

บทคัดย่อ

การศึกษานี้มุ่งสืบเสาะความสัมพันธ์ระหว่างสภาพอากาศและอัตราการเสียชีวิตของประชาชนในจังหวัดเชียงราย ข้อมูลสภาพอากาศน้ำมากจากสถานีอุตุนิยมวิทยาจังหวัดเชียงราย ซึ่งตั้งอยู่ ณ สถานบินนานาชาติแม่ฟ้าหลวงจังหวัดเชียงราย ตั้งแต่ปี ค.ศ. 2000 ถึง 2007 ข้อมูลอากาศประกอบด้วย อุณหภูมิต่ำสุด อุณหภูมิสูงสุด %ความชื้นสัมพัทธ์ และ ปริมาณน้ำฝน ข้อมูลการเสียชีวิตของประชาชนจังหวัดเชียงราย นำมายกจากสำนักงานสาธารณสุขจังหวัดเชียงราย ซึ่งเป็นข้อมูลในช่วงเวลาเดียวกัน ข้อมูลการเสียชีวิตของแต่ละบุคคลประกอบด้วย วันที่เสียชีวิต เพศ อายุ สาเหตุ การเสียชีวิต และรหัสสาเหตุของการเสียชีวิต ICD10. ข้อมูลทั้งสองอย่างต้องถูกนำมาจัดการด้วยการเขียนโปรแกรมเพื่อให้เป็นข้อมูลแบบรายเดือนก่อนการวิเคราะห์สถิติศาสตร์ การศึกษาได้แบ่งลักษณะการเสียชีวิตออกเป็น 9 กลุ่มตามลักษณะการเสียชีวิตได้แก่ กลุ่ม1 รวมทุกสาเหตุการเสียชีวิต กลุ่ม2 ผู้ที่เสียชีวิตที่มีอายุมากกว่า 65 กลุ่ม3 การติดเชื้อและโรคปรสิต กลุ่ม4 เนื้องอก กลุ่ม5 โรคระบบไหลเวียน กลุ่ม6 โรคระบบทางเดินหายใจ กลุ่ม7 โรคระบบอวัยวะสืบพันธุ์ กลุ่ม8 อาการ อาการแสดง ความผิดปกติที่ตรวจพบ และความผิดปกติทางห้องปฏิบัติการ กลุ่ม9, ความผิดปกติและเสียชีวิตจากสาเหตุภายนอก ในการศึกษานี้ใช้การวิเคราะห์สมการถดถอยเพื่อศึกษาความสัมพันธ์ระหว่างสองตัวแปร มีความสัมพันธ์เชิงเส้นอย่างมีนัยสำคัญระหว่าง อุณหภูมิต่ำสุด กับกลุ่ม3, และกลุ่ม8($F_{1,94}=10.8125$, $p<0.01$, $F_{1,94}=7.53673$, $p<0.01$, ตามลำดับ), อุณหภูมิสูงสุด กับกลุ่ม6, กลุ่ม7, และกลุ่ม9($F_{1,94}=5.10988$, $p<0.05$, $F_{1,94}=5.56233$, $p<0.05$, $F_{1,94}=14.5546$, $p<0.001$, ตามลำดับ), %ความชื้นสัมพัทธ์ กับกลุ่ม2, กลุ่ม5, และกลุ่ม9($F_{1,94}=9.27884$, $p<0.01$, $F_{1,94}=5.8029$, $p<0.05$, $F_{1,94}=14.5271$ $p<0.001$, ตามลำดับ). ไม่มีความสัมพันธ์เชิงเส้นอย่างมีนัยสำคัญระหว่างปริมาณน้ำฝนกับการกลุ่มใด

Abstract

This study aims to investigate weather and human mortality relationship in Chiang Rai. Weather data were received from Thai meteorological department measuring at Chiang Rai airport since Jan 2000 to December 2007. This weather data were included by minimum temperature, maximum temperature, %relative humidity (%RH) and the amount of rainfall. Mortality data were received from Chiang Rai Provincial Public Health Office at the same period. Mortality data of each individual were included by date of dead, gender, age, cause of dead and the code for cause of dead (International statistical Classification of diseases and Related Health Problems, ICD10). All weather data were transformed from original daily data to monthly data for analyzing with monthly mortality data. Nine group mortality data based on dead pattern were selected: group1, all cause of death, group2, people who died when age more than 65 years, group3, certain infectious and parasitic diseases, group4, neoplasm, group5, diseases of the circulatory system, group6, diseases of respiratory system, group7 diseases of the genitourinary system, group8, symptoms, sign and abnormal clinical and laboratory findings, not elsewhere classified, and group9, external causes of morbidity and mortality. Regression analyses were performed. There were significant linear correlation between minimum temperature and group 3 and 8 ($F_{1,94}=10.8125$, $p<0.01$, $F_{1,94}=7.53673$, $p<0.01$, respectively), maximum temperature and group 6, 7 and 9 ($F_{1,94}=5.10988$, $p<0.05$, $F_{1,94}=5.56233$, $p<0.05$, $F_{1,94}=14.5546$, $p<0.001$, respectively), %relative humidity and group 2, 5 and 9 ($F_{1,94}=9.27884$, $p<0.01$ $F_{1,94}=5.8029$, $p<0.05$, $F_{1,94}=14.5271$ $p<0.001$, respectively). There were no linear correlation between the amount of rainfall and any group.