

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการทำแห้งโดยการอบแห้งที่ 60 องศาเซลเซียส โดยตู้อบแบบถูกต้อง และการตากแห้ง ต่อองค์ประกอบและฤทธิ์การต้านอนุมูลอิสระของเนื้อผลกาแฟอาราบิกา (coffee pulp, CP) โดยตัวอย่างเนื้อผลกาแฟได้รับความอนุเคราะห์จากบริษัท ดอยช้าง ออริจินัล จำกัด โดยการอบหรือตากแห้งตัวอย่าง CP จนความชื้นเหลือต่ำกว่า 13 เปอร์เซ็นต์ จึงวิเคราะห์ องค์ประกอบทางเคมี และปริมาณสารสำคัญ ได้แก่ ปริมาณสารประกอบฟินอลิกทั้งหมด (total phenolic content, TPC) ปริมาณสารฟลาโวนอยด์ทั้งหมด (total flavonoid content, TFC) กรด chlorogenic acid กาแฟอีน (caffeine) และแอนโทไซยานิน (anthocyanin) และฤทธิ์การต้านอนุมูลอิสระโดยวิธี DPPH และ FRAP เปรียบเทียบกับปริมาณสารสำคัญ และฤทธิ์การต้านอนุมูลอิสระในเนื้อผลกาแฟสด จากการทดลองพบว่า CP มีปริมาณของแข็งที่ละลายได้ทั้งหมด 0.60 องศาบริกซ์ ปริมาณกรดทั้งหมดที่ได้ต่ำสุดได้ 0.85 เปอร์เซ็นต์โดยน้ำหนัก และมีปริมาณเส้นใยที่ละลายไม่ได้ (insoluble fiber) และเส้นใยที่ละลายได้ (soluble fiber) 7.80 และ 1.03 เปอร์เซ็นต์ โดยน้ำหนักตามลำดับ จากการทดลองพบว่าปริมาณสารสำคัญในเนื้อผลกาแฟลดลงอย่างมีนัยสำคัญ หลังการทำแห้งทุกวิธี โดยพบว่าในเนื้อผลกาแฟตากแห้งมีปริมาณ TPC TFC และแอนโทไซยานินมีปริมาณน้อยกว่าในเนื้อผลกาแฟอบแห้ง ในขณะที่มีปริมาณกรดคลอโรจินิกมากกว่าอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับปริมาณสารสำคัญดังกล่าวในเนื้อผลกาแฟอบแห้ง อย่างไรก็ตามพบว่าปริมาณกาแฟอีนในเนื้อผลกาแฟที่ได้จากการทำแห้งทั้งสองวิธีไม่แตกต่างกันอย่างมีนัยสำคัญ นอกจากนี้ยังพบว่าฤทธิ์การต้านอนุมูลอิสระของเนื้อผลกาแฟแห้ง จากทั้งสองวิธีสอดคล้องกับปริมาณกรดคลอโรจินิกและแอนโทไซยานิน คือเนื้อผลกาแฟตากแห้งมีฤทธิ์การต้านอนุมูลอิสระสูงกว่าในเนื้อผลกาแฟอบแห้งอย่างมีนัยสำคัญ จึงสามารถสรุปได้ว่าวิธีการตากแห้งสามารถรักษาสารสำคัญในเนื้อผลกาแฟได้มากกว่าวิธีการอบแห้ง มีผลทำให้ฤทธิ์การต้านอนุมูลอิสระในเนื้อผลกาแฟตากแห้งมีมากกว่าเมื่อเปรียบเทียบกับฤทธิ์การต้านอนุมูลอิสระในเนื้อผลกาแฟอบแห้ง

คำสำคัญ: การตากแห้ง การอบแห้ง กรดคลอโรจินิก ผลิตผลพลอยได้ แอนโทไซยานิน

Abstract

This work was aimed to investigate the effect of drying methods on bioactive compounds and antioxidant activity of Arabica coffee pulp. The coffee pulp (CP) was obtained from DoiChaang Original Co. Ltd. Chaing Rai, Thailand. The CP was dried at 60 °C using tray dryer or sun dry until moisture content was less than 13 %. The bioactive compounds (total phenolic content (TPC), total flavonoid content (TFC), chlorogenic acid, caffeine and anthocyanin) and antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power (FRAP) assays) of the dried CP were determined and compared to those of the fresh CP. The results revealed that the total soluble solid (TSS), the titratable acidity (TA) and insoluble and soluble dietary fibre of the fresh CP were 0.60 °Brix, 0.85 % (w/w), 7.80 and 1.03 % (w/w), respectively. All bioactive compounds and antioxidant activity of the CP were significantly reduced after drying. TPC, TFC and anthocyanin of the sun dried CP were lower, whereas the chlorogenic acid was higher compared to those of the tray dried CP. However, there was no significant different in caffeine content of the CP obtained from both methods. The antioxidant activity of the sun dried CP was observed to be higher than those of the tray dried one. These results indicate that the sun drying method is potentially applicable for CP drying that could retain the bioactive compounds which contributed to the higher antioxidant activity in the pulp after drying.

Keywords: by-product, chlorogenic acid, anthocyanin, sun drying, tray drying