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EXECUTIVE SUMMARY

A growing environmental awareness has inspired a deliberate attempt to
develop bio-based composite materials. The combination of natural cellulosic fibres
and biodegradable polymeric matrices has been driven by their potential positive
ecological benefits with respect to ultimate disposability and renewability. The use of
nano-scale fillers as reinforcement in bio-based composite materials is another
technology that has been extensively investigated. With their nanometric size effect
and extremely high specific-surface area, nano-fillers have the potential for significant
reinforcement in composite materials at very small filler loadings as well as provide
some unique outstanding properties as compared to their conventional
microcomposite counterparts. Recently, nanometer-sized cellulose crystals commonly
referred to as nanowhiskers or nanofibrils have gained interest to use as
nanocomposite reinforcements. The cellulose nanowhiskers from renewable resources
show high aspect ratio, large surface area, exceptional mechanical properties (high
specific strength and modulus), and environmental benefits.

The aim of this research is firstly, to cultivate the bacterial cellulose from
Acetobacter xylinum strain and use it as a raw material for preparation of bacterial
cellulose nanowhiskers (BCNWs). In this part of work, the effect of type of carbon
source and additional supplement in the cultured medium of bacterial cellulose on
production yield, its structure and mechanical properties were also studied. Secondly,
to prepare and characterize the bionanocomposites of starch-based reinforced with
BCNWs. The effects of acid hydrolysis time, pH adjustment, and content of BCNWs
on structure and properties of the resulting bionanocomposites were investigated. The

starch/ BCNWs bionanocomposites were prepared by film casting and characterized



by various techniques; i.e. x-ray diffraction (XRD), transmission electron microscopy
(TEM), scanning electron microscopy (SEM), mechanical test, thermal gravimetric
analysis (TGA) and moisture absorption technique. In summary, it can be concluded
that BCNWs can be used as an effective reinforcement in the starch-based
nanocomposite materials. However, the extent of reinforcing effect depends as well
on the preparation, pretreatment (e.g. pH adjustment) and content of BCNWs.

The novel scientific knowledge from this research project has already
been published in three academic papers; firstly, “Effect of carbon and nitrogen
sources on bacterial cellulose production for bionanocomposite materials”; secondly,
“Effect of additional supplements in the cultured medium of bacterial cellulose on the
production yield”; and thirdly, “Effect of neutralization on structure and properties of
cellulose nanowhiskers derived from bacterial”. These three papers were published in
the 1 Mae Fah Luang University International Conference 2012 (1* MFUIC 2012)
proceeding. Furthermore, the other two papers in topics of ‘“Starch-based
bionanocomposites reinforced with bacterial cellulose nanowhiskers: Effect of pHs on
morphological, thermal and mechanical properties” and “Effect of carbon source type
in the bacterial cellulose cultivation on its structure and mechanical properties” are in
preparation to publish in the peer-reviewed international scientific journals.
Additionally, in economic viewpoints, the films which were prepared in this research
are considered very interesting to further develop for food packaging application due

to its high strength and biodegradable characteristic.
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ABSTRACT

This research work is divided into two sections. The first section is
focused on the study of the effect of type of carbon source and additional supplement
in the cultured medium of bacterial cellulose (BC) on its production yield, structure,
and properties. From the results, it was found that the type of carbon source
significantly influenced not only the production yield of bacterial cellulose (BC) but
also its structure and mechanical properties. Also, it can be summarized that except
for glycerol (p > 0.05), other carbon sources, i.e. sucrose, glucose, fructose and
mannitol, used in the culture media of BC resulted in the high mechanical properties
of the BC sheets. In the study of the effect of additional supplements (i.e. pineapple
and coconut juices) in the cultured medium of bacterial cellulose (BC) on the
production yield, it was found that addition of optimum amounts of juices in the
cultured medium of BC positively and significantly affected bacterial cellulose yield
(p > 0.05). The addition of pineapple juice of 30% v/v and coconut juice of 50% v/v
were the optimum amounts providing the highest cellulose productivity at
approximately 2-fold increase in production yield as compared to ‘the control
medium’ (no juice added medium). However, at the higher amounts of juice addition,
the reduction in cell growth and cellulose production was found. Here, the added
juices can create saturated carbon source environment that may directly inhibit cell
activity and subsequently, decrease the cellulose yield. The results suggested that both
supplements can effectively improve the cellulose yield but pineapple juice is a
slightly more effective one.

In the second section, bacterial cellulose nanowhiskers (BCNWs) was
prepared by acid hydrolysis of bacterial cellulose (BC) and then used to reinforce in

the starch-based nanocomposite films. The effect of acid hydrolysis time and pH



adjustment on structure and properties of the obtained BCNWs was investigated. It
was found that the 48 hours acid hydrolyzed BCNWs possessed the highest perfection
of the crystal lattice or crystallinity. Transmission electron microscope (TEM)
revealed that the continuous BC fibre network transformed into the isolated rod-like
nanocrystals of the BCNWs with a diameter and length of averaged 28.18+2.0 nm and
637.61+147.10 nm, respectively. The sulfuric acid treatment leads to a decrease in the
thermal stability of BCNWs confirmed by thermogravimetric analysis (TGA). This is
due to the induced sulfate groups onto the BCNWs’ surface after acid hydrolysis.
Additional pH adjustment by NaOH can significantly improve the thermal stability of
the BCNWs. The pH of BCNWs was adjusted to 3, 5, or 7 and, thereafter,
bionanocomposites of starch-based reinforced with BCNWs of different adjusted pHs
(at contents of 1, 5, 10 wt%) were prepared by film casting technique. With increasing
BCNWs content, the bionanocomposites revealed a significant improvement in their
crystallinity (confirmed by XRD), thermal stability (an increment of 20-30 °C,
confirmed by TGA) and water resistance. The highest water resistance was observed
in the bionanocomposite films reinforced with 10 wt% BCNWs of pH 7. However,
the mechanical properties of the films reinforced with BCNWs of pH 3 and BCNWs
of pH 7 were not found to be entirely enhanced because of a poor interaction between
BCNWs of pH 3 and starch matrix as well as a formation of large aggregates of
BCNWs of pH 7 in the bionaocomposite structures. Nevertheless, the films reinforced
with BCNWs of pH 5 showed a noticeably improvement in the mechanical properties,
the film stiffness in particular. Probably, the optimum dispersion of BCNWs and

sufficient interfacial interaction in this system was obtained.
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CHAPTER 1

INTRODUCTION

1.1 Statement and Significance of the Problem

In the last decade, a growing environmental awareness has inspired a
deliberate attempt to develop bio-based composite materials (Heijenrath and Peijs
1996; Peijs et al. 1998; Peijs 2000; Singleton et al. 2003). The combination of natural
cellulosic fibres and bio-based polymeric matrices has been driven by their potential
positive ecological benefits with respect to ultimate disposability and the use of
renewable resources. Nowadays, natural fibre reinforced composites are increasingly
replacing glass fibre reinforced composites as a viable alternative in various
applications particularly in automotive industry. (Averous and Boquillon ,2004;
Bledzki and Gassan 1999; Lu et al. 2006; Mohanty et al. 2000; Nishino et al. 2003;

Oksman et al. 2006; Samir et al. 2005; Soykeabkaew et al. 2004).

