dysfunction.
3. High Withdrawal Rate Due to Severe Adverse Effects: If more than 20% of participants withdraw from the study due to severe adverse effects.

3.4.2.2 Regulatory Orders

The study will be terminated if new research findings indicate that the use of Topical Finasteride is unsafe or ineffective, leading the Ethics Committee to order the suspension of the study.

In the event of any of the above occurrences, the Principal Investigator must immediately report to the Ethics Committee, providing reasons and appropriate measures to ensure participant safety and maintain research integrity.

3.2.5 Sampling Techniques

The researcher will randomly select volunteers with thin eyebrows using Simple Random Sampling (Tossing a coin). Volunteers who the coin comes up head and meet the selection criteria and are willing to participate in this research project will be included. The volunteers must be patients receiving treatment at Mae Fah Luang University Hospital in Bangkok only. This research project will accept a total of 8 volunteers.

In case the number of volunteers exceeds the specified limit, the researcher will randomly screen the participants using a simple random sampling method, such as drawing lots, to select the required number of 8 volunteers.

3.2.6 Sample Size Calculations

Calculation of the sample size to estimate the sample size for the study on the efficacy of 0.1% topical finasteride spray solution for male eyebrow enhancement. Based on the research "2% Minoxidil Lotion for Eyebrow Enhancement: A Randomized, Double-Blind, Placebo-Controlled, Split-Face Comparative Study" by Lee et al. (2014), the researcher set the significance level (α) at 0.05, $Z_{\alpha/2}$ is the critical value for a two-tailed test under the standard normal curve, given a significance level (α) of 0.025, is 1.96 ($Z_{0.05} = 1.96$), The testing power (80%) (Z_β) is equal to 0.84. The variance (σ_d^2) is calculated as $(3.15)^2$ micrometers, based on the study by Lee et al. (2014). Additionally, the mean difference before and after treatment (μ_d) is 3.61 micrometers, also referenced from the study by Lee et al. (2014).

Then, substitute these values to calculate the sample size according to the Sample Size Formula for comparing two dependent mean.

$$n = \frac{(Z_{\alpha/2} + Z_\beta)^2 \sigma_d^2}{\mu_d^2}$$

n : The required sample size.

$Z_{\frac{\alpha}{2}}$: The critical value of the standard normal distribution for a 95% confidence level, $Z_{\frac{\alpha}{2}}$ is equal to 1.96

Z_β : The testing power (80%) is equal to 0.84

σ_d^2 : Variance is equal to $(3.15)^2$ micrometers, where 3.15 represents the standard deviation (SD) value derived from the previous study by Lee et al. (2014).

μ_d : mean difference before and after treatment is 3.61 micrometers, based on the study by Lee et al. (2014).

Where: $Z_{\alpha/2}=1.96$, $Z_\beta=0.84$, $\sigma_d^2 =(3.15)^2$, $\mu_d=3.61$

$$n = \frac{(1.96 + 0.84)^2 (3.15)^2}{3.61^2} = 5.96929121$$

Based on the calculated value of n , a minimum sample size of 6 people is required

The drop-out rate is set at 20%. Rounding up, the total comes to 8 subjects. Therefore, this study will require a total sample size of 8 subjects.

3.3 Randomization and Double-blind Technique

In this study, randomization is performed to ensure an unbiased allocation of treatment between the two eyebrows for each participant. The randomization process involves dividing each eyebrow into two groups, Group A and Group B, using a simple coin flip method. This randomization technique ensures that each eyebrow has an equal chance of being assigned to either the 0.1% finasteride solution or the placebo group, minimizing any potential biases.

For each participant, one eyebrow will be randomly assigned to receive 0.1% topical finasteride solution (Group A) and the other eyebrow to receive a placebo (intervention solvent) (Group B). A coin is flipped for each participant's eyebrow:

1. Heads: the right eyebrow receives finasteride (Group A) and the left eyebrow receives placebo (Group B).
2. Tails: the left eyebrow receives finasteride (Group A) and the right eyebrow receives placebo (Group B).

To maintain the blinded nature of the study, both the 0.1% finasteride solution and the placebo are stored in identical opaque 15 ml bottle with a plastic spray nozzle, each containing the same volume of medication (15 ml). The bottle is white, and both solutions are clear, colorless, and odorless. These containers are labeled as A and B to prevent identification of the treatment by either the participants or the investigators. This ensures that neither party knows which treatment is being applied to each eyebrow, maintaining the integrity of the study and minimizing bias.

By employing the coin flip method for randomization and ensuring blinding, the study can fairly and effectively compare the efficacy and safety of 0.1% topical finasteride versus placebo for eyebrow enhancement.

3.4 Tools Used for Data Collection

Research Data Record Form (Appendix A) consists of

Table 3.1 Data collection

Data	Data collection methods
Personal History, Basic Information, Physical Examination Data	Questionnaire and physical examination by the research physician.
1. Identification number 2. Gender, Age 3. Underlying disease/Drug allergy 4. Eyebrow Hypotrichosis according to the GEBA Scale	
Global photographs of both eyebrows before treatment and after treatment at 4, 8, and 12 weeks.	1. Global Photographs taken with a VISIA facial skin analysis system (Canfield Scientific, NJ). 2. Global photographs of both eyebrows assessed by the researcher using a 7-point scale: Significantly Worse (-3), Moderately Worse (-2), Minimally Worse (-1), No Change (0), Minimally Improved (+1), Moderately Improved (+2), Significantly Improved (+3).
Average diameter and Average number of eyebrow hairs before treatment and after treatment at 4, 8 and 12 weeks.	Use a Folliscope (LeadM Corp, Seoul, South Korea) to measure the diameter and count the number of eyebrow hairs.
Side effects after treatment at 4, 8 and 12 weeks.	General side effects questionnaire, such as skin irritation, skin burning, redness, itching, physical examination by the research physician, and the International Index of Erectile Function (IIEF-5) questionnaire.

Table 3.1 (continued)

Data	Data collection methods
Patient satisfaction with the treatment.	Patient satisfaction assessment form using a 7-point scale, with patients evaluating based on photographs taken before and after the treatment at 12 weeks.

3.5 Materials and Equipment

3.5.1 0.1% Topical Finasteride Spray Solution

This solution contains 0.1% finasteride, a 5-alpha-reductase inhibitor, designed for direct application to the eyebrows. The spray solution will be applied twice daily for a duration of 12 weeks as part of the treatment regimen.

Our drugs are produced and designed by licensed compounding company (Cosmina Co. Ltd.) with GMP certificate (Ref. No. 1-5-04-17-23-0072) and ISO 9001:2015 and ISO 22716 certificate. Raw material are pharmaceutical grade. Concentration of active ingredients are standardized at 0.1% finasteride, equivalent to 1 mg of finasteride per 1 ml solution (ethanol/Propylene glycol/water base).

The 0.1% finasteride spray solution is contained in an opaque 15 ml bottle with a plastic spray nozzle. The bottle is white, and the solution is clear, colorless, and odorless. The bottle labelled with “A”, dosing and side instructions, storage conditions, and caution statements.

3.5.2 Placebo (Intervention Solvent)

A placebo spray containing intervention solvent (ethanol/Propylene glycol/water base) will be used as a control to compare against the 0.1% finasteride solution. The placebo is identical in appearance and packaging to the finasteride spray to maintain the double-blind nature of the study.

The placebo with intervention solvent is contained in an opaque 15 ml bottle with a plastic spray nozzle. The bottle is white, and the normal saline solution is clear, colorless, and odorless. The bottle labelled with “B”, dosing and side instructions, storage conditions, and caution statements.

3.5.3 VISIA Imaging System (Canfield Scientific, NJ)

The VISIA device will be used for global photographic assessments of participants' eyebrows. It captures standardized consistent and reliable high-resolution images before, during, and after the treatment to track changes in eyebrow appearance and assess the efficacy of the treatment through a 7-point scale evaluation (Helga Henseler, 2022).

3.5.4 Folliscope (LeadM Corp, Seoul, South Korea)

The Folliscope is a commonly used tool in previous research for evaluating eyebrow hair count and diameter. It allows for precise measurements by capturing magnified images of the eyebrow area. In this study, the Folliscope will be used to measure the average diameter and count the number of eyebrow hairs before and after treatment, providing quantitative data to assess the efficacy of the finasteride solution.

3.5.5 Case Record Form (CRF)

The CRF will be used to document all participant data, including baseline information, follow-up results, and observations. It will serve as a comprehensive record of each participant's progress throughout the study.

3.5.6 Side Effect and Patient Satisfaction Record Form

These forms will be used to record any side effects reported by participants, such as skin irritation or other adverse reactions, as well as patient satisfaction levels. Satisfaction will be evaluated at the end of the 12-week treatment period using a 7-point scale based on pre- and post-treatment photographs.

3.6 Research Procedures

3.6.1 Select volunteers to participate in the research according to the inclusion/exclusion criteria specified above. Only volunteers who have passed the selection process will receive a volunteer identification number.

3.6.2 The researcher explains the research project details (objectives, research procedures, operational steps, potential side effects, and expected benefits) thoroughly to the participants and ensures their understanding before obtaining their consent through the informed consent form.

3.6.3 The researcher will take a medical history, including any underlying disease, history of drug or chemical allergies of the volunteers and their family history as necessary, and conduct a basic physical examination including GEBA scale assessment.

3.6.4 The researcher will cleanse the participant's facial skin by wiping the entire face with a saline-moistened gauze pad for a total of two rounds.

3.6.5 The researcher collects data after obtaining consent from the volunteers with the following details:

3.6.5.1 Collect the patient's identification number and age information before starting the treatment.

3.6.5.2 Collect global photographs of both eyebrows using the VISIA device (Canfield Scientific, NJ) before starting the treatment. Evaluate using a 7-point scale: Significantly Worse (-3), Moderately Worse (-2), Minimally Worse (-1), No Change (0), Minimally Improved (+1), Moderately Improved (+2), Significantly Improved (+3). This assessment is conducted by two doctors who are unaware of the treatment details. For each image, the researcher will assign an image code, the date of treatment, and the volunteer's identification number to create baseline data. This information will be stored in a secure database.

3.6.5.3 Collect the average diameter data of eyebrow hairs before starting the treatment using the Folliscope device (LeadM Corp, Seoul, South Korea). Measure every eyebrow hair within a circle with a diameter of 0.5 centimeters. The measurement point is the middle of the eyebrow point intersected by the vertical line from the midpoint of the pupil. This is done by two doctors who are unaware of the treatment details.

3.6.5.4 Collect the number of eyebrow hairs before starting the treatment using the Folliscope device (LeadM Corp, Seoul, South Korea). Count every eyebrow hair within a circle with a diameter of 0.5 centimeters. The measurement point is the middle of the eyebrow point intersected by the vertical line from the midpoint of the pupil. This is done by two doctors who are unaware of the treatment details. Each doctor will count the eyebrow hairs twice on each side, resulting in a total of four counts per eyebrow. The average of these counts will be calculated and reported to ensure accuracy and consistency.

3.6.6 Each eyebrow of the patients is randomly divided into two groups: Group A and Group B, using coin flip method (Heads: the right eyebrow receives finasteride (Group A) and the left eyebrow receives placebo (Group B)/Tails: the left eyebrow receives finasteride (Group A) and the right eyebrow receives placebo (Group B)). Then, spray 0.1% finasteride solution apply twice daily in the morning and evening on the dry eyebrow after shower, one spray on the middle of eyebrow for Group A, and spray saline solution twice daily in the morning and evening on the dry eyebrow after shower, one spray on the middle of eyebrow for Group B. Both medications are placed in identical opaque containers with the same amount of medication, labeled as A and B.

3.6.7 The researcher will demonstrate and explain in detail how to apply the finasteride solution and placebo to the volunteers.

Instructions for Application:

1. Before starting the treatment, the participants have to perform an allergy test for finasteride using the Repeated Open Application Test (ROAT) to assess contact sensitivity. The test involves applying the solution intended for the right eyebrow to the inner right forearm and the solution for the left eyebrow to the inner left forearm. Participants will spray one spray onto the designated forearm areas twice daily (morning and evening) for 7 consecutive days, while observing for any abnormal reactions such as redness, swelling, or itching. If no abnormal reactions occur, it indicates no allergic response to the medication, and the treatment can be safely applied to the eyebrows. However, if any adverse reactions occur, participants must immediately discontinue use and contact the research team, the researcher will carefully assess the symptoms and clinical signs and evaluate allergic reactions according to the Cosmetic, Toiletry, and Fragrance Association scoring system (CTFA scoring criteria). If the rash corresponds to CTFA grade 2 or higher, the participant will be withdrawn from the study.

Grade 0: No signs of irritation

Grade 1: Slight erythema, either spotty or diffuse

Grade 2: Moderate uniform erythema across the area

Grade 3: Intense erythema with edema

Grade 4: Intense erythema with edema and vesicles on the skin

Participants meeting this threshold will be excluded from the study and provided with appropriate medical care until full recovery. All allergic reactions will be documented and reported.

2. Spray with each type of medication as indicated on the bottle, without switching medications between sides.

3. Spray once on each side, twice a day (morning and evening), on dry eyebrows after shower, targeting the center of the eyebrow.

4. While spraying, keep the treated eye closed to prevent the solution from getting into the eye and use a hand to shield other eyebrow.

5. After spraying, use a finger to rub the solution evenly over the eyebrow area, avoiding spreading the solution beyond the eyebrow.

