

บทคัดย่อ

ในการทดลองนี้ผู้วิจัยได้ทดลองการปรับสภาพวัสดุเหลือทิ้งด้วยวิธีทางเคมีร่วมกับวิธีทางชีวิทยา เปรียบเทียบกับวิธีทางชีวิทยาเพียงอย่างเดียว โดยได้แบ่งการทดลองออกเป็น 4 ชุดการทดลองได้แก่ 1)วัสดุก้อนเห็ดเหลือทิ้งย่อยด้วยกรดซัลฟูริก (H_2SO_4) ร่วมกับเชื้อเห็ด 2)วัสดุย่อยด้วยด่าง ($NaOH$) ร่วมกับเชื้อเห็ด 3)วัสดุก้อนเห็ดเหลือทิ้งไม่ปรับสภาพย่อยด้วยเชื้อเห็ด 4)วัสดุขี้เลือยย่อยด้วยเชื้อเห็ด โดยเห็ดที่ใช้ในการทดลองนี้คือ *Laetiporus* sp. ทำการเลี้ยงเชื้อเพื่อย่อยเป็นเวลา 20 วัน เก็บตัวอย่างทุก 2 วัน ตรวจสอบปริมาณน้ำตาลรีดิวช์และหาค่ากิจกรรมของเอนไซม์ cellobiase ซึ่งเป็นเอนไซม์ที่เกี่ยวข้องกับการย่อยเซลลูโลส จากการทดลองพบว่ามีการสร้างน้ำตาลรีดิวช์อยู่ 2 ระยะในทุกชุดการทดลองที่ศึกษา โดยปริมาณน้ำตาลสูงสุดอยู่ที่ 1.85 มิลลิกรัมต่อกรัมวัสดุเหลือทิ้งไม่ปรับสภาพในวันที่ 4 ของการย่อยด้วยเชื้อเห็ด และ 1.4 มิลลิกรัมต่อกรัมวัสดุที่ปรับสภาพด้วยด่าง ในวันที่ 14 ของการย่อยด้วยเชื้อเห็ด และเชื้อมีความสามารถในการสร้างเอนไซม์ cellobiase ในการย่อย ในช่วง 0.25 – 0.45 ยูนิตต่อกรัมสับสเตรท เมื่อทดสอบผลของอัตราส่วนของวัสดุเหลือทิ้งต่อน้ำที่ใช้สกัดพบว่าอัตราส่วน 1:100 มีความสามารถสมต่อการเจริญของเชื้อยีสต์มากกว่าอัตราส่วน 1:500 การใช้อัตราส่วนของวัสดุก้อนเห็ดเหลือทิ้งที่สูงทำให้มีความเข้มข้นของสารยังยั่งในการเจริญเชื้อยีสต์สูง และเมื่อทดสอบการผลิตเอทานอลพบว่าอยู่ในช่วง 10 – 60 มิลลิกรัมต่อลิตร และไม่แตกต่างจากการผลิตเอทานอลจากอาหาร YPD ที่ใช้เลี้ยงยีสต์โดยทั่วไป เมื่อทดลองใช้เชื้อรา *Rhizopus microsporus* ซึ่งมีความสามารถในการย่อยสลายวัสดุกอลุ่มลิกโนเซลลูโลสและผลิตเอทานอลได้มาผลิตเอทานอลจากอาหารที่สกัดจากก้อนเห็ดเหลือทิ้งที่ไม่ได้ผ่านขั้นตอนการปรับสภาพตุดิบมาก่อน พบว่าเชื้อสามารถผลิตเอทานอลได้ 220 มิลลิกรัมต่อลิตร อย่างไรก็ตามปริมาณเอทานอลที่ได้จากการทดลองนี้ยังมีผลผลิตในระดับต่ำและไม่สามารถนำไปใช้ในระดับอุตสาหกรรมได้

ABSTRACT

In this search, the biomass pretreatment methods were investigated by combining between chemical and biological methods. The four treatments including 1) Mushroom waste materials digested with sulfuric acid (H_2SO_4) and mushroom *Laetiporus* sp. 2) Mushroom waste materials digested with alkali (NaOH) and mushroom *Laetiporus* sp. 3) Non-treated mushroom waste materials digested with *Laetiporus* sp. 4) Raw sawdust digested with *Laetiporus* sp. All treatments were cultured for 20 days and the sample was taken every 2 days for measuring reducing sugar content and enzyme activity, cellobiase, which is an enzyme involved in the digestion of cellulose. The results showed that reducing sugar was produced in two phases in all treatments studied. The reducing sugar content was up to 1.85 mg/g of non-treated mushroom waste material at day 4 of incubation time. While the alkaline treated mushroom waste showed the content up to 1.40 mg/g of the material at day 14 of incubation. The mushroom strain has ability to create enzymes to digest cellulose with 0.25 to 0.45 U/g of substrate. The effect of the ratio of mushroom waste material water used for extraction was studied and the result showed that the ratio of 1:100 was more suitable for yeast growth than a ratio of 1:500. The high content of growth inhibitor in the high ratio of water and mushroom waste could inhibit the growth of yeasts cell. However, the production of ethanol was not different between mushroom waste media and YPD which is the general media for yeast cell and it was in the range of 10 mg to 60 mg/L. The fungus, *Rhizopus microsporus* which are capable to degrade lignocellulose materials and produce ethanol was additional used for the production of ethanol from mushroom waste material and the result showed that this fungus can produce ethanol at 220 mg/L. However, the amount of ethanol produced from this research was not high enough to apply for the industrial level.