

A global checklist of mushrooms (Basidiomycota) in biomaterials and the challenges and opportunities of mycelium-based biomaterials

Khyaju S^{1,2,3}, Hyde KD¹, Khongphinitbunjong K², Duangphet S^{2,4} and Luangharn T^{1*}

¹Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

²School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

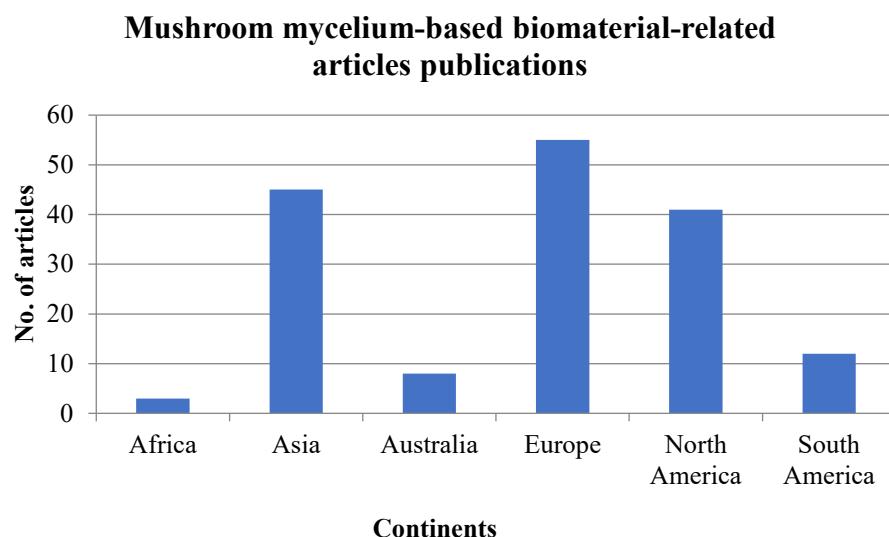
³Mushroom Research Foundation, Bandu, Chiang Rai 57100, Thailand

⁴Center of Innovative Materials for Sustainability, Mae Fah Luang University, Chiang Rai 57100, Thailand

Khyaju S, Hyde KD, Khongphinitbunjong K, Duangphet S, Luangharn T 2025 – A global checklist of mushrooms (Basidiomycota) in biomaterials and the challenges and opportunities of mycelium-based biomaterials. *Asian Journal of Mycology* 8(2), 112–142, Doi 10.5943/ajom/8/2/9

Abstract

Mushroom mycelium-based biomaterials (MMBs) are innovative, environment-friendly, biodegradable, and sustainable alternatives to plastic- and foam-based products. MMBs are popular due to their biodegradability, low carbon footprint, and alignment with the principles of the circular economy. MMBs are developed using the mycelium of suitable mushroom species and lignocellulosic substrates, derived from agricultural and forest byproducts. Research on several mushroom species is increasing, and the choice of species plays a pivotal role in determining the mechanical and overall characteristics of the end products. This review is the first compiled report of all mushroom species within Basidiomycota utilized in MMBs production. The mushroom genera used in its development have also been presented according to hyphal system type. This paper is based on all the relevant published and available articles till 2024. Additionally, it highlights key challenges in developing MMBs and explores potential solutions.


Keywords – fungal application – hyphal system – mushroom species – renewable – sustainable material

Introduction

Mushrooms are the fruiting bodies of fungi that grow above ground or on a substrate, primarily belonging to the phylum Basidiomycota. They include gilled fungi, puffballs, bracket fungi, coral fungi, jelly fungi, and crust fungi (Rathore et al. 2019). Since ancient times, mushrooms have been widely used in food, medicine, and the extraction of secondary compounds (Rathore et al. 2019). They are an important source of bioactive and medicinal compounds, such as terpenoids, polysaccharides, proteins, and vitamins, and are known for their antioxidant, antimicrobial, anticancer, antitumor, and immunomodulatory properties. Among several applications of mushrooms, mushroom mycelium-based biomaterials (MMBs) are a novel class of sustainable, eco-friendly, and biodegradable materials. As a result, research and development on MMBs is growing worldwide, with major efforts in Asia, Europe, and North America (Fig. 1).

Mycelium, the vegetative structure of filamentous fungi, acts as a unit-binding agent, connecting hyphae and substrates (Jiang et al. 2016, Abhijith et al. 2018). It grows on lignocellulosic

substrates, forming two- or three-dimensional networks (Crowther et al. 2014). The MMBs offer numerous benefits, such as energy-efficient production, cost-effectiveness, complete biodegradability, potential for carbon dioxide sequestration, sustainable sourcing, lightweight nature, low density, high strength, and non-toxic properties (Jiang et al. 2017, Abhijith et al. 2018, Islam et al. 2018, Fairus et al. 2022). These features make MMBs an excellent eco-friendly alternative to conventional materials, supporting sustainability, effective biodegradability, and environmental protection (Abhijith et al. 2018, Hyde et al. 2024a).

Fig. 1 – Mushroom mycelium-based biomaterials-related articles published up to 2024 from different continents. The data is based on findings on online platforms (Google Scholar, PubMed, ScienceDirect, Wiley Online Library, Semantic Scholar) and using keywords, such as mycelium-based biomaterial, mycelium-based composite, mycelium-based leather, and pure mycelium materials.

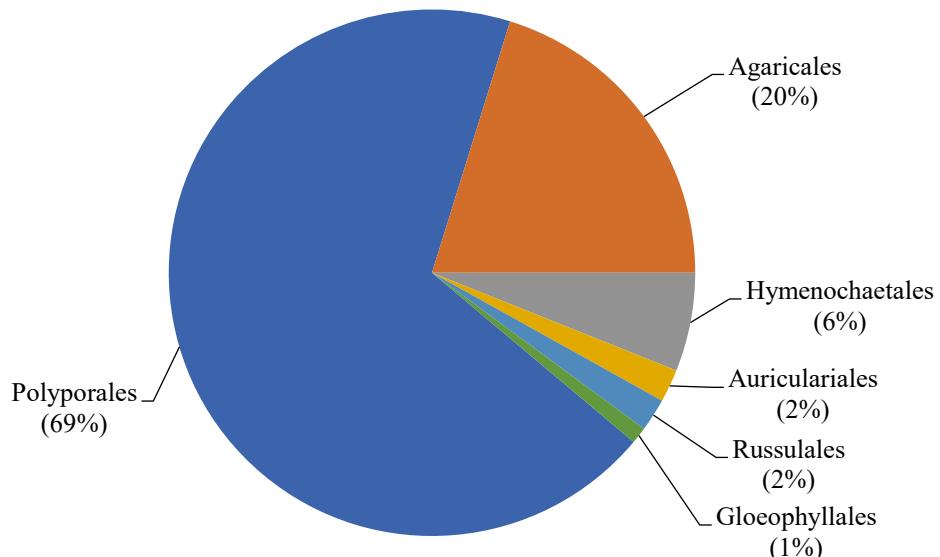
A key factor in selecting mushroom candidates for MMBs preparation is the distinctive hyphal properties (Manan et al. 2021, Aidiang et al. 2022b, Porter et al. 2023). Mushrooms are categorized into monomitic, dimitic, or trimitic hyphal systems based on the presence and composition of generative, skeletal, and ligative or binding hyphae (Jones et al. 2020). They differ in cell wall thickness, internal structure, and branching patterns (Jones et al. 2020). For robust mycelial growth with enhanced mechanical strength, mushrooms with a trimitic hyphal system are preferred over monomitic or dimitic systems (Butu et al. 2020, Manan et al. 2021, Aidiang et al. 2022b, Porter et al. 2023).

The MMBs have several applications, including packaging, construction, thermal and acoustic insulation, architectural design, and textiles (Joshi et al. 2020, Khyaju & Luangharn 2024). These sustainable innovations have attracted people and companies and hold the potential to be incorporated into human daily life (Elsacker et al. 2020). The use of mycelium has expanded from an experimental laboratory to large-scale commercial applications, including companies such as Ecovative Design, Mycoworks, and Mogu, which are producing MMBs (Attias et al. 2019, Dessi-Olive 2022). Additionally, the increasing number of patent applications and approvals signifies the industrial significance of MMBs.

Basidiomycota constitutes four subphyla, 20 classes, 77 orders, 297 families, 2,134 genera, and approximately 41,270 recognized species worldwide (He et al. 2019, 2024, Hyde et al. 2024b). Hibbett (2007) estimated that there were 37,717 Agaricomycetes species. However, only a countable number of mushroom species, such as *Ganoderma*, *Lentinus*, *Pleurotus*, and *Trametes*, have been studied for MMB production, leaving many species unexplored (Fig. 2) Research on mushroom species to develop MMBs with superior material properties is increasing worldwide. Recently,

genetically modified mushroom species (GMO) have broadened the technological capabilities in biomaterial development (Madusanka et al. 2024). The most popular genome editing technique, CRISPR/Cas9, has been successfully applied to several mushroom species, including *Agaricus bisporus*, *Ganoderma lucidum*, *Lentinula edodes*, and *Schizophyllum commune* (Jan Vonk et al. 2019, Song et al. 2019, Liu et al. 2020, Choi et al. 2023, Kamiya et al. 2023). Genetic modification by incorporation of a *Saccharomyces cerevisiae* CDA1 chitin deacetylase-encoding gene controlled by glyceraldehyde-3-phosphate dehydrogenase promoter in a *Ganoderma* sp. showed higher β -glucan content (Madusanka et al. 2024). In *Schizophyllum commune*, deletion of the hydrophobin gene sc3 increased the density of pure mycelium, resulting in enhanced mechanical properties compared to its wild-type strain (Appels et al. 2018). However, the knowledge required to utilise the rest of the taxa for MMBs remains underexplored.

Fig. 2 – Mushroom genera (representative) commonly used in mushroom mycelium-based biomaterial development. a *Ganoderma williamsianum*. b *Lentinus squarrosulus*. c *Pleurotus ostreatus*. d *Trametes hirsuta*.


The fragmented information on the research and findings on mushroom species used in MMBs needs to be compiled. The polyphasic approach to identify mushroom species, combining morphology and phylogeny, is crucial before application in MMBs. The undisclosed name of the mushroom species used in MMBs cannot be overlooked and needs to be categorized for consistency and reliability. In addition, pointing out the key limitations and a way out for MMBs research was lacking. These identified knowledge gaps can provide a basis for comprehensive research. In this study, information on mushroom species utilized in MMBs from all available published works up to 2024 has been documented, providing a centralized reference for the field. The details on the hyphal system type, substrates used, and the end products have provided insights into the current scenario and future scope. Besides the critical investigation on the reported limitations or challenges in this sector, this study has provided rational ways to strengthen the research, their development, and commercial production.

Mushroom species in mycelium-based biomaterials

Mushroom mycelium expands through the growth of hyphal apical tips, eventually forming dense mycelial colonies (Islam et al. 2018). These colonies are composed of hyphae, which are fibrous, thread-like structures made of natural polymers such as chitin, beta-glucans, and proteins that provide structural integrity, durability, and functionality (Ruiz-Herrena 1991, Islam et al. 2017). The outer surface of hyphae is rich in beta-glucans, which act as mucilage, along with chitin microfibrils that provide mechanical rigidity and strength (Ruiz-Herrena 1991). Mycelium colonies interconnect randomly through anastomosis, creating a network of hyphae. Saproic mushrooms use their mycelium networks to degrade lignocellulosic residues into simpler forms of nutrients and bind the substrates together through complex biochemical processes. The mycelium penetrates the substrates via physical pressure and enzymatic secretion, allowing it to access essential nutrients (Rathore et al. 2019).

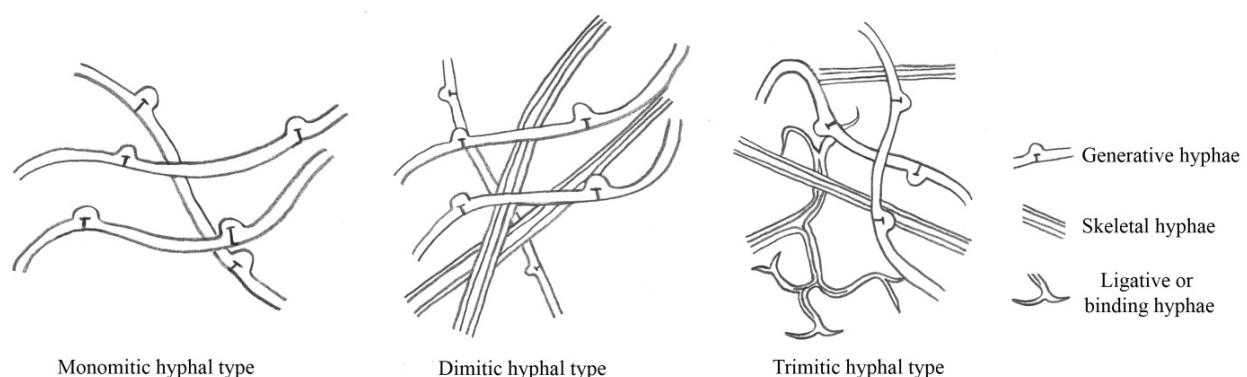
The development of MMBs has been explored using a limited number of mushroom species, primarily from the orders *Polyporales* (67 species) and *Agaricales* (20 species), and a few from the orders *Hymenochaetales* (6 species), *Auriculariales* (2 species), *Russulales* (2 species), and *Gleophyllales* (1 species) (Fig. 3, Table 1, 3). The differences between the fungal species described and those used in MMBs underscore the need for a more systematic study to explore their immense potential. All the described fungal species might not be suitable for superior-quality MMBs development. To provide a systematic direction for MMBs research, selection criteria for fungal species are crucial. Research on MMBs ranges from preliminary characterization studies to applications in certain sectors such as packaging, construction, architectural designs, and textiles. Based on extensive studies, some scholars have proposed a set of key criteria for selecting fungal species suitable for MMBs production (Sydor et al. 2022, Aidiang et al. 2024). The criteria for selecting suitable fungal candidates can be summarized as follows: vigorous hyphal growth, trimitic or dimitic hyphal systems, classification as white-rot fungi, adaptability to a wide range of substrates and growth conditions, non-sporulating behaviour, saprobic lifestyle, antimicrobial properties, and non-toxicity and non-allergenic.