6. Allow each treatment to fully dry before proceeding to the next step to minimize any cross-contamination.

7. Wash your hands with water before applying the other medication to the opposite eyebrow.

8. To prevent contamination between the two sides:

1) Apply the medication to one eyebrow first, either A or B.

2) Wipe areas outside the eyebrows with a new dry paper sheet.

3) After applying to the first side, thoroughly wash your hands with water before applying the other medication to the opposite eyebrow.

4) Use a hand to cover the untreated eyebrow while spraying the first treatment to ensure no accidental spray reaches the opposite side.

9. Once both sides are treated, wash your hands again and clean any areas of the face that are not the eyebrows.

3.6.8 The researcher provides the following post-treatment instruction for volunteers during the study:

1. Volunteers may wear makeup but should not apply any to their eyebrows.

2. They can use facial moisturizer as usual but should avoid the eyebrow area.

3. Avoid direct and intense sunlight; if extended sun exposure is necessary, use an umbrella or wear a hat.

4. Volunteers must bring both medication bottles to every follow-up appointment to check if they have used the products as instructed by the researcher.

5. Follow the researcher's instructions strictly.

3.6.9 Schedule follow-up appointments to assess treatment results as specified in points 4 and 5.2-5.4 every 4, 8 and 12 weeks after treatment.

3.6.10 Monitor and record side effects every 4, 8 and 12 weeks after treatment by taking a medical history and conducting physical examinations for symptoms such as skin irritation, skin burning, redness, itching, and erectile dysfunction using the International Index of Erectile Function (IIEF-5) questionnaire.

3.6.11 Assess the satisfaction of the participants in week 12 by providing them with their global photographs taken before the treatment and at week 12. Then, have the participants evaluate their satisfaction based on the photographs using a 7-point scale: Significantly Worse (-3), Moderately Worse (-2), Minimally Worse (-1), No Change (0), Minimally Improved (+1), Moderately Improved (+2), Significantly Improved (+3)

3.6.12 The researcher collects data related to the research project using codes without revealing names or surnames and restricts access to the data to protect the privacy of the volunteers.

3.6.13 After the treatment is completed, the researcher will collect all research products. Participants will receive 2% minoxidil eyebrow growth solution to treat eyebrow thinning. If the study results show good efficacy, the solution will be applied only to the eyebrow that received the placebo. If the study results show no efficacy, the solution will be applied to both eyebrows.

Table 3.2 Research procedure

Research Procedure	Wk 0	Wk 4	Wk 8	Wk 12
Select volunteers to participate in the research	x			
Take a medical history, Physical examination	x			
Explains the research project details	x			
Collect the patient's identification no. and age information	x			
Collect global photographs of both eyebrows	x	x	x	x

Table 3.2 (continued)

Research Procedure	Wk 0	Wk 4	Wk 8	Wk 12
Collect the average diameter data of eyebrow hairs	x	x	x	x
Collect the number of eyebrow hairs	x	x	x	x
Monitor and record side effects		x	x	x
Assess the satisfaction of the participants				x

3.7 Data Analysis and Statistics

3.7.1 Categorical data include global photographic assessment score, and the side effects are reported using the frequency and percent.

3.7.2 Continuous data include age, eyebrow diameter and number of eyebrow. Data with a normal distribution are reported using the mean and standard deviation (SD).

3.7.3 The comparison of mean changes in global photographic scores of both eyebrows between the two groups is calculated using the Repeated measure ANOVA test.

3.7.4 The comparison of the average diameter and average number of eyebrow hairs before and after treatment for each type of medication is tested using the Repeated measure ANOVA test.

3.7.5 The mean changes in diameter and number of eyebrow from baseline in the 0.1% finasteride solution group and the placebo group are compared using the Repeated measure ANOVA test.

3.7.6 The satisfaction of participants between the two groups is compared using the McNemar test.

3.7.7 The side effects of the treatment are recorded as incidence rates for each group separately, and significant differences between the groups are analyzed using the McNemar test.

3.7.8 A P-value of less than 0.05 is considered to indicate a statistically significant difference.

CHAPTER 4

RESEARCH RESULTS

4.1 Demographic Data of the Participants

A total of 8 male participants diagnosed with eyebrow hypotrichosis were enrolled and completed the 12-week study. The mean age of participants was 37.9 ± 2.5 years. Based on the Global Eyebrow Assessment (GEBA) scale, 3 participants (37.5%) presented with Grade 1 hypotrichosis, while 5 participants (62.5%) were classified as Grade 2. Most participants (7 participants, 87.5%) reported no underlying medical conditions, while one participant (12.5%) reported a history of hypertension. None had a history of drug or chemical allergies. Treatment allocation using the coin-flip method resulted in an even distribution, with 50% of participants receiving the finasteride spray on the right eyebrow and 50% on the left. This balance was maintained for placebo application as well.

Table 4.1 Demographic data

	n=8
Male	8
Age (years)	37.9 ± 2.5 (min=33, max=41)
GEBA (1-4)	
1	3
2	5
Underlying disease	
No	7
Yes	1
Drug/chemical allergy	
No	8
Side: Right	
A (finasteride)	4

Table 4.1 (continued)

	n=8
B (placebo)	4
Side: Left	
A (finasteride)	4
B (placebo)	4

4.2 Primary Outcome: Global Photographic Assessment

Global photographic assessments were conducted at baseline and weeks 4, 8, and 12 using standardized VISIA imaging and evaluated by two blinded dermatologists. Each eyebrow (finasteride-treated and placebo-treated) was assessed using the 7-point Global Photographic Score, with the following grading criteria: +3 = Significantly Improved, +2 = Moderately Improved, +1 = Minimally Improved, 0 = No Change, -1 = Minimally Worse, -2 = Moderately Worse, and -3 = Significantly Worse.

At baseline, both groups had a mean score of 0. By week 4, the finasteride-treated group began to show visible but mild improvement, with a mean photographic score of 1.25 ± 0.46 . The majority of participants (6 participants, 75%) in this group were rated as “minimally improved (+1),” and 2 participants (25%) were rated as “moderately improved (+2).” In contrast, the placebo-treated group had a mean score of 0.25 ± 0.46 , with most participants (6 participants, 75%) showing no change and only 2 participants (25%) rated as “minimally improved (+1).” The difference between the groups at this time point was statistically significant ($P = 0.008$).

By week 8, the finasteride group demonstrated further improvement in the eyebrow Global Photographic Score, with the mean score increasing to 2.00 ± 0.76 . Assessors rated 2 participants (25%) of the finasteride-treated eyebrows as “minimally improved (+1),” 4 participants (50%) as “moderately improved (+2),” and 2 participants (25%) as “significantly improved (+3).” Meanwhile, the placebo group had a mean score of 0.75 ± 0.71 , with 4 participants (50%) showing “minimally improved (+1),” 1 participant (12.5%) showing “moderately improved (+2),” and 3 participants (37.5%) still rated as “no change (0).” The difference in photographic scores between

groups remained statistically significant at this time point ($P = 0.002$). At week 12, the aesthetic difference between groups was maintained. The finasteride-treated group continued to show a mean score of 2.00 ± 0.76 , with all 8 participants (100%) showing some level of improvement—2 participants (25%) rated as “mildly improved,” 4 participants (50%) as “moderately improved,” and 2 participants (25%) as “significantly improved.” In comparison, the placebo-treated group had a mean score of 0.75 ± 0.71 , with 6 participants (75%) rated as improved (4 participants (50%) mild, 2 participants (25%) moderate) and 2 participants (25%) still rated as “no change.” The difference between groups at week 12 remained statistically significant ($P = 0.002$).

Within-group comparisons demonstrated a statistically significant improvement in Global Photographic Scores from baseline to week 12 in both treatment groups. In the finasteride-treated side, repeated-measures ANOVA revealed a significant increase over time ($P = 0.006$), with pairwise comparison showing a highly significant difference between baseline and week 12 ($P < 0.001$). Similarly, the placebo-treated side also showed a statistically significant change across time points ($P = 0.033$), with a smaller but significant difference observed between baseline and week 12 ($P = 0.020$).

Post hoc analysis demonstrated that the finasteride-treated eyebrows showed a significant improvement in global photographic scores from baseline to week 4 ($P < 0.001$), with further enhancement observed between weeks 4 and 8 ($P = 0.020$). The improvement then plateaued and was maintained through week 12 ($P = 0.999$ between weeks 8 and 12). In contrast, the placebo-treated eyebrows showed no significant change from baseline to week 4 ($P = 0.171$), followed by mild but significant improvements between baseline and weeks 8 and 12 ($P = 0.020$ for both), with modest progression between weeks 4 and 8 ($P = 0.033$) and stability thereafter ($P = 0.999$ between weeks 8 and 12).

Table 4.2 Comparison global photographic scores of both eyebrows

Week	Finasteride spray (n=8)		P-value
	Mean \pm SD	Mean \pm SD	
0	0 ± 0	0 ± 0	NA
4	1.25 ± 0.46	0.25 ± 0.46	0.008
8	2 ± 0.76	0.75 ± 0.71	0.002

Table 4.2 (continued)

Week	Finasteride spray (n=8)	Placebo (n=8)	P-value
	Mean ± SD	Mean ± SD	
12	2 ± 0.76	0.75 ± 0.71	0.002
P-value for compare photographic scores among week within treatment group			
Repeated ANOVA	0.006	0.033	
P-value compare within group			
0 vs 4	<0.001	0.171	
0 vs 8	<0.001	0.020	
0 vs 12	<0.001	0.020	
4 vs 8	0.020	0.033	
4 vs 12	0.020	0.033	
8 vs 12	0.999	0.999	

Note P-value was evaluated by Repeated measure ANOVA test

Table 4.3 Comparison global photographic scores of both eyebrows

	Finasteride spray	Placebo
	(n=8)	(n=8)
Week 4		
- Not improved	0	6
- Mild improved	6	2
- Moderate improved	2	0
- Very improved	0	0
Week 8		
- Not improved	0	3
- Mild improved	2	4
- Moderate improved	4	1
- Very improved	2	0
Week 12		
- Not improved	0	3
- Mild improved	2	4

Table 4.3 (continued)

	Finasteride spray	Placebo
	(n=8)	(n=8)
- Moderate improved	4	1
- Very improved	2	0

Table 4.4 Pictures comparing eyebrows treated with finasteride and placebo at baseline and week 12

Treatment	Week 0	Week 12
Finasteride		
Placebo		

4.3 Secondary Outcome

4.3.1 Change in Average Eyebrow Hair Count

At baseline, the mean eyebrow hair count was 43.9 ± 8.2 hairs on the finasteride-treated side and 49.4 ± 7.0 hairs on the placebo-treated side. The placebo side had a significantly higher count than the finasteride side at baseline ($P = 0.037$).

By week 4, the mean hair count increased to 56.0 ± 9.2 hairs on the finasteride side and to 52.4 ± 15.3 hairs on the placebo side. This represented a mean increase of $+12.1 \pm 10.3$ hairs for the finasteride side and $+3.0 \pm 10.6$ hairs for the placebo side.

Although the finasteride group showed a larger increase, the difference between groups at week 4 was not statistically significant ($P = 0.144$).

At week 8, the finasteride-treated side continued to show progressive improvement, with a mean hair count of 65.1 ± 9.8 hairs (mean change from baseline $+21.3 \pm 9.3$ hairs). The placebo-treated side reached 57.1 ± 10.2 hairs (mean change $+7.8 \pm 7.3$ hairs). The difference in change from baseline between the two groups was statistically significant at this time point ($P = 0.036$).

By the end of the 12-week study period, the finasteride-treated side reached a mean count of 68.6 ± 10.8 hairs, representing a mean increase of $+24.8 \pm 10.6$ hairs from baseline. In contrast, the placebo side had a mean count of 54.3 ± 13.2 hairs, with a mean increase of only $+4.8 \pm 10.7$ hairs. The difference in improvement between groups was statistically significant at this final assessment ($P = 0.008$).

Within-group analysis of eyebrow hair count revealed a statistically significant increase over time in the finasteride-treated side. Repeated measures ANOVA showed a highly significant change in hair count across time points ($P < 0.001$), with pairwise comparison confirming a significant difference between baseline and week 12 ($P < 0.001$). In contrast, the placebo-treated side did not show a statistically significant change over time ($P = 0.109$).

Table 4.5 Comparison of hair count between finasteride and placebo

Week	Finasteride spray (n=8)	Placebo (n=8)	P-value
	Mean \pm SD	Mean \pm SD	
0	43.9 ± 8.2	49.4 ± 7.0	0.037
4	56.0 ± 9.2	52.4 ± 15.3	0.575
8	65.1 ± 9.8	57.1 ± 10.2	0.214
12	68.6 ± 10.8	54.3 ± 13.2	0.030

P-value for compare hair count among week within treatment group

Repeated ANOVA	<0.001	0.109
----------------	--------	-------

Note P-value was evaluated by Repeated measure ANOVA test

Table 4.6 Comparison of change in hair count from baseline between finasteride and placebo

Week	Finasteride spray (n=8)	Placebo (n=8)	P-value
	Mean \pm SD	Mean \pm SD	
4	12.1 \pm 10.3	3 \pm 10.6	0.144
8	21.3 \pm 9.3	7.8 \pm 7.3	0.036
12	24.8 \pm 10.6	4.8 \pm 10.7	0.008

Note P-value was evaluated by Repeated measure ANOVA test

4.3.2 Change in Average Eyebrow Hair Diameter

At baseline, the mean (\pm SD) eyebrow hair diameter was 0.09 ± 0.02 mm on the finasteride-treated side and 0.08 ± 0.02 mm on the placebo-treated side. The difference between groups at baseline was not statistically significant ($P = 0.070$), indicating comparable starting values.

