

บทคัดย่อ

งานวิจัยนี้ได้ศึกษาการเปลี่ยนแปลงชนิด และปริมาณโพลีฟีนอลในระหว่างกระบวนการผลิตชาเขียว (ชาไม่หมัก) และชาอู่หลง (ชาถึงหมัก) ของจังหวัดเชียงราย ประเทศไทย ทำการเก็บใบชาสดพันธุ์อั้สัม และชาจีน 2 สายพันธุ์ คือ อู่หลงเบอร์ 17 และอู่หลงเบอร์ 12 นำมาเข้ากระบวนการผลิตชา ทำการเก็บตัวอย่างชาในระหว่างกระบวนการผลิต จากนั้นนำมารวะห์ปริมาณความชื้น และปริมาณโพลีฟีนอลทั้งหมด ประเมินความสามารถในการต้านอนุมูลอิสระ โดยวิธี 2,2-diphenyl-1-picrylhydrazyl (DPPH) วิเคราะห์ปริมาณคาเฟอีน และคาเทชินแต่ละชนิด ได้แก่ (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), (-)-epicatechin (EC), (-)-allocatechin (GC), (+)-catechin (C), (-)-allocatechin gallate (GCG) และ (-)-catechin gallate (CG) โดยโคมไฟอุ่นร้อนระดับสูง จากการศึกษาพบว่าขั้นตอนการอบแห้ง และการคั่วชาทำให้ปริมาณความชื้นลดลงอย่างเห็นได้ชัดในกระบวนการผลิตชาเขียวและชาอู่หลงตามลำดับ ในกระบวนการผลิตชาเขียวและชาอู่หลงพบว่าปริมาณคาเฟอีน ความสามารถในการจับอนุมูลอิสระ DPPH และปริมาณโพลีฟีนอลทั้งหมดมีการเปลี่ยนแปลงเล็กน้อย เมื่อพิจารณาการเปลี่ยนแปลงคาเทชินในระหว่างกระบวนการผลิตพบว่า ในกระบวนการผลิตชาเขียว ขั้นตอนการผึ่งชาทำให้ปริมาณ EGC และ EGCG เพิ่มขึ้น ปริมาณคาเทชินแต่ละชนิดไม่เปลี่ยนแปลงอย่างเห็นได้ชัดในขั้นตอนการคั่วชา ในขั้นตอนอบแห้งพบว่า ปริมาณ EGCG ลดลง และปริมาณ GCG ซึ่งเป็นคู่อีพิเมอร์เพิ่มสูงขึ้น ส่วนในกระบวนการผลิตชาอู่หลงพบว่าขั้นตอนการหมักชาไม่ทำให้คาเทชินเปลี่ยนแปลงอย่างเห็นได้ชัด ขั้นตอนการคั่วชาทำให้คาเทชินชนิด EGC และ EGCG เพิ่มสูงขึ้น อย่างไรก็ตามพบว่าปริมาณคาเทชินทั้งสองลดลง ในขณะที่คู่อีพิเมอร์ (GC และ GCG) เพิ่มสูงขึ้นในขั้นตอนการนวดชา ขั้นตอนการทำแห้งไม่ทำให้คาเทชินเปลี่ยนแปลงอย่างเห็นได้ชัด การศึกษาระบบนี้แสดงให้เห็นว่าในกระบวนการผลิตชาเขียว ขั้นตอนการผึ่งชา และอบแห้งชาส่งผลต่อการเปลี่ยนแปลงชนิดและปริมาณคาเทชิน ส่วนในกระบวนการผลิตชาอู่หลง ขั้นตอนการคั่วชา และนวดชา เป็นขั้นตอนสำคัญต่อการเปลี่ยนแปลงคาเทชิน

คำสำคัญ : สารต้านอนุมูลอิสระ, ชาเขียว, ชาอู่หลง, โพลีฟีนอล, กระบวนการ

ABSTRACT

The present study focused on changes in kind and quantity of tea polyphenols during green (non-fermented) and oolong (semi-fermented) tea processing in Chiang Rai, Thailand. The fresh tea leaves of Assam tea (*Camellia sinensis* var. *assamica*) and two Chinese teas (*Camellia sinensis* var. *sinensis*) named oolong no. 17 and oolong no. 12 were harvested. Tea samples in green and oolong tea processing were collected and determined for moisture and total polyphenol content. The antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The content of caffeine and individual catechins namely: (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), (-)-epicatechin (EC), (-)-gallocatechin (GC), (+)-catechin (C), (-)-gallocatechin gallate (GCG) and (-)-catechin gallate (CG) were determined by HPLC. During manufacture, moisture content obviously decreased in the drying step for green tea and pan firing step for oolong tea. A small fluctuation was observed for caffeine content, DPPH-radical scavenging activity and total polyphenol content. In green tea processing, withering caused the increase in EGC and EGCG. The individual catechin content remained constant in pan firing step. The EGCG content decreased while there was an increase in its epimer (GCG) in the drying step. In oolong tea processing, the fermentation step did not significantly cause the change in catechin content. Pan firing caused the higher content in EGC and EGCG. However, both catechins showed substantial losses and their epimers (GC and GCG) showed significant increase in the rolling step. The drying step did not affect the content of individual catechins. The present results reveal that withering and drying steps highly affected the changes of type and quantity of catechins for green tea while pan firing and rolling steps were found to be the important steps for oolong tea.

Keywords : Antioxidant, Green tea, Oolong tea, Polyphenols, Processing