

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของอุณหภูมิอากาศร้อนขาเข้าและปริมาณของแข็งทั้งหมดในสารสกัดชาเขียวที่มีต่อสมบัติทางเคมีและถ่ายภาพของผงสารสกัดชาเขียวที่ผ่านการทำแห้งแบบพ่นฟอย นำไปใช้ Camellia sinensis var. Oolong No. 12 มาบดด้วยเครื่องบดแบบค่อนที่ประกอบกับตะแกรงขนาดช่องเปิดเท่ากับ 5 มิลลิเมตร จากนั้นนำไปขับดีไปสกัดด้วยน้ำที่ผ่านการปรับพีเอช (ใช้กรดซิตริกในการปรับจนได้พีเอชเท่ากับ 5.0) และอัตราส่วนของชาบด 1 กิโลกรัมต่อน้ำ 20 ลิตร ใช้อุณหภูมิในการสกัดเท่ากับ 90 องศาเซลเซียส เวลาในการสกัด 60 นาที จากนั้นสารสกัดชาที่ได้จะนำไปทำให้เข้มข้นด้วยวิธีการแข็งเยือกแข็งจนได้สารสกัดชาที่มีปริมาณของแข็งทั้งหมดร้อยละ 3, 6 และ 9 จากนั้นนำสารสกัดชาเข้มข้นไปทำแห้งแบบพ่นฟอยโดยใช้สภาวะในการทำแห้งคือ อุณหภูมิอากาศร้อนขาเข้า 180, 200 และ 220 องศาเซลเซียส ควบคุมอุณหภูมิลมร้อนขาออกเท่ากับ 75 องศาเซลเซียส ความเร็วของพัดลมดูดอากาศเท่ากับ 2,500 รอบต่อนาที ผงสารสกัดจากชาเขียวที่ได้จะถูกเก็บในขวดแก้วปิดสนิท จากนั้นนำไปวิเคราะห์ทางเคมีและถ่ายภาพจากการทดลองพบว่าผงสารสกัดชาเขียวมีความหนาแน่นรวมอยู่ในช่วง 0.3933 ถึง 0.5014 g/cm³ ความสามารถในการละลายอยู่ในช่วงร้อยละ 75.56 ถึง 91.17 ความสามารถในการดูดซับน้ำร้อยละ 8.84 ถึง 17.84 ปริมาณความชื้นอยู่ในช่วงร้อยละ 2.33 ถึง 3.77 (ฐานเปียก) ปริมาณสารฟีโนลิกทั้งหมดอยู่ในช่วงร้อยละ 27.27 ถึง 30.55 w/w (ฐานแห้ง) และความสามารถในการต้านอนุมูลอิสระของผงสารสกัดชาเขียว เท่ากับ 218.805 ถึง 247.768 μmol Trolox/100 g (ฐานแห้ง) ปริมาณสารคาเทชินทั้งหมดอยู่ในช่วง 19.28 ถึง 23.23 g/100 g (ฐานแห้ง) และปริมาณสารคาเฟอีโนลอยู่ในช่วง 4.96 ถึง 5.64 g/100 g (ฐานแห้ง) เมื่อเพิ่มอุณหภูมิอากาศร้อนขาเข้าส่งผลทำให้ค่าความหนาแน่นรวม ความสามารถในการดูดซับน้ำ ปริมาณสารฟีโนลิกทั้งหมด และความสามารถในการต้านอนุมูลอิสระลดลง ทั้งนี้การเพิ่มอุณหภูมิอากาศร้อนขาเข้าส่งผลในลักษณะผันผวนต่อค่าสี (L, a และ b) และค่าความชื้น เมื่อเพิ่มปริมาณของแข็งทั้งหมดส่งผลทำให้ค่าความสามารถในการละลาย ค่าสี (L, a และ b) ค่าความสามารถในการต้านอนุมูลอิสระเพิ่มขึ้น การเพิ่มขึ้นของปริมาณของแข็งทั้งหมดส่งผลในลักษณะผันผวนต่อค่าความหนาแน่นรวม ความสามารถในการดูดซับน้ำ ปริมาณความชื้น และปริมาณสารคาเทชิน ทั้งนี้สภาวะที่ดีที่สุดสำหรับการทำแห้งแบบพ่นฟอยสารสกัดชาเขียวอุ่นเบอร์ 12 คือใช้อุณหภูมิอากาศร้อนขาเข้าเท่ากับ 220 องศาเซลเซียสและใช้สารสกัดชาเขียวที่มีปริมาณของแข็งทั้งหมดเท่ากับร้อยละ 9 ซึ่งจะทำให้ได้ผงสารสกัดชาเขียวที่มีความหนาแน่นรวม (bulk density) ต่ำ มีความสามารถในการละลาย (solubility) สูง มีความสามารถในการดูดซับน้ำ (hygroscopicity) ระดับปานกลาง มีปริมาณสารฟีโนลิกทั้งหมด (total phenolic content) สูง และความสามารถในการต้านอนุมูลอิสระ (antioxidant activity) สูง

Abstract

This research was carried out with the objective of studying the effect of inlet air temperature and total solid content of feeding tea extract on physical and chemical properties green tea extract powder. This study was also made to optimize the spray-drying condition of green tea extract. The dried tea leaves (*Camellia sinensis* var. Oolong No.12) were ground using a hammer mill equipped with a 5 mm sieve. Twenty litters of acidified water (pH=5.0) were heated until the temperature reached 90°C. A ground tea leaves (1.0 kg) was placed into the hot water for 60 minutes in order to obtain tea extract. The extract was then concentrated by freeze concentration unit until a total solid content of 3%, 6% and 9% (w/w) attained. The concentrated tea extracts were fed to a spray dryer. The pilot scale spray dryer was operated at the inlet air temperature of 180°C, 200°C and 220°C. The outlet air temperature was controlled at 75°C and the speed of exhaust fans was set at 2,500 rpm. The powder was collected in a glass jar connected to a cyclone and then assayed for physical and chemical properties. The results shown that bulk density ranged from 0.3933-0.5014 g/cm³, solubility varied between 75.56-91.17%, hygroscopicity ranged from 8.84-17.84%, moisture content ranged from 2.33-3.77% (w.b.). Total phenolic content was in the range of 27.27-30.55% (d.b.) and antioxidant activity (DPPH assay) varied between 218.805-247.768 µmol Trolox/100 g (d.b.). The value of total catechins content and caffeine content were 19.28-23.23 g/100 g (d.b.) and 4.96-5.64 g/100 g (d.b.) respectively. Results indicated that increasing in inlet air temperature caused decreasing in bulk density, hygroscopicity, total phenolic content and antioxidant capacity; resulted in variation of color (L, a and b) and moisture content. The values of solubility, color (L, a and b) and antioxidant activity increased with an increase in total solid content of feeding tea extract. An increased feed concentration resulted in the variation of bulk density, hygroscopicity, moisture content and catechins content. It can be concluded from the result that the optimum condition for spray drying Oolong green tea extract was 220°C of inlet air temperature and 9% total solid content of feeding tea extract. This condition provided the green tea powder with the lowest bulk density, high solubility, medium hygroscopicity, high total phenolic content and high antioxidant activity.