Mushroom species used in biomaterials

Fig. 3 – Mushroom species belonging to different orders commonly used in the mycelium-based biomaterials applications.

Table 1 Overview of mushroom species examined in experimental studies for mycelium-based biomaterials (MMBs).

Order	Family	Genus	Species
Agaricales	Agaricaceae	<i>Agaricus</i>	<i>A. bisporus</i> , <i>A. bitorquis</i>
	Lyophyllaceae	<i>Hypsizygus</i>	<i>H. ulmarius</i>
	Omphalotaceae	<i>Lentinula</i>	<i>L. edodes</i>
	Physalacriaceae	<i>Flammulina</i>	<i>F. velutipes</i>
		<i>Oudemansiella</i>	<i>O. radicata</i>
	Pleurotaceae	<i>Pleurotus</i>	<i>P. albidus</i> , <i>P. citrinopileatus</i> , <i>P. cornucopiae</i> , <i>P. djamor</i> , <i>P. eryngii</i> , <i>P. ostreatus</i> , <i>P. pulmonarius</i> , <i>P. salmoneostramineus</i>
	Pluteaceae	<i>Volvariella</i>	<i>V. volvacea</i>
	Psathyrellaceae	<i>Coprinopsis</i>	<i>C. cinerea</i>
	Schizophyllaceae	<i>Schizophyllum</i>	<i>S. commune</i>
	Strophariaceae	<i>Kuehneromyces</i>	<i>K. mutabilis</i>
		<i>Stropharia</i>	<i>S. rugosoannulata</i>
	Tubariaceae	<i>Cyclocybe</i>	<i>C. aegerita</i>
Auriculariales	Auriculariaceae	<i>Auricularia</i>	<i>A. auricula-judae</i> , <i>A. polytricha</i>
	Gloeophyllales	<i>Gloeophyllum</i>	<i>G. sepiarium</i>
	Hymenochaetales	<i>Fomitiporia</i>	<i>F. mediterranea</i>
Polyporales		<i>Inonotus</i>	<i>I. obliquus</i>
		<i>Nothophellinus</i>	<i>N. andinopatagonicus</i>
		<i>Phellinus</i>	<i>P. igniarius</i>
	Incertae sedis	<i>Trichaptum</i>	<i>T. abietinum</i>
	Oxyporaceae	<i>Oxysporus</i>	<i>O. latermarginatus</i>
	Cerrenaceae	<i>Cerrena</i>	<i>C. zonata</i>
	Dacryobolaceae	<i>Postia</i>	<i>P. balsamea</i>
	Fomitopsidaceae	<i>Fomitopsis</i>	<i>F. iberica</i> , <i>F. pinicola</i> , <i>F. rossea</i>
		<i>Piptoporus</i>	<i>P. betulinus</i>
		<i>Wolfiporia</i>	<i>W. extensa</i>
	Grifolaceae	<i>Grifola</i>	<i>G. frondosa</i>
	Incertae sedis	<i>Aegerita</i>	<i>A. agrocibe</i>
		<i>Ryvardenia</i>	<i>R. cretacea</i>
	Irpicaceae	<i>Ceriporia</i>	<i>C. lacerata</i>
		<i>Irpex</i>	<i>I. lacteus</i>
	Laetiporaceae	<i>Laetiporus</i>	<i>L. sulphureus</i>
		<i>Phaeolus</i>	<i>P. schweinitzii</i>
	Meruliaceae	<i>Aurantiporus</i>	<i>Aurantiporus</i> sp.
		<i>Irpiciporus</i>	<i>I. pachyodon</i>
	Panaceae	<i>Panus</i>	<i>P. conchatus</i>
	Phanerochaetaceae	<i>Bjerkandera</i>	<i>B. adusta</i>
		<i>Phanerochaete</i>	<i>P. chrysosporium</i>
		<i>Terana</i>	<i>T. caerulea</i>
	Podoscyphaceae	<i>Abortiporus</i>	<i>A. biennis</i>
	Polyporaceae	<i>Cerioporus</i>	<i>C. lacerata</i>
		<i>Coriolopsis</i>	<i>C. gallica</i> , <i>C. rigida</i> , <i>C. trogii</i>
		<i>Daedaleopsis</i>	<i>D. confragrosa</i> , <i>D. tricolor</i>
		<i>Earliella</i>	<i>E. scabrosa</i>
		<i>Fomes</i>	<i>F. formentarius</i>


Table 1 Continued.

Order	Family	Genus	Species
		<i>Fomitella</i>	<i>F. fraxinea</i>
		<i>Funalia</i>	<i>F. trogii</i>
			<i>G. applantium, G. australe, G. carnosum, G. curtisii, G. fornicatum, G. lingzhi, G. lucidum, G. mexicanum, G. resinaceum, G. sessile, G. steyaertanum, G. williamsianum</i>
		<i>Ganoderma</i>	
		<i>Hexagonia</i>	<i>Hexagonia</i> sp.
		<i>Lentinus</i>	<i>L. arcularius, L. crinitus, L. polychrous, L. sajor-caju, L. squarrosulus, L. velutinus</i>
		<i>Lenzites</i>	<i>L. betulinus</i>
		<i>Megasporoporia</i>	<i>M. minor</i>
		<i>Microporus</i>	<i>M. affinis</i>
		<i>Neofavolus</i>	<i>N. alveolaris</i>
		<i>Polyporus</i>	<i>P. arcularius, P. brumalis, P. squamosus</i>
			<i>T. coccinea, T. gibbosa, T. hirsuta, T. multicolor, T. ochracea, T. orientalis, T. pubescens, T. suaveolens, T. versicolor, T. villosa</i>
Russulales	Hericiaceae	<i>Hericium</i>	<i>H. erinaceus</i>
	Stereaceae	<i>Stereum</i>	<i>S. hirsutum</i>

Note: The taxon name is provided in the same format as the published paper.

Mushroom hyphal systems

Hyphae serve as the fundamental structural units that collectively form mycelium and basidiomata. Mycelium functions as a natural adhesive, binding substrates together and contributing to the structural integrity of mycelium-based biomaterials (MMBs). Mushrooms are classified into three hyphal systems based on their composition: monomitic, dimitic, and trimitic (Fig. 3) (Shin et al. 2025). Monomitic hyphal system consists only of generative hyphae, whereas dimitic hyphal system incorporates generative hyphae with either skeletal or ligative hyphae. In contrast, the trimitic hyphal system contains all three hyphal types, which enhance structural properties. The hyphal system type of mushrooms affects the mechanical and material properties of MMBs (Porter & Naleway 2022). Therefore, selecting suitable mushroom species is a critical factor for producing high-quality biomaterials (Aiduang et al. 2024). The classification of mushroom species used in biomaterial applications is based on their hyphal system (Table 2).

Fig. 3 – A schematic representation of hyphal system types.

Table 2 Classification of mushroom species used in the development of mycelium-based biomaterials based on hyphal system.

Mushroom hyphal systems		
Monomitic	Dimitic	Trimitic
<i>Agaricus bisporus</i>	<i>Cerioporus laceratus</i> (<i>Polyporus megasporoporus</i>)	<i>Coriolopsis gallica</i>
<i>Agaricus bitorquis</i>	<i>Cerrena zonata</i>	<i>C. rigida</i> (<i>Funalia rigida</i>)
<i>Abortiporus biennis</i>	<i>Fomitella fraxinea</i> (<i>Vanderbylia fraxinea</i>)	<i>C. trogii</i> (<i>Trametes trogii</i>)
<i>Aurantiporus</i> sp.	<i>Fomitiporia mediterranea</i>	<i>Daedaleopsis confragosa</i>
<i>Auricularia auricula-judae</i>	<i>Fomitopsis iberica</i> (<i>F. marianiae</i>)	<i>D. tricolor</i>
<i>A. polytricha</i> (<i>A. nigricans</i>)	<i>F. pinicola</i>	<i>Earliella scabrosa</i>
<i>Bjerkandera adusta</i>	<i>F. rosea</i> (<i>Rhodofomes roseus</i>)	<i>Fomes fomentarius</i>
<i>Ceriporia lacerata</i> (<i>Irpe laceratus</i>)	<i>Ganoderma mexicanum</i> (<i>Phellinus nilgheriensis</i>)	<i>Funalia trogii</i> (<i>Trametes trogii</i>)
<i>Coprinopsis cinerea</i>	<i>Grifola frondosa</i>	<i>Ganoderma applanatum</i>
<i>Cyclocybe aegerita</i>	<i>Irpe lacteus</i>	<i>G. australe</i>
<i>Flammulina velutipes</i>	<i>Irpiciporus pachyodon</i>	<i>G. carnosum</i>
<i>Hericium erinaceus</i>	<i>Laetiporus sulphureus</i>	<i>G. curtisii</i>
<i>Hypsizygus ulmarius</i>	<i>Lentinus arcularius</i>	<i>G. fornicatum</i>
<i>Inonotus obliquus</i>	<i>L. crinitus</i>	<i>G. lingzhi</i> (<i>G. sichuanense</i>)
<i>Kuehneromyces mutabilis</i>	<i>L. polychrous</i>	<i>G. lucidum</i>
<i>Lentinula edodes</i>	<i>L. sajor-caju</i>	<i>G. resinaceum</i>
<i>Oudemansiella radicata</i> (<i>Hymenopellis colensoi</i>)	<i>L. squarrosulus</i>	<i>G. sessile</i> (<i>G. resinaceum</i>)
<i>Phanerochaete chrysosporium</i>	<i>L. velutinus</i>	<i>G. steyaertanum</i>
<i>Phaeolus schweinitzii</i>	<i>Neofavolus alveolaris</i>	<i>G. williamsianum</i>
<i>Pleurotus albidus</i>	<i>Oxyporus latemarginatus</i> (<i>Irpe latemarginatus</i>)	<i>Hexagonia</i> sp.
<i>P. citrinopileatus</i>	<i>Panus conchatus</i>	<i>Lenzites betulinus</i>
<i>P. cornucopiae</i>	<i>Phellinus igniarius</i>	<i>Microporus affinis</i>
<i>P. djamor</i>	<i>Piptoporus betulinus</i> (<i>Fomitopsis betulina</i>)	<i>Stropharia rugosoannulata</i>
<i>P. eryngii</i>	<i>Polyporus arcularius</i> (<i>Lentinus arcularius</i>)	<i>Trametes coccinea</i>
<i>P. ostreatus</i>	<i>P. brumalis</i> (<i>L. brumalis</i>)	<i>T. gibbosa</i>
<i>P. pulmonarius</i>	<i>P. squamosus</i> (<i>Cerioporus squamosus</i>)	<i>T. hirsuta</i>
<i>P. salmoneostramineus</i> (<i>P. djamor</i>)		<i>T. multicolor</i> (<i>T. ochracea</i>)
<i>Postia balsamea</i>	Di-trimitic	<i>T. ochracea</i>
<i>Ryvardenia cretacea</i>	<i>Gloeophyllum sepiarium</i>	<i>T. orientalis</i>
<i>Schizophyllum commune</i>	<i>Megasporoporia minor</i>	<i>T. pubescens</i>
<i>Terana caerulea</i>	<i>Nothophellinus andinopatagonicus</i>	<i>T. suaveolens</i>
<i>Volvariella volvacea</i>	<i>Trichaptum abietinum</i>	<i>T. versicolor</i>
<i>Wolfiporia extensa</i>		<i>T. villosa</i>
	Psuedodimitic	
	<i>Stereum hirsutum</i>	

Note: The taxon name in parentheses indicates the current name according to Index Fungorum (accessed on 29.03.2025).

Table 3: Basidiomycetes mushroom species, primary substrates, and intended applications of mycelium-based biomaterials (MMBs).