By week 4, the average diameter on the finasteride-treated side remained at 0.09 ± 0.01 mm, showing minimal change from baseline. The placebo-treated side maintained a mean of 0.08 ± 0.02 mm. Despite the small numerical difference, the between-group comparison reached statistical significance ($P = 0.016$).

At week 8, the mean diameter on the finasteride side was 0.09 ± 0.01 mm, while the placebo side remained at 0.08 ± 0.01 mm. Again, the difference between groups was statistically significant ($P = 0.038$), though the absolute change within each group from baseline was minimal.

By week 12, the finasteride-treated side maintained a stable mean diameter of 0.09 ± 0.01 mm, while the placebo-treated side also remained unchanged at 0.08 ± 0.01 mm. The difference between the two sides at this time point was statistically significant ($P = 0.031$).

Despite statistically significant differences between groups at weeks 4, 8, and 12, there was no statistically significant change in hair diameter from baseline for either group, nor was there a significant difference in the change from baseline between the finasteride and placebo groups at any time point (P -values > 0.8). For instance, at Week

12, the change for finasteride was -0.003 ± 0.023 and for placebo was -0.002 ± 0.01 ($P=0.978$).

Within-group analysis of average eyebrow hair diameter showed no statistically significant change over time in either treatment group. For the finasteride-treated side, repeated measures ANOVA indicated no significant difference across time points ($P = 0.992$), and the pairwise comparison between baseline and week 12 also showed no significant change ($P = 0.740$). Similarly, the placebo-treated side demonstrated no significant changes over time ($P = 0.858$), with no meaningful difference observed between baseline and week 12 ($P = 0.558$).

Table 4.7 Comparison of the hair diameter between finasteride and placebo

Week	Finasteride spray (n=8)	Placebo (n=8)	P-value
	Mean \pm SD	Mean \pm SD	
0	0.09 ± 0.02 mm	0.08 ± 0.02 mm	0.070
4	0.09 ± 0.01 mm	0.08 ± 0.02 mm	0.016
8	0.09 ± 0.01 mm	0.08 ± 0.01 mm	0.038
12	0.09 ± 0.01 mm	0.08 ± 0.01 mm	0.031
P-value for compare average hair diameter among week within treatment group			
Repeated ANOVA	0.992	0.858	

Note P-value was evaluated by Repeated measure ANOVA test

4.3.3 Patient Satisfaction

In the finasteride-treated group, all eight participants (100%) reported some level of improvement, with three participants (37.5%) rating the result as minimally improved, two participants (25.0%) as moderately improved, and three participants (37.5%) as significantly improved. No participants reported “no change” in the finasteride group. In contrast, in the placebo-treated group, six participants (75.0%) reported some degree of improvement, including four (50.0%) with minimally improved and two (25.0%) with moderately improved, while two participants (25.0%) rated the placebo side as showing no change at all.

To allow for statistical comparison of treatment satisfaction, Satisfaction scores were dichotomized into two categories: “improved” (score $\geq +1$) and “not improved”

(score = 0). Based on this classification, all (100%) of participants rated the finasteride-treated eyebrow as improved, compared to 6 participants (75%) for the placebo-treated side. The difference in satisfaction proportions between the two treatments was analyzed using McNemar's test. Although there was a clear trend favoring the finasteride group, the difference did not reach statistical significance ($P = 0.157$).

Table 4.8 Comparison of the satisfaction of participants

Week	Finasteride spray (n=8)	Placebo(n=8)	P-value
satisfaction of participants			0.157
- Not improved	0	2	
- Improved	8	6	

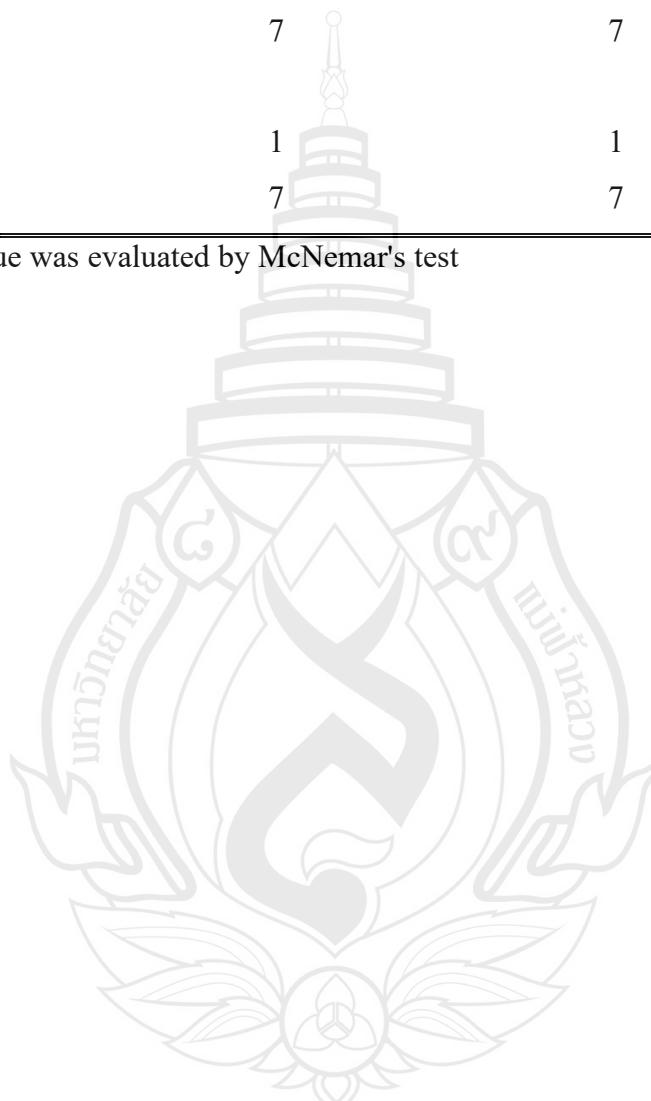
Note P-value from McNemar's test

4.3.4 Side Effects

The side effects remained consistently low and comparable between the finasteride and placebo groups throughout the 12-week study period. At week 4, no adverse effects were reported in the finasteride group, while 1 participant (12.5%) in the placebo group experienced mild pruritus.

By weeks 8 and 12, 1 participant (12.5%) in each group reported mild pruritus. These side effects were transient, localized, and did not require medical intervention. No participants withdrew from the study due to adverse events, and no serious or systemic side effects such as erectile dysfunction or allergic reactions were observed in any participant.

There were no statistically significant differences in the incidence of adverse effects between the two groups at any time point, with P-values ranging from 0.317 to 0.999.


Table 4.9 Side effects

Week	finasteride	placebo	P-value
	(n=8)	(n=8)	
Week 4			0.317
- Yes	0	1	
- No	8	7	

Table 4.9 (continued)

Week	finasteride	placebo	P-value
	(n=8)	(n=8)	
Week 8			0.999
- Yes	1	1	
- No	7	7	
Week 12			0.999
- Yes	1	1	
- No	7	7	

Note P-value was evaluated by McNemar's test

CHAPTER 5

CONCLUSION AND DISCUSSION

5.1 Conclusion

This study aimed to evaluate the efficacy and safety of 0.1% topical finasteride spray solution in promoting eyebrow enhancement among male participants with eyebrow hypotrichosis. The findings demonstrated that the finasteride-treated eyebrows significantly outperformed the placebo-treated side in terms of global photographic improvement and hair count over the 12-week treatment period. Finasteride showed consistent and statistically significant superiority in global photographic assessment, with higher average scores and greater proportions of visible improvement starting from week 4 and persisting through weeks 8 and 12. Hair count increased more substantially on the finasteride-treated side, particularly at weeks 12, with statistically significant differences compared to placebo. Although eyebrow hair diameter did not significantly change within groups over time, between-group differences remained statistically significant at multiple time points. Patient satisfaction also trended in favor of finasteride, with all participants reporting improvement, though the difference was not statistically significant. The treatment was well tolerated, with no serious or systemic side effects observed, supporting the potential of 0.1% topical finasteride as another therapeutic option for male eyebrow hypotrichosis.

5.2 Discussion

This study was based on the recognition that eyebrow hypotrichosis, though often overlooked, can have both aesthetic and psychological consequences. There is currently a lack of standardized, evidence-based treatments specifically aimed at promoting eyebrow hair growth. Finasteride, a 5-alpha-reductase inhibitor, has been widely used for androgenetic alopecia due to its ability to reduce dihydrotestosterone

(DHT), a key factor in follicular miniaturization. However, its topical application for eyebrow enhancement remains underexplored. To address this gap, the research employed a randomized, double-blind, placebo-controlled, split-face design to evaluate the efficacy and safety of 0.1% topical finasteride spray solution for male eyebrow enhancement. A comprehensive set of outcome measures was used to capture both clinical efficacy and safety. Global photographic assessment, conducted by blinded dermatologists using a standardized Global photographic score at baseline, weeks 4, 8, and 12, served as the primary outcome. Secondary outcomes included quantitative eyebrow hair count and average eyebrow hair diameter, assessed using Folliscope imaging to detect subtle changes in follicular activity and hair structure. Patient satisfaction was evaluated at week 12 by self-assessment using the same global photographic score to reflect perceived improvement. Adverse events were monitored throughout the study period to assess safety and tolerability.

The results of this split-face, randomized, double-blind, placebo-controlled study support the efficacy of 0.1% topical finasteride spray solution in enhancing eyebrow growth in males. The global photographic assessment showed early and sustained improvement on the finasteride-treated side beginning as early as week 4. While finasteride is well-established in treating scalp androgenetic alopecia, its off-label use for eyebrow enhancement remains underexplored. This study provides important clinical evidence supporting such application.

Although eyebrow follicles have been traditionally considered relatively insensitive to androgens, the clinical response observed in this study suggests that local DHT suppression through topical finasteride may still influence follicular behavior. This indicates that androgen insensitivity in eyebrow hair may be partial rather than absolute, with certain follicles remaining responsive under specific conditions. Factors such as individual variability in 5 α -reductase may contribute to this responsiveness. These findings challenge conventional assumptions and may support the therapeutic potential of targeted antiandrogen therapy for eyebrow enhancement in selected populations.

The discrepancy between the increase in hair count and the lack of significant change in hair diameter may be attributed to the different timeframes required for these outcomes to manifest. The inhibition of dihydrotestosterone (DHT) by topical

finasteride may promote the emergence of new hairs by reactivating dormant follicles and prolonging the anagen phase. However, changes in hair shaft diameter likely require a longer duration of treatment to become clinically or statistically apparent. Hair thickening involves gradual structural remodeling within the follicle, a process that may lag behind follicular activation. Therefore, while the current study demonstrates that DHT suppression can lead to new hair growth within a 12-week period, the follow-up duration may have been insufficient to observe measurable changes in hair caliber. Longer-term studies are warranted to determine whether continued treatment would yield significant improvements in hair diameter.

Although patient satisfaction showed a clear trend favoring the finasteride-treated side, the difference did not reach statistical significance. This should be interpreted with caution, as it does not necessarily indicate the absence of a true treatment effect. Rather, the lack of significance may reflect limitations in statistical power due to the small sample size. In studies with limited participants, even clinically meaningful differences may fail to meet significance thresholds due to insufficient variability. Nonetheless, the consistent satisfaction responses favoring finasteride, along with parallel improvements in objective outcomes such as hair count and photographic assessment, suggest a potentially meaningful clinical benefit. While not statistically conclusive, these findings support the real-world value of topical finasteride and highlight the need for further investigation in larger, adequately powered trials.

The overall safety profile of topical finasteride observed in this study reinforces its potential as a well-tolerated option for localized hair enhancement. The minimal incidence of side effects, and particularly the absence of systemic adverse reactions, is consistent with the theoretical advantage of topical over oral formulations—namely, reduced systemic absorption and lower risk of hormonally mediated side effects. This aligns with findings from previous pharmacokinetic studies and supports the rationale for using localized finasteride in areas such as the eyebrows, where cosmetic enhancement is desired but systemic exposure should be minimized. The favorable tolerability may also enhance patient compliance, an important factor in long-term cosmetic treatments. These observations highlight the promise of topical finasteride as both a safe and practical option for broader clinical use.

Overall, the study reinforces the potential of topical finasteride as a safe and effective modality for male patients with eyebrow hypotrichosis, especially those seeking non-invasive treatment options.

5.3 Limitations

Despite the encouraging results, several limitations must be acknowledged. First, the study was conducted exclusively in male participants, limiting the ability to extrapolate findings to female patients or to individuals with differing etiologies of eyebrow hypotrichosis. Second, although efforts were made to standardize image acquisition and evaluation, photographic assessment remains inherently subjective, and minor variations in lighting, camera distance, or angulation could influence the perceived density and quality of eyebrow hairs. Third, potential measurement bias may exist in determining hair diameter, as the small, curved nature of eyebrow hairs poses challenges for precise calibration and alignment under the Folliscope. Similarly, hair count analysis could be influenced by hair density, fine caliber, and glare from lighting, which might obscure newly growing or vellus hairs. These technical constraints highlight the need for more refined imaging protocols or automated analysis tools in future studies.

