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Abstract 

Mushroom mycelium-based biomaterials (MMBs) are innovative, environment-friendly, 
biodegradable, and sustainable alternatives to plastic- and foam-based products. MMBs are popular 
due to their biodegradability, low carbon footprint, and alignment with the principles of the circular 
economy. MMBs are developed using the mycelium of suitable mushroom species and 
lignocellulosic substrates, derived from agricultural and forest byproducts. Research on several 
mushroom species is increasing, and the choice of species plays a pivotal role in determining the 
mechanical and overall characteristics of the end products. This review is the first compiled report of 
all mushroom species within Basidiomycota utilized in MMBs production. The mushroom genera 
used in its development have also been presented according to hyphal system type. This paper is 
based on all the relevant published and available articles till 2024. Additionally, it highlights key 
challenges in developing MMBs and explores potential solutions. 
 
Keywords – fungal application – hyphal system – mushroom species – renewable – sustainable 
material 
 
Introduction 

Mushrooms are the fruiting bodies of fungi that grow above ground or on a substrate, primarily 
belonging to the phylum Basidiomycota. They include gilled fungi, puffballs, bracket fungi, coral 
fungi, jelly fungi, and crust fungi (Rathore et al. 2019). Since ancient times, mushrooms have been 
widely used in food, medicine, and the extraction of secondary compounds (Rathore et al. 2019). 
They are an important source of bioactive and medicinal compounds, such as terpenoids, 
polysaccharides, proteins, and vitamins, and are known for their antioxidant, antimicrobial, 
anticancer, antitumor, and immunomodulatory properties. Among several applications of 
mushrooms, mushroom mycelium-based biomaterials (MMBs) are a novel class of sustainable, eco-
friendly, and biodegradable materials. As a result, research and development on MMBs is growing 
worldwide, with major efforts in Asia, Europe, and North America (Fig. 1). 

Mycelium, the vegetative structure of filamentous fungi, acts as a unit-binding agent, 
connecting hyphae and substrates (Jiang et al. 2016, Abhijith et al. 2018). It grows on lignocellulosic 
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substrates, forming two- or three-dimensional networks (Crowther et al. 2014). The MMBs offer 
numerous benefits, such as energy-efficient production, cost-effectiveness, complete 
biodegradability, potential for carbon dioxide sequestration, sustainable sourcing, lightweight nature, 
low density, high strength, and non-toxic properties (Jiang et al. 2017, Abhijith et al. 2018, Islam et 
al. 2018, Fairus et al. 2022). These features make MMBs an excellent eco-friendly alternative to 
conventional materials, supporting sustainability, effective biodegradability, and environmental 
protection (Abhijith et al. 2018, Hyde et al. 2024a). 
 

 
 
Fig. 1 – Mushroom mycelium-based biomaterials-related articles published up to 2024 from different 
continents. The data is based on findings on online platforms (Google Scholar, PubMed, 
ScienceDirect, Wiley Online Library, Semantic Scholar) and using keywords, such as mycelium-
based biomaterial, mycelium-based composite, mycelium-based leather, and pure mycelium 
materials. 
 

A key factor in selecting mushroom candidates for MMBs preparation is the distinctive hyphal 
properties (Manan et al. 2021, Aiduang et al. 2022b, Porter et al. 2023). Mushrooms are categorized 
into monomitic, dimitic, or trimitic hyphal systems based on the presence and composition of 
generative, skeletal, and ligative or binding hyphae (Jones et al. 2020). They differ in cell wall 
thickness, internal structure, and branching patterns (Jones et al. 2020). For robust mycelial growth 
with enhanced mechanical strength, mushrooms with a trimitic hyphal system are preferred over 
monomitic or dimitic systems (Butu et al. 2020, Manan et al. 2021, Aiduang et al. 2022b, Porter et 
al. 2023). 

The MMBs have several applications, including packaging, construction, thermal and acoustic 
insulation, architectural design, and textiles (Joshi et al. 2020, Khyaju & Luangharn 2024). These 
sustainable innovations have attracted people and companies and hold the potential to be incorporated 
into human daily life (Elsacker et al. 2020). The use of mycelium has expanded from an experimental 
laboratory to large-scale commercial applications, including companies such as Ecovative Design, 
Mycoworks, and Mogu, which are producing MMBs (Attias et al. 2019, Dessi-Olive 2022). 
Additionally, the increasing number of patent applications and approvals signifies the industrial 
significance of MMBs. 

Basidiomycota constitutes four subphyla, 20 classes, 77 orders, 297 families, 2,134 genera, and 
approximately 41,270 recognized species worldwide (He et al. 2019, 2024, Hyde et al. 2024b). 
Hibbett (2007) estimated that there were 37,717 Agaricomycetes species. However, only a countable 
number of mushroom species, such as Ganoderma, Lentinus, Pleurotus, and Trametes, have been 
studied for MMB production, leaving many species unexplored (Fig. 2) Research on mushroom 
species to develop MMBs with superior material properties is increasing worldwide. Recently, 
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genetically modified mushroom species (GMO) have broadened the technological capabilities in 
biomaterial development (Madusanka et al. 2024). The most popular genome editing technique, 
CRISPR/Cas9, has been successfully applied to several mushroom species, including Agaricus 
bisporus, Ganoderma lucidum, Lentinula edodes, and Schizophyllum commune (Jan Vonk et al. 2019, 
Song et al. 2019, Liu et al. 2020, Choi et al. 2023, Kamiya et al. 2023). Genetic modification by 
incorporation of a Saccharomyces cerevisiae CDA1 chitin deacetylase-encoding gene controlled by 
glyceraldehyde-3-phosphate dehydrogenase promoter in a Ganoderma sp. showed higher ꞵ-glucan 
content (Madusanka et al. 2024). In Schizophyllum commune, deletion of the hydrophobin gene sc3 
increased the density of pure mycelium, resulting in enhanced mechanical properties compared to its 
wild-type strain (Appels et al. 2018). However, the knowledge required to utilise the rest of the taxa 
for MMBs remains underexplored. 
 

 
 
Fig. 2 – Mushroom genera (representative) commonly used in mushroom mycelium-based 
biomaterial development. a Ganoderma williamsianum. b Lentinus squarrosulus. c Pleurotus 
ostreatus. d Trametes hirsuta. 
 

The fragmented information on the research and findings on mushroom species used in MMBs 
needs to be compiled. The polyphasic approach to identify mushroom species, combining 
morphology and phylogeny, is crucial before application in MMBs. The undisclosed name of the 
mushroom species used in MMBs cannot be overlooked and needs to be categorized for consistency 
and reliability. In addition, pointing out the key limitations and a way out for MMBs research was 
lacking. These identified knowledge gaps can provide a basis for comprehensive research. In this 
study, information on mushroom species utilized in MMBs from all available published works up to 
2024 has been documented, providing a centralized reference for the field. The details on the hyphal 
system type, substrates used, and the end products have provided insights into the current scenario 
and future scope. Besides the critical investigation on the reported limitations or challenges in this 
sector, this study has provided rational ways to strengthen the research, their development, and 
commercial production. 
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Mushroom species in mycelium-based biomaterials 
Mushroom mycelium expands through the growth of hyphal apical tips, eventually forming 

dense mycelial colonies (Islam et al. 2018). These colonies are composed of hyphae, which are 
fibrous, thread-like structures made of natural polymers such as chitin, beta-glucans, and proteins 
that provide structural integrity, durability, and functionality (Ruiz-Herrena 1991, Islam et al. 2017). 
The outer surface of hyphae is rich in beta-glucans, which act as mucilage, along with chitin 
microfibrils that provide mechanical rigidity and strength (Ruiz-Herrena 1991). Mycelium colonies 
interconnect randomly through anastomosis, creating a network of hyphae. Saprobic mushrooms use 
their mycelium networks to degrade lignocellulosic residues into simpler forms of nutrients and bind 
the substrates together through complex biochemical processes. The mycelium penetrates the 
substrates via physical pressure and enzymatic secretion, allowing it to access essential nutrients 
(Rathore et al. 2019). 