Mushroom species	Main substrates	Intended application	Country	References
<i>Abortiporus biennis, Bjerkandera adusta, Coriolopsis gallica, C. trogii, Daedaleopsis confragosa, D. tricolor, Fomes fomentarius, Fomitiporia mediterranea, Fomitopsis iberica, F. pinicola, Ganoderma carnosum, G. lucidum, Irpex lacteus, Irpiciporus pachyodon, Lenzites betulinus, Neofavolus alveolaris, Stereum hirsutum, Terana caerulea, Trametes hirsuta, T. suaveolens</i>	Malt Extract Agar (MEA), millet slurry	Leather	Italy	Cartabia et al. (2021)
<i>Abortiporus biennis, Bjerkandera adusta, Daedaleopsis tricolor, Fomes fomentarius, Irpex lacteus, Lentinus arcularius, Pleurotus ostreatus, Trametes versicolor</i>	Wheat bran, minced wheat straws, coconut husk fibres, broadleaves sawdust	Packaging	Romania	Balaes et al. (2023)
<i>Agaricus bisporus, Flammulina velutipes, Ganoderma lucidum, Kuehneromyces mutabilis, Lentinula edodes, Pleurotus ostreatus, P. ostreatus sajor-caju, P. ostreatus florida</i>	Oak husk, rapeseed cake	Biocomposites	Finland	Tacer-Caba et al. (2020)
<i>Agaricus bisporus, A. bitorquis</i>	Wheat straw	Building insulation materials	Chile	Velasco et al. (2014)
<i>Agaricus bisporus, Fomes fomentarius, Ganoderma applanatum, Trametes versicolor</i>	Bleached softwood kraft fibers, hemp fibers	Mycocel biopolymers	Latvia	Irbe et al. (2021)
<i>Agaricus bisporus, Hericium erinaceus (spent mushroom)</i>	Birch sawdust	Packaging materials	Austria	Zhao et al. (2024)
<i>Agaricus bisporus, Trametes versicolor</i>	Sugarcane molasses	Industrial applications (paper, coatings)	Australia	Jones et al. (2019a)
<i>Aurantiporus sp., Ganoderma curtisii, G. mexicanum, Lentinus crinitus, Panus conchatus, Pleurotus ostreatus</i>	Potato Dextrose Agar (PDA)	Mycelium films	Mexico	César et al. (2021a)
<i>Auricularia auricula-judae, Lentinus polychrous, L. squarrosulus, Pleurotus ostreatus</i>	Rice husks, coconut husks, rice straw	Biocomposites	Thailand	Ly & Jitjak (2022)
<i>Auricularia auricula-judae, Pleurotus ostreatus, P. sajor-caju, Schizophyllum commune</i>	Water hyacinth, rice bran	Biocomposites	Thailand	Sakunwongwiriya et al. (2024)
<i>Auricularia polytricha, Ganoderma lucidum, Pleurotus ostreatus</i>	Rubber tree sawdust, diaper core, food waste (coffee, banana, skin, eggshell, sugarcane)	Bio-boards	China	Khoo et al. (2020)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>Auricularia polytricha, Ganoderma lucidum, Pleurotus ostreatus</i>	Potato Dextrose Broth (PDB)	Mycelium mats	China	Shao et al. (2024)
<i>Bjerkandera adusta, Elvingia applanata, Fomitella fraxinea, Fomitopsis pinicola, F. rosea, Ganoderma applanatum, G. lucidum, Microporus affinis, Postia balsamea, Trametes versicolor, T. suaveolens, Wolfiporia extensa</i>	Oak sawdust, rice bran	Leather	South Korea	Raman et al. (2022)
<i>Ceriporia lacerata</i>	Soybean straw	Insulation materials	China	Shao et al. (2016)
<i>Cerrena sp., Ganoderma sp., Pycnoporus sp.</i>	White wood sawdust, coffee waste, coffee grounds, wheat bran	Biocomposites	Brazil	de Oliveira et al. (2022)
<i>Coprinopsis cinerea, Pleurotus djamor</i>	PDA	Biocomposites	China	Chang et al. (2019)
<i>Coriolopsis rigida, Pycnoporus sanguineus, Trametes villosa</i>	Sawdust of eucalyptus, pine	Biocomposites	Brazil	Catto et al. (2014)
<i>Coriolus brevis, C. hirsuta, C. versicolor, Fomitella fraxinea, Ganoderma lucidum, Polyporus arcularius, P. squamosus, Pycnoporus coccineus, T. fuciformis, Trametes gibbosa, T. orientalis</i>	Sawdust, PDB	Mycelium mats	South Korea	Bae et al. (2021)
<i>Coriolus versicolor, Pleurotus ostreatus</i>	Wood chips, hemp hurd, loose hemp fiber, non-woven hemp mats	Biofoams	Netherlands	Lelivelt et al. (2015)
<i>Coriolus versicolor, P. ostreatus</i>	Hemp herds, woodchips	Insulation materials	Germany	Reibert et al. (2022)
<i>Cyclocybe aegerita, Pleurotus ostreatus, P. pulmonarius, P. salmoneo-stramineus</i>	Woodchips substrates of Eucalyptus, Oak, Pine, Apple, Vine	Design and architecture	Israel	Attias et al. (2017)
<i>Daedaleopsis confragosa, Ganoderma resinaceum, Trametes versicolor</i>	Corn stover, kenaf pith, hemp pith	Biocomposites	USA	Bajwa et al. (2017)
<i>Daedaleopsis tricolor, Fomes fomentarius, Stereum hirsutum, Trametes versicolor</i>	Hemp shives	Biocomposites	Belgium	Verhelst et al. (2024)
<i>Earliella sp., Hexagonia sp., Lentinus sp., Pleurotus sp., Pycnoporus sp.</i>	Rubber sawdust, rice straw	Biocomposites	Thailand	Aiduang et al. (2022c)
<i>Flammulina velutipes, Ganoderma applanatum, G. lucidum, Hericium erinaceus, Lentinula edodes, Pleurotus eryngii, Trametes hirsuta</i>	Malt agar, cellulose microcrystals, cellulose microfibrills	Mycelium mats	Russia	Rakitina et al. (2022)
<i>Flammulina velutipes, Lentinula edodes, Lentinus polychrous, Pleurotus ostreatus</i>	Coconut husk, rice husk	Biocomposites	Thailand	Ly & Jitjak (2020)
<i>Fomes fomentarius</i>	Hemp shives, rapeseed straw	Biocomposites	Germany	Pohl et al. (2022)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>F. fomentarius</i>	Hemp shives	Insulation materials	Germany	Schmidt et al. (2023)
<i>F. fomentarius</i>	Hemp shives, rapeseed straw, poplar wood chips	Construction materials	Germany	Stelzer et al. (2021)
<i>Fomes fomentarius, Fomitopsis pinicola, Ganoderma lucidum, Irpex lacteus, Pleurotus ostreatus, Schizophyllum commune, Trametes versicolor</i>	Cellulose from softwood kraft pulp	Cellulose fibre foams	USA	Amstislavski et al. (2024)
<i>Fomes fomentarius, Fomitopsis pinicola, Pleurotus eryngii, Trametes versicolor</i>	Malt Extract Broth (MEB), woven fabric	Mycelium mats	Germany	Kniep et al. (2024)
<i>Fomes fomentarius, Ganoderma lucidum, Pycnoporus sanguineus, Trametes hirsuta</i>	Beech sawdust, spruce sawdust	Construction materials	Germany	Saez et al. (2021)
<i>Fomes fomentarius, Pleurotus ostreatus</i>	Wood chips from trees of beech, European oak, and pear	Construction materials	Germany	Moser et al. (2017)
<i>Fomitopsis pinicola, Ganoderma carnosum, Pleurotus eryngii, P. ostreatus, Trametes versicolor</i>	Wheat straw, pine sawdust, oak shavings, tree of heaven wood chips, shredded beech wood	Insulation	Italy	Charpentier-Alfaro et al. (2023)
<i>Fomitopsis pinicola, Gloeophyllum sepiarium, Laetiporus sulphureus, Phaeolus schweinitzii, Piptoporus betulinus, Pleurotus ostreatus, Polyporus arcularius, Trametes pubescens, T. suaveolens, Trichaptum abietinum</i>	Sawdust and shavings of birch, aspen, spruce, pine, fir	Insulation materials	Canada	Wimmers et al. (2019)
<i>Funalia trogii, Ganoderma australe, Nothophellinus andinopatagonicus, Pleurotus ostreatus, Ryvardenia cretacea</i>	Poplar sawdust	Biocomposites	Argentina	Aquino et al. (2022)
<i>Ganoderma australe, Pleurotus ostreatus, Trametes versicolor</i>	Molasses	Mycelium mats	Australia	Chulikavit et al. (2022)
<i>Ganoderma curtisii</i>	Guayule bagasse, Rubber tree	Insulation	Mexico	César et al. (2023)
<i>Ganoderma fornicatum, G. williamsianum, Lentinus sajor-caju, Schizophyllum commune</i>	sawdust, corn husks, rice straw	Biocomposites	Thailand	Aiduang et al. (2022b)
<i>Ganoderma fornicatum, G. williamsianum, Lentinus sajor-caju, Schizophyllum commune, Trametes coccinea</i>	Bamboo sawdust, corn pericarp	Interior designs	Thailand	Aiduang et al. (2024)
<i>Ganoderma lucidum</i>	Palm sugar fiber, cassava bagasse	Composite board	Indonesia	Agustina et al. (2019)
<i>G. lucidum</i>	PDB	Mycelium mats	Italy	Antinori et al. (2020)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>G. lucidum</i>	Sawdust	Pure mycelium mats	Indonesia	Bahua et al. (2024)
<i>G. lucidum</i>	Sawdust (<i>Albizia chinensis</i>), empty fruit bunch fibres	Biocomposites	Singapore	Chan et al. (2021)
<i>G. lucidum</i>	Beech wood shavings, spelt flour, plaster dust	Electronic parts	Austria	Danninger et al. (2022)
<i>G. lucidum</i>	Cellulose fibre rapeseed bagasse	Insulation materials	Netherland s	Gauvin et al. (2021)
<i>G. lucidum</i>	Wood chips, sawdust, sugarcane, and cassava fibrous waste residues	Architecture design	Germany	Heisel et al. (2017)
<i>G. lucidum</i>	Cotton stalk	Biocomposites	China	Liu et al. (2019)
<i>G. lucidum</i>	MEB	Mycelium mats	France	Mazian et al. (2023)
<i>G. lucidum</i>	Hemp fibers, hemp hurds, pine wood sawdust, and silvergrass shavings	Building materials	Germany	Özdemir et al. (2022)
<i>G. lucidum</i>	Wheat straw polypropylene with bacterial spores	Thermal Insulation	Romania	Răut et al. (2021)
<i>G. lucidum</i>	Bamboo fiber	Biocomposites	Indonesia	Ridzqo et al. (2020)
<i>G. lucidum</i>	Bamboo fiber, chitosan	Biocomposites	Singapore	Soh et al. (2020)
<i>G. lucidum</i>	Sawdust	Biocomposites	USA	Travaglini (2019)
<i>G. lucidum</i>	Rapeseed straw, cellulose fiber	Insulation materials	Netherland s	Tsao (2020)
<i>G. lucidum</i>	Sawdust	Biocomposites	China	Wang et al. (2024)
<i>Ganoderma lucidum</i> , <i>Hypsozygus ulmarius</i> , <i>Pleurotus citrinopileatus</i> , <i>P. cornucopiae</i> , <i>P. djamor</i> , <i>P. eryngii</i> , <i>P. ostreatus</i> , <i>P. pulmonarius</i> , <i>Polyporus brumalis</i> , <i>Stropharia rugosoannulata</i> , <i>Trametes versicolor</i>	MEA, MEB	Biocomposites	Australia	Jones et al. (2018c)
<i>G. lucidum</i> , <i>P. djamor</i>	Jute, cotton	Footwear products	USA	Silverman et al. (2020)
<i>G. lucidum</i> , <i>P. ostreatus</i>	Paste mixture of whole wheat flour, malt extract, xanthan gum, tartar, citric acid	Mycelium mats	USA	Crawford et al. (2024)
<i>G. lucidum</i> , <i>P. ostreatus</i>	Cellulose, PDB	Biofilms	Italy	Haneef et al. (2017)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>G. lucidum, P. ostreatus</i>	Beech sawdust, oak sawdust, bleached cellulose pulp, shredded cardboard, shredded newspaper, cotton fibers, soy silk fibers, wheat bran, wheat straw, burlap, clay, sand	Biocomposites	Austria	Vašatko et al. (2022)
<i>G. lucidum, P. ostreatus</i>	PDB	Bio-scaffolds	Italy	Antinori et al. (2021)
<i>Ganoderma lucidum, Pleurotus ostreatus, Polyporus squamosus</i>	Canola straw, Cattail, hemp	Packaging materials	Canada	Rahman (2024)
<i>Ganoderma lucidum, Trametes versicolor</i>	Spent coffee grounds, coffee chaff, hay straw, hemp dust	Biocomposites	Romania	Barta et al. (2024)
<i>G. lucidum, T. versicolor</i>	Beech sawdust, spent mushroom substrate	Insulation materials	Germany	Schritt et al. (2021)
<i>Ganoderma resinaceum</i>	Waste rose flower, lavender straw	Biocomposites	Bulgaria	Angelova et al. (2021)
<i>G. resinaceum</i>	Miscanthus	Insulation materials	Luxembourg	Dias et al. (2021)
<i>G. resinaceum, Megasporoporia minor, Oxyporus latermarginatus</i>	Wheat straw	Building insulation materials	UK	Xing et al. (2018)
<i>G. resinaceum, T. versicolor</i>	Hemp hurds, beechwood sawdust	Construction	Belgium	Elsacker et al. (2021)
<i>G. resinaceum, T. versicolor</i>	Beech wood sawdust, hemp fibres	Biocomposites	Belgium	Van Wylick et al. (2022)
<i>G. sessile, T. ochracea, T. versicolor</i>	Wood chips of Apple, Vines	Design and architecture	Israel	Attias et al. (2019)
<i>Ganoderma sp.</i>	Cotton byproducts	Packaging materials	USA	Holt et al. (2012)
<i>Ganoderma sp.</i>	Corn stover	Insulation materials	USA	Pelletier et al. (2019)
<i>Ganoderma steyaertanum</i>	Cardboard, coffee grounds	Biocomposites	Australia	Gough et al. (2024)
<i>Irpea lacteus</i>	Sawdust pulp of Alaska birch	Thermal Insulation material	USA	Yang et al. (2017)
<i>Lentinula edodes</i>	Coconut powder, wheat bran	Packaging	Brazil	Matos et al. (2019)
<i>L. edodes (spent mushroom)</i>	Sawdust (birch)	Biocomposites	Sweden	Berglund et al. (2024)
<i>L. edodes, Pleurotus eryngii</i>	Bagasse fibre	Fire retardancy	Iran	Hemmati & Garmabi (2012)
<i>L. edodes, P. ostreatus</i>	Sengon wood sawdust, bagasse	Biocomposites	Indonesia	Christos et al. (2024)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>Lentinus crinitus</i>	Barley straw	Biocomposites	Mexico	César et al. (2021b)
<i>L. sajor-caju</i>	Rubber tree sawdust, corn husk	Biocomposites	Thailand	Jinanukul et al. (2024)
<i>L. sajor-caju</i>	Corn husk, rubber sawdust, paper waste	Biocomposites	Thailand	Teeraphantuvat et al. (2024)
<i>L. velutinus, P. albidus, Pycnoporus sanguineus</i>	<i>Pinus</i> sawdust	Packaging biofoams	Brazil	Bruscato et al. (2019)
N/A	Rice husk, wheat grain	Biocomposites	Malaysia	Arifin & Yusuf (2013)
N/A	Soil	Architecture design	Germany	Colmo & Ayres (2020)
N/A	Hemp fibres	Designs	USA	Dessi-Olive (2022)
N/A	Hemp fibres	Sound absorption	USA	Hsu & Dessi-Olive (2021)
N/A	Rubber tree sawdust	Construction materials	India	Finu et al. (2023)
N/A	Clay, sugarcane colasses, rice bran, sawdust, coconut husks	Construction materials	Philippines	Maximino et al. (2020)
N/A	N/A	Building materials and designs	Denmark	Özlü & Nicholas (2021)
N/A	Switch grass, rice straw, sorghum stalks, flax shive, kenaf, hemp	Acoustic absorption panels	USA	Pelletier et al. (2013)
N/A	Cotton burs, switchgrass, rice straw, sorghum stalks, corn stalks, kenaf	Insulation materials	USA	Pelletier et al. (2017)
N/A	Cotton hulls	Building materials	India	Santhosh et al. (2018)
N/A	Low-quality cotton, hemp shives	Biocomposites	Italy	Sisti et al. (2021)
N/A	Corn stover	Biocomposites	USA	Tudry et al. (2018)
N/A	N/A	Electronic parts	USA	Vasquez & Vega (2019a)
N/A	N/A	Wearables	USA	Vasquez & Vega (2019b)
N/A	N/A	Biocomposites	USA	Islam et al. (2017)
N/A	N/A	Biocomposites	USA	Islam et al. (2018)
N/A	Jute, hemp, cellulose	Biocomposites	USA	Jiang et al. (2017)
N/A	Wood particles of spruce, pine, fir, cellulose nanofibrils	Packaging and furniture applications	USA	Sun et al. (2019)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
N/A	N/A	Pure mycelium mats	USA	Sun et al. (2021)
N/A	Cotton fiber, hemp pith	Biocomposites	USA	Ziegler et al. (2016)
<i>Oudemansiella radicata</i> , <i>P. ostreatus</i>	Cotton stalk, wheat bran	Biocomposites	China	Gou et al. (2021)
<i>Phanerochaete chrysosporium</i>	Malt extract	Biomedical use	India	Khamrai et al. (2018)
<i>P. chrysosporium</i>	PDA	Construction materials	USA	Menon et al. (2019)
<i>Phellinus igniarius</i>	Corn cob, wheat bran	Biocomposites	China	Wang et al. (2019)
<i>P. djamor</i>	Northern bleached softwood kraft fibres	Filtration, packaging, bioremediation	Canada	Ahmadi et al. (2022)
<i>P. eryngii</i>	Hardwood sawdust	Packaging	Canada	Kao et al. (2022)
<i>P. eryngii</i>	Sawdust	Shoe products	USA	Wolfe & Cao (2024)
<i>P. eryngii</i> , <i>P. ostreatus</i> , <i>Pycnoporus sanguineus</i>	Coconut powder, wheat bran	Packaging materials	Brazil	Teixeira et al. (2018)
<i>Pleurotus florida</i>	Spent mushroom, clay	Insulation materials	Egypt	Ali et al. (2023)
<i>P. ostreatus</i>	European beech sawdust	Biocomposites	Austria	Alaux et al. (2023)
<i>P. ostreatus</i>	Coffee husk, sawdust, sugarcane bagasse	Construction materials	Ethiopia	Alemu et al. (2022)
<i>P. ostreatus</i>	Hemp hurds	Biocomposites	USA	Etinosa et al. (2024)
<i>P. ostreatus</i>	Bamboo fibers	Indoor applications	Singapore	Gan et al. (2022)
<i>P. ostreatus</i>	Oakwood pellets, wheat straw	Building materials	USA	Ghazvinian & Gürsoy (2022)
<i>P. ostreatus</i>	Straw, sawdust	Architecture design	USA	Ghazvinian et al. (2019)
<i>P. ostreatus</i>	Sawdust, straw, hemp	Design, architecture	USA	Ghazvinian et al. (2022)
<i>P. ostreatus</i>	Glass wool, hemp wool	Biocomposites	Canada	Grenon et al. (2023)
<i>P. ostreatus</i>	Cotton seed hulls, carboxylated styrene butadiene rubber latex	Biocomposites	China	He et al. (2014)
<i>P. ostreatus</i>	Bagasse, sawdust, wheat bran	Packaging, insulation, furniture	India	Joshi et al. (2020)
<i>P. ostreatus</i>	Spent coffee grounds, pineapple fibres	Biocomposites	Thailand	Kohphaisansombat et al. (2023)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>P. ostreatus</i>	Hemp stalks, rice straw, lacquer tree wood chips, oak wood chips	Air filtration panels	South Korea	Lee & Choi (2021)
<i>P. ostreatus</i>	Crop residue (<i>Triticum</i> sp.), edible films (carrageenan, chitosan, xanthan gum)	Packaging	Mexico	López Nava et al. (2016)
<i>P. ostreatus</i>	Rice husks, sawdust	Biocomposites	Uganda	Mbabali et al. (2023)
<i>P. ostreatus</i>	Waste cardboard	Biocomposites	USA	Mohseni et al. (2023)
<i>P. ostreatus</i>	Sugarcane bagasse, sawdust, rice husk	Biofoams	Malaysia	Nashiruddin et al. (2022)
<i>P. ostreatus</i>	Wood chips, hemp fibres	Designs	Germany	Nguyen et al. (2022)
<i>P. ostreatus</i>	Rice straw, bagasse, coir-pith, sawdust, corn straw	Packaging materials	China	Peng et al. (2023)
<i>P. ostreatus</i>	Hemp fiber, peanut shell	Biocomposites	Argentina	Picco et al. (2024)
<i>P. ostreatus</i>	Rice husk, wheat straw, rice husk powder, wood shaving, walnut shell	Biocomposites	Turkey	Sağlam & Özgünler (2022)
<i>P. ostreatus</i>	Vegetable peel, denim textile waste, coffee grounds, synthetic textile waste	Biocomposites	Spain	Sangosanya & Pistofidou (2024)
<i>P. ostreatus</i>	Merino wool, paper cellulose, barley straw	Architecture design	UK	Scott et al. (2020)
<i>P. ostreatus</i>	Rubber wood sawdust	Biocomposites	Malaysia	Shakir et al. (2020)
<i>P. ostreatus</i>	Rubber wood sawdust	Biocomposites	Malaysia	Shakir et al. (2023)
<i>P. ostreatus</i>	Coir pith, sawdust	Packaging materials	India	Sivaprasad et al. (2021)
<i>P. ostreatus</i>	Waste cardboard, paper, newsprint	Sound absorption	USA	Walter & Gursoy (2022)
<i>P. ostreatus</i>	Spent mushroom substrate (cotton seed hulls, corncobs, crayfish shells, wheat brans	Particle boards	China	Lu et al. (2024)
<i>P. ostreatus</i>	Rye berries	Insulation materials	USA	Zhang et al. (2022)