1.2 Objectives

1.2.1. Study the effect of type of carbon source in the cultured medium of
bacterial cellulose on its structure and mechanical properties

1.2.2. Investigate the effect of additional supplements in the cultured medium
of bacterial cellulose on its production yield

1.2.3. Preparation of bacterial cellulose nanowhiskers by acid hydrolysis of
bacterial cellulose nanofibres

1.2.4. Characterization of bacterial cellulose nanowhiskers



1.3

1.4

1.2.5. Preparation of bionanocomposites of bacterial cellulose nanowhiskers
reinforced biodegradable polymer
1.2.6. Characterization of bionanocomposites of bacterial cellulose
nanowhiskers reinforced biodegradable polymer
Benefits
1.3.1. Knowledge and development in production of bacterial cellulose as a
reinforcement in nanocomposites
1.3.2. Techniques for purification and characterization of bacterial cellulose
nanofibres
1.3.3. Techniques for preparation and characterization of bacterial cellulose
nanowhiskers
1.3.4. Preparation and characterization of bionanocomposites of bacterial
cellulose nanowhiskers reinforced biodegradable polymer
Scope of Study
Part A
1. Study the effect of type of carbon source in the cultured medium of
bacterial cellulose on its structure and mechanical properties
® Various types of carbon source were used to prepare the medium for
bacterial cellulose cultivation.
® Structure and mechanical properties of the cultured bacterial cellulose
from the various media were examined.
2. Investigate the effect of additional supplements in the cultured medium of

bacterial cellulose on its production yield



e Supplements (i.e. pineapple and coconut juices) were additionally
used to prepare the medium for bacterial cellulose cultivation.
® Production yield of bacterial cellulose from the various media were

determined.

Part B

1.

Preparation of bacterial cellulose nanowhiskers by acid hydrolysis of

bacterial cellulose nanofibres

e Acid hydrolysis of bacterial cellulose was performed using
concentrated sulphuric acid to prepare bacterial cellulose
nanowhiskers.

Characterization of bacterial cellulose nanowhiskers

® Transmission electron microscopy (TEM), x-ray diffraction (XRD)
and thermal gravimetric analysis (TGA) were used to characterize the
bacterial cellulose nanofibres and nanowhiskers.

Preparation of bionanocomposites of bacterial cellulose nanowhiskers

reinforced biodegradable polymer

e Bionanocomposites of bacterial cellulose nanowhiskers reinforced
starch matrix were prepared by film casting technique.

Characterization of bionanocomposites of bacterial cellulose

nanowhiskers reinforced biodegradable polymer

® The prepared bionanocomposites were characterized by using
scanning electron microscopy (SEM), x-ray diffraction (XRD),
thermal gravimetric analysis (TGA), tensile test and moisture

absorption technique.



CHAPTER 2

LITERATURE REVIEWS

2.1 Biodegradable Materials

Nowadays, biodegradable materials present a number of promising
properties in various applications, for instance, in packaging, automotive and
biomedical fields. Specifically, thermoplastic biodegradable polymers, such as
poly(lactic acid) (PLA), polyhydroxyalkanoates (PHA) and polycaprolactones (PCL),
exhibit an excellent similar properties to conventional plastics, apart from being
processable using conventional plastics machinery (Sanchez-Garcia et al., 2010).
Biodegradable plastics are polymeric materials in which can be degraded (at least one
step) in the presence of naturally occurring organisms. Under appropriate conditions
of moisture, temperature and oxygen availability, biodegradation leads to
disintegration of the plastics into carbon dioxide and water with no environmentally
harmful residue. Biodegradable polymers can be classified into three categories
according to their source (Sorrentino et al., 2007):

1. Polymers directly extracted or removed from biomass (i.e.
polysaccharides, proteins, polypeptides, polynucleotides).

2. Polymers produced by classical chemical synthesis using renewable
bio-based monomers or mixed sources of biomass and petroleum (i.e. polylactic acid
or bio-polyester)

3. Polymers produced by micro-organism or genetically modified
bacteria (polyhydroxybutyrate, bacterial cellulose, xanthan, curdian, pullan).

However, some problems related with the application of these

biodegradable materials including their performance, processing, and cost have



presented. There is a requirement to improve some of their properties, so that they can

compete with the current conventional plastics.

2.2 Bionanocomposites

The use of nano-scale fillers as reinforcement in bio-based composites is
another technology that has been extensively investigated. With their nanometric size
effect and extremely high specific-surface area, nano-fillers have the potential for
significant reinforcement in composite materials at very small filler loadings and
providing some unique outstanding properties as compare to their conventional
microcomposite counterparts (e.g. natural fibre reinforced composites) (Grunert and
Winter 2002; Samir et al., 2005). Studies incorporated clay, chitin or cellulose
whisker as reinforcement into biodegradable polymers, polyvinyl alcohol (PVA),
polylactic acid (PLA), polycaprolactone (PCL), polyvinyl acetate (PVAc),
polyhydroxy butyrate (PHB), cellulose acetate butyrate (CAB), starch and aliphatic
polyesters to create bionanocomposites have been reported (Garcia de Rodriguez et
al., 2006; Jung et al., 2007; Lu et al., 2006; Oksman et al., 2006; Orts et al., 2005;
Roohani et al., 2008; Samir et al., 2005; Wibowo et al., 2006; Wu et al., 2007; Yu et
al., 2003).

More recently, biodegradable cellulose nanofibers have received a great
deal of interests to incorporate within bio-based polymers since the additional value of
generating fully bio-based materials, significant improvements in mechanical
properties, thermal stability and permeability as well as retaining good transparency

of the reinforced nanocomposite materials (Lagaron & Lopez-Rubio, 2011).
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Polymeric Nanocomposite

Figure 2 - 1 Photograph of (a) bacterial cellulose pellicle, (b) PLA/bacterial cellulose
nanocomposite film, and (¢) PLA film (Kim et al., 2009).

2.3 Cellulose

Cellulose is a ubiquitous and abundant structural polymer found in plants,
hence, widely available and inherently low cost. The use of cellulose as reinforcing
elements in composite materials present distinct advantages, when compared with
their synthetic and inorganic counterparts, namely biodegradability, biocompatibility,
low energy consumption, low density, high specific strength and modulus (with fibers
possessing an adequate aspect ratio), high sound attenuation and comparatively easy
processability (Lee et al., 2009; Martins et al., 2009; Pei et al., 2010). Two forms of
nanoreinforcements obtained from cellulose have been currently focused —
microfibrillated cellulose (MFC) and cellulose nanowhiskers (CNW) (Azeredo, 2009;
Sanchez-Garcia & Lagaron, 2010; Tingaut et al., 2010).

Microfibrillated cellulose (MFC) is a form of expanded high-volume
cellulose, moderately degraded and greatly expanded in surface area, achieved in the
refining and homogenizing processes. Depending on the source of cellulose,
individual fibrils can be about 5-10 nm in diameter and lengths varying from 100 nm
to several micrometers (Nakagaito et al., 2009; Okubo et al., 2009). In the past few
years, the use of MFC to reinforce in biodegradable polymers e.g. polylactic acid

(PLA) have been introduced. Several previous studies have reported improved



performances of the prepared nanocomposites with incorporation of MFC including
mechanical properties, thermal stability and reduction in time for polymer’s
crystallization process (Iwatake et al., 2008; Jonoobi et al., 2010; Nakagaito et al.,

2009; Okubo et al., 2009; Suryanegara et al., 2010; Tingaut et al., 2010).

Figure 2 - 2 Internal structure of cellulose microfibril: (A) a cellulose chain; (B) an
elementary fibril containing bundles of cellulose chains; (C) elementary fibrils; (D)

microfibrils held together by hemicelluloses and lignin (Azeredo, 2009).

2.4 Bacterial Cellulose
Lately, bacterial cellulose, which presents a unique network structure of a
random assembly of ribbon shaped nanofibres, has also drawn scientific attention as

reinforcement for polymers. Bacterial cellulose has recently been incorporated in



hydroxyapatite (HAp), polylactic acid (PLA), polyvinyl alcohol (PVA), cellulose
acetate butyrate (CAB) and also as a hybrid material in apple and radish pulp (Gea et
al., 2007; Gindl and Keckes 2004; Millon and Wan 2006; Wan et al., 2006; Wan et
al., 2007). An example of the high-strength and high transparency composites of
bacterial cellulose sheets reinforced phenolic resin attaining an impressive Young’s

modulus of 28 GPa has as well been reported (Figure 2 - 3, Nakagaito et al., 2005).