The development of MMBs has been explored using a limited number of mushroom species, 
primarily from the orders Polyporales (67 species) and Agaricales (20 species), and a few from the 
orders Hymenochaetales (6 species), Auriculariales (2 species), Russulales (2 species), and 
Gleophyllales (1 species) (Fig. 3, Table 1, 3). The differences between the fungal species described 
and those used in MMBs underscore the need for a more systematic study to explore their immense 
potential. All the described fungal species might not be suitable for superior-quality MMBs 
development. To provide a systematic direction for MMBs research, selection criteria for fungal 
species are crucial. Research on MMBs ranges from preliminary characterization studies to 
applications in certain sectors such as packaging, construction, architectural designs, and textiles. 
Based on extensive studies, some scholars have proposed a set of key criteria for selecting fungal 
species suitable for MMBs production (Sydor et al. 2022, Aiduang et al. 2024). The criteria for 
selecting suitable fungal candidates can be summarized as follows: vigorous hyphal growth, trimitic 
or dimitic hyphal systems, classification as white-rot fungi, adaptability to a wide range of substrates 
and growth conditions, non-sporulating behaviour, saprobic lifestyle, antimicrobial properties, and 
non-toxicity and non-allergenic. 
 

 
Fig. 3 – Mushroom species belonging to different orders commonly used in the mycelium-based 
biomaterials applications. 
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Table 1 Overview of mushroom species examined in experimental studies for mycelium-based 
biomaterials (MMBs). 
 
Order Family Genus Species 
Agaricales Agaricaceae Agaricus A. bisporus, A. bitorquis 
  Lyophyllaceae Hypsizygus H. ulmarius 
  Omphalotaceae Lentinula L. edodes 
  Physalacriaceae Flammulina F. velutipes 
   Oudemansiella O. radicata 

  Pleurotaceae Pleurotus 

P. albidus, P. citrinopileatus, P. 
cornucopiae, P. djamor, P. eryngii, 
P. ostreatus, P. pulmonarius, P. 
salmoneostramineus 

  Pluteaceae Volvariella V. volvacea 
  Psathyrellaceae Coprinopsis C. cinerea 
  Schizophyllaceae Schizophyllum S. commune 
  Strophariaceae Kuehneromyces K. mutabilis 
    Stropharia S. rugosoannulata 
  Tubariaceae Cyclocybe C. aegerita 
Auriculariales Auriculariaceae Auricularia A. auricula-judae, A. polytricha 
Gloeophyllales Gloeophyllaceae Gloeophyllum G. sepiarium 
Hymenochaetales Hymenochaetaceae Fomitiporia F. mediterranea 
    Inonotus I. obliquus 
    Nothophellinus N. andinopatagonicus 
    Phellinus P. igniarius 
  Incertae sedis Trichaptum T. abietinum 
  Oxyporaceae Oxysporus O. latermarginatus 
Polyporales Cerrenaceae Cerrena C. zonata 
  Dacryobolaceae Postia P. balsamea 
  Fomitopsidaceae Fomitopsis F. iberica, F. pinicola, F.rossea 
    Piptoporus P. betulinus 
    Wolfiporia W. extensa 
  Grifolaceae Grifola G. frondosa 
  Incertae sedis Aegerita A. agrocibe 
    Ryvardenia R. cretacea 
  Irpicaceae Ceriporia C. lacerata 
    Irpex I. lacteus 
  Laetiporaceae Laetiporus L. sulpureus 
    Phaeolus P. schweinitzii 
  Meruliaceae Aurantiporus Aurantiporus sp. 
    Irpiciporus I. pachyodon 
  Panaceae Panus P. conchatus 
  Phanerochaetaceae Bjerkandera B. adusta 
    Phanerochaete P. chrysosporium 
    Terana T. caerulea 
  Podoscyphaceae Abortiporus A. biennis 
  Polyporaceae Cerioporus C. lacerata 
    Coriolopsis C. gallica, C. rigida, C. trogii 
    Daedaleopsis D. confragrosa, D. tricolor 
    Earliella E. scabrosa 
    Fomes F. formentarius 
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Table 1 Continued. 
 
Order Family Genus Species 
    Fomitella F. fraxinea 
    Funalia F. trogii 

    Ganoderma 

G. applantum, G. australe, G. carnosum, G. 
curtisii, G. fornicatum, G. lingzhi, G. lucidum, G. 
mexicanum, G. resinaceum, G. sessile, G. 
steyaertanum, G. williamsianum 

    Hexagonia Hexagonia sp. 

    Lentinus L. arcularius, L. crinitus, L. polychrous, L. sajor-
caju, L. squarrosulus, L. velutinus  

    Lenzites L. betulinus 
    Megasporoporia M. minor 
    Microporus M. affinis 
    Neofavolus N. alveolaris 
    Polyporus P. arcularius, P. brumalis, P. squamosus 

    Trametes 
T. coccinea, T. gibbosa, T. hirsuta, T. multicolor, 
T. ochracea, T. orientalis, T. pubescens, T. 
suaveolens, T. versicolor, T. villosa 

Russulales Hericiaceae Hericium H. erinaceus 
  Stereaceae Stereum S. hirsutum 

Note: The taxon name is provided in the same format as the published paper. 
 
Mushroom hyphal systems 

Hyphae serve as the fundamental structural units that collectively form mycelium and 
basidiomata. Mycelium functions as a natural adhesive, binding substrates together and contributing 
to the structural integrity of mycelium-based biomaterials (MMBs). Mushrooms are classified into 
three hyphal systems based on their composition: monomitic, dimitic, and trimitic (Fig. 3) (Shin et 
al. 2025). Monomitic hyphal system consists only of generative hyphae, whereas dimitic hyphal 
system incorporates generative hyphae with either skeletal or ligative hyphae. In contrast, the trimitic 
hyphal system contains all three hyphal types, which enhance structural properties. The hyphal 
system type of mushrooms affects the mechanical and material properties of MMBs (Porter & 
Naleway 2022). Therefore, selecting suitable mushroom species is a critical factor for producing 
high-quality biomaterials (Aiduang et al. 2024). The classification of mushroom species used in 
biomaterial applications is based on their hyphal system (Table 2). 
 

 
 
Fig. 3 – A schematic representation of hyphal system types. 
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Table 2 Classification of mushroom species used in the development of mycelium-based biomaterials 
based on hyphal system. 
 

