

ชื่อโครงการวิจัย

ฤทธิ์ต้านเนอไซด์อีลาสเตส และคอลลาเจนส์ และอนุมูลอิสระของวัสดุเหลือทิ้งจากการแปรรูปผลไม้

คณะผู้วิจัย

ผู้ช่วยศาสตราจารย์ ดร. ณัฐยา เหล่าฤทธิ์
ผู้ช่วยศาสตราจารย์ ดร. มยุรี กัลยาวัฒนกุล
ดร. ชัยศักดิ์ จันศรีนิยม
นางสาว วิวัลย์ เอกนัยน์

บทคัดย่อ

เตรียมสารสกัดผลไม้ และทำการควบคุมคุณภาพ โดยการวิเคราะห์ปริมาณฟีโนลิครวม พบว่า วิธีการสกัดที่พัฒนาขึ้น ไม่ยุ่งยากซับซ้อน และมีประสิทธิภาพในการสกัด โดยมีปริมาณสารสำคัญใกล้เคียงกับการคีกษาวิจัยที่ผ่านมา และเมื่อทำการคีกษาทิวในการยับยั้งอนุมูลอิสระของสารสกัดจากผลไม้ 3 ชนิด พบว่าสารสกัดเปลือกเมล็ดมะขามมีฤทธิ์ในการต้าน O_2^- ได้ดีกว่าสารสกัดอื่นๆ รวมถึงสารมาตรฐาน quercetin เช่นเดียวกับสารสกัดเปลือกผลลั่นจี แต่อย่างไรก็ตาม สารสกัดเปลือกผลเงาะ ซึ่งมีปริมาณฟีโนลิครวมสูงที่สุด กลับมีฤทธิ์ต้านอนุมูลอิสระ เมื่อทดสอบด้วยนีต่ากว่าสารมาตรฐาน และเมื่อนำสารสกัดไปทดสอบประสิทธิภาพในการยับยั้งเอนไซม์ที่ก่อให้เกิดการเสื่อมลายของเลนนิ耶อีลาสตินและคอลลาเจน พบว่าสารสกัดเปลือกผลลั่นจี มีฤทธิ์ที่สุด รองลงมาได้แก่สารสกัดเปลือกเมล็ดมะขาม และสารสกัดเปลือกเงาะ นอกจากนี้ฤทธิ์ต้านเนอไซด์อีลาสเตส มีความสอดคล้องกับ เอนไซม์อีลาสเตส ($r = 0.9956$) และการวิเคราะห์ปริมาณฟีโนลิครวม ยังสามารถใช้เป็นทางเลือกในการควบคุมคุณภาพสารสกัด ทั้งในด้านปริมาณสารสำคัญ และฤทธิ์ทางชีวภาพ โดยมีความสัมพันธ์กับฤทธิ์ในการยับยั้งเอนไซม์อีลาสเตส และคอลลาเจนส์ ($r = 0.7020$ และ 0.6396)

คำสำคัญ: เปลือกผลไม้/เปลือกเมล็ด/ฤทธิ์ต้านเนอไซด์อีลาสเตส/ฤทธิ์ต้านเนอไซด์คอลลาเจนส์/ฤทธิ์ต้านอนุมูลอิสระ/วัสดุเหลือทิ้งจากการแปรรูปผลไม้

Research title Anti-elastase, collagenase and free radical activities of fruits processing residues

Researchers Asst. Prof. Dr. Nattaya Lourith
Asst. Prof. Dr. Mayuree Kanlayavattanakul
Dr. Chaisak Jansriniyom
Ms. Waleewan Ekanai

Abstract

Fruits processing residues were extracted and quality controlled by means of total phenolics content. This developed extraction was claimed to be concise and efficient giving the active content consistent with the previous report. The extracts were comparatively assessed on super anion scavenging activity. Tamarind seed coat was superior over the others terminating O_2^{*-} including that of standard quercetin in similar to Litchi peel. However, the highest total phenolic content Rambutan peel extract less scavenged O_2^{*-} at the lower capacity compared with the standard. All of the extracts were evaluated on enzyme inhibitory effects against degradation of elastin and collagen fibers. Litchi peel extract was exhibited as the most potent inhibitor against both enzymes, followed by Tamarind seed coat and Rambutan peel extracts. In addition, anti-collagenase was correlated with anti-elastase activities ($r = 0.9956$). Furthermore, quantification of total phenolic content would be alternatively adopted for quality control of the extracts in terms of actives and activities due to the relations ($r_{elastase} = 0.7020$ and $r_{collagenase} = 0.6396$).

Keywords: Fruit peel/ Seed coat/ Anti-elastase/ Anti-collagenase/ Anti-free radical/ Fruits processing residue