Figure 2 - 3 A high transparency bacterial cellulose nanocomposite

(Nakagaito et al., 2005).

Bacterial cellulose is synthesised by various bacteria belonging to the
genera Acetobacter, Rhizobium, Agrobacterium, and Sarcina (Jonas and Farah, 1998)
in different form such as extracellular pellicle cellulose ribbons, cellulose fibrils and
amorphous cellulose. However, the most efficient producers are Gram-negative,
acetic acid bacteria Acetobacter xylinum (Bielecki et al., 2004). In a culture medium
containing carbon and nitrogen sources, cultivated bacteria produce extracellular
cellulose, an ultrafine ribbons network structure in the form of a highly hydrated

pellicle (Figure 2 - 2, Barud et al., 2007; Iguchi et al., 2000; Nakagaito et al., 2005).



Dimensions of the ribbons are roughly 3-4 nm (thickness) and 70-130 nm (width).
They are made from cellulose chains aggregated to form sub-fibrils, which have a
width of approximately 1.5 nm and then the sub-fibrils are crystallized into
microfibrils, which subsequently form bundles, while the latter form ribbons (Bielecki
et al., 2004; Jonas and Farah 1998; Yamanaka et al., 2000).

The culture condition of A. xylinum is an important step in cellulose
production. Since the optimized condition has been investigated, this process can
promote cell growth and cellulose synthesis. One of key factor is the composition of
culture media. Here, various sources in culture media including carbon, nitrogen
source and supplements have been shown the link to bacterial growth and bacterial
cellulose production. For example, carbon source such as monosaccharide (glucose
and fructose), disaccharides and alcohols highly showed effect on cellulose synthesis
(Keshk and Sameshima, 2006). These studies indicated that monosaccharide and

alcohol are potential carbon source to use in bacterial cellulose production (Ramana et

al., 2000).

Figure 2 - 4 A scanning electron micrograph of freeze-dried surface of bacterial

cellulose (gel) nano-fibre network (Iguchi et al., 2000).
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In addition, nitrogen containing medium also promoted and showed
different amount of cellulose yield when cultured 4. xylinum, for instance, peptone,
yeast extract, soybean meal, casein hydrolysate and ammonium sulphate (Dudman,
1959 and Chawla et al., 2009). This suggested that nitrogen is necessary for making
component of cell, and enhance stability and activity of enzyme in cellulose synthesis
(Embuscado et al., 1994). Finally, the addition of supplement e.g. fruit juices (such as
coconut, orange, pineapple, organic acid and vitamins) is alternative that have been
reported for the purpose of a yield increment in bacterial cellulose production
(Kurosumi et al., 2000 and Budhiono et al., 1999).

The unique properties of bacterial cellulose; i.e. high purity, high
crystallinity, high mechanical strength, high water-holding capacity, high porosity and
good biocompatibility have made it find a multitude of applications in paper, textile,
and food industries, and as a biomaterial in cosmetics and medicine (Bielecki et al.,
2004; Jonas and Farah 1998; Zhou et al., 2007). An acoustic diaphragm of high
fidelity loudspeakers and headphones marketed by Sony Corp. is another successful
application that has reached the level of practical use (Iguchi et al. 2000). For this
application, a high dynamic Young’s modulus, close to 30 GPa, for sheets obtained
from bacterial cellulose pellicles has been reported (Nishi et al., 1990; Yamanaka et
al., 1989). This indicated that the ultrastructure of bacterial cellulose produced
superior physical properties (Yamanaka et al., 2000). Recently, measurements using
atomic force microscopy by Guhados and co-workers (2005) revealed a Young’s
modulus of 78 + 17 GPa for bacterial cellulose ribbons with widths ranging from 35
to 90 nm. By using Raman spectroscopic technique, an estimation of the higher value
of 114 GPa Young’s modulus of a single filament bacterial cellulose is obtained

(Hsieh et al., 2008). In fact, the crystal modulus of cellulose I (the type of cellulose



11

polymorphs for native cellulose including bacterial cellulose) in the direction parallel
to the chain axis measured by X-ray diffraction was calculated to be 138 GPa
(Nishino et al., 1995). Clearly, this information indicates to a high modulus which

renders a promising candidate as reinforcement for bionanocomposites.
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CHAPTER 3

METHODOLOGY

3.1 Research Methodology: Part A

3.1.1 Materials and equipments

e Acetobater xylinum * e Fructose

e Sucrose e Glycerol

e Yeast extract e Mannitol

e (NH4)2SO4 e Pineapple juice

e MgS04.7H,0 e Coconut juice

e KH,PO4 e Incubator

e Agar e Compression machine

e Acetic acid e Digital balance

e NaOH e Universal testing machine
e NaOCl e Scanning electron microscope
e Glucose e X-ray diffractometer

*Bacterial strain Acetobacter xylinum TISTR 975 was kindly supplied by
Dr. Sirirung Wongsakul, School of Agro — Industry, Mae Fah Luang University.

This isolate showed high potential in cellulose production.

3.1.2  Bacterial cellulose cultivation in the medium of various types of carbon
source
In this present work, the control culture medium (adapted from Yamanaka

et al., 2000) contains 50 g sucrose, 5 g yeast extract, 5 g (NH;),SO4, 3 g KH,PO4 and
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0.05 g MgS04.7 Hy0 in a litter of distilled water. In order to study the effect of type
of carbon source in the cultured media of bacterial cellulose on its structure and
mechanical properties, the medium of various types of carbon source as shown in

Table 3 - 1 were prepared. It was then adjusted the pH to 5.0 by using acetic acid and

sterilized at 121°C for 15 minutes.

Table 3 - 1 The media of various types of carbon sources
for bacterial cellulose cultivation.

Media of various carbon sources Code
Control; 50g/L of sucrose Sucrose
50g/L of glucose Glucose
50g/L of fructose Fructose
50g/L of glycerol Glycerol
50g/L. of mannitol Mannitol

Then, the strain of 4. xylinum, 5.0 % (v/v), was inoculated into this culture
medium. The growth condition is at 35°C in incubator with static condition for 7
days. Thereafter, the bacterial cellulose was harvested and purified by immersing in

running water, 2% w/v NaOH, then 0.5% w/v NaOCI and finally running water, each

step for 24 hours, respectively.

3.1.3  Preparation of disintegrated bacterial cellulose (dis-BC) sheet
In order to prepare disintegrated bacterial cellulose (dis-BC) sheet, firstly,
the purified bacterial cellulose was cut into small cubes (~ 1 cm3) and then

disintegrated into a fibre suspension by using the kitchen blender (PHILIPS HR 2094)
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at the maximum speed until homogeneous suspension was obtained, approximately
for 10 minutes.

Next, disintegrated bacterial cellulose (dis-BC) sheets were prepared by
vacuum fitration of a 0.2% wt/wt disintegrated bacterial cellulose (dis-BC)
suspension. Prior to filtration, the suspension was stirred for 5 minutes to ensure a
well dispersion of fibres. All dis-BC suspension were filtrated using a ceramic filter
funnel (110 mm in diameter) on woven metal sheets (325 mesh) and Whatman filter
papers, No. 1, England. After filtration, the wet dis-BC sheets were placed between
woven metal sheets (325 mesh) and then dried at 55°C for approximately 5 days
under about 1 kPa applied pressure. This resulted in dis-BC sheets with thicknesses in

the range of 30-50 um.

3.1.4  Tensile testing

Mechanical properties of the dis-BC sheets were assessed using a
universal tensile tester, Instron 5566, equipped with a 1 kN load cell. The gauge
length of the specimens with a width of 7 mm was 30 mm and a cross-head speed of 3
mm/min was utilized for the tests conducted at 25°C and a relative humidity of
approximately 60%. The values of Young’s modulus, tensile strength and elongation
at break of the samples were evaluated and reported as the average values of five

measurements of each material.