5.4 Suggestions

Future research should include larger and more diverse study populations, incorporating both male and postmenopausal female participants, to enhance the validity and generalizability of findings. Extended follow-up periods of 6 to 12 months are recommended to evaluate the durability of clinical efficacy and to monitor for any delayed adverse effects. The integration of histological assessments or high-resolution dermoscopic imaging could offer more detailed insights into the underlying mechanisms of follicular stimulation. Furthermore, formulation strategies warrant further investigation; advanced delivery systems may improve follicular penetration and enhance localized drug activity while minimizing systemic exposure. Comparative

studies examining different application methods, such as spray versus drop formulations, are also needed to determine the most effective and user-friendly mode of administration. Finally, dose-ranging studies are essential to identify the optimal concentration of topical finasteride for eyebrow enhancement, ensuring a balance between clinical efficacy, safety, and patient adherence.

REFERENCES

Beer, K. R., Julius, H., Dunn, M., & Wilson, F. (2013). Treatment of Eyebrow Hypotrichosis Using Bimatoprost: A Randomized, Double-Blind, Vehicle-Controlled Pilot Study. *Dermatologic Surgery*, 39(7), 1079–1087. <https://doi.org/10.1111/dsu.12199>

Carruthers, J., Beer, K., Carruthers, A., Coleman, W. P., Draeger, Z. D., Jones, D., . . . Whitecup, S. M. (2016). Bimatoprost 0.03% for the Treatment of Eyebrow Hypotrichosis. *Dermatologic Surgery*, 42(5), 608–617. <https://doi.org/10.1097/DSS.0000000000000755>

Caserini, M., Radicioni, M., Leuratti, C., Annoni, O., & Palmieri, R. (2014). A novel finasteride 0.25% topical solution for androgenetic alopecia: pharmacokinetics and effects on plasma androgen levels in healthy male volunteers. *Int. Journal of Clinical Pharmacology and Therapeutics*, 52(10), 842–849. <https://doi.org/10.5414/CP202119>

Chanasumon, N., Sripojanart, T., & Suchonwanit, P. (2018). Therapeutic potential of bimatoprost for the treatment of eyebrow hypotrichosis. In *Drug Design, Development and Therapy* (Vol. 12, pp. 365–372). Dove Medical Press Ltd. <https://doi.org/10.2147/DDDT.S156467>

Charuwichitratana, S., Krisdapong, P., & Sumethiwit, R. (2003). Randomized double-blind placebo controlled trial in the treatment of male androgenetic alopecia with 0.1% finasteride solution. *Jpn J Dermatol*, 113(881).

Cohen, J. L. (2010). Enhancing the Growth of Natural Eyelashes: The Mechanism of Bimatoprost-Induced Eyelash Growth. *Dermatologic Surgery*, 36(9), 1361–1371. <https://doi.org/10.1111/j.1524-4725.2010.01522.x>

Cunningham, M. R., Roberts, A. R., Barbee, A. P., Druen, P. B., & Wu, C. H. (1995). "Their ideas of beauty are, on the whole, the same as ours": Consistency and variability in the cross-cultural perception of female physical attractiveness. *Journal of personality and social psychology*, 68(2), 261.

Epstein, J. (2013). Facial Hair Restoration. *Facial Plastic Surgery Clinics of North America*, 21(3), 457–467. <https://doi.org/10.1016/j.fsc.2013.05.004>

Gupta, A. K., & Talukder, M. (2022). Topical finasteride for male and female pattern hair loss: Is it a safe and effective alternative? *Journal of Cosmetic Dermatology*, 21(5), 1841–1848. <https://doi.org/10.1111/jocd.14895>

Gupta, A. K., Venkataraman, M., Talukder, M., & Bamimore, M. A. (2021). Finasteride for hair loss: a review. *Journal of Dermatological Treatment*, 33(4), 1938–1946. <https://doi.org/10.1080/09546634.2021.1959506>

Hajheydari, Z., Akbari, J., Saeedi, M., & Shokoohi, L. (2009). Comparing the therapeutic effects of finasteride gel and tablet in treatment of the androgenetic alopecia. *Indian Journal of Dermatology, Venereology and Leprology*, 75(1), 47. <https://doi.org/10.4103/0378-6323.45220>

Helga Henseler. (2022). *Validation of the Visia ® Camera System for*. www.canfieldsci.com/

Kaufman, K. D. (2002). Androgens and alopecia. *Molecular and Cellular Endocrinology*, 198(1–2), 89–95. [https://doi.org/10.1016/S0303-7207\(02\)00372-6](https://doi.org/10.1016/S0303-7207(02)00372-6)

Kim, K.-H., Kwon, S.-H., Lee, Y.-J., Sim, W.-Y., & Lew, B.-L. (2021). Efficacy of Finasteride in Female Pattern Hair Loss: A Meta-Analysis. *Annals of Dermatology*, 33(3), 304. <https://doi.org/10.5021/ad.2021.33.3.304>

Lee, S., Tanglertsampan, C., Tanchotikul, M., & Worapunpong, N. (2014). Minoxidil 2% lotion for eyebrow enhancement: A randomized, double-blind, placebo-controlled, split-face comparative study. *The Journal of Dermatology*, 41(2), 149–152. <https://doi.org/10.1111/1346-8138.12275>

Mazzarella, G., Loconsole, G., Cammisa, G., Mastrolonardo, G., & Vena, G. (1997). Topical finasteride in the treatment of androgenic alopecia. Preliminary evaluations after a 16-month therapy course. *Journal of Dermatological Treatment*, 8(3), 189–192. <https://doi.org/10.3109/09546639709160517>

Mumford, B. P., Eisman, S., & Yip, L. (2023). Acquired causes of eyebrow and eyelash loss: A review and approach to diagnosis and treatment. In *Australasian Journal of Dermatology* (Vol. 64, Issue 1, pp. 28–40). John Wiley and Sons Inc. <https://doi.org/10.1111/ajd.13947>

Mysore, V., & Shashikumar, B. (2016). Guidelines on the use of finasteride in androgenetic alopecia. *Indian Journal of Dermatology, Venereology, and Leprology*, 82(2), 128. <https://doi.org/10.4103/0378-6323.177432>

Nguyen, B., Hu, J. K., & Tosti, A. (2023). Eyebrow and Eyelash Alopecia: A Clinical Review. In *American Journal of Clinical Dermatology* (Vol. 24, Issue 1, pp. 55–67). Adis. <https://doi.org/10.1007/s40257-022-00729-5>

Nguyen, J. V. (2014). The biology, structure, and function of eyebrow hair. *Journal of Drugs in Dermatology: JDD*, 13(1 Suppl), s12-6.

Otberg, N., & Shapiro, J. (2012). Hair growth disorders. In *Fitzpatrick's dermatology in general medicine* (8th ed., pp. 993). McGraw-Hill.

Piraccini, B. M., Blume-Peytavi, U., Scarci, F., Jansat, J. M., Falqués, M., Otero, R., . . . Massana, E. (2022). Efficacy and safety of topical finasteride spray solution for male androgenetic alopecia: a phase III, randomized, controlled clinical trial. *Journal of the European Academy of Dermatology and Venereology*, 36(2), 286–294. <https://doi.org/10.1111/jdv.17738>

Riahi, R. R., & Cohen, P. R. (2018). Topical treatment of eyebrow hypotrichosis with bimatoprost 0.03% solution: case report and literature review. *Cureus*, 10(5). <https://doi.org/10.7759/cureus.2666>

Suchonwanit, P., Harnchoowong, S., Chanasumon, N., & Sriphojanart, T. (2020). Comparison of the efficacy and safety of using 0.01% versus 0.03% bimatoprost for the treatment of eyebrow hypotrichosis: A randomized, double-blind, split-face, comparative study. *Journal of Cosmetic Dermatology*, 19(3), 714–719. <https://doi.org/10.1111/jocd.13079>

Suchonwanit, P., Iamsumang, W., & Leerunyakul, K. (2022). Topical finasteride for the treatment of male androgenetic alopecia and female pattern hair loss: a review of the current literature. *Journal of Dermatological Treatment*, 33(2), 643–648. <https://doi.org/10.1080/09546634.2020.1782324>

Suchonwanit, P., Srisuwanwattana, P., Chalermroj, N., & Khunkhet, S. (2018). A randomized, double-blind controlled study of the efficacy and safety of topical solution of 0.25% finasteride admixed with 3% minoxidil vs. 3% minoxidil solution in the treatment of male androgenetic alopecia. *Journal of the European Academy of Dermatology and Venereology*, 32(12), 2257–2263.
<https://doi.org/10.1111/jdv.15171>

Suwanchatchai, W., Tanglertsampan, C., Pengsala, N., & Makornwattana, M. (2012). Efficacy and safety of bimatoprost 0.03% versus minoxidil 3% in enhancement of eyebrows: A randomized, double-blind, split-face comparative study. *The Journal of Dermatology*, 39(10), 865–866.
<https://doi.org/10.1111/j.1346-8138.2012.01579.x>

Tanglertsampan, C. (2012). Efficacy and safety of 3% minoxidil versus combined 3% minoxidil/0.1% finasteride in male pattern hair loss: a randomized, double-blind, comparative study. *Journal of the Medical Association of Thailand*, 95(10), 1312.

Worapunpong, N., & Tanglertsampan, C. (2017). Treatment of Eyebrow Hypotrichosis with 1% Minoxidil Lotion: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. *J Med Assoc Thai*, 100(5).
<http://www.jmatonline.com>

Zaky, M. S., Hashem, O. A., Mahfouz, S. M., & Elsaie, M. L. (2023). Comparative study of the efficacy and safety of topical minoxidil 2% versus topical bimatoprost 0.01% versus topical bimatoprost 0.03% in treatment of eyebrow hypotrichosis: a randomized controlled trial. *Archives of Dermatological Research*, 315(9), 2635–2641. <https://doi.org/10.1007/s00403-023-02679-2>

APPENDIX A

DOCUMENT CERTIFYING HUMAN ETHICS

หนังสือรับรองด้านจริยธรรมการวิจัย

COA: 143/2025

รหัสโครงการวิจัย: EC 24213-20

ชื่อโครงการวิจัย : ประสีหิพิพของสเปรย์พิแพนสเทอไรต์ชนิดทากความเย็น 0.1% สำหรับเพิ่มความหนาของคิ้วในเพศชาย: การศึกษาเปรียบเทียบโดยวิธีสุ่มแบบสองฝ่ายที่มีกีฬาควบคุมด้วยยาหลอกและใช้การทดลองแบบแบ่งครึ่งใบหน้า

ชื่อผู้วิจัยหลัก: นายแพทัยกิตติณัฐ จิตรดิพรสรรค์

สำนักวิชา: เวชศาสตร์ชัล寇วัยและพื้นพุสุขภาพ

ผู้สนับสนุนการวิจัย: ทุนส่วนตัว

การรับรอง :

- (1) โครงการวิจัย
- (2) เอกสารข้อมูลและข้อมูลอื่นย้อนเข้าร่วมการวิจัย
- (3) บัตรประจำตัวผู้เข้าร่วมโครงการวิจัย
- (4) เอกสารโฆษณา, แบบบันทึกข้อมูล
- (5) ผู้วิจัย และผู้ช่วยร่วม
- นายแพทัยกิตติณัฐ จิตรดิพรสรรค์

ฉบับที่ 4 วันที่ 11 มิถุนายน 2568

ฉบับที่ 3 วันที่ 15 พฤษภาคม 2568

ฉบับที่ 3 วันที่ 15 พฤษภาคม 2568

ฉบับที่ 2 วันที่ 15 กุมภาพันธ์ 2568

ขอรับรองว่าโครงการดังกล่าวข้างต้นได้ผ่านการพิจารณาทั้งหมดจากคณะกรรมการจริยธรรมการวิจัยในมุขย์ มหาวิทยาลัยแม่ฟ้าหลวง ว่าสอดคล้องกับแนวทางจริยธรรมสากล ได้แก่ ปฏิญญาไฮลิซิงกี (Declaration of Helsinki) รายงานเบล蒙ต์ (Belmont Report) แนวทางจริยธรรมสากลสำหรับการวิจัยในมนุษย์ของสภากองการสากลด้านวิทยาศาสตร์การแพทย์ (CIOMS) และแนวทางการปฏิบัติการวิจัยที่ดี (ICH-GCP)

วันที่รับรองด้านจริยธรรมของโครงการวิจัย: 10 กรกฎาคม 2568

วันสิ้นสุดการรับรอง: 9 กรกฎาคม 2569

ความถี่ของการส่งรายงานความก้าวหน้าของการวิจัย: 1 ปี

ลงนาม

(อาจารย์ นพ. จุลพงศ์ อจุลพงศ์)

ประธานคณะกรรมการจริยธรรมการวิจัยในมนุษย์ มหาวิทยาลัยแม่ฟ้าหลวง

The Mae Fah Luang University Ethics Committee on Human Research
 333 Moo 1, Thasud, Muang, Chiang Rai 57100
 Tel: (053) 917-170 to 71 Fax: (053) 917-170 E-mail: rec.human@mfu.ac.th

ผู้วิจัยที่โครงการวิจัยผ่านการรับรองจากคณะกรรมการจิตรกรรมการวิจัยในมนุษย์ มหาวิทยาลัยแม่ฟ้าหลวง
 ต้องปฏิบัติตามดังต่อไปนี้