Mushroom hyphal systems 
Monomitic Dimitic Trimitic 
Agaricus bisporus Cerioporus laceratus (Polyporus 

megasporoporus) 
Coriolopsis gallica 

Agaricus bitorquis Cerrena zonata C. rigida (Funalia rigida) 
Abortiporus biennis Fomitella fraxinea (Vanderbylia 

fraxinea) 
C. trogii (Trametes trogii) 

Aurantiporus sp. Fomitiporia mediterranea Daedaleopsis confragosa 
Auricularia auricula-judae Fomitopsis iberica (F. marianiae) D. tricolor 
A. polytricha (A. nigricans) F. pinicola Earliella scabrosa 
Bjerkandera adusta F. rosea (Rhodofomes roseus) Fomes fomentarius 
Ceriporia lacerata (Irpex 
laceratus) 

Ganoderma mexicanum (Phellinus 
nilgheriensis) 

Funalia trogii (Trametes 
trogii) 

Coprinopsis cinerea Grifola frondosa Ganoderma applanatum 
Cyclocybe aegerita Irpex lacteus G. australe 
Flammulina velutipes Irpiciporus pachyodon G. carnosum 
Hericium erinaceus Laetiporus sulphureus G. curtisii 
Hypsizygus ulmarius Lentinus arcularius G. fornicatum 
Inonotus obliquus L. crinitus G. lingzhi 

(G. sichuanense) 
Kuehneromyces mutabilis L. polychrous G. lucidum 
Lentinula edodes L. sajor-caju G. resinaceum 
Oudemansiella radicata 
(Hymenopellis colensoi) 

L. squarrosulus G. sessile 
(G. resinaceum) 

Phanerochaete chrysosporium L. velutinus G. steyaertanum 
Phaeolus schweinitzii Neofavolus alveolaris G. williamsianum 
Pleurotus albidus Oxyporus latemarginatus (Irpex 

latemarginatus) 
Hexagonia sp. 

P. citrinopileatus Panus conchatus Lenzites betulinus 
P. cornucopiae Phellinus igniarius Microporus affinis 
P. djamor Piptoporus betulinus (Fomitopsis 

betulina) 
Stropharia 
rugosoannulata 

P. eryngii Polyporus arcularius  
(Lentinus arcularius) 

Trametes coccinea 

P. ostreatus P. brumalis (L. brumalis) T. gibbosa 
P. pulmonarius P. squamosus (Cerioporus 

squamosus) 
T. hirsuta 

P. salmoneostramineus  
(P. djamor) 

 T. multicolor  
(T. ochracea) 

Postia balsamea Di-trimitic T. ochracea 
Ryvardenia cretacea Gloeophyllum sepiarium T. orientalis 
Schizophyllum commune Megasporoporia minor T. pubescens 
Terana caerulea Nothophellinus andinopatagonicus T. suaveolens 
Volvariella volvacea Trichaptum abietinum T. versicolor 
Wolfiporia extensa  T. villosa 
 Psuedodimitic  
 Stereum hirsutum   

Note: The taxon name in parentheses indicates the current name according to Index Fungorum 
(accessed on 29.03.2025). 
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Table 3: Basidiomycetes mushroom species, primary substrates, and intended applications of 
mycelium-based biomaterials (MMBs). 
 

Mushroom species Main substrates Intended 
application 

Country References 

Abortiporus biennis, Bjerkandera 
adusta, Coriolopsis gallica, C. 
trogii, Daedaleopsis confragosa, D. 
tricolor, Fomes fomentarius, 
Fomitiporia mediterranea, 
Fomitopsis iberica, F. pinicola, 
Ganoderma carnosum, G. lucidum, 
Irpex lacteus, Irpiciporus 
pachyodon, Lenzites betulinus, 
Neofavolus alveolaris, Stereum 
hirsutum, Terana caerulea, Trametes 
hirsuta, T. suaveolens 

Malt Extract Agar 
(MEA), millet 
slurry 

Leather Italy Cartabia et al. 
(2021) 

Abortiporus biennis, Bjerkandera 
adusta, Daedaleopis tricolor, Fomes 
fomentarius, Irpex lacteus, Lentinus 
arcularius, Pleurotus ostreatus, 
Trametes versicolor 

Wheat bran, 
minced wheat 
straws, coconut 
husk fibres, 
broadleaves 
sawdust 

Packaging Romania Balaes et al. 
(2023) 

Agaricus bisporus, Flammulina 
velutipes, Ganoderma lucidum, 
Kuehneromyces mutabilis, Lentinula 
edodes, Pleurotus ostreatus, P. 
ostreatus sajorcaju, P. ostreatus 
florida 

Oak husk, 
rapeseed cake 

Biocomposites Finland Tacer-Caba et al. 
(2020) 

Agaricus bisporus, A. bitorquis Wheat straw Building 
insulation 
materials 

Chile Velasco et al. 
(2014) 

Agaricus bisporus, Fomes 
fomentarius, Ganoderma 
applanatum, Trametes versicolor 

Bleached 
softwood kraft 
fibers, hemp 
fibers 

Mycocel 
biopolymers 

Latvia Irbe et al. (2021) 

Agaricus bisporus, Hericium 
erinaceus (spent mushroom) 

Birch sawdust Packaging 
materials 

Austria Zhao et al. (2024) 

Agaricus bisporus, Trametes 
versicolor 

Sugarcane 
molasses 

Industrial 
applications 
(paper, 
coatings) 

Australia Jones et al. 
(2019a) 

Aurantiporus sp., Ganoderma 
curtisii, G. mexicanum, Lentinus 
crinitus, Panus conchatus, Pleurotus 
ostreatus 

Potato Dextrose 
Agar (PDA) 

Mycelium 
films 

Mexico  César et al. 
(2021a) 

Auricularia auricula-judae, Lentinus 
polychrous,  
L. squarrosulus, Pleurotus ostreatus 

Rice husks, 
coconut husks, 
rice straw 

Biocomposites Thailand Ly & Jitjak (2022) 

Auricularia auricula-judae, 
Pleurotus ostreatus, P. sajor-caju, 
Schizophyllum commune 

Water hyacinth, 
rice bran 

Biocomposites Thailand Sakunwongwiriya 
et al. (2024) 

Auricularia polytricha, Ganoderma 
lucidum, Pleurotus ostreatus 

Rubber tree 
sawdust, diaper 
core, food waste 
(coffee, banana, 
skin, eggshell, 
sugarcane) 

Bio-boards China Khoo et al. (2020) 
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Table 3 Continued. 
 

Mushroom species Main substrates Intended 
application 

Country References 

Auricularia polytricha, Ganoderma 
lucidum, Pleurotus ostreatus 

Potato Dextrose 
Broth (PDB) 

Mycelium 
mats 

China Shao et al. (2024) 

Bjerkandera adusta, Elfvingia 
applanata, Fomitella fraxinea, 
Fomitopsis pinicola, F. rosea, 
Ganoderma applanatum, G. 
lucidum, Microporus affinis, Postia 
balsamea, Trametes versicolor, T. 
suaveolens, Wolfiporia extensa 

Oak sawdust, rice 
bran 

Leather South 
Korea 

Raman et al. 
(2022) 

Ceriporia lacerata Soybean straw Insulation 
materials 

China Shao et al. (2016) 

Cerrena sp., Ganoderma sp., 
Pycnoporus sp. 