3.1.5 X-ray diffraction (XRD)
X-ray diffraction patterns were detected using Cu Ko radiation, generated

with X’pertPro MPD (Philips, Netherlands) at 40 kV, 20 mA. The x-ray beam was
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operated in reflection mode and the samples were examined over the angular range

(20) of 5° to 35° with a step size of 0.02° and a count time of 4s per point.

3.1.6  Scanning electron microscopy (SEM)

The morphology and structure of the dis-BC sheets were observed using a
scanning electron microscope, Leo 1450 VP, at an accelerating voltage of 10 kV.
Prior to the examination, a surface of the specimen was sputter coated with a thin

layer of gold.

3.1.7 Bacterial cellulose cultivation in the medium with additional
supplements

The control culture medium (adapted from Yamanaka et al., 2000)
contains 50 g sucrose, 5 g yeast extract, 5 g (NH4)2SO4, 3 g KH,PO4 , and 0.05 g
MgS0O4.7 HyO in a litter of distilled water. In order to investigate the effect of
additional supplements in the cultured medium of bacterial cellulose on its production
yield, the supplements (i.e. pineapple and coconut juices) were used in replacement of
the volume of distilled water which is normally used in the control culture medium.
For example, in a litter of the 10% v/v pineapple juice medium, the volume of
pineapple juice and distilled water used is 100 ml and 900 ml, respectively. The media
of 10%, 20%, 30%, 50%, 70% and 100% v/v of both supplements were prepared.
Then, the strain of 4. xylinum, 5.0 % (v/v), was inoculated into this culture medium.
The growth condition is at 35°C in incubator with static condition for 7 days.
Thereafter, the bacterial cellulose was harvested and purified by immersing in running
water, 2% w/v NaOH, then 0.5% w/v NaOCI and finally running water, each step for

24 hours, respectively.
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3.1.8  Determination of yield of bacterial cellulose cultivation

In order to determine the dry weight and yield of the bacterial cellulose
from the cultivation, the purified bacterial cellulose pellicle was dried into a sheet
form by using a compression machine with temperature set at 115°C for 5 minutes.

The yield (%) of the bacterial cellulose is calculated by the following equation:

Yield (%) = BC x 100 3.1

CS
where BC is dry weight of the dried bacterial cellulose sheet (gram) and CS is weight
of carbon source used in the culture medium (gram). The reported dry weight and
yield (%) of the bacterial cellulose for each culture medium were averaged from 3

samples.

3.1.9  Statistical and data analysis
Microsoft excel 2010 was used for calculating ANOVA and Duncan’s
new multiple range test for independent samples. A p value < 0.05 was considered

statistically significant.

3.2 Research Methodology: Part B

3.2.1 Materials

The materials used in this work were bacterial cellulose (BC) sheet from
cultivation of bacterial cellulose (4. xylinum TISTR 975). Deionized water was
supplied by Mae Fah Luang University Laboratory (S2 building). Sulfuric acid (96%
w/w) was purchased from Merck. Sodium hydroxide (NaOH) AR grade was

purchased from Qrec, New Zealand. Corn flour brand Super-Find was purchased from
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local supermarket, Chiang Rai, Thailand. Guar gum and glycerol (99.5 % w/v) was

supplied from Sigma Aldrich and Analar Normapur, respectively.

3.2.2  Preparation of bacterial cellulose nanowhiskers by acid hydrolysis of
bacterial cellulose nanofibres

Firstly, a bacterial cellulose (BC) sheet was prepared by compressing a
bacterial cellulose pellicle sandwiched between woven metal sheets (325 mesh) at
115°C for 5 min using compression machine (Hydraulic hot press, Scientific LP-S-80,
Labtech Engineering). The dried BC sheet was used as a raw material for preparation
of bacterial cellulose nanowhiskers (BCNWs). The acid hydrolysis was performed
using 50% (w/v) sulfuric acid, at a cellulose/acid ratio of approximately 8 g/L,
shaking in water bath at 50°C for a fixed period of time (24, 48 and 72 hours). The
BCNWs were obtained as a precipitate collected from 15 centrifugation cycles
(Ultrasonic Centifuge Avanti j-301) at 12,500 rpm and 15°C for 20 min. Flow chart of
the BCNWs preparation is shown in Figure 3 - 1.

In order to determine yield (%) of BCNWs, the precipitate was dried in a
hot air oven at 100°C for 2 hours. The yield (%) of the BCNWs is calculated by the

following equation:

Yield (%) = % x 100 (3.2)

where C is weight of the dried BCNWs (gram) and G is weight of the dried BC sheet

(gram).
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3.2.3 Preparation of Films
3.2.3.1 Preparation of Standard Films

All ingredients in Table 3 - 2 were pre-mixed in a beaker until a
homogeneous mixture was obtained. The mixtures were then heated at 80°C using a
hot plate for starch to gelatinize. It was continuously stirred for 20 min with heating.
After that the mixture was degassed by sonification for 30 min. It was then poured

onto a Petri dish and dried at 40°C for approximately 2 days. The preparation steps

are summarized as shown in Figure 3 - 2.

[ BC Sheet + 50% w/v Sulfuric acid ]

A

A

[ Shaking at 50°C for

24, 48 and 72 hours ]

N

4

[ Centrifugation at 12,500 rpm, 15°C 20 min (15 cycles) ]

4

[ Precipitate collection

of BCNWs (pH = 1) ]

[

Neutralization

]

[ Centrifugation at 12,500 rpm, 15°C, 20 min and drying]

\

[ Precipitate collection ]

\

4

[

Yield (%)

]

Figure 3 - 1 Flow chart of bacterial cellulose nanowhiskers (BCN'W:s)

preparation.



Table 3 - 2 Ingredient for preparation of standard films.

Ingredient Weight ratio
Corn starch 3.00
Guar gum 0.01
Glycerol (99.5%) 0.90
Deionised water 100.00

Pre-mixing the ingredients in a beaker

Y

e ™

Heating > 80°C and stirred for 20 minutes

.

J

A 4

[ Degassing for 30 minutes ]

v

[ Pouring 30 g into a Petri dish }

A

[ Drying at 40°C for 2 days ]

4

Figure 3 - 2 Flow chart of preparation of standard films.

3.2.3.2 Preparation of Bionanocomposite Films
The pH of the prepared BCNWs measured after the centrifugation
was being around 1. All the BCNWs were then re-suspended in deionized water and
adjusted pH to 3, 5 and 7 by using NaOH solutions of 0.5% and 5.0% (w/v) and
subsequently centrifuged to obtain the BCNWs pH adjusted as a partially hydrated

precipitate. To prepare the bionanocomposite films, BCNWs were pre-mixed with
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deionized water (at contents of 1, 5 and 10 wt% based on starch weight) in a beaker
until a homogeneous mixture was obtained. Then other ingredients in Table 3 - 2 were
added into the mixture. After that, all ingredients were heated at 80°C using a hot
plate for starch to gelatinize. It was continuously stirred for 20 min with heating. After
that, the mixture was degassed by sonification for 30 min. Then, it was poured onto a
Petri dish and dried at 40°C for approximately 2 days. The preparation steps are

summarized as shown in Figure 3 - 3.

[ Precipitate collection of BCNWs 48 hours (pH=1) ]——

A4

-
pH adjustment by NaOH }

Y A 4 ¢’

(" * )
BCNWs BCNWs BCNWs
48h pH3 48h pH5 48h pH7
\ 7
A4
-
Pre-mixing BCNWs (1, 5 and 10 wt% based on starch ,
weight) with deionized water y
. J
\ 4
{ 2
Preparation of the bionanocomposite films
\. J
Y
r 3
Characterizations of the starch/BCNWs films
\. J

Figure 3 - 3 Flow chart of preparation of the bionanocomposite films.
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3.2.4  Characterizations
Prior to all characterization, the samples were stored in condition of 50%
relative humidity (RH) for 3 days (using a chamber of the saturated Mg(NOs),

solution).
3.2.4.1 X-ray diffraction (XRD)

X-ray diffraction patterns were detected using Cu Ko radiation,
generated with X’pertPro MPD (Philips, Netherlands) at 40 kV, 20 mA. The X-ray
beam was operated in reflection mode and the samples were examined over the
angular range (26) of 10° to 45° with a step size of 0.02° and a count time of 4s per
point.