Table 3 Continued.

Mushroom species	Main substrates	Intended application	Country	References
<i>P. ostreatus</i> (spent mushroom)	Wheat straw	Thermal insulation	Chile	Aravena et al. (2024)
<i>P. ostreatus</i> , <i>Polyporus squamosus</i> , <i>Volvariella volvacea</i>	Hemp fiber, wood chips	Biocomposites	USA	Etinosa (2019)
<i>Pleurotus ostreatus</i> , <i>Schizophyllum commune</i> , <i>Trametes versicolor</i>	Fern (<i>Azolla filiculoides</i>)	Biocomposites	Netherlands	Läkk et al. (2018)
<i>P. ostreatus</i> , <i>T. hirsuta</i>	Pine and spruce shavings	Biocomposites	Finland	Kuribayashi et al. (2022)
<i>P. ostreatus</i> , <i>T. ochracea</i>	Beech sawdust, rapeseed straw, non-woven cotton fibre	Non-foam panels	Netherlands	Appels et al. (2019)
<i>P. pulmonarius</i>	Sugarcane bagasse, textile scraps	Sound absorption	Colombia	Garcia et al. (2023)
<i>Polyporus brumalis</i> , <i>T. versicolor</i>	Wheat straw, rice hulls, sugarcane bagasse, molasses	Nanofibers	Australia	Jones et al. (2019b)
<i>Pycnoporus sanguineus</i>	Coconut powder, wheat bran	Building materials	Brazil	Santos et al. (2021)
<i>Schizophyllum commune</i>	Minimal medium	Mycelium films	Netherlands	Appels et al. 2020
<i>S. commune</i>	Minimal medium	Pure mycelium mats	Netherlands	d'Errico et al. (2024)
<i>S. commune</i> (GMO)	Agar minimal medium	Mycelium mats	Netherlands	Appels et al. (2018)
<i>T. betulina</i>	Rapeseed straw, recycled cellulose	Building materials	Netherlands	Livne et al. (2022)
<i>T. pubescens</i> , <i>T. versicolor</i>	Beechwood sawdust	Biocomposites	Germany	Nussbaumer et al. (2023)
<i>T. versicolor</i>	Hemp shives, birch sawdust	Insulation materials	Latvia	Irbe et al. (2024)
<i>T. versicolor</i>	Flax (dust, long-treated fibers, untreated fibres, waste), wheat straw dust, wheat straw, hemp fibres, pine softwood shavings	Thermal Insulation	Belgium	Elsacker et al. (2019)
<i>T. versicolor</i>	Rice hulls	Fire-resistant panels	Australia	Jones et al. (2017)
<i>T. versicolor</i>	Rice hulls, glass fines	Construction materials	Australia	Jones et al. (2018a)
<i>T. versicolor</i>	Wheat grains	Insulation materials	Australia	Jones et al. (2018b)
<i>T. versicolor</i>	Pulp and paper mill sludge	Insulation materials	Chile	Muñoz et al. (2024)
<i>T. versicolor</i>	Yellow birch wood veneers	Biocomposites	USA	Sun et al. (2022)
<i>T. versicolor</i>	Spruce wood particles	Biocomposites	Slovakia	Vidholdová et al. (2019)
<i>T. versicolor</i>	Hardwood chips, hemp shives	Construction materials	Latvia	Zimele et al. (2020)

Note: N/A = not available. The taxon name is provided in the same way as in the published paper.

Mushroom-based biomaterials

Mushroom-based biomaterials (MBs) are derived from mushroom fruiting bodies rather than culture mycelium (Bustillos et al. 2020). These materials are also biodegradable, lightweight, and renewable, requiring minimal energy for their production and leaving a minimum footprint than synthetic plastics (Abhijith et al. 2018, Müller et al. 2021, Pylkkänen et al. 2023). MBs possess the structural properties of fungal tissues while exhibiting material characteristics comparable to mycelium-based biomaterials. Their composition consists of chitin, glucans, and protein, which contribute to their mechanical strength, hydrophobicity, and thermal stability (Bustillos et al. 2020). Additionally, the intrinsic antifungal and antibacterial properties of mushrooms are exhibited in the MBs products, providing resistance to degradation caused by alien fungi and bacteria (Bustillos et al. 2020). These qualities make MBs a sustainable and efficient material and a promising candidate in biomaterial development and other fields.