White wood 
sawdust, coffee 
waste, coffee 
grounds, wheat 
bran 

Biocomposites Brazil de Oliveira et al. 
(2022) 

Coprinospsis cinerea, Pleurotus 
djamor 

PDA Biocomposites China Chang et al. 
(2019) 

Coriolopsis rigida, Pycnoporus 
sanguineus, Trametes villosa 

Sawdust of 
eucalyptus, pine 

Biocomposites Brazil Catto et al. (2014) 

Coriolus brevis, C. hirsuta, C. 
versicolor, Fomitella fraxinea, 
Ganoderma lucidum, Polyporus 
arcularius, P. squamosus, 
Pycnoporus coccineus, T. fuciformis, 
Trametes gibbosa, T. orientalis 

Sawdust, PDB Mycelium 
mats 

South 
Korea 

Bae et al. (2021) 

Coriolus versicolor, Pleurotus 
ostreatus 

Wood chips, 
hemp hurd, loose 
hemp fiber, non-
woven hemp mats 

Biofoams Netherland
s 

Lelivelt et al. 
(2015) 

Coriolus versicolor, P. ostreatus Hemp herds, 
woodchips 

Insulation 
materials 

Germany Reibert et al. 
(2022) 

Cyclocybe aegerita, Pleurotus 
ostreatus, P. pulmonarius, P. 
salmoneo-stramineus 

Woodchips 
substrates of 
Eucalyptus, Oak, 
Pine, Apple, Vine 

Design and 
architecture 

Israel Attias et al. (2017) 

Daedaleopsis confragosa, 
Ganoderma resinaceum, Trametes 
versicolor 

Corn stover, 
kenaf pith, hemp 
pith 

Biocomposites USA Bajwa et al. (2017) 

Daedaleopsis tricolor, Fomes 
fomentarius, Stereum hirsutum, 
Trametes versicolor 

Hemp shives Biocomposites Belgium Verhelst et al. 
(2024) 

Earliella sp., Hexagonia sp., 
Lentinus sp., Pleurotus sp., 
Pycnoporus sp. 

Rubber sawdust, 
rice straw 

Biocomposites Thailand Aiduang et al. 
(2022c) 

Flammulina velutipes, Ganoderma 
applanatum, G. lucidum, Hericium 
erinaceus, Lentinula edodes, 
Pleurotus eryngii, Trametes hirsuta 

Malt agar, 
cellulose 
microcrystals, 
cellulose 
microfibrills 

Mycelium 
mats 

Russia Rakitina et al. 
(2022) 

Flammulina velutipes, Lentinula 
edodes, Lentinus polychrous, 
Pleurotus ostreatus 

Coconut husk, 
rice husk 

Biocomposites Thailand Ly & Jitjak (2020) 

Fomes fomentarius Hemp shives, 
rapeseed straw 

Biocomposites Germany Pohl et al. (2022) 
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Table 3 Continued. 
 

Mushroom species Main substrates Intended 
application 

Country References 

F. fomentarius Hemp shives Insulation 
materials 

Germany Schmidt et al. 
(2023) 

F. fomentarius Hemp shives, 
rapeseed straw, 
poplar wood 
chips 

Construction 
materials 

Germany Stelzer et al. 
(2021) 

Fomes fomentarius, Fomitopsis 
pinicola, Ganoderma lucidum, Irpex 
lacteus, Pleurotus ostreatus, 
Schizophyllum commune, Trametes 
versicolor 

Cellulose from 
softwood kraft 
pulp 

Cellulose fibre 
foams 

USA Amstislavski et al. 
(2024) 

Fomes fomentarius, Fomitopsis 
pinicola, Pleurotus eryngii, 
Trametes versicolor 

Malt Extract 
Broth (MEB), 
woven fabric 

Mycelium 
mats 

Germany Kniep et al. (2024) 

Fomes fomentarius, Ganoderma 
lucidum, Pycnoporus sanguineus, 
Trametes hirsuta 

Beech sawdust, 
spruce sawdust 

Construction 
materials 

Germany Saez et al. (2021) 

Fomes fomentarius, Pleurotus 
ostreatus 

Wood chips from  
trees of beech, 
European oak, 
and pear 

Construction 
materials 

Germany Moser et al. (2017) 

Fomitopsis pinicola, Ganoderma 
carnosum, Pleurotus eryngii, P. 
ostreatus, Trametes versicolor 

Wheat straw, pine 
sawdust, oak 
shavings, tree of 
heaven wood 
chips, shredded 
beech wood 

Insulation Italy Charpentier-Alfaro 
et al. (2023) 

Fomitopsis pinicola, Gloeophyllum 
sepiarium, Laetiporus sulphureus, 
Phaeolus schweinitzii, Piptoporus 
betulinus, Pleurotus ostreatus, 
Polyporus arcularius, Trametes 
pubescens, T. suaveolens, 
Trichaptum abietinum 

Sawdust and 
shavings of birch, 
aspen, spruce, 
pine, fir 

Insulation 
materials 

Canada Wimmers et al. 
(2019) 

Funalia trogii, Ganoderma australe, 
Nothophellinus andinopatagonicus, 
Pleurotus ostreatus, Ryvardenia 
cretacea 

Poplar sawdust Biocomposites Argentina Aquino et al. 
(2022) 

Ganoderma australe, Pleurotus 
ostreatus, Trametes versicolor 

Molasses Mycelium 
mats 

Australia Chulikavit et al. 
(2022) 

Ganoderma curtisii Guayule bagasse, Insulation Mexico César et al. (2023) 
Ganoderma fornicatum, G. 
williamsianum, Lentinus sajor-caju, 
Schizophyllum commune 

Rubber tree 
sawdust, corn 
husks, rice straw 

Biocomposites Thailand Aiduang et al. 
(2022b) 

Ganoderma fornicatum, G. 
williamsianum, Lentinus sajor-caju, 
Schizophyllum commune, Trametes 
coccinea 

Bamboo sawdust, 
corn pericarp 

Interior 
designs 

Thailand Aiduang et al. 
(2024) 

Ganoderma lucidum Palm sugar fiber, 
cassava bagasse 

Composite 
board 

Indonesia Agustina et al. 
(2019) 

G. lucidum PDB Mycelium 
mats 

Italy Antinori et al. 
(2020) 
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Table 3 Continued. 
 

Mushroom species Main substrates Intended 
application 

Country References 

G. lucidum Sawdust Pure 
mycelium 
mats 

Indonesia Bahua et al. (2024) 

G. lucidum Sawdust (Albizia 
chinensis), empty 
fruit bunch fibres 

Biocomposites Singapore Chan et al. (2021) 

G. lucidum Beech wood 
shavings, spelt 
flour, plaster dust 

Electronic 
parts 

Austria Danninger et al. 
(2022) 

G. lucidum Cellulose fibre 
rapeseed bagasse 

Insulation 
materials 

Netherland
s 

Gauvin et al. 
(2021) 

G. lucidum Wood chips, 
sawdust, 
sugarcane, and 
cassava fibrous 
waste residues 

Architecture 
design 

Germany Heisel et al. (2017) 

G. lucidum Cotton stalk Biocomposites China Liu et al. (2019) 
G. lucidum MEB Mycelium 

mats 
France Mazian et al. 