3.2.4.2 Transmission electron microscopy (TEM)

Transmission electron microscopy (TEM) was performed using a
JEOL, model JEM-2010, equipped with a digital Bioscan (Gatan) image acquisition
system at 80 kV. One drop (8 uL) of 0.002% aqueous suspension of BCNWs was
allowed to dry on a carbon coated grid (200 mesh). The nanocrystals were stained
with uranyl acetate. The reported dimension of BCNWs was averaged from
measurements of several TEM micrographs.

3.2.4.3 Thermal gravimetric analysis (TGA)

Thermal analysis was carried out using a Mettler Toledo
TGA/SDTA STAR 851e (Switzerland). Samples of approximately 5 mg were used.
All the experiments were conducted using the constant heating rate of 5°C/min, from
25 to 600 °C, under a nitrogen atmosphere (flow rate of 50 ml/min). The peak

degradation temperatures of all samples were determined.
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3.2.4.4 Scanning electron microscopy (SEM)
Scanning electron microscopy micrographs of the fracture surfaces
of the pure starch film and starch/BCNWs bionanocomposite films were taken by a
scanning electron microscope JEOL model jms-5410 LV at an accelerating voltage of
10 kV. Prior to the examination, the surface of specimens was sputter coated with a
thin layer of gold.
3.2.4.5 Mechanical test
Specimens with the dimension of 50 mm length and 7 mm width
were cut from the films. The test was operated at a deformation rate of 3 mm/min
using a load cell of 1 kN (Universal Testing Machine, INSTRON Model 5566) with
an initial grip separation of 30 mm. The average values of tensile strength, Young’s

modulus, and elongation at break were calculated from 5 specimens.

F——— 50mm — ]
F—— 30mm —

&

Figure 3 - 4 Tllustration of tensile specimens.

3.2.4.6 Moisture absorption
Firstly, bionanocomposite specimens (dimension of 40 mm X 10
mm) were dried and then weighted (M)). After that, the specimens were stored in
condition of 75% RH (using a chamber of the saturated NaCl solution), and
periodically removed and weighted (M,). A minimum of four samples were tested for
each film. Moisture absorption (M,) at time ¢ was calculated by the following

equation:
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M, = (%J x 100 (3.3)

where M) is the specimen initial weight and M, is the weight after a time .

3.2.5 Statistical and data analysis
Microsoft excel 2010 was used for calculating ANOVA and Duncan’s
new multiple range test for independent samples. A p value < 0.05 was considered

statistically significant.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results and Discussion: Part A

4.1.1  Study the effect of type of carbon source in the cultured medium of
bacterial cellulose on its structure and mechanical properties

In the previous work (the last year research in 2552-2553), the effect of
type of carbon source in the cultured medium of bacterial cellulose (BC) on its
production yield was investigated. This would suggest us which type of carbon suits
in term of cellulose yield and the cost of production because carbon is key precursor
in cell growth and bacterial cellulose synthesis. Here, we used monosaccharide
(glucose and fructose), disaccharides (sucrose and lactose) and alcohol (glycerol and
manitol) since they showed highly effect on bacterial cellulose production (Jonas and
Farah 1998; Ramana et al. 2000; Bielecki et al. 2004; Panesar et al. 2009). For
example, Ramana and his co-workers reported that among the carbon sources,
mannitol was one that found to be suitable for optimum levels of cellulose production
(Ramana et al. 2000).
Table4 -1  Yield (g/L of medium), relative yield, crystallinity index (%) and

crystallite size (nm) of bacterial cellulose (BC) samples cultivated in
medium of various types of carbon source.

Sucrose .
Type of carbon source (control) Glucose Fructose Glycerol Mannitol
Yield (g/L of medium) 0.33 0.18 1.15 1.03 1259
Relative yield 1 0.57 3.53 3.16 4.76
(as compared to control)
Crystallinity index (%) 86.21 88.10 86.83 81.96 87.03

Crystalline size (nm) 6.70 7.01 6.70 6.86 6.86
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In this result, it was found that the type of carbon source significantly
influenced the production yield of bacterial cellulose (BC) as shown in Table 4 - 1.
Mannitol, fructose and glycerol were proven to be the more efficient carbon source
than sucrose and glucose in view of the production yield of bacterial cellulose (BC).
Additionally, in this present work, the effect of type of carbon source in the cultured
medium of bacterial cellulose on its structure and mechanical properties was
examined.

The cultured BC pellicle from the medium of each carbon source was
firstly cut and disintegrated by a kitchen blender and further fabricated into a sheet, so
called ‘disintegrated bacterial cellulose sheet’ (dis-BC sheet). In order to examine the
mechanical properties of the dis-BC sheet, the tensile test was performed and the
tensile strength (MPa), Young’s modulus (GPa) and elongation at break (%) of the

dis-BC samples were then calculated as shown in Figure 4 - 1 — 4 - 3.
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(control)

Type of carbon source

Figure 4 - 1 The effect of type of carbon source (used in the culture medium of

bacterial cellulose) on tensile strength of the disintegrated bacterial cellulose sheets.
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Figure 4 - 2 The effect of type of carbon source (used in the culture medium of
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Figure 4 - 3 The effect of type of carbon source (used in the culture medium of
bacterial cellulose) on elongation at break of the disintegrated bacterial cellulose

sheets.
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From the results, it can be concluded that the type of carbon source used
in the cultured medium of bacterial cellulose (BC) had an influence on the mechanical
properties of the dis-BC sheets. In Figure 4.1, the highest tensile strength was
observed in the sheet prepared from BC that was cultured in the glucose medium (p >
0.05). But the sheet made from BC cultured in the glycerol medium was the weakest
one. The statistical and data analysis also suggested that the sheets prepared from BC
cultured in the sucrose and mannitol media were not significantly different in the
tensile strength (p < 0.05). For the Young’s modulus (Figure 4.2), the sheet prepared
from BC cultured in the glycerol medium again showed the lowest value. The other
sheets made from BC cultured in the sucrose, glucose, fructose and mannitol media
have no significant difference in the Young’s modulus (p < 0.05). As seen in Figure
4.3, the sheet prepared from BC cultured in the glycerol medium also exhibited that
lowest elongation at break. The highest value was found in the sheet made from BC
cultured in the glucose medium. No significant difference was observed in the
elongation of the three other sheets prepared form BC cultured in the sucrose, fructose
and mannitol media (p < 0.05). This difference in the mechanical properties of the dis-
BC sheets implied to a possible difference existing in the BC fiber’s structure and
property which caused from the culture of BC in the media of different type of carbon
sources.

SEM cannot distinguish differences such as amorphous regions from
crystalline regions in the BC fibers. Nevertheless, the detail of their structural
differences can be obtained from the X-ray diffraction (XRD) technique. The
crystallinity index (%) and crystallite size (nm) of BC were calculated from each X-
ray diffraction pattern of the dis-BC sheet prepared from BC cultured in the medium

of each type of carbon sources (see Figure 4 - 5) and shown in Table 4 - 1. From the
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data, it can be summarized that the type of carbon source used in the cultured medium
of BC rather had an effect on the crystallinity index (%) and crystallite size (nm) of
the resulting BC fibers. The values of crystallinity index (%) and crystallite size (nm)
of BC evaluated in this work are similar to those reported in several previous studies

(Castro et al., 2011; Shezad et al., 2010; Sheykhnazari et al., 2011).
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Figure 4 - 4 Scanning electron micrographs of the disintegrated bacterial cellulose sheets
prepared from bacterial cellulose cultured in the medium of various carbon sources:

(a) sucrose; (b) glucose; (c) fructose; (d) glycerol and (e) mannitol.
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Figure 4 - 5 X-ray diffraction patterns of the disintegrated bacterial cellulose sheets

prepared from bacterial cellulose cultured in the media of various carbon sources.