- (1) ดำเนินการวิจัยตามที่ระบุในโครงการวิจัยอย่างเคร่งครัด
- (2) ใช้เอกสารข้อมูลและข้อมูลเชิงร่วมมือที่ได้รับอนุญาต / แบบสอบถาม / แบบบันทึกข้อมูล / เอกสารประชาสัมพันธ์ ที่มีตราประทับของคณะกรรมการจิตรกรรมการวิจัยในมนุษย์ มหาวิทยาลัยแม่ฟ้าหลวง เท่านั้น
- (3) ผู้วิจัยต้องส่งรายงานความก้าวหน้าของการวิจัย (AP 05/2024) ตามระยะเวลาที่คณะกรรมการฯ กำหนด และภายใน 30 วัน ก่อนหมดอายุการรับรอง ในกรณีที่การวิจัยยังไม่เสร็จสิ้น ผู้วิจัยต้องส่งจดหมายขอต่ออายุการรับรอง
- (4) เมื่อมีการแก้ไขเพิ่มเติมโครงการวิจัย ผู้วิจัยต้องส่งรายงานส่วนแก้ไขเพิ่มเติมโครงการวิจัย (AP 06/2024) และโครงการวิจัยที่มีการแก้ไขเพิ่มเติม เพื่อแจ้งให้คณะกรรมการฯ พิจารณาบันทึกก่อนดำเนินการตามที่ได้แก้ไขเพิ่มเติม (ยกเว้นในกรณีที่การแก้ไขเพิ่มเติมนั้นกระทำเพื่อความปลอดภัยของอาสาสมัคร)
- (5) เมื่อมีเหตุการณ์ไม่พึงประสงค์ชนิดด้วยแรง “ในสถานที่” ผู้วิจัยต้องส่งรายงานเหตุการณ์ไม่พึงประสงค์ชนิดด้วยแรง (AP 07/2024) ตามข้อกำหนดของ ICH-GCP
- (6) เมื่อมีการเบี่ยงเบนหรือไม่ปฏิบัติตามโครงการวิจัยที่ได้รับการรับรอง ผู้วิจัยต้องส่งรายงานการเบี่ยงเบนหรือไม่ปฏิบัติตามข้อกำหนด (AP 08/2024)
- (7) เมื่อการวิจัยเสร็จสิ้น หรือ มีการยุติโครงการวิจัยก่อนกำหนดเวลาที่กำหนด ผู้วิจัยต้องส่งรายงานปิดโครงการวิจัย (AP 09/2024)

หมายเหตุ สามารถ Download แบบรายงานต่าง ๆ ได้ที่ <https://ethic.mfu.ac.th>

<p>ข้าพเจ้าในฐานะ ผู้วิจัย ยินยอมที่จะปฏิบัติตามข้อกำหนดดังกล่าว</p> <p style="text-align: center;"></p> <p style="text-align: center;">.....</p> <p style="text-align: center;">(นายแพทย์กิตติณัฐ อิตรดิพัสร์)</p> <p style="text-align: center;">วันที่</p>
--

The Mae Fah Luang University Ethics Committee on Human Research
 333 Moo 1, Thasud, Muang, ChiangRai 57100
 Tel: (053) 917-170 to 71 Fax: (053) 917-170 E-mail: rec.human@mfu.ac.th

CERTIFICATE OF APPROVAL

COA: 143/2025

Protocol No: EC 24213-20

Title: Efficacy of 0.1% Topical Finasteride spray solution for male eyebrow enhancement:
 A randomized, double-blind, placebo-controlled, split-face comparative study

Principal investigator: Kittinut Chittipornsang, M.D.

School: Anti-Aging and Regenerative Medicine

Funding support: Personal funding

Approval:

1) Research protocol	Version 4 Date June 11, 2025
2) Information sheet and informed consent documents	Version 3 Date May 15, 2025
3) Participant identification card	Version 3 Date May 15, 2025
4) Advertisement, Case record form	Version 2 Date February 15, 2025
5) Principal investigator and Co-investigators - Kittinut Chittipornsang, M.D.	

The aforementioned documents have been reviewed and approved by the Mae Fah Luang University Ethics Committee on Human Research in compliance with international guidelines such as Declaration of Helsinki, the Belmont Report, CIOMS Guidelines and the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use - Good Clinical Practice (ICH - GCP)

Date of Approval: July 10, 2025

Date of Expiration: July 9, 2026

Frequency of Continuing Review: 1 year

(Jullapong Achalapong, M.D.)

Chairperson of the Mae Fah Luang Ethics Committee on Human Research

The Mae Fah Luang University Ethics Committee on Human Research
 333 Moo 1, Thasud, Muang, ChiangRai 57100
 Tel: (053) 917-170 to 71 Fax: (053) 917-170 E-mail: rec.human@mfu.ac.th

For research protocol approved by the Mae Fah Luang University Ethics Committee on Human Research (MFU EC), the investigators must comply with the followings:

1. Strictly conduct the research as required by the protocol.
2. Use only the information sheet, consent form, questionnaire, case record form and advertisement bearing the MFU EC stamp of approval.
3. Submit a progress report (AP 05/2024) for continuing review and for renewing the approval within 30 days before expiration date.
4. When there are changes of the protocol, the investigator must submit an amendment report (AP 06/2024) with amended protocol for MFU EC approval before implementing any changes in the research (unless those changes are required urgently for the safety of the research subjects).
5. When there is any unanticipated problem or serious adverse event, the investigator must submit a safety report (AP 07/2024) as set forth in the ICH-GCP.
6. When there is any deviation or non-compliance with the approved protocol, the investigator must submit a protocol deviation/non-compliance report (AP 08/2024).
7. When the research is complete or terminated, the investigator must submit a closing report (AP 09/2024).

Please go to <https://ethic.mfu.ac.th> to download MFU EC forms for reporting.

I, as an investigator, agree to comply with the above obligation.

.....
 (Kittinut Chittipornsan, M.D.)

Date

APPENDIX B

CASE RECORD FORM

Version.....2.0..... Date...15...กุมภาพันธ์...2568..... CRF

ชื่อนามสกุลผู้ป่วย	เพศ	อายุ	GEBA(grade1-4)
เลขประจำตัว	ประวัติครอบครัว	แพทย์ผู้ร่วมรักษา	ขวาน้ำ
โทรศัพท์			ขวาน้ำ

Global photographic assessment

Wk 0, วันที่ _____

Wk 4, วันที่ _____

ขวาน้ำ	ข้อ
แม่ล่อมมาก (-3)	— —
แม่ล่องปานกลาง (-2)	— —
แม่ล่องเล็กน้อย (-1)	— —
ไม่มีแม่ล่อบ่อย (0)	— —
ดีขึ้นเล็กน้อย (+1)	— —
ดีขึ้นปานกลาง (+2)	— —
ดีขึ้นมาก (+3)	— —

ขวาน้ำ	ข้อ
แม่ล่อมมาก (-3)	— —
แม่ล่องปานกลาง (-2)	— —
แม่ล่องเล็กน้อย (-1)	— —
ไม่มีแม่ล่อบ่อย (0)	— —
ดีขึ้นเล็กน้อย (+1)	— —
ดีขึ้นปานกลาง (+2)	— —
ดีขึ้นมาก (+3)	— —

แพทย์ผู้ประเมิน _____

แพทย์ผู้ประเมิน _____

Wk 8, วันที่ _____

Wk 12, วันที่ _____

ขวาน้ำ	ข้อ
แม่ล่อมมาก (-3)	— —
แม่ล่องปานกลาง (-2)	— —
แม่ล่องเล็กน้อย (-1)	— —
ไม่มีแม่ล่อบ่อย (0)	— —
ดีขึ้นเล็กน้อย (+1)	— —
ดีขึ้นปานกลาง (+2)	— —
ดีขึ้นมาก (+3)	— —

ขวาน้ำ	ข้อ
แม่ล่อมมาก (-3)	— —
แม่ล่องปานกลาง (-2)	— —
แม่ล่องเล็กน้อย (-1)	— —
ไม่มีแม่ล่อบ่อย (0)	— —
ดีขึ้นเล็กน้อย (+1)	— —
ดีขึ้นปานกลาง (+2)	— —
ดีขึ้นมาก (+3)	— —

แพทย์ผู้ประเมิน _____

แพทย์ผู้ประเมิน _____

Version.....2.0..... Date...15...กุมภาพันธ์...2568..... CRF

Average hair diameter

Wk 0: _____

Average No. of eyebrow

Wk 0: _____

Wk 4: _____

Wk 4: _____

Wk 8: _____

Wk 8: _____

Wk 12: _____

Version.....2.0..... Date...15...กุมภาพันธ์...2568..... CRF

12-16: หย่อนลงกระพากทางเพศเล็กน้อยถึงปานกลาง 17-21: หย่อนลงกระพากทางเพศเล็กน้อยถึงปานกลาง

1-7: หน่วยสมรรถภาพทางเพศรวมของ
12-16: หน่วยสมรรถภาพทางเพศเด็กน้อยที่ไม่บานปลาย
22-25: "ไม่มีความต้องการที่จะบานปลายสมรรถภาพทางเพศ
8-11: หน่วยสมรรถภาพทางเพศปานกลาง
17-21: หน่วยสมรรถภาพทางเพศเด็กน้อย

อาทิตย์ที่ 8	
ผู้ແດງບໍລິເວັນທາຍາ	_____
ผู้ແສນບໍລິເວັນທາຍາ	_____
ຄົນບໍລິເວັນທາຍາ	_____
ຮະຄາຍເຄື່ອນບໍລິເວັນທາຍາ	_____
ໜ່ຍ່ອນສນຽດຄາພາກເພີ່ມ	_____
ຮາລະເລີຍດີ່ນໆ	_____

อาทิตย์ที่ 12

ผู้เด肯บริเวณท่าฯ _____

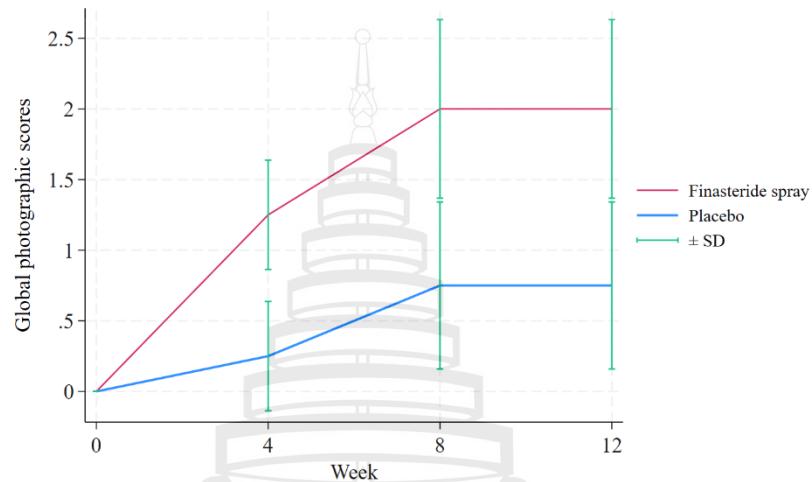
ผู้เสบบบริเวณท่าฯ _____

คันบริเวณท่าฯ _____

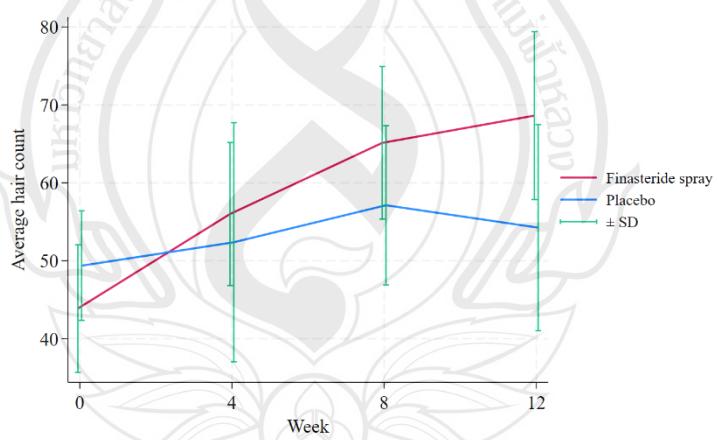
ระคายค่องบริเวณท่าฯ _____

หย่อนสมรรถภาพทางเพศ _____

รายละเอียดอื่นๆ


Version.....2.0..... Date...15...กุมภาพันธ์...2568..... CRF

ความพึงพอใจของผู้ป่วย



APPENDIX C

FIGURES

Figure C1 Global photographic scores by treatment group

Figure C2 Average of hair count by treatment group

APPENDIX D

INFORMED CONSENT FORM

Version...3.0... Date15 พฤษภาคม 2568..... AP 03_1/2024

เอกสารข้อมูลและขอความยินยอมเข้าร่วมการวิจัย

ชื่อโครงการวิจัย : ประสิทธิภาพของสเปรย์พิโนนสเทอโริด์ชนิดทากความเข้มข้น 0.1% สำหรับเพิ่มความหนาของคิ้วในเพศชาย: การศึกษาเบรียบเทียบโดยวิธีสุ่มแบบสองฝ่ายที่มีกุ่มควบคุมด้วยยาหลอกและใช้การทดลองแบบแบ่งครึ่งหน้า
ผู้วิจัยหลัก : นายแพทย์ กิตติณัฐ จิตรพิพัฒน์
ลักษณะ : นักศึกษา ป.โท ศิริพัฒนา สำราญวิชาเวชศาสตร์ชั้นอุปถัมภ์และพื้นฟูสุขภาพ
แหล่งทุนวิจัย/ผู้สนับสนุนการวิจัย : ทุนส่วนตัว + ทุนบัณฑิต 20,000 บาท (อยู่ระหว่างดำเนินการขอทุน)