(2023) 
G. lucidum Hemp fibers, 

hemp hurds, pine 
wood sawdust, 
and silvergrass 
shavings 

Building 
materials 

Germany Özdemir et al. 
(2022) 

G. lucidum Wheat straw 
polypropylene 
with bacterial 
spores 

Thermal 
Insulation 

Romania Răut et al. (2021) 

G. lucidum Bamboo fiber Biocomposites Indonesia Ridzqo et al. 
(2020) 

G. lucidum Bamboo fiber, 
chitosan 

Biocomposites Singapore Soh et al. (2020) 

G. lucidum Sawdust Biocomposites USA Travaglini (2019) 
G. lucidum Rapeseed straw, 

cellulose fiber 
Insulation 
materials 

Netherland
s 

Tsao (2020) 

G. lucidum Sawdust Biocomposites China Wang et al. (2024) 
Ganoderma lucidum, Hypsozygus 
ulmarius, Pleurotus citrinopileatus, 
P. cornucopiae, P. djmor, P. eryngii. 
P. ostreatus, P. pulmonarius, 
Polyporus brumalis, Stropharia 
rugosoannulata, Trametes versicolor 

MEA, MEB Biocomposites Australia Jones et al. 
(2018c) 

Ganoderma lucidum, Pleurotus 
citrinopileatus, P. eryngii, P. 
ostreatus 

Jute, cotton Footwear 
products 

USA Silverman et al. 
(2020) 

G. lucidum, P. djamor Paste mixture of 
whole wheat 
flour, malt 
extract, xanthan 
gum, tartar, citric 
acid 

Mycelium 
mats 

USA Crawford et al. 
(2024) 

G. lucidum, P. ostreatus Cellulose, PDB Biofilms Italy Haneef et al. 
(2017) 
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Mushroom species Main substrates Intended 
application 

Country References 

G. lucidum, P. ostreatus Beech sawdust, 
oak sawdust, 
bleached cellulose 
pulp, shredded 
cardboard, 
shredded 
newspaper, cotton 
fibers, soy silk 
fibers, wheat 
bran, wheat straw, 
burlap, clay, sand 

Biocomposites Austria Vašatko et al. 
(2022) 

G. lucidum, P. ostreatus PDB Bio-scaffolds Italy Antinori et al. 
(2021) 

Ganoderma lucidum, Pleurotus 
ostreatus, Polyporus squamosus 

Canola straw, 
Cattail, hemp 

Packaging 
materials 

Canada Rahman (2024) 

Ganoderma lucidum, Trametes 
versicolor 

Spent coffee 
grounds, coffee 
chaff, hay straw, 
hemp dust 

Biocomposites Romania Barta et al. (2024) 

G. lucidum, T. versicolor Beech sawdust, 
spent mushroom 
substrate 

Insulation 
materials 

Germany Schritt et al. 
(2021) 

Ganoderma resinaceum Waste rose 
flower, lavender 
straw 

Biocomposites Bulgaria Angelova et al. 
(2021) 

G. resinaceum Miscanthus Insulation 
materials 

Luxembou
rg 

Dias et al. (2021) 

G. resinaceum, Megasporoporia 
minor, Oxyporus latermarginatus 

Wheat straw Building 
insulation 
materials 

UK Xing et al. (2018) 

G. resinaceum, T. versicolor Hemp hurds, 
beechwood 
sawdust 

Construction Belgium Elsacker et al. 
(2021) 

G. resinaceum, T. versicolor Beech wood 
sawdust, hemp 
fibres 

Biocomposites Belgium Van Wylick et al. 
(2022) 

G. sessile, T. ochracea, T. versicolor Wood chips of 
Apple, Vines 

Design and 
architecture 

Israel Attias et al. (2019) 

Ganoderma sp. Cotton 
byproducts 

Packaging 
materials 

USA Holt et al. (2012) 

Ganoderma sp. Corn stover Insulation 
materials 

USA Pelletier et al. 
(2019) 

Ganoderma steyaertanum Cardboard, coffee 
grounds 

Biocomposites Australia Gough et al. 
(2024) 

Irpex lacteus Sawdust pulp of 
Alaska birch 

Thermal 
Insulation 
material 

USA Yang et al. (2017) 

Lentinula edodes Coconut powder, 
wheat bran 

Packaging Brazil Matos et al. (2019) 

L. edodes (spent mushroom) Sawdust (birch) Biocomposites Sweden Berglund et al. 
(2024) 

L. edodes, Pleurotus eryngii Bagasse fibre Fire 
retardancy 

Iran Hemmati & 
Garmabi (2012) 

L. edodes, P. ostreatus Sengon wood 
sawdust, bagasse 

Biocomposites Indonesia Christos et al. 
(2024) 
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Mushroom species Main substrates Intended 
application 

Country References 

Lentinus crinitus Barley straw Biocomposites Mexico César et al. 
(2021b) 

L. sajor-caju Rubber tree 
sawdust, corn 
husk 

Biocomposites Thailand Jinanukul et al. 
(2024) 

L. sajor-caju Corn husk, rubber 
sawdust, paper 
waste 

Biocomposites Thailand Teeraphantuvat et 
al. (2024) 

L. velutinus, P. albidus, Pycnoporus 
sanguineus 

Pinus sawdust Packaging 
biofoams 

Brazil Bruscato et al. 
(2019) 

N/A Rice husk, wheat 
grain 

Biocomposites Malaysia Arifin & Yusuf 
(2013) 

N/A Soil Architecture 
design 

Germany Colmo & Ayres 
(2020) 

N/A Hemp fibres Designs USA Dessi-Olive 
(2022) 

N/A Hemp fibres Sound 
absorption 

USA Hsu & Dessi-Olive 
(2021) 

N/A Rubber tree 
sawdust 

Construction 
materials 

India Finu et al. (2023) 

N/A Clay, sugarcane 
colasses, rice 
bran, sawdust, 
coconut husks 

Construction 
materials 

Philippines Maximino et al. 
(2020) 

N/A N/A Building 
materials and 
designs 

Denmark Özlü & Nicholas 
(2021) 

N/A Switch grass, rice 
straw, sorghum 
stalks, flax shive, 
kenaf, hemp 

Acoustic 
absorption 
panels 

USA Pelletier et al. 
(2013) 

N/A Cotton burs, 
switchgrass, rice 
straw, sorghum 
stalks, corn stalks, 
kenaf 

Insulation 
materials 

USA Pelletier et al. 
(2017) 

N/A Cotton hulls Building 
materials 

India Santhosh et al. 
(2018) 

N/A Low-quality 
cotton, hemp 
shives 

Biocomposites Italy Sisti et al. (2021) 

N/A Corn stover Biocomposites USA Tudryn et al. 
(2018) 

N/A N/A Electronic 
parts 

USA Vasquez & Vega 
(2019a) 

N/A N/A Wearables USA Vasquez & Vega 
(2019b) 

N/A N/A Biocomposites USA Islam et al. (2017) 
N/A N/A Biocomposites USA Islam et al. (2018) 
N/A Jute, hemp, 

cellulose 
Biocomposites USA Jiang et al. (2017) 

N/A Wood particles of 
spruce, pine, fir, 
cellulose 
nanofibrils 

Packaging and 
furniture 
applications 

USA Sun et al. (2019) 
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Mushroom species Main substrates Intended 
application 

