

บทคัดย่อ

เชื้อรานิสกุล *Colletotrichum* ซึ่งมีจำนวนสปีชีส์ประมาณ 50 สปีชีส์ ซึ่งจากการรายงานการค้นพบ *Colletotrichum* สปีชีส์ พบว่า โดยส่วนใหญ่เป็นเชื้อสาเหตุของโรคแอนแทรคโนส ซึ่งเชื้อราในสกุล *Colletotrichum* มีความสามารถในการแพร่ กระจาย และ ระบาด ไปยังพื้นที่ต่าง ๆ ได้อย่างกว้างขวาง โดยเฉพาะอย่างยิ่ง เป็นสาเหตุหลักในการสร้างความเสียหายทางพืชเศรษฐกิจ อาทิเช่น อัญพืช พืชผัก พืชตระกูลถั่ว ไม้ดอกไม้ประดับ และ ไม้ผล ในงานวิจัยฉบับนี้ ผู้วิจัยได้นำเสนอ การพัฒนาการศึกษาวิัฒนาการ ของเชื้อรานิสกุล *Colletotrichum* เพื่อใช้ในการจัดจำแนกในระดับสปีชีส์อย่างถูกต้องและแม่นยำ เพื่อประโยชน์ในการแก้ไขปัญหา หรือการป้องกันโรคที่เกิดจากเชื้อรานิสกุล *Colletotrichum* ยิ่งไปกว่านั้นยังนำไปถึงประโยชน์ด้าน การกักกันโรค และ การตกแต่งพื้นที่ภูมิกรรม ได้ในอนาคต โดยงานวิจัยฉบับนี้ได้ได้มีการเก็บรวบรวมตัวอย่างเพื่อใช้ในการศึกษา จากต่างสถานที่ภายในประเทศไทย ต่าง พืชอาศัย รวมไปถึงส่วนต่าง ๆ ของพืชอาศัย เพื่อนำไปสู่การศึกษาในระดับโมเลกุล ผู้วิจัยได้ใช้วิธี Polymerase chain reaction และ Sequencing analyses โดยใช้ ITS, Actin, CAL, GPDH, GS และ TUB ตั้งนั้นในรายงานฉบับนี้ได้จึงนำเสนอ 83 sequence ที่เป็นผลจากการวิเคราะห์หัสทางพันธุกรรม ITS และ 26 sequence ใน Actin นอกจากนี้ยังมี CAL, GPDH, GS และ TUB sequence อีกด้วย

Keywords: *Colletotrichum*, แอนแทรคโนส, วงศ์วานิชวิัฒนาการ, เชื้อราก็อปช์, ลักษณะสัณฐานวิทยา

ABSTRACT

The genus *Colletotrichum* (sexual state “*Glomerella*”) are important pathogens causing serious disease of plants and infected crops are subjected of import control (quarantine) and plant breeding programs. *Colletotrichum* species have a worldwide distribution and are associated with leaf spots, fruit anthracnose and when serious infections occur they are responsible for reducing economic plant yields (e.g. of cereals, vegetables, legumes, ornamental plants and fruits). They are also obligate symbionts and occur in a symptomless parts of plants as endophytes and the relationships between life modes (i.e. can the fungi switch modes) is poorly establish. Previous identification and classification was based on host association and morphological characteristics. Molecular sequence data analysis has become commonplace in classifying plant pathogenic genera like *Colletotrichum*, which have been found to comprise several species complexes. Initially ITS and morphology was used to characterize species, however, they could not resolve species well. Recent multigene phylogenetic analysis have involved actin (*act*), calmodulin (*cal*), chitin synthase (*chs1*), glyceraldehyde-3-phosphate dehydrogenase (*gapdh*) and ITS gene regions as well as morphology and pathogenicity testing so at present there are about 100 described species and this is increasing monthly. There are also four accepted species complexes and *C. gloeosporioides* is the most important. Recently multigene phylogenetic analysis confirmed that *C. gloeosporioides* is a species complex that comprises 22 morphologically similar, phylogenetically distinct species. However, ITS, beta tubulin (*tub2*), DNA lyase and the intergenic region of *apn2* and *MAT1-2-1* genes (*ApMat*) have also been used to identify new lineages and new species within this species-complex and presently, there are 28 accepted species names within the species complex. There is however, no consensus among mycologists as to which gene markers should be used to define and delimit a species within the species complex.

At the beginning of this study (October 2011) there were more 50 confirmed “molecular” species in the genus causing plant diseases often known as anthracnose with 15 species known from Thailand. In the first year we collected more than 100 fresh specimens of various disease plants and fruits from difference places in

Thailand. More than 100 strains were isolated from the fresh specimens and we initiated a survey of *Colletotrichum* species infecting fruits in Thailand and also those which are endophytes of healthy grasses. We also started to sequence these isolates and carry out morphological as well as pathogenicity studies. We identified several new species and also worked towards epitypification of other species and the first publications will appear in year two of the grant. We are also involved in developing a practical phylogeny and morphology based approach for the identification of *Colletotrichum* species, focusing on Thai species. However, since this is a global problem we have also chosen to collaborate with Brazilian, Chinese and Indian colleagues in order to bring greater depth to the research and international agreement to the findings. The latter was achieved with the formation of the International Subcommission on *Colletotrichum* taxonomy (<http://www.fungaltaxonomy.org/subcommissions>) of which our group is a founder member.

Keywords: *Colletotrichum*, Phylogeny, Plant pathogen, Taxonomy