1. บทนำส่วนต้น สรุปสาระหลักของโครงการวิจัย

ชื่อโครงการวิจัย ประสิทธิภาพของสเปรย์พิโนนสเทอโริด์ชนิดทากความเข้มข้น 0.1% สำหรับเพิ่มความหนาของคิ้วในเพศชาย: การศึกษาเบรียบเทียบโดยวิธีสุ่มแบบสองฝ่ายที่มีกุ่มควบคุมด้วยยาหลอกและใช้การทดลองแบบแบ่งครึ่งหน้า

วัตถุประสงค์ของการวิจัย การศึกษานี้มีวัตถุประสงค์เพื่อประเมินประสิทธิภาพและความปลอดภัยของสเปรย์สารคลายตัวโนนสเทอโริด์ 0.1% ในการเสริมขนคิ้วในเพศชายที่มีภาวะหนาคิ้วบาง โดยเบรียบเทียบกับกุ่มที่ใช้ยาหลอก ซึ่งเป็นสารคลายเกลือธรรมชาติ ผลการรักษาจะได้รับการประเมินผ่านภาพถ่ายองค์รวม การวัดเส้นผ่าศูนย์กลางและจำนวนขนคิ้ว รวมถึงการสำรวจความพึงพอใจของผู้เข้าร่วม ตลอดจนการติดตามผลข้างเคียงที่อาจเกิดขึ้น เพื่อเป็นแนวทางในการพัฒนาแนวทางการรักษาภาวะขนคิ้วบางในอนาคต

ขั้นตอนการวิจัย การวิจัยเริ่มจากคัดเลือกอาสาสมัครที่เข้าเกณฑ์ จากนั้นเก็บข้อมูลพื้นฐาน เช่น ประวัติทางการแพทย์และการถ่ายภาพชนคิ้วก่อนการรักษา โดยใช้กล้องถ่ายภาพผิวและวิเคราะห์สภาพผิว (VISIA) และกล้องตรวจรังไข่ (Follicoscope) เพื่อวัดขนาดและจำนวนเส้นขนคิ้ว จากนั้นใช้การรุ่นตัวยาระยิน เรียบเพื่อกำหนดขั้นของคิ้วที่ได้รับสเปรย์พิโนนสเทอโริด์ 0.1% และขั้งที่ได้รับยาหลอก อาสาสมัครใช้ผลิตภัณฑ์วันละสองครั้งเป็นเวลา 12 สัปดาห์ โดยมีการติดตามผลทุก 4, 8 และ 12 สัปดาห์ ผ่านการถ่ายภาพวัดเส้นผ่าศูนย์กลางและจำนวนขนคิ้ว รวมถึงการตรวจสบบผลข้างเคียงและสำรวจความพึงพอใจของอาสาสมัครหลังจากการรักษา

ความเสี่ยงและความไม่สงบสุข ของงานวิจัยนี้รวมถึงการระคายเคือง บวม แดง คันบริเวณที่ฉีด และอาจมีผลต่อสมรรถภาพทางเพศ ซึ่งประเมินผ่านแบบประเมินสมรรถภาพทางเพศชาย IIEF-5 นอกจากนี้ การติดตามผลเป็นระยะอาจสร้างความไม่สงบได้สูงเข้าร่วม

ประโยชน์ที่คาดว่าจะได้รับ ผู้เข้าร่วมวิจัยจะได้รับการประเมินและคูณเขนคิ้วโดยทีมแพทย์ผู้เชี่ยวชาญ พร้อมโอกาสทดลองใช้สเปรย์พิโนนสเทอโริด์ 0.1% ซึ่งอาจช่วยเพิ่มความหนาแน่นของขนคิ้วและเสริมความมั่นใจ หากได้ผลดี ผู้เข้าร่วมจะได้รับประโยชน์จากขนคิ้วที่ดูดีขึ้น นอกจากนี้ งานวิจัยจะให้ข้อมูล

THE MAE FAH LUANG UNIVERSITY ETHICS COMMITTEE ON HUMAN RESEARCH
10-JUL-2025
APPROVED

ทางวิทยาศาสตร์เกี่ยวกับประสีติภาพและความปลอดภัยของพิมพ์และเทปสำหรับขนคิ้ว ซึ่งอาจนำไปสู่แนวทางการรักษาที่มีมาตรฐานและช่วยพัฒนาการดูแลด้านความงามในอนาคต

ทางเลือกอื่น สำหรับผู้ที่ไม่เข้าร่วมงานวิจัยนี้ ได้แก่ การใช้ยาต้านตัวเม็ดเลือดขาว (Minoxidil) ซึ่งเป็นยาที่มีคุณสมบัติในการกระตุ้นการเจริญเติบโตของเส้นขน การใช้ยาต้านตัวเม็ดเลือดขาว (Bimatoprost) ซึ่งเป็นยากระตุ้นการเจริญเติบโตของขนตาและสามารถใช้กับขนคิ้วได้ นอกจากนี้ ยังมีการปลูกขนคิ้ว (Eyebrow Transplantation) ซึ่งเป็นวิธีการศัลยกรรมในการปลูกขนใหม่ในบริเวณคิ้ว และการใช้เครื่องสำอางหรือการสักคิ้ว (Eyebrow Tattoo) เพื่อสร้างลักษณะของขนคิ้วที่เหมาะสมขึ้น

2. ข้อมูลระบุว่าเป็นการวิจัยและความเป็นอิสระในการตัดสินใจเข้าร่วมการวิจัย

ท่านได้รับข้อมูลให้เข้าร่วมการวิจัย โปรดใช้เวลาในการอ่านเอกสารฉบับนี้ ซึ่งจะช่วยให้ท่านรับทราบสิ่งต่อไปนี้ ที่ท่านจะมีส่วนร่วมในการวิจัยนี้ การตัดสินใจเข้าร่วมการวิจัยนี้ขึ้นอยู่กับความสมัครใจของท่าน หากท่านไม่สมัครใจเข้าร่วมการวิจัย จำไม่มีผลใด ๆ ต่อการดูแลรักษาหรือสิทธิที่ท่านพึงมี

การเข้าร่วมการวิจัยนี้ขึ้นอยู่กับความสมัครใจ

- ท่านสามารถตัดสินใจได้อย่างอิสระว่าจะเข้าร่วมหรือไม่เข้าร่วมการวิจัยนี้
- ท่านสามารถปรึกษาครอบครัวหรือแพทย์ผู้รักษาก่อนตัดสินใจ และสามารถขอกلامบ์ลงลายเซ็นได้
- ท่านไม่สมัครใจเข้าร่วมการวิจัยแล้ว ท่านยังคงสามารถถอนตัวออกจากวิจัยได้ทุกเมื่อ

3. เหตุผลและความสำคัญของการวิจัย

ความรุนแรงของปัญหา

ภาวะขนคิ้วบาง เป็นปัญหาที่ส่งผลต่อบุคคลทั้งด้านรูปภายนอกและจิตใจ โดยคิ้วมีบทบาทสำคัญในการแสดงอารมณ์ การสื่อสารที่ไม่ใช่คำพูด และออกลักษณ์ทางเพศ การสูญเสียหรือการบางลงของขนนี้อาจนำไปสู่ความเครียดทางจิตใจและส่งผลกระทบต่อความมั่นใจในตนเอง โดยเฉพาะอย่างยิ่งในสังคมที่ให้ความสำคัญกับภาพลักษณ์ทางกายภาพ งานวิจัยพบว่าผู้ที่มีภาวะขนคิ้วบางมีรู้สึกอับอาย ไม่มั่นใจ และหลีกเลี่ยงสังคมนอกจากนี้ ยังมีผลกระทบต่อการรับรู้จากผู้อื่น ซึ่งอาจทำให้เกิดความรู้สึกสูญเสียอัตลักษณ์และเพิ่มความเสี่ยงต่อภาวะซึมเศร้า (Mumford et al., 2023; Riahi & Cohen, 2018)

ในประเทศไทย 19.8% ของผู้ป่วยชายวัยปูนและ 62.8% ของผู้ป่วยหญิง รายงานว่ามีอาการขนคิ้วบาง ในขณะที่ภาวะผู้ป่วยร่วงแบบเป็นบริเวณริมด้านหน้า (Frontal Fibrosing Alopecia) ส่งผลให้ 69-96% ของผู้ป่วยมีการสูญเสียขนคิ้ว นอกจากนี้ 28.3% ของผู้หญิงที่ได้รับการรักษาด้วยยาเคมีบำบัดสำหรับโรคเมริงมีภาวะขนคิ้วบาง (Mumford et al., 2023)

THE MAE FAH LUANG UNIVERSITY
ETHICS COMMITTEE ON HUMAN RESEARCH

10 JUL 2025

APPROVED

นอกจากนี้ ความรุนแรงของปัญหาซึ่งแตกต่างกันไปตามเพศ ผู้ที่ถูงมักได้รับผลกระทบทางจิตใจมากกว่า เนื่องจากค่านิยมทางสังคมที่ให้ความสำคัญกับความสวยงาม ทำให้หลายคนต้องเพ่งพากการแต่งหน้า การลอกครึ้ง หรือการปลูกครึ้งเพื่อแก้ปัญหา ในขณะที่ผู้ชายมักเผชิญกับแรงกดดันทางลังค์ในแง่ของความแข็งแกร่งและความเป็นชาย ซึ่งทำให้พากษาต้องการการรักษาเพื่อคงรูปลักษณ์ที่ดูสมูรณ์ (Mumford et al., 2023; J. V Nguyen, 2014)

งานวิจัยนี้มีความสำคัญ เพราะเป็นการศึกษาเพื่อประเมินประสิทธิภาพของการใช้สเปรย์สารละลายพิโนสเทอโริด 0.1% ในการเพิ่มความหนาแน่นของขนคิ้ว ซึ่งเป็นทางเลือกใหม่ที่ไม่ต้องพึงการผ่าตัดสำหรับผู้ที่มีปัญหาขนคิ้วบาง ในปัจจุบันยังไม่มีการรักษาที่ได้มาตรฐานสำหรับภาวะขนคิ้วบาง การวิจัยนี้จึงมีศักยภาพในการสร้างองค์ความรู้ใหม่ในการรักษาภาวะนี้ และสามารถนำผลการศึกษามาใช้เป็นแนวทางในการพัฒนาวิธีการรักษาเพื่อประโยชน์ในทางการแพทย์และความงาม นอกจากนี้ ผลวิจัยยังช่วยเพิ่มความเข้าใจในการใช้พิโนสเทอโริดในรูปแบบที่แตกต่างจากการรักษาภาวะผิวหงุดหงิดที่หนังศีรษะ และอาจนำไปสู่การพัฒนาแนวทางการรักษาและผลิตภัณฑ์ใหม่ๆ ในอนาคต

4. คุณสมบัติของผู้ที่สามารถเข้าร่วมการวิจัย และจำนวนผู้เข้าร่วมการวิจัย

การวิจัยนี้จะคัดเลือกอาสาสมัครเพศชายที่มีอายุระหว่าง 18-45 ปีที่รับการรักษาที่คลินิกผิวหนังของโรงพยาบาลมหาวิทยาลัยแม่ฟ้าหลวง กรุงเทพฯ และมีภาวะขนคิ้วบางระดับ 1 หรือ 2 ตามเกณฑ์การประเมินคิ้วแบบองค์รวม นอกจากนี้ ผู้เข้าร่วมจะต้องมีความยินดีและยินยอมเข้าร่วมโครงการวิจัยอย่างสมัครใจ งานวิจัยนี้กำหนดจำนวนผู้เข้าร่วมทั้งหมด 8 คน

5. วัตถุประสงค์ของการวิจัย

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของการใช้สเปรย์สารละลายพิโนสเทอโริด 0.1% ในการเสริมขนคิ้วในเพศชายที่มีภาวะขนคิ้วบาง โดยเปรียบเทียบผลการรักษาบกบุ้นที่ใช้ยาหลอกน้ำเกลือธรรมชาติ การประเมินผลจะใช้วิธีการถ่ายภาพเปรียบเทียบแบบองค์รวม และวัดการเปลี่ยนแปลงในเส้นผ่าศูนย์กลางเฉลี่ยและจำนวนขนคิ้ว รวมถึงการประเมินความพึงพอใจของผู้เข้าร่วมการทดลอง และติดตามผลลัพธ์ที่อาจเกิดขึ้น ทั้งนี้เพื่อให้ข้อมูลที่เป็นประโยชน์ในการพัฒนาแนวทางการรักษาภาวะขนคิ้วบางในเพศชาย

6. รูปแบบการวิจัย

การวิจัยนี้ใช้รูปแบบการทดลองแบบสุ่มและมีกลุ่มควบคุม มีการแบ่งครึ่งหน้า มีการปิดบังสองทาง และมีการใช้ยาหลอกในกลุ่มควบคุม

7. ขั้นตอนการวิจัยและระยะเวลาที่เข้าร่วมการวิจัย

- คัดเลือกอาสาสมัคร – คัดเลือกอาสาสมัครที่มีคุณสมบัติตามเกณฑ์การเข้าร่วมการวิจัยที่กำหนดไว้