Country References 

N/A N/A Pure 
mycelium 
mats 

USA Sun et al. (2021) 

N/A Cotton fiber, 
hemp pith 

Biocomposites USA Ziegler et al. 
(2016) 

Oudemansiella radicata, P. 
ostreatus 

Cotton stalk, 
wheat bran 

Biocomposites China Gou et al. (2021) 

Phanerochaete chrysosporium Malt extract Biomedical 
use 

India Khamrai et al. 
(2018) 

P. chrysosporium PDA Construction 
materials 

USA Menon et al. 
(2019) 

Phellinus igniarius Corn cob, wheat 
bran 

Biocomposites China Wang et al. (2019) 

P. djamor Northern 
bleached 
softwood kraft 
fibres 

Filtration, 
packaging, 
bioremediatio
n 

Canada Ahmadi et al. 
(2022) 

P. eryngii Hardwood 
sawdust 

Packaging Canada Kao et al. (2022) 

P. eryngii Sawdust Shoe products USA Wolfe & Cao 
(2024) 

P. eryngii, P. ostreatus, Pycnoporus 
sanguineus 

Coconut powder, 
wheat bran 

Packaging 
materials 

Brazil Teixeira et al. 
(2018) 

Pleurotus florida Spent mushroom, 
clay 

Insulation 
materials 

Egypt Ali et al. (2023) 

P. ostreatus European beech 
sawdust 

Biocomposites Austria Alaux et al. (2023) 

P. ostreatus Coffee husk, 
sawdust, 
sugarcane bagasse 

Construction 
materials 

Ethiopia Alemu et al. 
(2022) 

P. ostreatus Hemp hurds Biocomposites USA Etinosa et al. 
(2024) 

P. ostreatus Bamboo fibers Indoor 
applications 

Singapore Gan et al. (2022) 

P. ostreatus Oakwood pellets, 
wheat straw 

Building 
materials 

USA Ghazvinian & 
Gürsoy (2022) 

P. ostreatus Straw, sawdust Architecture 
design 

USA Ghazvinian et al. 
(2019) 

P. ostreatus Sawdust, straw, 
hemp 

Design, 
architecture 

USA Ghazvinian et al. 
(2022) 

P. ostreatus Glass wool, hemp 
wool 

Biocomposites Canada Grenon et al. 
(2023) 

P. ostreatus Cotton seed hulls, 
carboxylated 
styrene butadiene 
rubber latex 

Biocomposites China He et al. (2014) 

P. ostreatus Bagasse, sawdust, 
wheat bran 

Packaging, 
insulation, 
furniture 

India Joshi et al. (2020) 

P. ostreatus Spent coffee 
grounds, 
pineapple fibres 

Biocomposites Thailand Kohphaisansombat 
et al. (2023) 
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Mushroom species Main substrates Intended 
application 

Country References 

P. ostreatus Hemp stalks, rice 
straw, lacquer tree 
wood chips, oak 
wood chips 

Air filtration 
panels 

South 
Korea 

Lee & Choi (2021) 

P. ostreatus Crop residue 
(Triticum sp.), 
edible films 
(carrageenan, 
chitosan, xanthan 
gum) 

Packaging Mexico López Nava et al. 
(2016) 

P. ostreatus Rice husks, 
sawdust 

Biocomposites Uganda Mbabali et al. 
(2023) 

P. ostreatus Waste cardboard Biocomposites USA Mohseni et al. 
(2023) 

P. ostreatus Sugarcane 
bagasse, sawdust, 
rice husk 

Biofoams Malaysia Nashiruddin et al. 
(2022) 

P. ostreatus Wood chips, 
hemp fibres 

Designs Germany Nguyen et al. 
(2022) 

P. ostreatus Rice straw, 
bagasse, coir-pith, 
sawdust, corn 
straw 

Packaging 
materials 

China Peng et al. (2023) 

P. ostreatus Hemp fiber, 
peanut shell 

Biocomposites Argentina Picco et al. (2024) 

P. ostreatus Rice husk, wheat 
straw, rice husk 
powder, wood 
shaving, walnut 
shell 

Biocomposites Turkey Sağlam & 
Özgünler (2022) 

P. ostreatus Vegetable peel, 
denim textile 
waste, coffee 
grounds, synthetic 
textile waste 

Biocomposites Spain Sangosanya & 
Pistofidou (2024) 

P. ostreatus Merino wool, 
paper cellulose, 
barley straw 

Architecture 
design 

UK Scott et al. (2020) 

P. ostreatus Rubber wood 
sawdust 

Biocomposites Malaysia Shakir et al. (2020) 

P. ostreatus Rubber wood 
sawdust 

Biocomposites Malaysia Shakir et al. (2023) 

P. ostreatus Coir pith, sawdust Packaging 
materials 

India Sivaprasad et al. 
(2021) 

P. ostreatus Waste cardboard, 
paper, newsprint 

Sound 
absorption 

USA Walter & Gursoy 
(2022) 

P. ostreatus Spent mushroom 
substrate (cotton 
seed hulls, 
corncobs, crayfish 
shells, wheat 
brans 

Particle boards China Lu et al. (2024) 

P. ostreatus Rye berries Insulation 
materials 

USA Zhang et al. (2022) 
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P. ostreatus (spent mushroom) Wheat straw Thermal 
insulation 

Chile Aravena et al. 
(2024) 

P. ostreatus, Polyporus squamosus, 
Volvariella volvacea 

Hemp fiber, wood 
chips 

Biocomposites USA Etinosa (2019) 

Pleurotus ostreatus, Schizophylllum 
commune, Trametes multicolor 

Fern (Azolla 
filiculoides) 

Biocomposites Netherlands Läkk et al. (2018) 

P. ostreatus, T. hirsuta Pine and spruce 
shavings 

Biocomposites Finland Kuribayashi et al. 
(2022) 

P. ostreatus, T. ochracea Beech sawdust, 
rapeseed straw, 
non-woven cotton 
fibre 

Non-foam 
panels 

Netherlands Appels et al. 
(2019) 

P. pulmonarius Sugarcane bagasse, 
textile scraps 

Sound 
absorption 

Colombia Garcia et al. 
(2023) 

Polyporus brumalis, T. versicolor Wheat straw, rice 
hulls, sugarcane 
bagasse, molasses 

Nanofibers Australia Jones et al. 
(2019b) 

Pycnoporus sanguineus Coconut powder, 
wheat bran 

Building 
materials 

Brazil Santos et al. 
(2021) 

Schizophyllum commune Minimal medium Mycelium 
films 

Netherlands Appels et al. 2020 

S. commune Minimal medium Pure 
mycelium 
mats 

Netherlands d’Errico et al. 
(2024) 

S. commune (GMO) Agar minimal 
medium 

Mycelium 
mats 

Netherlands Appels et al. 
(2018) 

T. betulina Rapeseed straw, 
recycled cellulose 

Building 
materials 

Netherlands Livne et al. (2022) 

T. pubescens, T. versicolor Beechwood 
sawdust 

Biocomposites Germany Nussbaumer et al. 
(2023) 

T. versicolor Hemp shives, birch 
sawdust  

Insulation 
materials 

Latvia Irbe et al. (2024) 