Comparing the XRD data (Table 4 - 1) together with the results of tensile
testing (Figure 4 - 1 — 4 - 3), it can be observed that there is a strong relationship
between the crystallinity index of BC and mechanical properties of the dis-BC sheets,
especially in trends of tensile strength and elongation at break of the samples. The
higher crystallinity index or the more structural order of BC fibers resulted in the
better mechanical properties of the dis-BC sheets (Watanabe et al., 1998). Although,
the relationship between crystallite size of BC and the mechanical properties of the

dis-BC sheets cannot be clearly concluded.

4.1.2  Investigate the effect of additional supplements in the cultured medium
of bacterial cellulose on its production yield
In this work, we interested to add pineapple or coconut juice in culture

media because the composition of the juices have been reported that contains rich
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component such as free sugars content (mono- and disaccharides), trace element
(magnesium), vitamins (such as nicotinic acid, biotin and pyridoxin) and some
hormones (Hui and Muhamad 2007). These compounds play a crucial role in
cellulose synthase gene activity i.e. promoter and transcription factors (Heo and Son,
2002). However, other juices were also investigated but low yield and costly were
found. So that both pineapple and coconut juice would be used as supplement rely on
the complex of nutrient and cheaper compare to another one.

The effect of additional supplements (i.e. pineapple and coconut juices) in
the cultured medium of bacterial cellulose on its production yield was investigated.
Acetobacter xylinun were grown in culture media containing 50g of sucrose, 5g of
yeast extract, 5Sg of (NH4),SO4, 3g of KHyPOy4, 0.05g of MgSO4 and supplied with
either pineapple or coconut juice (varied from 10, 20, 30, 50, 70 and 100% (v/v)) at
the initial adjusted pH of 5.0 and 30°C in static culture condition. After cultivation for
7 days, bacterial cellulose pellicle was collected, purified and dried in order to
determine the production yield of bacterial cellulose from each culture medium. The
relative yield of BC cultured from each medium was also calculated in comparison to
the yield of BC obtained from ‘the control media’ (0% addition or no juice added
media).

The effect of amount of added pineapple and coconut juices in the culture
medium (%v/v) on relative yield of the BC production are shown in Figure 4 - 6 and
4 - 7, respectively. It was found that the addition of pineapple juice of 30% v/v and
coconut juice of 50% v/v were the optimum amount to supply into the culture media
and the highest bacterial cellulose productivity, at approximately 2-fold increase in

yield as compared to ‘the control media’, was obtained (p > 0.05).



31

3.5

3.0

2.5

CUH

2.0

1.5

TH

Relative yield

1.0 -

0.5 1

00 Il T
0%
(control)

S DO

20% 30% 50% 70% 100%

Amount of added pineapple juice in the medium

Figure 4 - 6 The effect of amount of added pineapple juice in the culture medium

(%v/v) on relative yield of the bacterial cellulose (BC) production.

This result suggested that pineapple and coconut juices are the effective
supplement sources that can be used in bacterial cellulose production. Since the
composition of juices has been identified that they contain various carbon and
nitrogen sources, trace elements (e.g. magnesium and manganese), vitamins and
growth hormones, these would undoubtedly affect cell activity and cellulose yield in
A. xylinum cultivation (Kurosumia et al., 2008). For example, magnesium (Mg*") or
manganese (Mn®") ion as a cofactor is necessary for enzyme activity or control
regulatory gene in cellulose biosynthesis e.g. glucosyltransferases and cellulose
synthase enzymes (Ross et al., 1987; Jonas and Luiz, 1998; Vandamme et al., 1997).

In addition, the magnesium (Mg®") ion plays an important role in
maintaining cellular metabolism for BC synthesis of Acefobacter strains (Heo and
Son, 2002). The vitamins, pyridoxine, nicotinic acid and biotin are also the influence
of cell growth and cellulose production. The other trace elements (e.g. acetate, citrate

and succinate) showed highly effective in stimulating cellulose synthesis by A.
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acetinenum in defined medium (Dudman, 1959). These compounds and other
intermediates of the tricarboxylic acid cycle are all readily oxidized to CO, by washed
suspensions of 4. xylinum. The buffering property of these substances can maintain
the cultural pH value within the optimum range for cellulose synthesis (Schramm et

al., 1957).
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Figure 4 - 7 The effect of amount of added coconut juice in the culture medium (%v/v)

on relative yield of the bacterial cellulose (BC) production.

Furthermore, since nitrogen is the main component of proteins and
necessary in cell metabolism, additional nitrogen sources from juices could probably
help to promote cell metabolism in cellulose synthesis by A. xylinum (Chawla et al.,
2009). On the other hand, carbons source is a key component necessary for both cell
growth and cellulose production. Because of additional various sugars in juices
supplemented in culture media, this may increase cell activity and the synthesis to

have more amount of a building block to produce cellulose. Consistently, this present
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work showed that addition of optimum amounts of juices in the cultured medium of
bacterial cellulose positively affected bacterial cellulose yield (i.e. addition of 10-30%
v/v of pineapple juice and 10-50% v/v of coconut juice). In contrast, at high amount
of juices, it caused the reduction in cell growth and cellulose production (see Figure
4 - 6 and 4 - 7). Here, more free sugars content (either mono or disaccharides) can
create saturated carbon source environment that may directly inhibit cell activity
(Kurosumi et al., 2009) and consequently, cellulose yield (i.e. the cultured medium
supplied with pineapple juice of 50% v/v and higher and coconut juice of 70% v/v
and higher). In addition, the statistical and data analysis suggested that the bacterial
cellulose yields from the cultured medium supplied with coconut juice of 20% v/v and
70% v/v were not significantly different (p < 0.05).

In comparison between both supplements (pineapple and coconut juices),
the results suggested that both supplements can effectively improve the bacterial
cellulose yield but pineapple juice is a slightly more effective supplement because at
low amount of juice addition (i.e. 10-30% v/v), the higher yield was obtained in this
media. This described that pineapple juice may have richer and higher concentration
of components including carbon and nitrogen sources, trace elements, vitamins and
growth hormones, to promote cell growth and bacterial cellulose production by

Acetobacter xylinum.

4.2 Results and Discussion: Part B

4.2.1 Effect of hydrolysis time on properties of bacterial cellulose
nanowhiskers
In this research, bacterial cellulose nanowhiskers (BCNWs) were prepared

by acid hydrolysis of the bacterial cellulose (BC) sheet using 50% (w/v) sulfuric acid
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at 50°C. The effect of hydrolysis time of 24, 48 and 72 hours on the BCNWs’
properties was studied. Figure 4 - 8 shows that yield (%) of the obtained BCNWs was
decreased from 47.28+1.57% to 24.97+0.64% with increasing the hydrolysis time

from 24 to 72 hours. The long the hydrolysis times, the more BC was hydrolyzed.

Yield (%)

O ! ! ! ! 1 J
12 24 36 48 60 | A 84

Acid hydrolysis time (Hours)

Figure 4 - 8 The effect of acid hydrolysis time on yield (%) of the bacterial cellulose
nanowhiskers (BCNWs).

The effect of hydrolysis time on the crystallinity of the BCNWs is
presented in Figure 4 - 9. The X-ray diffractions of the native BC and BCNWs after

acid hydrolysis of 24, 48 and 72 hours (BCNWs 24h, BCNWs 48h and BCNWs 72h,
respectively) show three cellulose I characteristic peaks at 26 = 14.7°, 16.4°, and
22.5° (corresponding to 101, 10 1 and 002 crystal planes, respectively) (Lu & Hsieh,
2010). After short acid hydrolysis time of 24 hours, the peaks of BCNWs 24h
diffraction patterns are sharper than that of the native BC because some of the

amorphous regions which are more accessible than crystalline regions have been
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removed from the BC structure. As time passes to 48 hours the peaks of BCNWs 48h

become sharper than BCNWs 24h.