THE MAE FAH LUANG UNIVERSITY ETHICS COMMITTEE ON HUMAN RESEARCH
10 JUL 2025
APPROVED

2. การเก็บข้อมูลพื้นฐาน – เก็บข้อมูลประวัติทางการแพทย์ ประวัติการแพ้ยา และการประเมินหน้าผาก่อนเริ่มการรักษา โดยใช้กล้องถ่ายสภาพผิวและวิเคราะห์สภาพผิว (VISIA) และ กล้องส่องขนคิ้ว Follicscope
3. สุ่มกลุ่มทดลอง – ใช้วิธีการสุ่มแบบบอนี่เพรียล เพื่อกำหนดให้คิ้วแต่ละข้างของอาสาสมัคร หากผลออกหัว คิ้วข้างจะได้รับสารละลายพิโนสเทอโรต์ (กลุ่ม A) และคิ้วข้างจะได้รับยาหลอก (กลุ่ม B) แต่หากผลออกหัว คิ้วข้างจะได้รับสารละลายพิโนสเทอโรต์ (กลุ่ม A) และคิ้วข้างจะได้รับยาหลอก (กลุ่ม B) อาสาสมัครได้รับขนาดสารละลายในภาชนะที่บีบแสง ขนาด 15 ml มีปริมาณยาเท่ากัน พร้อมติดฉลากกำกับว่า "A" และ "B" เพื่อป้องกันข้อมูลการรักษาแบบสองทาง และมีการระบุคำว่า "ข้าง" บนขวดหากขวดนั้นผู้เข้าร่วมวิจัยต้องใช้กับคิ้วด้านข้าง และ ระบุคำว่า "ข้า" บนขวดหากขาดนั้นผู้เข้าร่วมวิจัยต้องใช้กับคิ้วด้านขวา
4. การใช้ผลิตภัณฑ์วิจัย – อาสาสมัครจะต้องนឹดพ่นสารละลายพิโนสเทอโรต์หรือสารละลายเกลือธรรมชาติข้างที่กำหนด วันละ 2 ครั้ง (เข้าและเย็น) บนขนคิ้วที่แห้ง
5. ติดตามผลการใช้ผลิตภัณฑ์วิจัย – ติดตามผลการใช้ผลิตภัณฑ์วิจัยที่สัปดาห์ที่ 4, 8 และ 12 โดยการถ่ายภาพ การวัดเส้นผ่าศูนย์กลางเลี้ยงและจำนวนขนคิ้ว และประเมินความพึงพอใจของอาสาสมัคร
6. การประเมินผลข้างเคียง – บันทึกผลข้างเคียงที่เกิดขึ้นทุก 4 สัปดาห์ โดยการซักประวัติและการตรวจร่างกาย รวมถึงประเมินความการเสื่อมสมรรถภาพทางเพศโดยใช้แบบสอบถาม IIEF-5

ตาราง ระยะเวลาการดำเนินโครงการ

ขั้นตอนการวิจัย	สัปดาห์ที่			
	0	4	8	12
คัดเลือกอาสาสมัครเข้าร่วมการวิจัย	x			
ซักประวัติทางการแพทย์, ตรวจร่างกาย	x			
อธิบายรายละเอียดโครงการวิจัย ขอความยินยอม	x			
เก็บรวบรวมหมายเลขประจําตัวผู้ป่วยและข้อมูลอาชญากรรม	x			
เก็บภาพถ่ายโดยรวมของคิ้วทั้งสองข้าง	x	x	x	x
เก็บข้อมูลค่าเส้นผ่านศูนย์กลางของเส้นขนคิ้ว	x	x	x	x
เก็บข้อมูลจำนวนเส้นขนคิ้ว	x	x	x	x
ผู้ติดตามและบันทึกผลข้างเคียง		x	x	x
ประเมินความพึงพอใจของผู้เข้าร่วมวิจัย				x

8. ความเสี่ยงและความไม่สudeดวสbadyจากการเข้าร่วมการวิจัย

ความเสี่ยงและความไม่สudeดวสbadyจากการเข้าร่วมการวิจัยนี้ประกอบด้วยความเสี่ยงจากการใช้สารละลายพิโนสเทอโรต์ 0.1% ซึ่งอาจทำให้เกิดอาการระคายเคืองผิวหนังเฉพาะที่ เช่น แผลคัน แสบ

ร้อน หรือแห้งบวิวนที่ทำการฉีดพ่น และอาจมีผลข้างเคียงทางระบบ เช่น ภาวะเสื่อมสมรรถภาพทางเพศในบางราย นอกจากนี้ การที่ผู้เข้าร่วมต้องมารับการประเมินและติดตามผลอย่างสม่ำเสมอทุก 4 สัปดาห์ อาจเป็นภาระและความไม่สะดวกสบายต่อผู้เข้าร่วมวิจัย เช่น ต้องเดินทางมาโรงพยาบาลเป็นประจำ ต้องเสียเวลาในการตอบแบบสอบถามและรับการตรวจร่างกาย อีกทั้งอาจมีข้อจำกัดในการใช้เครื่องสำอางหรือผลิตภัณฑ์บำรุงผิวบางประเภทบริเวณคิ้วในระหว่างการวิจัย และความเสี่ยงที่ยังไม่ทราบแน่นอน นอกเหนือจากที่ระบุในเอกสารนี้ เพื่อความปลอดภัยของผู้เข้าร่วม ทางมีอาการข้างเคียงใด ๆ ท่านควรแจ้งผู้วิจัยโดยเร็ว และอาจมาพบแพทย์ยังสถานที่ทางนัดหมาย

9. ประโยชน์ที่คาดว่าจะเกิดขึ้นในระหว่างการเข้าร่วมการวิจัย

การเข้าร่วมโครงการวิจัยนี้อาจให้ประโยชน์โดยตรงที่จะเกิดขึ้นต่อผู้เข้าร่วมวิจัยคือ ผู้เข้าร่วมวิจัยจะได้รับการประเมินและติดตามสภาพของขนคิ้วย่างละเอียดโดยทีมแพทย์ผู้เชี่ยวชาญ รวมถึงได้รับการดูแลด้านสุขภาพที่เกี่ยวข้องขั้นคิ้วในระหว่างการทดลอง นอกจากนี้ ผู้เข้าร่วมยังมีโอกาสที่จะได้ทดลองใช้สเปรย์สารละลายพิโน่สเทอโรล 0.1% ซึ่งอาจช่วยเพิ่มความหนาแน่นและปรับปรุงลักษณะของขนคิ้ว หากสารละลายนี้มีประสิทธิภาพจริง ผู้เข้าร่วมก็จะได้รับประโยชน์จากการมีขนคิ้วที่หนาขึ้นและดูดีขึ้น ซึ่งอาจส่งผลบวกต่อภาพลักษณ์และความมั่นใจในตนเอง การเข้าร่วมโครงการวิจัยนี้อาจทำให้ท่านมีขนคิ้วที่หนามากขึ้น แต่ไม่สามารถรับรองได้ว่าขนคิ้วของท่านจะมีความหนาแน่นขึ้นอย่างแน่นอน

10. ทางเลือกอื่น หากไม่สมัครใจเข้าร่วมการวิจัย

หากผู้เข้าร่วมไม่สมัครใจเข้าร่วมการวิจัยนี้ ยังคงมีทางเลือกอื่นในการรักษาหรือเพิ่มความหนาแน่นของขนคิ้วที่สามารถพิจารณาได้ เช่น การใช้ยาปลูกคิ้วในอนุรักษ์ (Minoxidil) หรือยาทาปลูกคิ้วใบมาโนโพรสต์ (Bimatoprost) ซึ่งมีประสิทธิภาพในการกระตุ้นการเจริญเติบโตของขนคิ้ว การปลูกคิ้วถ่ายขนคิ้ว (Eyebrow Transplantation) ซึ่งเป็นวิธีการศัลยกรรมในการเพิ่มจำนวนขนคิ้วย่างถาวร หรือการใช้วิธีการเสริมความงามเช่น การลักคิ้ว (Eyebrow Tattoo) หรือการใช้เครื่องสำอางเพื่อเพิ่มความหนาแน่นของขนคิ้ว

11. แนวทางการจัดการเมื่อ มีสถานการณ์ที่อาจเกิดขึ้นระหว่างการวิจัย

สถานการณ์	แนวทางการปฏิบัติ
■ หากท่านถอนตัวระหว่างการวิจัย	หากผู้เข้าร่วมวิจัยตัดสินใจถอนตัวจากงานวิจัยสามารถทำได้โดยไม่ต้องให้เหตุผล และการถอนตัวจะไม่ส่งผลกระทบต่อการรักษาหรือการดูแลสุขภาพที่ท่านได้รับจากแพทย์ ผู้เข้าร่วมวิจัยสามารถแจ้งถอนตัวได้ทุกเมื่อ และข้อมูลทั้งหมดที่เก็บได้ก่อนการถอนตัวจะถูกนำไปใช้ประโยชน์ในการวิจัยต่อไปโดยไม่เปิดเผยตัวตน ทั้งนี้ ผู้วิจัยจะปรับการวิเคราะห์ข้อมูลตามจำนวนผู้เข้าร่วมที่เหลือ เพื่อรักษาคุณภาพและความถูกต้องของผลการวิจัย

■ หากมีข้อมูลใหม่ที่เกี่ยวข้องกับการวิจัย หรือความปลอดภัยของท่าน	ผู้วิจัยจะแจ้งให้ท่านทราบโดยเร็ว และท่านสามารถตัดสินใจได้ว่า ท่านจะร่วมอยู่ในการวิจัยนี้ต่อหรือไม่
■ เกณฑ์การยุติการทำวิจัยประกอบด้วย กรณีที่ผู้เข้าร่วมมีอาการข้างเคียงที่รุนแรง เช่น การระคายเคืองผิวนานอย่างรุนแรง หรือผลข้างเคียงทางระบบ เช่น อาการใจสั่นหรือปวดศีรษะรุนแรง รวมถึงภาวะเสื่อมสมรรถภาพทางเพศ นอกจากนี้ หากผู้เข้าร่วมตัดสินใจถอนตัวเองจากการวิจัย ไม่ปฏิบัติตามข้อกำหนดของ การวิจัย ขาดนัดติดตามผลติดต่อ กัน หรือใช้ผลิตภัณฑ์อื่นที่อาจมีผลต่อการวิจัย	หากมีเหตุการณ์ที่ต้องยุติการเข้าร่วมงานวิจัย ผู้วิจัยจะประเมินสถานการณ์และหยุดการใช้สารทดลองทันที พร้อมทั้งให้การดูแลและคำแนะนำผู้เข้าร่วมเกี่ยวกับการดูแลตนเองหลังหยุดการทดลอง ข้อมูลทั้งหมดจะถูกบันทึกและจัดเก็บเป็นความลับ และผู้วิจัยจะวิเคราะห์ผลกระทบที่อาจเกิดขึ้นต่อการวิจัย พร้อมปรับการวิเคราะห์ข้อมูลให้สอดคล้องกับจำนวนผู้เข้าร่วมที่เหลือ เพื่อรักษาคุณภาพของผลการศึกษา
■ กรณีที่ข้อมูลที่เหลือไม่เพียงพอ	ผู้วิจัยจะทำการเชิญชวนอาสาสมัครใหม่ทดแทน

12. ประโยชน์หรือสิ่งที่ผู้เข้าร่วมการวิจัยอาจได้รับ หลังเสร็จสิ้นการวิจัย

หลังเสร็จสิ้นงานวิจัยผู้เข้าร่วมวิจัยจะได้รับยาทางปัญกี้ในอัตราที่ 2% minoxidil เพื่อใช้รักษาภาวะขันคืบบาง ถ้าหากผลวิจัยพบว่ามีประสิทธิผล ฉีดเข้าหัวข้างที่ได้รับยาหลอก หากผลวิจัยพบว่าไม่มีประสิทธิผล ฉีดคืบวัวที่ 2 ข้าง

13. การรักษาความลับของข้อมูลและข้อจำกัดในการรักษาความลับของข้อมูล

การรักษาความลับของข้อมูลในงานวิจัยนี้จะดำเนินการโดยใช้วิธีการดังนี้:

การปกปิดตัวตนของผู้เข้าร่วม: ข้อมูลของผู้เข้าร่วมวิจัยจะถูกจัดเก็บในรูปแบบที่ไม่เปิดเผยชื่อหรือข้อมูลที่สามารถระบุตัวตนได้ โดยใช้รหัสผู้เข้าร่วมในการแทนที่ของจริง ทำให้ยากต่อการเชื่อมโยงข้อมูลกับตัวบุคคล

การจัดเก็บข้อมูลอย่างปลอดภัย: ข้อมูลทั้งหมดจะถูกจัดเก็บในระบบที่มีการรักษาความปลอดภัย เช่น การเข้ารหัสข้อมูลและการเข้าถึงที่จำกัดเฉพาะผู้วิจัยที่เกี่ยวข้องเท่านั้น

ข้อจำกัดในการเข้าถึงข้อมูล: ข้อมูลจะมีการจำกัดการเข้าถึงเฉพาะผู้ที่มีความจำเป็นในการวิเคราะห์ และประเมินผลเท่านั้น และบุคคลอื่นที่ไม่ได้เกี่ยวข้องกับการวิจัยจะไม่มีสิทธิเข้าถึงข้อมูล