In the production of mushroom-based biomaterials (MBs), the mushroom fruiting bodies are initially harvested, then dried and processed into various desired forms, such as sheets, powders, or composite materials (Porter & Naleway 2022, Pylkkänen et al. 2023). These processed forms can be combined with biopolymers or natural fibres to create advanced, high-performance products. Alternatively, mushrooms can be cultivated directly in the mould until full growth, which is then harvested, dried, and treated. These MBs have also demonstrated significant potential in various applications, including constructions, textiles (e.g., vegan leather-like materials), and medical fields (e.g., wound dressings) (Hamlyn et al. 1994, Papp et al. 2017, Bustillos et al. 2020, Muhammad Rafiq et al. 2020, Müller et al. 2021, Porter & Naleway 2022, Pylkkänen et al. 2023). However, cultivating mushrooms to produce large quantities of basidiomata requires significant resources and time. Product consistency can also be a challenge, directly affecting their quality. MBs also require additional treatments to enhance hydrophobicity and resistance to microbial degradation. Although research in this field is limited, based on published articles, some research on MBs is provided in Table 4.

Table 4 Mushroom species whose basidiomata are utilized in the preparation of biomaterials.

Fungal species	Part used	Target use	Country	References
<i>Agaricus bisporus</i>	Stipe	Wound dressing	UK	Hamlyn et al. (1994)
<i>Agaricus bisporus</i> , <i>Ganoderma lingzhi</i> , <i>Grifola frondosa</i>	Whole basidiomata	Biocomposites	USA	Porter & Naleway (2022)
<i>Fomes fomentarius</i>	Whole basidiomata	Biocomposites	Germany	Pylkkänen et al. (2023)
<i>Fomes fomentarius</i>	Whole basidiomata	Construction materials	Germany	Müller et al. (2021)
<i>Fomes fomentarius</i> , <i>Piptoporus betulinus</i>	Whole basidiomata	Ethnomycological & ethnomedicinal use	Hungary	Papp et al. (2017)
<i>Ganoderma boninense</i>	Whole basidiomata	Construction materials	Indonesia	Muhammad Rafiq et al. (2020)
<i>Phellinus ellipsoideus</i>	Whole basidiomata	Leather	USA	Bustillos et al. (2020)

Major differences between mushroom-based biomaterials (MBs) and mushroom mycelium-based biomaterials (MMBs)

The key differences between mushroom-based biomaterials (MBs) and mycelium-based biomaterials (MMBs) are outlined as follows:

Parts used: MBs use the fruiting bodies directly in the development of biomaterials, while MMBs involve mycelium cultivation in feeding substrates under sterile and controlled conditions (Bustillos et al. 2020).

Production method: MBs utilize the natural growth characteristics of fruiting bodies. In this approach, fruiting bodies are cultivated directly within moulds until the ultimate shape and size (Müller et al. 2021, Pylkkänen et al. 2023). In contrast, mycelium-based biomaterials (MMBs) allow for the vegetative growth phase of the fungus. Mycelium is allowed to fully colonize lignocellulosic substrates, after which the colonized substrates are broken down into fine particles and transferred into moulds to allow further mycelium growth, resulting in products with specific shapes and dimensions (Khyaju & Luangharn 2024).

Challenges and future directions of mycelium-based biomaterials

In the current context, the use of mushroom mycelium in materials science is a fascinating innovation, particularly for developing environmentally friendly, sustainable materials. The MMBs have gained popularity as a sustainable measure in converting agricultural and forestry by-products into cost-effective, energy-efficient, and versatile materials. Consequently, these MMBs have been successfully applied to various sectors, including construction, packaging, architectural designs, textiles, and insulation (Al-Qahtani et al. 2023, Khyaju & Luangharn 2024). Additionally, the potential growth and development of the MMB sector is reflected by the increasing number of patent acceptances (Cerimi et al. 2019). Despite recent scientific advancements that have enabled the development and application of MMBs, several challenges remain to their widespread adoption and scalability. Based on existing literature, some of the key limitations of MMBs are briefly discussed below:

Misleading science: Research on MMBs is rapidly expanding, mainly in mycology and material science, and its constraints must be addressed (Ghazvinian & Gursoy 2022). Systematic identification of the mushroom species is crucial to ensure the reproducibility and reliability of results, including the MMB field. Employing a polyphasic approach for species-level identification, along with the use of the latest legitimate names, is essential for conducting scientific research and scaling up industrial production. Additionally, the MMBs products are designed to be people-centric, in the form of packaging, indoor insulation, wearables, and electronic parts. Therefore, these products require basic attention from users, both regarding health concerns and safety. Furthermore, emerging opportunities for MMBs applications include genetic modification of mushroom strains (GMO), such as through CRISPR/Cas9-based systems, to enhance specific characteristics (Amobonye et al. 2023, Salichanh et al. 2025). However, the absence of an international standardized set of parameters for MMBs development and material testing creates challenges in understanding and comparing material properties (Aiduang et al. 2022a). Establishing international standards for MMBs fabrication and evaluation would significantly improve the consistency and scientific integrity of the field.

Limited exploration of mushroom species: In the MMBs sector, research and industrial works focus on only a few mushroom species (Table 2). However, many recognized mushroom species are underexplored and underutilized for MMBs. Besides this, the hidden box of underexplored mushrooms in nature holds a huge opportunity. With the incorporation of phylogenetic analytical tools and micro- and macro-morphological characteristics, the discovery of novel fungal species has seen a sudden rise and is expected to increase further (Jeewon & Hyde 2016). Based on the selection criteria for MMBs, medicinal, edible, and saprobic mushroom species can be screened and utilized in future experiments to develop superior-quality MMB products (Sydor et al. 2022). Diversifying the fungal species in MMBs may provide more efficient, sustainable, and economically viable solutions.

Substrate concerns: MMBs development utilizes agricultural residues and forest by-products as basic feeding substrates for mycelium, which are rich in lignin, cellulose, and hemicellulose. Excessive use of these resources for MMBs might create competition for feed in animal husbandry. However, the trend of increasing agricultural production can address the availability of these by-products (Aiduang et al. 2022a). Additionally, exploring diverse lignocellulosic substrates, such as pineapple peel, forest shrubs, banana plant fibres, and cactus fibres, could be an additional alternative for MMBs.

Contamination risks: A major challenge is contamination of MMBs by unwanted fungi or bacteria due to failure in maintaining a sterile environment. Sterilization of substrates, equipment, moulds, and the workspace requires specific protocols and implementation. Sterile conditions require efficient equipment and technical expertise. The culture must be pure, viable, and vigorous. Mushrooms are rich in antimicrobial compounds against gram-positive and gram-negative bacteria (Alves et al. 2012). In some mushroom species, the intrinsic antimicrobial properties of mycelium can help to reduce bacterial and other fungal growth in the final products (Amobonye et al. 2023). For instance, *Phellinus ellipsoideus* contains bioactive compounds that confer resistance to bacterial and fungal contamination, including protocatechuic acid, protocatechualdehyde, hispidin, hispolon, phelligradin, and inoscavin (Li et al. 2017, Amobonye et al. 2023). Selecting species with strong antimicrobial characteristics can further minimize contamination risks.

Material characteristics: MMBs currently fall short in matching the mechanical strength, flexibility, water resistance, and durability of plastic-based products (Alaneme et al. 2023). Without proper treatment, MMBs are less fire-resistant than some synthetic materials, restricting their use to semi-structural and non-structural applications (Alaneme et al. 2023). To address these limitations, several efforts have been put forward, including reinforcing MMBs with wood or metals (Almpani-Lekka et al. 2021). Additionally, treatments such as plasticizers, crosslinking agents, and post-processing help address these issues, enhancing hydrophobicity, strength, and durability (Almpani-Lekka et al. 2021, Elsacker et al. 2023). Moreover, the diversity of mushroom species offers an opportunity to overcome these challenges and improve material performance.

Scaling-up production: Producing MMBs in large quantities and maintaining their consistent properties is a major challenge (Abhijith et al. 2018). This is feasible only by expanding the laboratory setup, which means industries. MMB production requires controlled environmental conditions, including temperature, relative humidity, aeration, incubation duration, and light exposure (Aiduang et al. 2024). The output of MMBs depends on mycelium growth, which is slower than that of synthetic material. However, the establishment of several industries for MMBs production has been a benchmark for further expansion. Additionally, contamination by unwanted fungi and bacteria is another challenge, mainly in the liquid-state surface fermentation method, requiring strict safety protocols during development (Gandia et al. 2021). Research into modifying growth conditions and ensuring a sterile environment could help mitigate this problem and enhance production efficiency. For instance, Crawford et al. (2024) introduced a method for cultivating mycelium leather on a paste medium, which could accelerate growth and ease harvesting.

Economic viability: Financial investors invest their money and resources in a business, enterprise, or company, only under the conditions of getting profits over time. The total cost in a company refers to the combination of initial capital investment and operational or administrative costs. A primary raw input in MMBs production is low-cost agricultural residues and forest byproducts. However, other investments, such as land, labour, infrastructure, and equipment, also play a significant role in decision-making prior to startup. Additionally, market introduction and expansion of MMBs are still challenging due to stakeholder resistance from other companies with similar final uses, such as synthetic packaging or building products. However, the development of superior-quality products and increasing public demand for sustainable products provide strong support for the MMB industry. Scaling production and improving the quality of MMBs can address these cost-related limitations, making them more economically competitive in the market.

Regulatory and market acceptance: Animal-based leather production has a significant economic impact, accounting for a market value of EUR 48 billion and producing 558,000 tons globally (FAO 2016, European Commission 2019). However, this industry has a negative environmental impact, causing greenhouse gas emissions and chemical pollution (Silva 2021). On the other hand, MMBs production is struggling to meet the safety and performance standards for applications in construction, packaging, and leather products. In addition, shifting industry and consumer perceptions and acceptance of MMBs remains time-consuming (Abhijith et al. 2018). Despite this, the demand for MMBs is increasing, and their effectiveness, such as thermal insulating biomaterials, is being recognized for maintaining suitable indoor environments (Al-Qahtani et al.

2023). To develop high-quality MMBs, extensive studies across a wide range of mushroom species, their production methods, and post-harvest treatments are required. With the success of MBB utilization, they can expand market coverage.

Limited applications: Compared to plastic-based products or animal-based leather, the range of applications for MMBs remains relatively limited. MMBs are developed from liquid-state surface fermentation (LSSF) or solid-state fermentation (SSF). The harvested mycelium-based leather has not reached the quality of animal-based leather in terms of tensile strength, flexibility, and durability. Other parameters of MMBs, such as hydrodynamic and mechanical strength, are below the standards of the traditional and synthetic plastic-based materials. However, the MMBs have been utilized in packaging, insulation, architectural designs, and leather substitutes (Gandia et al. 2021). Additionally, MMBs have also been successful in specialized fields, such as biomedical scaffolds and electronic parts (Vasquez & Vega 2019a, Antinori et al. 2021, Danninger et al. 2022). Notably, ongoing intensive research and development in MMBs hold the potential to enhance their quality and enlarge their applications.

Conclusions

The MMBs are an innovative application of mushroom mycelium to develop environmentally friendly, biodegradable, and sustainable materials as an alternative to traditional synthetic products. The current review provides a checklist of all mushroom species used in the development of MMBs, at both the experimental and commercial scales. Based on the current trend of MMBs applications, the potential of underutilized and unexplored mushrooms could provide bright future opportunities for the MBBs sector. This study also examined the challenges faced in the MMB sector in mushroom species identification, substrate selection, their development, characterization, and marketing, and also discussed the possible opportunities for further improvements in relation to science, nature, economy, and people. The overall analysis of contemporary challenges, public awareness, research efforts, and opportunities reveals an impactful MMB industry that can drive a better future.

Acknowledgements

Sabin Khyaju would like to thank Mae Fah Luang University for providing student scholarship (reference no. GR ST-PS-65-22) and dissertation writing grant (No. 0508), and Mushroom Research Foundation, Thailand, for support. Thatsanee Luangharn would like to thank the Mae Fah Luang University Fund “Exploration and development Thai mushroom mycelium for sustainable mycelium-based material production (Grant no. 691B16034), Fundamental Fund supported by the National Science, Research and Innovation Fund “Taxonomy, phylogeny, screening of biologically active secondary metabolite and cultivation of *Ganoderma* species” (Grant no. 652A16009, 662A16005, 672A16004), and the Selecting potential mushroom strains for developing leather-sustainable materials from mushroom mycelium-based (Grant no. 682A16031). Kevin D. Hyde thanks the National Research Council of Thailand (NRCT) “Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity and biotechnology” (Grant no. N42A650547).

Accessibility of data

All data presented or analysed during this study are included within the article.

Conflicts of interest

The authors declare no conflict of interest.

References

Abhijith R, Ashok A, Rejeesh CR. 2018 – Sustainable packaging applications from mycelium to substitute polystyrene: a review. *Materials today: Proceedings* 5(1), 2139–2145.

Agustina W, Aditiawati P, Kusumah SS, Dungani R. 2019 – Physical and mechanical properties of composite boards from the mixture of palm sugar fiber and cassava bagasse using mycelium of *Ganoderma lucidum* as a biological adhesive. In IOP Conference Series: Earth and Environmental Science 374, 012012.

Ahmadi H, O'Keefe A, Bilek MA, Korehei R et al. 2022 – Investigation of properties and applications of cellulose-mycelium foam. Journal of Materials Science 57(22), 10167–10178.