T. versicolor Flax (dust, long-
treated fibers, 
untreated fibres, 
waste), wheat 
straw dust, wheat 
straw, hemp fibres, 
pine softwood 
shavings 

Thermal 
Insulation 

Belgium Elsacker et al. 
(2019) 

T. versicolor Rice hulls Fire-resistant 
panels 

Australia Jones et al. (2017) 

T. versicolor Rice hulls, glass 
fines 

Construction 
materials 

Australia Jones et al. 
(2018a) 

T. versicolor Wheat grains Insulation 
materials 

Australia Jones et al. 
(2018b) 

T. versicolor Pulp and paper 
mill sludge 

Insulation 
materials 

Chile Muñoz et al. 
(2024) 

T. versicolor Yellow birch wood 
veneers 

Biocomposites USA Sun et al. (2022) 

T. versicolor Spruce wood 
particles 

Biocomposites Slovakia Vidholdová et al. 
(2019) 

T. versicolor Hardwood chips, 
hemp shives 

Construction 
materials 

Latvia Zimele et al. 
(2020) 

Note: N/A = not available. The taxon name is provided in the same way as in the published paper. 
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Mushroom-based biomaterials 
Mushroom-based biomaterials (MBs) are derived from mushroom fruiting bodies rather than 

culture mycelium (Bustillos et al. 2020). These materials are also biodegradable, lightweight, and 
renewable, requiring minimal energy for their production and leaving a minimum footprint than 
synthetic plastics (Abhijith et al. 2018, Müller et al. 2021, Pylkkänen et al. 2023). MBs possess the 
structural properties of fungal tissues while exhibiting material characteristics comparable to 
mycelium-based biomaterials. Their composition consists of chitin, glucans, and protein, which 
contribute to their mechanical strength, hydrophobicity, and thermal stability (Bustillos et al. 2020). 
Additionally, the intrinsic antifungal and antibacterial properties of mushrooms are exhibited in the 
MBs products, providing resistance to degradation caused by alien fungi and bacteria (Bustillos et al. 
2020). These qualities make MBs a sustainable and efficient material and a promising candidate in 
biomaterial development and other fields. 

In the production of mushroom-based biomaterials (MBs), the mushroom fruiting bodies are 
initially harvested, then dried and processed into various desired forms, such as sheets, powders, or 
composite materials (Porter & Naleway 2022, Pylkkänen et al. 2023). These processed forms can be 
combined with biopolymers or natural fibres to create advanced, high-performance products. 
Alternatively, mushrooms can be cultivated directly in the mould until full growth, which is then 
harvested, dried, and treated. These MBs have also demonstrated significant potential in various 
applications, including constructions, textiles (e.g., vegan leather-like materials), and medical fields 
(e.g., wound dressings) (Hamlyn et al. 1994, Papp et al. 2017, Bustillos et al. 2020, Muhammad Rafiq 
et al. 2020, Müller et al. 2021, Porter & Naleway 2022, Pylkkänen et al. 2023). However, cultivating 
mushrooms to produce large quantities of basidiomata requires significant resources and time. 
Product consistency can also be a challenge, directly affecting their quality. MBs also require 
additional treatments to enhance hydrophobicity and resistance to microbial degradation. Although 
research in this field is limited, based on published articles, some research on MBs is provided in 
Table 4. 
 
Table 4 Mushroom species whose basidiomata are utilized in the preparation of biomaterials. 
 

Fungal species Part used Target use Country References 
Agaricus bisporus Stipe Wound dressing UK Hamlyn et al. (1994) 
Agaricus bisporus, 
Ganoderma lingzhi, 
Grifola frondosa 

Whole 
basidiomata 

Biocomposites USA Porter & Naleway 
(2022) 

Fomes fomentarius Whole 
basidiomata 

Biocomposites Germany Pylkkänen et al. (2023) 

Fomes fomentarius  Whole 
basidiomata 

Construction 
materials 

Germany Müller et al. (2021) 

Fomes fomentarius, 
Piptoporus betulinus 

Whole 
basidiomata 

Ethnomycological & 
ethnomedicinal use 

Hungary Papp et al. (2017) 

Ganoderma boninense Whole 
basidiomata 

Construction 
materials 

Indonesia Muhammad Rafiq et al. 
(2020) 

Phellinus ellipsoideus Whole 
basidiomata 

Leather USA Bustillos et al. (2020) 

 
Major differences between mushroom-based biomaterials (MBs) and mushroom mycelium-
based biomaterials (MMBs) 

The key differences between mushroom-based biomaterials (MBs) and mycelium-based 
biomaterials (MMBs) are outlined as follows: 

Parts used: MBs use the fruiting bodies directly in the development of biomaterials, while 
MMBs involve mycelium cultivation in feeding substrates under sterile and controlled conditions 
(Bustillos et al. 2020). 
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Production method: MBs utilize the natural growth characteristics of fruiting bodies. In this 
approach, fruiting bodies are cultivated directly within moulds until the ultimate shape and size 
(Müller et al. 2021, Pylkkänen et al. 2023). In contrast, mycelium-based biomaterials (MMBs) allow 
for the vegetative growth phase of the fungus. Mycelium is allowed to fully colonize lignocellulosic 
substrates, after which the colonized substrates are broken down into fine particles and transferred 
into moulds to allow further mycelium growth, resulting in products with specific shapes and 
dimensions (Khyaju & Luangharn 2024). 
 
Challenges and future directions of mycelium-based biomaterials 

In the current context, the use of mushroom mycelium in materials science is a fascinating 
innovation, particularly for developing environmentally friendly, sustainable materials. The MMBs 
have gained popularity as a sustainable measure in converting agricultural and forestry by-products 
into cost-effective, energy-efficient, and versatile materials. Consequently, these MMBs have been 
successfully applied to various sectors, including construction, packaging, architectural designs, 
textiles, and insulation (Al-Qahtani et al. 2023, Khyaju & Luangharn 2024). Additionally, the 
potential growth and development of the MMB sector is reflected by the increasing number of patent 
acceptances (Cerimi et al. 2019). Despite recent scientific advancements that have enabled the 
development and application of MMBs, several challenges remain to their widespread adoption and 
scalability. Based on existing literature, some of the key limitations of MMBs are briefly discussed 
below: 

Misleading science: Research on MMBs is rapidly expanding, mainly in mycology and 
material science, and its constraints must be addressed (Ghazvinian & Gursoy 2022). Systematic 
identification of the mushroom species is crucial to ensure the reproducibility and reliability of 
results, including the MMB field. Employing a polyphasic approach for species-level identification, 
along with the use of the latest legitimate names, is essential for conducting scientific research and 
scaling up industrial production. Additionally, the MMBs products are designed to be people-centric, 
in the form of packaging, indoor insulation, wearables, and electronic parts. Therefore, these products 
require basic attention from users, both regarding health concerns and safety. Furthermore, emerging 
opportunities for MMBs applications include genetic modification of mushroom strains (GMO), such 
as through CRISPR/Cas9-based systems, to enhance specific characteristics (Amobonye et al. 2023, 
Salichanh et al. 2025). However, the absence of an international standardized set of parameters for 
MMBs development and material testing creates challenges in understanding and comparing material 
properties (Aiduang et al. 2022a). Establishing international standards for MMBs fabrication and 
evaluation would significantly improve the consistency and scientific integrity of the field. 