ข้อจำกัดในการเผยแพร่ข้อมูล: ข้อมูลผลการวิจัยที่นำเสนอหรือเผยแพร่จะเป็นข้อมูลที่รวมกันในเชิงลักษณะและไม่มีการเปิดเผยข้อมูลส่วนบุคคลของผู้เข้าร่วม หากมีการเผยแพร่รูปภาพจะมีการปกปิดตัวตนของผู้เข้าร่วม เช่น ใช้แบบค่าดาผู้เข้าร่วมการวิจัยเพื่อไม่ให้สามารถระบุตัวตนได้

THE MAE FAH LUANG UNIVERSITY
ETHICS COMMITTEE ON HUMAN RESEARCH

10 JUL 2025

APPROVED

ข้อจำกัดในการรักษาความลับ ได้แก่ อาจมีกรณีที่ต้องเปิดเผยข้อมูลตามข้อบังคับทางกฎหมายหรือหากมีเหตุฉุกเฉินทางการแพทย์ที่ต้องใช้ข้อมูลดังกล่าวเพื่อความปลอดภัยของผู้เข้าร่วม

อย่างไรก็ตาม อาจมีบุคคลบางกลุ่มที่ขอเข้าดูข้อมูลส่วนบุคคลของท่านได้ ได้แก่ คณะกรรมการจริยธรรมการวิจัยในคน ผู้ประสานงานวิจัย ผู้กำกับดูแลการวิจัย และเจ้าหน้าที่จากสถาบันหรือองค์กรของรัฐที่มีหน้าที่ตรวจสอบ เพื่อตรวจสอบความถูกต้องของข้อมูลและขั้นตอนการวิจัย

การทำลายข้อมูลที่เก็บรวบรวม: เพื่อป้องความเป็นส่วนตัวของอาสาสมัครและป้องบัตรตามหลักจริยธรรมงานวิจัย ข้อมูลที่เก็บรวบรวมทั้งหมดจะถูกทำลายเมื่อสิ้นสุดระยะเวลาการศึกษาตามระเบียบการวิจัย ข้อมูลอิเล็กทรอนิกส์จะถูกลบออกจากฐานข้อมูลโดยสมบูรณ์ และไฟล์ที่เกี่ยวข้องจะถูกลบทิ้งอย่างถาวร ข้อมูลที่อยู่ในรูปแบบเอกสารจะถูกทำลายโดยการบดหรือเผาที่ในสถานที่ที่ปลอดภัย เพื่อป้องกันการเข้าถึงข้อมูลโดยไม่ได้รับอนุญาต ทั้งนี้ การทำลายข้อมูลจะดำเนินการภายในระยะเวลาไม่เกิน 5 ปีหลังจากเสร็จลั่นการวิจัย หรือเริ่วขึ้นหากได้รับคำร้องขอจากอาสาสมัครที่ต้องการถอนข้อมูลของตนเองออกจากงานศึกษา

14. ค่าตอบแทนการเข้าร่วมในการวิจัย

ผู้เข้าร่วมการวิจัยจะได้รับค่าตอบแทนเป็นจำนวนเงิน 150 บาทต่อครั้งสำหรับการเข้าร่วมในการนัดหมายแต่ละครั้ง ซึ่งค่าตอบแทนนี้เป็นการชดเชยค่าเดินทางและค่าเสียเวลาของท่าน การจ่ายค่าตอบแทนจะดำเนินแต่ละครั้งที่ท่านมาร่วมการวิจัย โดยจะมีการนัดหมายทั้งหมด 4 ครั้ง

ทั้งนี้ ค่าตอบแทนจะไม่ถูกจ่ายรวมหลังจากสิ้นสุดโครงการ แต่จะจ่ายให้ตามการเข้าร่วมในแต่ละครั้งเพื่อป้องกันการโน้มน้าวให้ท่านคงอยู่ในโครงการวิจัยจนเสร็จลั่นโดยไม่สมัครใจ

15. ค่าใช้จ่ายที่ผู้เข้าร่วมการวิจัยต้องรับผิดชอบ

ในการเข้าร่วมโครงการวิจัยนี้ผู้เข้าร่วมไม่ต้องรับผิดชอบต่อค่าใช้จ่ายใด ๆ ที่เกี่ยวข้องกับการวิจัย เช่นค่าใช้จ่ายที่ต้องจ่ายในการเดินทางและอาหาร ค่าเดินทางและค่าใช้จ่ายที่ต้องจ่ายในการเข้ารับการสนับสนุนจากผู้วิจัย หรือผู้สนับสนุนทุนวิจัย

16. แนวทางการดูแลรักษาและจ่ายค่าชดเชย กรณีที่ผู้เข้าร่วมการวิจัยได้รับอันตรายหรือผลกระทบจาก การเข้าร่วมการวิจัย

หากผู้เข้าร่วมการวิจัยได้รับผลกระทบอันเนื่องมาจากการเข้าร่วมการวิจัยนี้ เช่น การเกิดอาการข้างเคียงที่รุนแรงหรือผลกระทบต่อสุขภาพที่เกิดขึ้นจากการใช้สารละลายพิโนแสเทอโรล 0.1% แบบทาทางที่มีวิจัยจะดำเนินการดูแลรักษาอย่างเหมาะสม โดยจะรักษาจนอาสาสมัครหายกลับมาเป็นปกติ โดยผู้เข้าร่วมจะได้รับการรักษาจากแพทย์ผู้เชี่ยวชาญโดยไม่มีค่าใช้จ่าย

นอกจากนี้ หากมีความจำเป็นต้องจ่ายค่าชดเชยสำหรับการรักษาหรือค่าใช้จ่ายที่เกี่ยวข้อง ทางผู้วิจัยจะรับผิดชอบค่าใช้จ่ายทั้งหมดที่เกิดขึ้นโดยไม่ทำให้ผู้เข้าร่วมต้องรับภาระใด ๆ การจ่ายค่าชดเชยจะขึ้นอยู่กับ

THE MAE FAH LUANG UNIVERSITY
ETHICS COMMITTEE ON HUMAN RESEARCH

10 JUL 2025

APPROVED

Version...3.0... Date15 พฤษภาคม 2568.....

AP 03_1/2024

ความรุนแรงของผลกระทบและการประเมินของทีมวิจัยร่วมกับหน่วยงานที่เกี่ยวข้องตามมาตรฐานการวิจัยทางคลินิก

ปัจจุบันเนื่องจากยังไม่เคยมีการศึกษาในการใช้ฟินาสเตอไรด์ในรูปแบบยาทาเฉพาะที่ (topical finasteride spray solution) เพื่อรักษาบริเวณคิ้วมา ก่อน ข้อมูลเกี่ยวกับผลข้างเคียง เช่น ทำให้คิ้วเปลี่ยนรูปร่าง จึงยังไม่จำกัด แต่จากข้อมูลจากการศึกษาที่มีอยู่ในการใช้ฟินาสเตอไรด์ในรูปแบบยาทาเฉพาะที่ (topical finasteride) บริเวณหนังศีรษะ ยังไม่มีรายงานที่ชัดเจนว่าทำให้เกิดการงอกของเส้นผมนิ่ดเทอร์มินัล (terminal hair) ในบริเวณที่ปกตินมีเส้นผมดังกล่าวอย่างไรก็ตามเพื่อป้องกันผลข้างเคียงคิ้วเปลี่ยนรูปร่าง ผู้เข้าร่วมวิจัยจะได้รับคำแนะนำนำว่าห้ามดูอุปกรณ์บริเวณคิ้ว การทำความสะอาดส่วนที่ไม่ใช้คิ้วหลังฉีดสเปรย์ยา และหากพบการเปลี่ยนแปลงของคิ้ว ตอกดเกินไปหรือผิดรูปทรง อาสาสมัครสามารถแจ้งให้ทีมวิจัยทราบเพื่อพิจารณามาตรการแก้ไข เช่น ปรับวิธีใช้ยา หรือให้คำแนะนำในการจัดแต่งทรงคิ้ว ให้บริการกำจัดขนคิ้วบางส่วน เช่น การถอน ตัดแต่ง หรือ เลเซอร์กำจัดขน เป็นต้น

17. บุคคลที่สามารถติดต่อได้ กรณีที่มีปัญหาหรือข้อสงสัย

หากท่านมีข้อสงสัยเกี่ยวกับการวิจัยหรือความปลอดภัยระหว่างเข้าร่วมการวิจัย ท่านสามารถสอบถามผู้วิจัยได้โดยตรง

ผู้วิจัย นายแพทัยกิตติณฐ์ จิตรติพรวรรค

หมายเลขโทรศัพท์ติดต่อ 089-8317121

อีเมล fourth.kittinut@gmail.com

หากท่านมีข้อสงสัยเกี่ยวกับสิทธิของท่าน ท่านสามารถติดต่อสอบถามได้ที่ คณะกรรมการจริยธรรมการวิจัยในมนุษย์ มหาวิทยาลัยแม่ฟ้าหลวง อาคารบริการวิชาการ (AS) ชั้น 4 มหาวิทยาลัยแม่ฟ้าหลวง โทรศัพท์ 053-917-170 ถึง 71 หรือ 053-916-551 หรืออีเมล rec.human@mfu.ac.th เพื่อให้มั่นใจว่า สิทธิความปลอดภัย และความเป็นอยู่ที่ดีของท่าน ได้รับความคุ้มครองตามมาตรฐานจริยธรรมการวิจัยในมนุษย์

Version...3.0... Date15 พฤษภาคม 2568.....

AP 03_1/2024

หนังสือแสดงความยินยอมเข้าร่วมการวิจัย

ข้าพเจ้า _____ ตัดสินใจเข้าร่วมการวิจัยเรื่อง ประสิทธิภาพของสเปรย์พิโนสเทอโรนชนิดทากความเข้มข้น 0.1% สำหรับเพิ่มความหนาของคิ้วในเพศชาย: การศึกษาเปรียบเทียบโดยวิธีสุ่มแบบสองฝ่ายที่มีกลุ่มควบคุ้มค่าด้วยยาหลอกและใช้การทดลองแบบแบ่งครึ่งหน้า ซึ่งข้าพเจ้าได้รับข้อมูลและคำอธิบายเกี่ยวกับการวิจัยนี้แล้ว และได้มีโอกาสฟังคุณและได้รับคำตอบเป็นที่พอใจแล้ว ข้าพเจ้ามีเวลาเพียงพอในการอ่านและทำความเข้าใจข้อมูลในเอกสารให้ข้อมูลสำหรับผู้เข้าร่วมการวิจัยอย่างดีถ้วน และได้รับเวลาเพียงพอในการตัดสินใจว่าจะเข้าร่วมการวิจัยนี้

ข้าพเจ้ารับทราบว่าข้าพเจ้าสามารถปฏิเสธการเข้าร่วมการวิจัยนี้ได้โดยอิสระ และระหว่างการเข้าร่วมการวิจัย ข้าพเจ้ายังสามารถถอนตัวออกจากวิจัยได้ทุกเมื่อ โดยไม่ส่งผลกระทบต่อการศึกษา หรือสิทธิที่ข้าพเจ้าพึงมี

โดยการลงนามนี้ ข้าพเจ้าไม่ได้สละสิทธิใด ๆ ที่ข้าพเจ้าพึงมีตามกฎหมาย และหลังจากลงนามแล้ว ข้าพเจ้าจะได้รับเอกสารข้อมูลและข้อความยินยอมไว้จำนวน 1 ชุด

ลายมือชื่อผู้เข้าร่วมการวิจัย _____ วัน-เดือน-ปี _____
(_____)

(กรณีที่ผู้เข้าร่วมการวิจัยอ่านหนังสือไม่ออกแต่ฟังเข้าใจ)

ข้าพเจ้าไม่สามารถอ่านหนังสือได้ แต่ผู้วิจัยได้อ่านข้อความในเอกสารข้อมูลและข้อความยินยอมนี้ให้แก่ ข้าพเจ้าฟังจนเข้าใจดีแล้ว ข้าพเจ้าจึงลงนามหรือพิมพ์ลายมือของข้าพเจ้าในหนังสือนี้ด้วยความเต็มใจ

ลงนาม/พิมพ์ลายมือผู้เข้าร่วมการวิจัย _____ วัน-เดือน-ปี _____
(_____)

ลายมือชื่อผู้ขอความยินยอม _____ วัน-เดือน-ปี _____
(_____)

คำรับรองของพยานผู้ไม่มีส่วนได้เสียกับการวิจัย (กรณีที่ผู้เข้าร่วมการวิจัยอ่านหนังสือไม่ออกแต่ฟังเข้าใจ)

ข้าพเจ้าได้อ่ายรู้ว่าในกระบวนการขอความยินยอมและยืนยันว่า ผู้ขอความยินยอมได้อ่าน/อธิบายเอกสารข้อมูลให้แก่ _____ ซึ่งผู้มีชื่อข้างต้นมีโอกาสฟังคุณและฟังความเห็นด้วยความเข้าใจดีแล้ว และได้ให้ความยินยอมเข้าร่วมการวิจัยโดยอิสระ หลังจากรับทราบข้อมูลที่มีอยู่ตรงตามที่ปรากฏในเอกสารนี้แล้ว

THE MAE FAH LUANG UNIVERSITY
ETHICS COMMITTEE ON HUMAN RESEARCH

10 JUL 2025

APPROVED

Version...3.0... Date15 พฤษภาคม 2568.....

AP 03_1/2024

ลายมือชื่อพยาน _____ วัน-เดือน-ปี _____
(_____)

หน้า 10 จาก 10