Aiduang W, Chanthaluck A, Kumla J, Jatuwong K et al. 2022a – Amazing fungi for eco-friendly composite materials: A comprehensive review. Journal of Fungi 8(8), 842.

Aiduang W, Jatuwong K, Jinanukul P, Suwannarach N et al. 2024 – Sustainable Innovation: Fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers 16(4), 550.

Aiduang W, Kumla J, Srinuanpan S, Thamjaree W et al. 2022b – Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi 8(11), 1125.

Aiduang W, Suwannarach N, Kumla J, Thamjaree W, Lumyong S. 2022c – Valorization of agricultural waste to produce myco-composite materials from mushroom mycelia and their physical properties. Agriculture and Natural Resources 56, 1083–1090.

Alaneme KK, Anaele JU, Oke TM, Kareem SA et al. 2023 – Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alexandria Engineering Journal 83, 234–250.

Alaux N, Vašatko H, Maierhofer D, Saade MRM et al. 2023 – Environmental potential of fungal insulation: A prospective life cycle assessment of mycelium-based composites. The International Journal of Life Cycle Assessment 29(2), 255–272.

Alemu D, Tafesse M, Gudetta Deressa Y. 2022 – Production of mycoblock from the mycelium of the fungus *Pleurotus ostreatus* for use as sustainable construction materials. Advances in Materials Science and Engineering 2022(1), 2876643.

Ali SA, Fahmy MK, Zouli N, Abutaleb A et al. 2023 – Fabrication of thermal insulation bricks using *Pleurotus florida* spent mushroom. Materials 16(14), 4905.

Almpanti-Lekka D, Pfeiffer S, Schmidts C. 2021 – A review on architecture with fungal biomaterials: the desired and the feasible. Fungal Biology and Biotechnology 8(1), 17.

Al-Qahtani S, Koç M, Isaifan RJ. 2023 – Mycelium-based thermal insulation for domestic cooling footprint reduction: A review. Sustainability 15(17), 13217.

Alves MJ, Ferreira IC, Dias J, Teixeira V et al. 2012 – A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Medica 78(16), 1707–1718.

Amobonye A, Lalung J, Awasthi MK, Pillai S. 2023 – Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry. Sustainable Materials and Technologies e00724.

Amstislavski P, Pohler T, Valtonen A, Wikstrom L et al. 2024 – Low-density, water-repellent, and thermal insulating cellulose-mycelium foams. Cellulose 31, 8769–8785.

Angelova G, Brazkova M, Stefanova P, Blazheva D et al. 2021 – Waste rose flower and lavender straw biomass – An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated *Ganoderma resinaceum* GA1M. Journal of Fungi 7(10), 866.

Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. 2020 – Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Applied Bio Materials 3(2), 1044–1051.

Antinori ME, Contardi M, Suarato G, Armirotti A et al. 2021 – Advanced mycelium materials as potential self-growing biomedical scaffolds. Scientific Reports 11(1), 12630.

Appels FV, Dijksterhuis J, Lukasiewicz CE, Jansen KM et al. 2018 – Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Scientific Reports 8(1), 4703.

Appels FV, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HA. 2020 – Fungal mycelium classified in different material families based on glycerol treatment. *Communications Biology* 3(1), 334.

Appels FVW, Camere S, Montalti M, Karana E et al. 2019 – Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. *Materials and Design* 161, 64–71.

Aquino M, Rugolo M, Robledo G, Kuhar F. 2022 – Evaluation of mycelium composite materials produced by five Patagonian fungal species. *Maderas. Cienciay Tecnología* 35, 1–14.

Aravena M, Almonacid-Muñoz L, Rojas-Herrera C, Herrera H et al. 2024 – Evaluation of the thermal insulation potential of post-harvest blocks using the native strain of the edible mushroom *Pleurotus ostreatus*. *Buildings* 14(12), 3908.

Arifin YH, Yusuf Y. 2013 – Mycelium fibers as new resource for environmental sustainability. *Procedia Engineering* 53, 504–508.

Attias N, Danai O, Tarazi E, Grobman Y. 2017 – Developing novel applications of mycelium based bio-composite materials for architecture and design. In *Proceedings of the Final COST Action FP1303 International Scientific Conference, Proceedings of Building with Bio-Based Materials: Best Practice and Performance Specification* 76–78.

Attias N, Danai O, Tarazi E, Pereman I et al. 2019 – Implementing bio-design tools to develop mycelium-based products. *The Design Journal* 22, 1647–1657.

Bae B, Kim M, Kim S, Ro HS. 2021 – Growth Characteristics of polyporales mushrooms for the mycelial mat formation. *Mycobiology* 49(3), 280–284.

Bahua H, Wijayanti SP, Putra AS, Ariyani NR et al. 2024 – Life cycle assessment (LCA) of leather-like materials from mycelium: Indonesian case study. *The International Journal of Life Cycle Assessment* 29(10), 1916–1931.

Bajwa DS, Holt GA, Bajwa SG, Duke SE, McIntyre G. 2017 – Enhancement of termite (*Reticulitermes flavipes* L.) resistance in mycelium reinforced biofiber-composites. *Industrial Crops and Products* 107, 420–426.

Balaes T, Radu BM, Tănase C. 2023 – Mycelium-composite materials—a promising alternative to plastics?. *Journal of Fungi* 9(2), 210.

Barta DG, Simion I, Tiuc AE, Vasile O. 2024 – Mycelium-based composites as a sustainable solution for waste management and circular economy. *Materials* 17(2), 404.

Berglund L, Voltz LR, Gehrmann T, Antonopoulou et al. 2024 – The use of spent mushroom substrate as biologically pretreated wood and its fibrillation. *Journal of Environmental Management* 372, 123338.

Bruscato C, Malvessi E, Brandalise RN, Camassola M. 2019 – High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. *Journal of Cleaner Production* 234, 225–232.

Bustillos J, Loganathan A, Agrawal R, Gonzalez BA et al. 2020 – Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. *ACS Applied Bio Materials* 3(5), 3145–3156.

Butu A, Rodino S, Miu B, Butu M. 2020 – Mycelium-based materials for the ecodesign of bioeconomy. *Digest Journal of Nanomaterials and Biostructures* 15, 1129–1140.

Cartabia M, Girometta CE, Milanese C, Baiguera RM et al. 2021 – Collection and characterization of wood decay fungal strains for developing pure mycelium mats. *Journal of Fungi* 7(12), 1008.

Catto AL, Rossetto ES, Reck MA, Rossini K et al. 2014 – Growth of white rot fungi in composites produced from urban plastic waste and wood. *Macromolecular Symposia* 344, 33–38.

Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. 2019 – Fungi as source for new bio-based materials: a patent review. *Fungal Biology and Biotechnology* 6, 1–10.

César E, Canche-Escamilla G, Montoya L, Ramos A et al. 2021a – Characterization and physical properties of mycelium films obtained from wild fungi: natural materials for potential biotechnological applications. *Journal of Polymers and the Environment* 29(12), 4098–4105.

César E, Castillo-Campohermoso MA, Ledezma-Pérez AS, Villarreal-Cárdenas LA et al. 2023 – Guayule bagasse to make mycelium composites: An alternative to enhance the profitability of a sustainable guayule crop. *Biocatalysis and Agricultural Biotechnology* 47, 102602.

César E, Montoya L, Bárcenas-Pazos GM, Ordóñez-Candelaria VR, Bandala VM. 2021b – Performance of mycelium composites of *Lentinus crinitus* under two compression protocols. *Madera y Bosques* 27(2), 1–8.

Chan XY, Saeidi N, Javadian A, Hebel DE, Gupta M. 2021 – Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. *Scientific Reports* 11(1), 22112.

Chang J, Chan PL, Xie Y, Ma KL et al. 2019 – Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. *PLoS One* 14(5), e0209812.

Charpentier-Alfaro C, Benavides-Hernández J, Poggerini M, Crisci A et al. 2023 – Wood-decaying fungi: From timber degradation to sustainable insulating biomaterials production. *Materials* 16(9), 3547.

Choi YJ, Eom H, Yang SH, Nandre R et al. 2023 – Heterokaryosis, the main obstacle in the generation of PPO1-edited *Agaricus bisporus* by CRISPR/Cas9 system. *Scientia Horticulturae* 318, 112095.

Christos RE, Hartanti A, Subali D. 2024 – The potential of mycofoam as a biocomposite material with various substrate and mushroom compositions. *Jurnal Sumberdaya Hayati* 10(1), 7–14.

Chulikavit N, Huynh T, Dekiwadia C, Khatibi A et al. 2022 – Influence of growth rates, microstructural properties and biochemical composition on the thermal stability of mycelia fungi. *Scientific Reports* 12(1), 15105.

Colmo C, Ayres P. 2020 – 3D printed bio-hybrid structures: Investigating the architectural potentials of mycoremediation. In 38th eCAADe Conference (online) 2020: Anthropologic-Architecture and Fabrication in the cognitive age 573–582.

Crawford A, Miller SR, Branco S, Fletcher J, Stefanov D. 2024 – Growing mycelium leather: a paste substrate approach with post-treatments. *Research Directions: Biotechnology Design* 2, e6.

Crowther TW, Maynard DS, Crowther TR, Peccia J et al. 2014 – Untangling the fungal niche: the trait-based approach. *Frontiers in Microbiology* 5, 579.

d'Errico A, Schröpfer M, Mondschein A, Safeer AA et al. 2024 – Cross-linking impacts the physical properties of mycelium leather alternatives by targeting hydroxyl groups of polysaccharides and amino groups of proteins. *Heliyon* 10(16), e36263.

Danninger D, Pruckner R, Holzinger L, Koeppel R, Kaltenbrunner M. 2022 – MycelioTronics: Fungal mycelium skin for sustainable electronics. *Science Advances* 8(45), e7118.

de Oliveira BF, Silva NP, Oliveira MP, Mussi-Dias V, Freire MDGM. 2022 – Influence of fungus in compression mechanical behaviour of mycocomposites. *Exact Sciences & Engineering* 12 (35), 1–11.

Dessi-Olive J. 2022 – Strategies for growing large-scale mycelium structures. *Biomimetics* 7(3), 129.

Dias PP, Jayasinghe LB, Waldmann D. 2021 – Investigation of mycelium-miscanthus composites as building insulation material. *Results in Materials* 10, 100189.

Elsacker E, Søndergaard A, Van Wylick A, Peeters E, de Laet L. 2021 – Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. *Construction and Building Materials* 283, 122732.

Elsacker E, Vandeloek S, Brancart J, Peeters E, De Laet L. 2019 – Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. *PLoS One* 14(7), e0213954.

Elsacker E, Vandeloek S, Peeters E. 2023 – Recent technological innovations in mycelium materials as leather substitutes: a patent review. *Frontiers in Bioengineering and Biotechnology* 11, 1204861.

Elsacker E, Vandeloek S, Van Wylick A, Ruytinck J et al. 2020 – A comprehensive framework for the production of mycelium-based lignocellulosic composites. *Science of The Total Environment* 725, 138431.

Etinosa OP. 2019 – Design and Testing of Mycelium Biocomposite (Doctoral dissertation).

Etinosa PO, Salifu AA, Osafo S, Eluu SC et al. 2024 – Fracture and Toughening of Mycelium-based Biocomposites. *Materials & Design* 237, 112592.

European Commission. 2019 – The leather industry in the EU.

Fairus MJBM, Bahrin EK, Arbaain ENN, Ramli N. 2022 – Mycelium-based composite: A way forward for renewable material. *Journal of Sustainability Science and Management* 17, 271–280.

FAO (Food and Agriculture Organization of the United Nations). 2016 – World statistical compendium for raw hides and skins, leather and leather footwear 1999–2015.

Finu J, Manoj A, Manoj A, Robin OJ, Vaishnav CS. 2023 – Mycelium building materials-a future sustainable construction material. *International Research Journal of Innovations in Engineering and Technology* 7(7), 99.

Gan JK, Soh E, Saeidi N, Javadian A et al. 2022 – Temporal characterization of biocycles of mycelium-bound composites made from bamboo and *Pleurotus ostreatus* for indoor usage. *Scientific Reports* 12(1), 19362.

Gandia A, van den Brandhof JG, Appels FV, Jones MP. 2021 – Flexible fungal materials: shaping the future. *Trends in Biotechnology* 39(12), 1321–1331.

Garcia LM, Gomez TS, del Pilar Rivera M, Oviedo JC et al. 2023 – Sound absorption properties of mycelium based materials with textile waste: an exploratory study. *Tecniacustica Cuenca*. <https://www.sea-acustica.es/54-congreso-de-acustica-tecniacustica-2023/> (Accessed on May 20, 2025)

Gauvin F, Tsao V, Vette J, Brouwers HJH. 2021 – Physical properties and hygrothermal behavior of mycelium-based composites as foam-like wall insulation material. *Construction Technologies and Architecture* 1, 643–651.

Ghazvinian A, Farrokhsiar P, Vieira F, Pecchia J, Gursoy B. 2019 – Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. *Material Studies and Innovation* 2, 505–514.

Ghazvinian A, Gürsoy B. 2022 – Mycelium-based composite graded materials: Assessing the effects of time and substrate mixture on mechanical properties. *Biomimetics* 7(2), 48.