Limited exploration of mushroom species: In the MMBs sector, research and industrial works 
focus on only a few mushroom species (Table 2). However, many recognized mushroom species are 
underexplored and underutilized for MMBs. Besides this, the hidden box of underexplored 
mushrooms in nature holds a huge opportunity. With the incorporation of phylogenetic analytical 
tools and micro- and macro-morphological characteristics, the discovery of novel fungal species has 
seen a sudden rise and is expected to increase further (Jeewon & Hyde 2016). Based on the selection 
criteria for MMBs, medicinal, edible, and saprobic mushroom species can be screened and utilized 
in future experiments to develop superior-quality MMB products (Sydor et al. 2022). Diversifying 
the fungal species in MBBs may provide more efficient, sustainable, and economically viable 
solutions. 

Substrate concerns: MMBs development utilizes agricultural residues and forest by-products 
as basic feeding substrates for mycelium, which are rich in lignin, cellulose, and hemicellulose. 
Excessive use of these resources for MMBs might create competition for feed in animal husbandry. 
However, the trend of increasing agricultural production can address the availability of these by-
products (Aiduang et al. 2022a). Additionally, exploring diverse lignocellulosic substrates, such as 
pineapple peel, forest shrubs, banana plant fibres, and cactus fibres, could be an additional alternative 
for MBBs. 
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Contamination risks: A major challenge is contamination of MMBs by unwanted fungi or 
bacteria due to failure in maintaining a sterile environment. Sterilization of substrates, equipment, 
moulds, and the workspace requires specific protocols and implementation. Sterile conditions require 
efficient equipment and technical expertise. The culture must be pure, viable, and vigorous. 
Mushrooms are rich in antimicrobial compounds against gram-positive and gram-negative bacteria 
(Alves et al. 2012). In some mushroom species, the intrinsic antimicrobial properties of mycelium 
can help to reduce bacterial and other fungal growth in the final products (Amobonye et al. 2023). 
For instance, Phellinus ellipsoideus contains bioactive compounds that confer resistance to bacterial 
and fungal contamination, including protocatechuic acid, protocatechualdehyde, hispidin, hispolon, 
phelligridin, and inoscavin (Li et al. 2017, Amobonye et al. 2023). Selecting species with strong 
antimicrobial characteristics can further minimize contamination risks. 

Material characteristics: MMBs currently fall short in matching the mechanical strength, 
flexibility, water resistance, and durability of plastic-based products (Alaneme et al. 2023). Without 
proper treatment, MMBs are less fire-resistant than some synthetic materials, restricting their use to 
semi-structural and non-structural applications (Alaneme et al. 2023). To address these limitations, 
several efforts have been put forward, including reinforcing MMBs with wood or metals (Almpani-
Lekka et al. 2021). Additionally, treatments such as plasticizers, crosslinking agents, and post-
processing help address these issues, enhancing hydrophobicity, strength, and durability (Almpani-
Lekka et al. 2021, Elsacker et al. 2023). Moreover, the diversity of mushroom species offers an 
opportunity to overcome these challenges and improve material performance. 

Scaling-up production: Producing MMBs in large quantities and maintaining their consistent 
properties is a major challenge (Abhijith et al. 2018). This is feasible only by expanding the 
laboratory setup, which means industries. MMB production requires controlled environmental 
conditions, including temperature, relative humidity, aeration, incubation duration, and light 
exposure (Aiduang et al. 2024). The output of MMBs depends on mycelium growth, which is slower 
than that of synthetic material. However, the establishment of several industries for MMBs 
production has been a benchmark for further expansion. Additionally, contamination by unwanted 
fungi and bacteria is another challenge, mainly in the liquid-state surface fermentation method, 
requiring strict safety protocols during development (Gandia et al. 2021). Research into modifying 
growth conditions and ensuring a sterile environment could help mitigate this problem and enhance 
production efficiency. For instance, Crawford et al. (2024) introduced a method for cultivating 
mycelium leather on a paste medium, which could accelerate growth and ease harvesting. 

Economic viability: Financial investors invest their money and resources in a business, 
entreprise, or company, only under the conditions of getting profits over time. The total cost in a 
company refers to the combination of initial capital investment and operational or administrative 
costs. A primary raw input in MBBs production is low-cost agricultural residues and forest 
byproducts. However, other investments, such as land, labour, infrastructure, and equipment, also 
play a significant role in decision-making prior to startup. Additionally, market introduction and 
expansion of MBBs are still challenging due to stakeholder resistance from other companies with 
similar final uses, such as synthetic packaging or building products. However, the development of 
superior-quality products and increasing public demand for sustainable products provide strong 
support for the MBB industry. Scaling production and improving the quality of MMBs can address 
these cost-related limitations, making them more economically competitive in the market. 

Regulatory and market acceptance: Animal-based leather production has a significant 
economic impact, accounting for a market value of EUR 48 billion and producing 558,000 tons 
globally (FAO 2016, European Commission 2019). However, this industry has a negative 
environmental impact, causing greenhouse gas emissions and chemical pollution (Silva 2021). On 
the other hand, MMBs production is struggling to meet the safety and performance standards for 
applications in construction, packaging, and leather products. In addition, shifting industry and 
consumer perceptions and acceptance of MMBs remains time-consuming (Abhijith et al. 2018). 
Despite this, the demand for MMBs is increasing, and their effectiveness, such as thermal insulating 
biomaterials, is being recognized for maintaining suitable indoor environments (Al-Qahtani et al. 
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2023). To develop high-quality MMBs, extensive studies across a wide range of mushroom species, 
their production methods, and post-harvest treatments are required. With the success of MBB 
utilization, they can expand market coverage. 

Limited applications: Compared to plastic-based products or animal-based leather, the range of 
applications for MMBs remains relatively limited. MMBs are developed from liquid-state surface 
fermentation (LSSF) or solid-state fermentation (SSF). The harvested mycelium-based leather has 
not reached the quality of animal-based leather in terms of tensile strength, flexibility, and durability. 
Other parameters of MMBs, such as hydrodynamic and mechanical strength, are below the standards 
of the traditional and synthetic plastic-based materials. However, the MMBs have been utilized in 
packaging, insulation, architectural designs, and leather substitutes (Gandia et al. 2021). Additionally, 
MMBs have also been successful in specialized fields, such as biomedical scaffolds and electronic 
parts (Vasquez & Vega 2019a, Antinori et al. 2021, Danninger et al. 2022). Notably, ongoing 
intensive research and development in MMBs hold the potential to enhance their quality and enlarge 
their applications. 
 
Conclusions 

The MMBs are an innovative application of mushroom mycelium to develop environmentally 
friendly, biodegradable, and sustainable materials as an alternative to traditional synthetic products. 
The current review provides a checklist of all mushroom species used in the development of MMBs, 
at both the experimental and commercial scales. Based on the current trend of MMBs applications, 
the potential of underutilized and unexplored mushrooms could provide bright future opportunities 
for the MBBs sector. This study also examined the challenges faced in the MMB sector in mushroom 
species identification, substrate selection, their development, characterization, and marketing, and 
also discussed the possible opportunities for further improvements in relation to science, nature, 
economy, and people. The overall analysis of contemporary challenges, public awareness, research 
efforts, and opportunities reveals an impactful MMB industry that can drive a better future. 
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