Intensity

——BCNWs 72h
= = « -BCNWs 48h
-«-=- BCNWs 24h

Native BC

Z5 30 35 40 45
Angle (20)

Figure 4 - 9 X-ray diffraction patterns of the native bacterial cellulose (BC) and the
obtained nanowhiskers (BCNWs) after acid hydrolysis time of 24, 48 and 72 hours

(BCNWs 24h, BCNWs 48h and BCNWs 72h, respectively).

This indicates that 24 hours are not long enough for the acid to extract

crystalline domains on BC structure. As time passes to 72 hours the peaks of BCNWs

72h tend to decline. With long hydrolysis times, amorphous regions have been largely

eliminated then the acid attacked further into the crystalline regions. From the results

of this study, therefore, the acid hydrolysis time of 48 hours was chosen for the

preparation of BCN'Ws to use as a reinforcement in the next part.

The morphology of the BC and BCNWs was studied by TEM. BC

morphology showed continuous networks (Figure 4 - 10a). After acid treatment,

morphology of BCNWs showed rod-like shapes as shown in Figure 4 - 10b.

Diameters and lengths of BCNWs 48h were estimated from several measurements on
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TEM micrographs. The averaged diameter and length of the BCNWs 48h were

approximately 28.18+1.99 nm and 637.61+147.10 nm, respectively.

Figure 4 - 10 Transmission electron micrographs of (a) the native BC and (b) bacterial
cellulose nanowhiskers after acid hydrolysis with 50% w/v sulfuric acid for 48 hours

(BCN'Ws 48h).
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Figure 4 - 11 TGA curves of the native BC, BCNWs after acid hydrolysis time of 48
hours (BCNWs pH1) and BCNWs 48 hours with pH adjusted to 3, 5 and 7 (BCNWs
pH3, BCNWs pHS and BCNWs pH7, respectively).

Sulfuric acid introduced sulfate groups on the nanowhisker’s surfaces due
to the acid hydrolysis. The surface charges on BCNWs led to their effective
separation for reinforcing in composites, however, this decreased thermal stability of
BCNWSs. Thermogravimetric analysis was carried out to investigate the effect of
BCNWSs’ pH on their thermal stability. Figure 4 - 11 shows TGA curves of the native
BC, BCNWs obtained after 48 hours of acid hydrolysis (BCNWs pH1) and BCNWs
48h with pH adjusted to 3, 5 and 7 (BCNWs pH3, BCNWs pH5 and BCNWs pH7,
respectively).

After acid hydrolysis treatment of 48 hours thermal stability of BCNWs
pHI1 was greatly depressed. Sulfate group is a well-known decomposition catalyst of
cellulose and also facilitates that formation of char residue (Kim, Nishiyama, Wada

and Kuga, 2001). To improve thermal stability of BCNWs (Roman and Winter,
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2004), pH of BCNWs was adjusted by NaOH in order to remove the sulfated group
on surface of the BCNWs (Favier et al., 1995). After adjusting pH of BCNWs to 3, 5
and 7, thermal stability of the BCNWs was gradually increased. Table 4 - 1 shows the
peak degradation temperatures of the native BC and BCNWs with different pHs
obtained from the DTG curves. It confirmed the increase in thermal stability of
BCNWs with degree of pH adjustment.

From Figure 4 - 12, the native BC and BCNWs pH7 shows approximately
one step of their degradations. However, the degradation steps of BCNWs pH1, pH3
and pH5 are obviously divided into two steps. It was explained that the first step
corresponds to the degradation of the more accessible regions (amorphous regions),
which are highly sulfated, and the second step corresponds to the breakdown of the
crystalline fraction, which has been attacked by sulfuric acid (Julien, Chornet and

Overend, 1993; Sanz et al., 2011).

4.2.2  Effects of bacterial cellulose nanowhiskers” pH and content on
bionanocomposite films

The X-ray diffraction patterns of the corn starch granule, pure starch film
and bionanocomposite films are shown in Figure 4 - 13. The diffraction peaks of the
corn starch granular at 26 of 15°, 17°, 18° and 23° are related to its A-type crystalline
structure. The peaks of starch film diffractograms are lower than the native corn
starch because after gelatinization, crystallinity was decreased (Grande et al., 2009).
For the bionanocomposite films, during preparation, it was found that the films with
addition of BCNWs pH1 could not be obtained because all films were found to be

cracked after drying.
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Figure 4 - 12 DTG curves of the native BC, BCNWs after acid hydrolysis time of 48
hours (BCNWs pH1) and BCNWs 48 hours with pH Adjusted to 3, 5 and 7 (BCNWs
pH3, BCNWs pHS5 and BCNWs pH7, respectively).

With addition of BCNWs pH3, BCNWs pHS5 and BCNWs pH7, to the
varied contents of 1, 5, and 10 wt%, their diffraction peaks obviously showed also
three cellulose I characteristic peaks at 26 = 14.5°, 16.4°, and 22.5°, the contents of 5
and 10 wt% in particular. This indicated that the crystalline structure of the BCNWs
was well-preserved in the bionanocomposites films. With increasing BCNWs content
the magnitude of the cellulose I peaks are observed to increase.

Figure 4 - 14 shows the smooth fracture surface of the pure starch film.
For the starch/BCNWs pH3 films with increasing BCNWs content, the fracture
surface becomes rougher. From the SEM images, a good dispersion of BCNWs on
fractured surface of these bionanocomposite films was observed (Figure 4 - 15a, b

and c).
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Figure 4 - 13 X-ray diffraction patterns of the corn starch granule, pure starch
film and bionanocomposite films reinforced with BCN'Ws of pH 3, 5 and
7 (with varied contents of 1, 5 and 10 wt%).

The starch/ BCNWs pHS5 films with varied BCNWs contents of 1, 5 and
10 wt%, show rougher surface than the starch/BCNWs pH3 films. Formation of some
aggregates BCNWs was found on the films; fracture surfaces (Figure 4 - 15a, b and

c). For the starch/BCNWs pH7 films, a poor dispersion and high aggregation of
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BCNWs was observed clearly at all BCNWs contents, particularly at 10 wt% (Figure
4 - 16a, b and c). It was obvious that the higher the pH, the lower degree of BCNWs
dispersion in the bionanocomposite films was obtained. This due to the effect of
removal of the sulfate group on surface of BCNWs. The dispersion of BCNWs in the
matrix and their compatibility are important for a reinforcing capability and

consequently, improvement in the properties of composite materials (Trovatti et al.,

2012).
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Figure 4 - 14 SEM image of fracture surface of the pure starch film.

Figure 4 - 18 shows the tensile properties of the pure starch film and
bionanocomposite films reinforced with BCNWs of pH 3, 5 and 7 (with varied
contents of 1, 5 and 10 wt%). It was found that the mechanical properties of the
starch/ BCNWs pH 3 which possessed a good dispersion of BCNWs was not improved
in both strength and modulus as compared to the pure starch film (p < 0.05). This is

possibly due to a poor interaction between the BCNWs and pure starch matrix which
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is likely caused by the sulfate groups on the surface of BCNWs. On the other hand,
the modulus of the starch/ BCNWs pH 5 and starch/BCNWs pH 7 films with 5 wt%
and 10 wt% contents were shown to significantly improve as compared to the starch
film (p > 0.05). However, the strength of these films was not statistically different (p
< 0.05). For the elongation at break, there were two films, the starch/BCNWs pH 3
with 10 wt% content and starch/ BCNWs pH 7 with 10 wt% content, which exhibited
significantly lower values than that of the starch film (p» > 0.05). At high BCNWs
content, the large agglomerations and poor dispersion of BCNWs within the pure
starch matrix is likely to occur, leading to a premature failure of the materials. For
mechanical properties improvement in composite systems both dispersion and
interfacial adhesion are essential (Cao et al., 2008).