Ghazvinian A, Khalilbeigi A, Mottaghi E, Gürsoy B. 2022 – The design and fabrication of mycocreate 2.0: A spatial structure built with load-bearing mycelium-based composite components. *Journal of the International Association for Shell and Spatial Structures* 63(2), 85–97.

Gou L, Li S, Yin J, Li T, Liu X. 2021 – Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. *Construction and Building Materials* 304, 124656.

Gough P, Globa A, Reinhardt DIE. 2024 – 25- Mycelium-based materials for the built environment: a case study on simulation, fabrication and repurposing myco-materials. In *Sustainability and Toxicity of Building Materials Manufacture, Use and Disposal Stages*, A volume in Woodhead Publishing Series in Civil and Structural Engineering. Elsevier 547–571.

Grenon V, Maref W, Ouellet-Plamondon CM. 2023 – Multi-property characterization of an experimental material composed of *Pleurotus ostreatus* mycelium and ash wood chips compared with glass wool and hemp wool. *Construction and Building Materials* 409, 133941.

Hamlyn PF, Schmidt RJ. 1994 – Potential therapeutic application of fungal filaments in wound management. *Mycologist* 8(4), 147–152.

Haneef M, Ceseracciu L, Canale C, Bayer IS et al. 2017 – Advanced materials from fungal mycelium: fabrication and tuning of physical properties. *Scientific Reports* 7(1), 41292.

He J, Cheng CM, Su DG, Zhong MF. 2014 – Study on the mechanical properties of the latex-mycelium composite. *Applied Mechanics and Materials* 507, 415–420.

He MQ, Cao B, Liu F, Boekhout T et al. 2024 – Phylogenomics, divergence times and notes of orders in Basidiomycota. *Fungal Diversity* 126(1), 127–406.

He MQ, Zhao RL, Hyde KD, Begerow D et al. 2019 – Notes, outline and divergence times of Basidiomycota. *Fungal Diversity* 99, 105–367.

Heisel F, Schlesier K, Lee J, Rippmann M et al. 2017 – Design of a load-bearing mycelium structure through informed structural engineering. *Proceedings of the World Congress on Sustainable Technologies* 1–5.

Hemmati F, Garmabi H. 2012 – A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. *Journal of Thermoplastic Composite Materials* 26(8), 1041–1056.

Hibbett DS. 2007 – After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. *Mycological Research* 111(9), 1001–1018.

Holt GA, McIntyre G, Flagg D, Bayer E et al. 2012 – Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. *Journal of Biobased Materials and Bioenergy* 6(4), 431–439.

Hsu T, Dessi-Olive J. 2021 – A design framework for absorption and diffusion panels with sustainable materials. *Proceedings of the 2021 Inter-Noise Conference*, Washington, DC, USA.

Hyde KD, Baldrian P, Chen Y, Chethana KWT et al. 2024a – Current trends, limitations and future research in the fungi?. *Fungal Diversity* 125(1), 1–71.

Hyde KD, Saleh A, Aumentado HDR, Boekhout T et al. 2024b – Fungal numbers: global needs for a realistic assessment. *Fungal Diversity* 1–35.

Irbe I, Filipova I, Skute M, Zajakina A et al. 2021 – Characterization of novel biopolymer blend mycocel from plant cellulose and fungal fibers. *Polymers* 13(7), 1086.

Irbe I, Kirpluks M, Kampuss M, Andze L et al. 2024 – Assessing the Conformity of Mycelium Biocomposites for Ecological Insulation Solutions. *Materials* 17(24), 6111.

Islam MR, Tudry G, Bucinell R, Schadler L et al. 2018 – Stochastic continuum model for mycelium-based bio-foam. *Materials and Design* 160, 549–556.

Islam MR, Tudry G, Bucinell R, Schadler L, Picu RC. 2017 – Morphology and mechanics of fungal mycelium. *Scientific Reports* 7(1), 13070.

Jan Vonk P, Escobar N, Wösten HA, Lugones LG, Ohm RA. 2019 – High-throughput targeted gene deletion in the model mushroom *Schizophyllum commune* using pre-assembled Cas9 ribonucleoproteins. *Scientific Reports* 9(1), 7632.

Jeewon R, Hyde KD 2016 – Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. *Mycosphere* 7(11), 1669–1677.

Jiang L, Walczyk D, McIntyre G, Bucinell R et al. 2017 – Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. *Journal of Manufacturing Processes* 28(1), 50–59.

Jiang L, Walczyk D, McIntyre G, Chan WK. 2016 – Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. *Journal of Manufacturing Systems* 41, 8–20.

Jinanukul P, Kumla J, Aidiang W, Thamjaree W et al. 2024 – Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from *Lentinus sajor-caju* with Various Ratios of Corn Husk and Sawdust. *Journal of Fungi* 10(9), 634.

Jones M, Bhat T, Huynh T, Kandare E et al. 2018a – Waste-derived low-cost mycelium composite construction materials with improved fire safety. *Fire and Materials* 42(7), 816–825.

Jones M, Bhat T, Kandare E, Thomas A et al. 2018b – Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. *Scientific Reports* 8(1), 17583.

Jones M, Bhat T, Wang CH, Moinuddin K, John S. 2017 – Thermal degradation and fire reaction properties of mycelium composites. *Proceedings of the 21st international conference on composite materials*, Xi'an, China, 20–25.

Jones M, Huynh T, John S. 2018c – Inherent species characteristic influence and growth performance assessment for mycelium composite applications. *Advanced Materials Letters* 9(1), 71–80.

Jones M, Mautner A, Luenco S, Bismarck A et al. 2020 – Engineered mycelium composite construction materials from fungal biorefineries: A critical review. *Materials and Design* 187, 108397.

Jones M, Weiland K, Kujundzic M, Theiner J et al. 2019a – Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties. *Biomacromolecules* 20(9), 3513–3523.

Jones MP, Lawrie AC, Huynh TT, Morrison PD et al. 2019b – Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising *Trametes versicolor* and *Polyporus brumalis* mycelial growth. *Process Biochemistry* 80, 95–102.

Joshi K, Meher MK, Poluri KM. 2020 – Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. *ACS Applied Bio Materials* 3(4), 1884–1892.

Kamiya A, Ueshima H, Nishida S, Honda Y et al. 2023 – Development of a gene-targeting system using CRISPR/Cas9 and utilization of *pyrG* as a novel selectable marker in *Lentinula edodes*. *FEMS Microbiology Letters* 370, 1–6.

Kao JG, Singh S, Chua SK, Estin L. 2022 – Efficacy of *Pleurotus eryngii* mycelium containers as an alternative to current single-use plastic based methods. *Undergraduate Research in Natural and Clinical Science and Technology Journal* 6, 1–10.

Khamrai M, Banerjee SL, Kundu PP. 2018 – A sustainable production method of mycelium biomass using an isolated fungal strain *Phanerochaete chrysosporium* (accession no: KY593186): Its exploitation in wound healing patch formation. *Biocatalysis and Agricultural Biotechnology* 16, 548–557.

Khoo SC, Peng WX, Yang Y, Ge SB et al. 2020 – Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste. *Journal of Hazardous Materials* 400, 123296.

Khyaju S, Luangharn T. 2024 – Diverse use of mushroom mycelium-based as biomaterial products: A mini review. *Fungal Biotec* 4(1), 56–67.

Kniep J, Graupner N, Reimer JJ, Müssig J. 2024 – Mycelium-based biomimetic composite structures as a sustainable leather alternative. *Materials Today Communications*, 109100.

Kohphaisansombat C, Jongpipatporn Y, Laoratanakul P, Tantipaibulvut S et al. 2023 – Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. *Mycology* 15(4), 665–682.

Kuribayashi T, Lankinen P, Hietala S, Mikkonen KS. 2022 – Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. *Composites Part A: Applied Science and Manufacturing* 152, 106688.

Läkk H, Krijgsheld P, Montalti M, Wösten H. 2018 – Fungal based biocomposite for habitat structures on the Moon and Mars. *Proceedings of the International Astronautical Congress (IAC 2018)*, Bremen, Germany, 1–5.

Lee T, Choi J. 2021 – Mycelium-composite panels for atmospheric particulate matter adsorption. *Results in Materials* 11, 100208.

Lelivelt RJJ, Lindner G, Teuffel P, Lamers H. 2015 – The production process and compressive strength of mycelium-based materials. First International Conference on Bio-based Building Materials. 22-25 June 2015, Clermont-Ferrand, France, 1–6.

Li JX, Zan LF, Bao HY, Li DH, Ye J. 2017 – Chemical components of *Phellinus ellipsoidea* fruit bodies. *Acta Edulis Fungi* 24(3), 46–50.

Liu K, Sun B, You H, Tu JL et al. 2020 – Dual sgRNA-directed gene deletion in basidiomycete *Ganoderma lucidum* using the CRISPR/Cas9 system. *Microbial Biotechnology* 13(2), 386–396.

Liu R, Long L, Sheng Y, Xu J et al. 2019 – Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. *Industrial Crops and Products* 141, 111732.

Livne A, Wösten HA, Pearlmutter D, Gal E. 2022 – Fungal mycelium bio-composite acts as a CO₂-sink building material with low embodied energy. *ACS Sustainable Chemistry & Engineering* 10(37), 12099–12106.

López Nava JA, Méndez González J, Ruelas Chacón X, Nájera Luna JA. 2016 – Assessment of edible fungi and films bio-based material simulating expanded polystyrene. *Materials and Manufacturing Processes* 31(8), 1085–1090.

Lu ML, Yuan GH, Li CC, Hu LH et al. 2024 – Effects of spent substrate of oyster mushroom (*Pleurotus ostreatus*) on feed utilization and liver serum indices of Hu sheep from the perspective of duodenal microorganisms. *Animals* 14(23), 3416.

Ly L, Jitjak W. 2020 – Formation of 3-dimensional bio-composite from local mushroom mycelia. The 5th TICC International Conference, 26–27 November 2020, 154–170.

Ly L, Jitjak W. 2022 – Biocomposites from agricultural wastes and mycelia of a local mushroom, *Lentinus squarrosulus* (Mont.) Singer. *Open Agriculture* 7(1), 634–643.

Madusanka C, Udayanga D, Nilmini R, Rajapaksha S et al. 2024 – A review of recent advances in fungal mycelium based composites. *Discover Materials* 4(1), 13.

Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. 2021 – Synthesis and applications of fungal mycelium-based advanced functional materials. *Journal of Bioresources and Bioproducts* 6(1), 1–10.

Matos MP., Teixeira JL, Nascimento BL, Griza S et al. 2019 – Production of biocomposites from the reuse of coconut powder colonized by Shiitake mushroom. *Ciência e Agrotecnologia* 43, e003819.

Maximino COJ, Inciong E, Sendo V, Soliman C, Siggaoat A. 2020 – Using waste in producing bio-composite mycelium bricks. *Applied Sciences* 10(15), 5303.

Mazian B, M'barek HN, Almeida G, Augusto P, Perré P. 2023 – Water behavior, equilibrium, and migration of a biomaterial made of pure mycelium. *Emergent Materials* 6(6), 1889–1902.

Mbabali H, Lubwama M, Yiga VA, Were E, Kasedde H. 2023 – Development of rice husk and sawdust mycelium-based bio-composites: optimization of mechanical, physical and thermal properties. *Journal of The Institution of Engineers* 105(1), 97–117.

Menon RR, Luo J, Chen X, Zhou H et al. 2019 – Screening of fungi for potential application of self-healing concrete. *Scientific Reports* 9(1), 2075.

Mohseni A, Vieira FR, Pecchia JA, Gürsoy B. 2023 – Three-dimensional printing of living mycelium-based composites: Material compositions, workflows, and ways to mitigate contamination. *Biomimetics* 8(2), 257.

Moser F, Trautz M, Beger AL, Löwer M et al. 2017 – Fungal mycelium as a building material. *Proceedings of IASS 2017 Hamburg Symposium: Materials for Spatial Structures*, International Association for Shell and Spatial Structures (IASS), 1–7.

Muhammad Rafiq Y, Siti Rahmah S, Ahmad B. 2020 – Study of composite hardness with *Ganoderma boninense* mushroom as filler. In N. Baba Rahim (Ed.), *Multidisciplinary Research as Agent of Change for Industrial Revolution 4.0*, vol 81. European Proceedings of Social and Behavioural Sciences 723–729.

Müller C, Klemm S, Fleck C. 2021 – Bracket fungi, natural lightweight construction materials: hierarchical microstructure and compressive behavior of *Fomes fomentarius* fruit bodies. *Applied Physics A* 127(3), 178.

Muñoz H, Molina P, Urzúa-Parra IA, Vasco DA et al. 2024 – Applicability of paper and pulp industry waste for manufacturing mycelium-based materials for thermoacoustic insulation. *Sustainability* 16(18), 8034.

Nashiruddin NI, Chua KS, Mansor AF, Rahman R et al. 2022 – Effect of growth factors on the production of mycelium-based biofoam. *Clean Technologies and Environmental Policy* 24(1), 351–361.

Nguyen MT, Solueva D, Spyridonos E, Dahy H. 2022 – Mycomerge: fabrication of mycelium-based natural fiber reinforced composites on a rattan framework. *Biomimetics* 7(2), 42.

Nussbaumer M, Van Opdenbosch D, Engelhardt M, Briesen H et al. 2023 – Material characterization of pressed and unpressed wood–mycelium composites derived from two *Trametes* species. *Environmental Technology & Innovation* 30, 103063.

Özdemir E, Saeidi N, Javadian A, Rossi A et al. 2022 – Wood-veneer-reinforced mycelium composites for sustainable building components. *Biomimetics* 7(2), 39.

Özlu D, Nicholas P. 2021 – Architecture of reforestation: mycelium as a new building material and design of the fibrous woven scaffolds. *Construction, Energy, Environment and Sustainability International Conference*, Portugal (12–15 October 2021).

Papp N, Rudolf K, Bencsik T, Czégényi D. 2017 – Ethnomycological use of *Fomes fomentarius* (L.) Fr. and *Piptoporus betulinus* (Bull.) P. Karst. in Transylvania, Romania. *Genetic Resources and Crop Evolution* 64, 101–111.

Pelletier MG, Holt GA, Wanjura JD, Bayer E et al. 2013 – An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. *Industrial Crops and Products* 51, 480–485.

Pelletier MG, Holt GA, Wanjura JD, Greetham L et al. 2019 – Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. *Industrial Crops and Products* 139, 111533.

Pelletier MG, Holt GA, Wanjura JD, Lara AJ et al. 2017 – An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. *Industrial Crops and Products* 95, 342–347.

Peng L, Yi J, Yang X, Xie J, Chen C. 2023 – Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. *Journal of Bioresources and Bioproducts* 8(1), 78–89.

Picco CM, Suarez NE, Regenhardt SA. 2024 – Exploring the impact of substrate composition and process parameters on biomaterial derived from fungus mycelium (*Pleurotus ostreatus*) and agricultural wastes. *MRS Advances* 9(2), 33–38.

Pohl C, Schmidt B, Nunez Guitar T, Klemm S et al. 2022 – Establishment of the basidiomycete *Fomes fomentarius* for the production of composite materials. *Fungal Biology and Biotechnology* 9(1), 4.

Porter DL, Hotz EC, Uehling JK, Naleway SE. 2023 – A review of the material and mechanical properties of select *Ganoderma* fungi structures as a source for bioinspiration. *Journal of Materials Science* 58(8), 3401–3420.

Porter DL, Naleway SE. 2022 – Hyphal systems and their effect on the mechanical properties of fungal sporocarps. *Acta Biomaterialia* 145, 272–282.

Pylkkänen R, Werner D, Bishoyi A, Weil D et al. 2023 – The complex structure of *Fomes fomentarius* represents an architectural design for high-performance ultralightweight materials. *Science Advances* 9(8), eade5417.

Rahman S. 2024 – Exploring the feasibility of mycelium-based cups as a sustainable alternative to single-use beverage cups (Doctoral dissertation, Faculty of Graduate Studies of The University of Manitoba, University of Manitoba).

Rakitina MA, Sayfutdinova AR, Kozhevnikova EY, Voronin DV, Vinokurov VA. 2022 – Evaluation of optimal fungi strains for development of mycelium-based biopolymeric matrices. *Chemistry and Technology of Fuels and Oils* 58(6), 1005–1010.

Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. 2022 – Mycofabrication of mycelium-based leather from brown-rot fungi. *Journal of Fungi* 8(3), 317.

Rathore H, Prasad S, Kapri M, Tiwari A, Sharma S. 2019 – Medicinal importance of mushroom mycelium: Mechanisms and applications. *Journal of Functional Foods* 56, 182–193.

Răut I, Călin M, Vuluga Z, Oancea F et al. 2021 – Fungal based biopolymer composites for construction materials. *Materials* 14(11), 2906.

Reibert D, Tzanetos F, Sydow S, Bialuch I et al. 2022 – Integration of bio-based insulation materials as a contribution to the biological transformation of production technology. *Procedia CIRP* 110, 305–310.

Ridzqo IF, Susanto D, Panjaitan TH, Putra N. 2020 – Sustainable material: Development experiment of bamboo composite through biologically binding mechanism. IOP Conference Series: Materials Science and Engineering 713, 1, 012010. IOP Publishing.

Ruiz-Herrera J. 1991 – Fungal cell wall: structure, synthesis, and assembly. CRC Press.

Saez D, Grizmann D, Trautz M, Werner A. 2021 – Analyzing a fungal mycelium and chipped wood composite for use in construction. Proceedings of IASS Annual Symposia 5, 1–11.

Sağlam SS, Özgünler SA. 2022 – An experimental study on production opportunities of biocomposite by using fungal mycelium. Journal of Design for Resilience in Architecture and Planning 3(2), 237–260.

Sakunwongwiriya P, Taweeprada W, Luenram S, Chungsiriporn J, Iewkittayakorn J. 2024 – Characterization of uncoated and coated fungal mycelium-based composites from water hyacinth. Coatings 14(7), 862.

Salichanh T, Khyaju S, Luangharn T. 2025 – Short review of the potential and beneficial use of *Ganoderma* derived in medicinal, cultivation, and biomaterial applications. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 15(1), 56–76.

Sangosanya AO, Pistofidou A. 2024 – Textile and food waste biodegradation for the production of composite mycelium materials using *Pleurotus ostreatus*. Research Directions: Biotechnology Design 2, e24.

Santhosh BS, Bhavana DR, Rakesh MG. 2018 – Mycelium composites: An emerging green building material. International Research Journal of Engineering and Technology 5(6), 3066–3068.

Santos IS, Nascimento BL, Marino RH, Sussuchi EM et al. 2021 – Influence of drying heat treatments on the mechanical behavior and physico-chemical properties of mycelial biocomposite. Composites Part B: Engineering 217, 108870.

Schmidt B, Freidank-Pohl C, Zillessen J, Stelzer L et al. 2023 – Mechanical, physical and thermal properties of composite materials produced with the basidiomycete *Fomes fomentarius*. Fungal Biology and Biotechnology 10(1), 22.

Schritt H, Vidi S, Pleissner D. 2021 – Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. Journal of Cleaner Production 313, 127910.

Scott J, Kaiser R, Nerlich P. 2020 – Building couture: knitting as a strategy for bespoke bio architecture. Proceedings Resilient Materials 4 Life 2020 (RM4L2020), Maddalena R, Wright-Syed M, (RM4L Eds), pp. 85–89, Cardiff, UK.

Shakir MA, Ahmad MI, Yusup Y, Rafatullah M. 2023 – From waste to wealth: converting rubber wood sawdust into green mycelium-based composite. Biomass Conversion and Biorefinery 1–19.

Shakir MA, Azahari B, Yusup Y, Yhaya MF et al. 2020 – Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 65(2), 253–263.

Shao G, Xu D, Xu Z, Jin Y et al. 2024 – Green and sustainable biomaterials: Edible bioplastic films from mushroom mycelium. Food Hydrocolloids 146, 109289.

Shao GB, Yang P, Jiang WX. 2016 – Research and preparation of mycelium-soybean straw composite materials. 2nd Annual International Conference on Advanced Material Engineering 9–15.

Shin HJ, Ro HS, Kawauchi M, Honda Y. 2025 – Review on mushroom mycelium-based products and their production process: from upstream to downstream. Bioresources and Bioprocessing 12(1), 1–21.

Silva V. 2021 – Overview of the leather industry and pollution impact. U. Porto Journal of Engineering 7(4), 1–15.

Silverman J, Cao H, Cobb K. 2020 – Development of mushroom mycelium composites for footwear products. Clothing and Textiles Research Journal 38(2), 119–133.

Sisti L, Gioia C, Totaro G, Verstichel S et al. 2021 – Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products 170, 113742.

Sivaprasad S, Byju SK, Prajith C, Shaju J, Rejeesh CR. 2021 – Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. *Materials Today: Proceedings* 47, 5038–5044.

Soh E, Chew ZY, Saeidi N, Javadian A et al. 2020 – Development of an extrudable paste to build mycelium-bound composites. *Materials & Design* 195, 109058.

Song R, Zhai Q, Sun L, Huang E et al. 2019 – CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. *Applied Microbiology and Biotechnology* 103, 6919–6932.

Stelzer L, Hoberg F, Bach V, Schmidt B et al. 2021 – Life cycle assessment of fungal-based composite bricks. *Sustainability* 13(21), 11573.

Sun W, Tajvidi M, Howell C, Hunt CG. 2022 – Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. *Composites Part A: Applied Science and Manufacturing* 161, 107125.

Sun W, Tajvidi M, Hunt CG, Howell C. 2021 – All-natural smart mycelium surface with tunable wettability. *ACS Applied Bio Materials* 4(1), 1015–1022.

Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ. 2019 – Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. *Scientific Reports* 9(1), 3766.

Sydror M, Cofta G, Doczekalska B, Bonenberg A. 2022 – Fungi in mycelium-based composites: usage and recommendations. *Materials* 15(18), 6283.

Tacer-Caba Z, Varis JJ, Lankinen P, Mikkonen KS. 2020 – Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. *Materials & Design* 192, 108728.

Teeraphantuvat T, Jatwong K, Jinanukul P, Thamjaree W et al. 2024 – Improving the physical and mechanical properties of mycelium-based green composites using paper waste. *Polymers* 16(2), 262.

Teixeira JL, Matos MP, Nascimento BL, Griza S et al. 2018 – Production and mechanical evaluation of biodegradable composites by white rot fungi. *Ciência e Agrotecnologia* 42(6), 676–684.

Travaglini S. 2019 – Mycelium Materials (Doctoral dissertation, UC Berkeley).

Tsao Y. 2020 – Characterization of mycelium-based composites as foam-like wall insulation material (Doctoral dissertation), Eindhoven University of Technology.

Tudryk GJ, Smith LC, Freitag J, Bucinell R, Schadler LS. 2018 – Processing and morphology impacts on mechanical properties of fungal based biopolymer composites. *Journal of Polymers and the Environment* 26, 1473–1483.

Van Wylick A, Elsacker E, Yap LL, Peeters E, De Laet L. 2022 – Mycelium composites and their biodegradability: An exploration on the disintegration of mycelium-based materials in soil. *Construction Technologies and Architecture* 1, 652–659.

Vašatko H, Gosch L, Jauk J, Stavric M. 2022 – Basic research of material properties of mycelium-based composites. *Biomimetics* 7(2), 51.

Vasquez ESL, Vega K. 2019a – From plastic to biomaterials: prototyping DIY electronics with mycelium. In *Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers*, 308–311.

Vasquez ESL, Vega K. 2019b – Myco-accessories: sustainable wearables with biodegradable materials. *Proceedings of the 2019 ACM International Symposium on Wearable Computers* 306–311.

Velasco PM, Ortiz MPM, Giro MAM, Castelló MCJ, Velasco LM. 2014 – Development of better insulation bricks by adding mushroom compost wastes. *Energy and Buildings* 80, 17–22.

Verhelst J, Vandersanden S, Nouwen O, Rineau F. 2024 – Fungal strain influences thermal conductivity, hydrophobicity, color homogeneity, and mold contamination of mycelial composites. *Materials* 17(24), 6050.

Vidholdová Z, Kormúthová D, Iždinský J, Lagaňa R. 2019 – Compressive resistance of the mycelium composite. *Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology* 107, 31–36.

Walter N, Gürsoy B. 2022 – A study on the sound absorption properties of mycelium-based composites cultivated on waste paper-based substrates. *Biomimetics* 7(3), 100.

Wang H, Tao J, Wu Z, Weiland K et al. 2024 – Fabrication of Living Entangled Network Composites Enabled by Mycelium. *Advanced Science* 11, 2309370.

Wang Y, Ran Z, Tan X, Ge J, Jin H. 2019 – Study on the biological materials produced by *Phellinus igniarius* fermenting spent mushroom substrate and corn cob. *IOP Conference Series: Earth and Environmental Science* 252(2), 022083.

Wimmers G, Klick J, Tackaberry L, Zwiesigk C et al. 2019 – Fundamental studies for designing insulation panels from wood shavings and filamentous fungi. *BioResources* 14(3), 5506–5520.

Wolfe M, Cao H. 2024 – The development and consumer acceptance of shoe prototypes with midsoles made from mushroom mycelium composite. *Textiles* 4(3), 426–441.

Xing Y, Brewer M, El-Gharabawy H, Griffith G, Jones P. 2018 – Growing and testing mycelium bricks as building insulation materials. *IOP conference series: earth and environmental science* 121, 022032.

Yang Z, Zhang F, Still B, White M, Amstislavski P. 2017 – Physical and mechanical properties of fungal mycelium-based biofoam. *Journal of Materials in Civil Engineering* 29(7), 04017030.

Zhang X, Hu J, Fan X, Yu X. 2022 – Naturally grown mycelium-composite as sustainable building insulation materials. *Journal of Cleaner Production* 342, 130784.

Zhao A, Berglund L, Rosenstock Völtz L, Swamy R et al. 2024 – Fungal innovation: harnessing mushrooms for production of sustainable functional materials. *Advanced Functional Materials* 35(2), 2412753.

Ziegler AR, Bajwa SG, Holt GA, McIntyre G, Bajwa DS. 2016 – Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. *Applied Engineering in Agriculture* 32(6), 931–938.

Zimele Z, Irbe I, Grinins J, Bikovens O et al. 2020 – Novel mycelium-based biocomposites (Mbb) as building materials. *Journal of Renewable Materials* 8(9), 1067–1076.