Though starch has been considered as one of the most promising materials
for biodegradable plastics owing to its natural abundance and low cost, poor
resistance to moisture absorption limits its wide applications. It is well known that
addition of fillers is an effective way of decreasing its sensitivity to moisture and thus
improving mechanical properties stability (Wan et al., 2009). Figure 4 - 19 shows the
moisture absorption of the pure starch film and bionanocomposite films during
conditioning in 75% RH as a function of time. The moisture absorption of pure starch
film at equilibrium was 22.83%. With addition of BCNWs into the pure starch film,
the moisture absorption at equilibrium was decreased as the BCNWs content

increased from 1 to 10 wt%.
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Figure 4 - 15 SEM images of fracture surfaces of bionanocomposite films with

addition of 1 wt% (a), 5 wt% (b) and 10 wt% (c) of BCN'Ws pH3.
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Figure 4 - 16 SEM images of fracture surfaces of bionanocomposite films with

addition of 1 wt% (a), 5 wt% (b) and 10 wt% (c) of BCNWs pHS.
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Figure 4 - 17 SEM images of fracture surfaces of bionanocomposite films with

addition of 1 wt% (a), 5 wt% (b) and 10 wt% (c) of BCNWs pH7.
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Figure 4 - 18 Young’s modulus (MPa) (a), tensile strength (MPa) (b) and elongation
at break% (c) of the pure starch film and bionanocomposite films reinforced with

BCNWs of pH 3, 5 and 7 (with varied contents of 1, 5 and 10 wt%).
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Figure 4 - 19 Moisture absorption (at 75% RH) as a function of storage time of the
pure starch film, and bionanocomposite films reinforced with BCNWs of pH 3, 5
and 7 (with varied contents of 1, 5 and 10 wt%).

The moisture absorption of the films of the starch/BCNWs pH3 10 wt%,
starch/BCNWs pHS 10 wt% and starch/BCNWs pH7 10 wt% were 19.22%, 20.14%
and 18.05%, respectively. This suggests that a water resistance of all composite films
greatly increased as compared to the pure starch film. The presence of BCNWs
improved water barrier properties of the pure starch film because of firstly, the higher
crystallinity of BCNWs and their low moisture absorption and secondly, hydrogen
bonding that formed at the BCNWs-matrix interfaces. The water resistance of the
starch/ BCNWs pH7 films was higher than that of the starch/ BCNWs pH3 and

starch/ BCNWs pHS films because the sulfate group on the surfaces of the BCNWs,
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pH3 and pHS resulted in poor interactions with the starch matrix. Thus, there is
possibly only poorly formed hydrogen bonding at the interfaces of these composites.
Thermogravimetric analysis (TGA) and differential thermogravimetry
(DTG) curves of bionanocomposite films are shown in Figure 4 - 20 and 4 - 21,
respectively. The peak degradation temperatures of all films are listed in Table 4 - 2.
Firstly, TGA curves shows an intitial drop about 100 - 150 °C which corresponds to a
mass loss of water and glycerol (Averous and Boquillo, 2004). With addition of
BCNWs, the thermal stability of the bionanocomposite films were significantly
improved about 20 - 30 °C as compared to the pure starch film. The peak degradation
temperatures of the bionanocomposite films systematically increase with increasing
BCNWs content from 1 to 10 wt%. Regardless to pH of the BCNWs. The
improvement in thermal stability of the bionanocomposite films with addition of
BCNWs can be possibly based on the fact that cellulose nanowhiskers have that are
inherently good thermal stability and also the intensive hydrogen bonds formed

between the starch matrix and BCNWs (Ahmad et al., 2012).
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Figure 4 - 20 TGA curves of pure starch and bionanocomposite films reinforced with

BCNWs of pH 3, 5 and 7 (with varied contents of 1, 5 and 10 wt%).
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Figure 4 - 21 DTG curves of pure starch and bionanocomposite films reinforced with

BCNWs of pH 3, 5 and 7 (with varied contents of 1, 5 and 10 wt%).



Table 4 - 2 Peak degradation temperatures of the native BC, BCNWs of pH 1, 3, 5

and 7, pure starch film and bionanocomposite films from their DTG curves.

Peak Temperature (°C)
Sample
1* Peak 2" Peak
Native BC 358 -
BCNWs 48h pH1 165 191
BCNWs 48h pH3 226 280
BCNWs 48h pH5 248 286
BCNWs 48h pH7 340 -
Pure starch films 318 -
Starch/BCNWs pH3 1% 339 -
Starch/ BCNWs pH3 5% 343 -
Starch/BCNWs pH3 10% 345 -
Starch/ BCNWs pHS 1% 340 -
Starch/ BCNWs pHS5 5% 343 -
Starch/BCNWs pH5 10% 345 -
Starch/BCNWs pH7 1% 340 -
Starch/ BCNWs pH7 5% 343 -

Starch/ BCNWs pH7 10% 347 -
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions: Part A

5.1.1 Study the effect of type of carbon source in the cultured medium of
bacterial cellulose on its structure and mechanical properties

In this present work, it was found that the type of carbon source significantly
influenced not only the production yield of bacterial cellulose (BC) but also its
structure and mechanical properties. The values of crystallinity index and crystallite
size of each BC sample (cultured in the medium of different type of carbon sources)
were evaluated by using X-ray diffraction (XRD) technique. It was found that the
higher crystallinity index of BC fibers led to the higher mechanical properties of the
dis-BC sheets. Although, the relationship between crystallite size of BC and the
mechanical properties of the dis-BC sheets cannot be clearly concluded. Lastly, it can
be summarized that except for glycerol, other carbon sources i.e. sucrose, glucose,
fructose and mannitol, used in the culture media of BC resulted in the high

mechanical properties of the prepared dis-BC sheets.

5.1.2 Investigate the effect of additional supplements in the cultured medium
of bacterial cellulose on its production yield
The addition of optimum amounts of juices in the cultured medium of BC
positively affected bacterial cellulose yield (i.e. addition of 10-30% v/v of pineapple
juice and 10-50% v/v of coconut juice). This presumably due to various carbon and
nitrogen sources, trace elements, vitamins and growth hormones which contain in the

juices increase cell activity and consequently, cellulose yield. The addition of
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pineapple juice of 30% v/v and coconut juice of 50% v/v were the optimum amounts
and cellulose productivity at approximately 2-fold increase in production yield was
obtained. At higher amounts of juice addition, the reduction in cell growth and
cellulose production was found. Here, more free sugars content from the added juices
can create saturated carbon source environment that may directly inhibit cell activity.
In conclusion, the results suggested that both supplements can effectively improve the

cellulose yield but pineapple juice is a slightly more effective one.

5.2 Conclusions: Part B

Bacterial cellulose nanowhiskers (BCNWs) were prepared by sulfuric acid
hydrolysis at 50°C. It was found that 48 hours was the optimum treatment time to
prepare BCNWs with the highest crystallinity in form of the isolated rod-like
nanocrystals with diameter and length of approximately 28.18+1.99 nm and
637.61+£147.10 nm, respectively. Then, the bionanocomposite films of starch
reinforced with BCNWs of different pHs (3, 5 and 7) at varied contents of 1, 5 and 10
wt% were prepared by casting technique. With increasing BCNWs content, the
bionanocomposites showed improvements in crystallinity, thermal stability and water
resistance. Nevertheless, mechanical properties of the starch/BCNWs pH 3 and
starch/ BCNWs pH 7 films were not improved due to the poor interaction and
presence of large BCNWs aggregation. Only in the film of starch/BCNWs pH 5, the
overall mechanical performance was improved possibly because the optimum

BCNWs dispersion and sufficient interaction were obtained in this system.
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