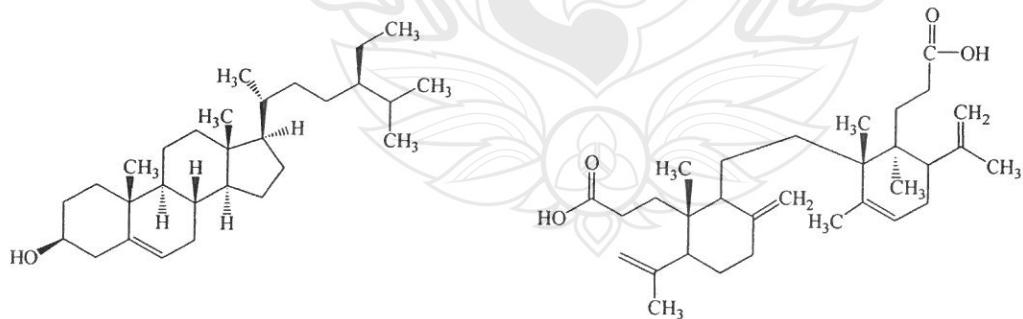


Bioactive substances from Tea (*Camellia sinensis*)

This research was made possible by a grant number 50201010004

from Mae Fah Luang University

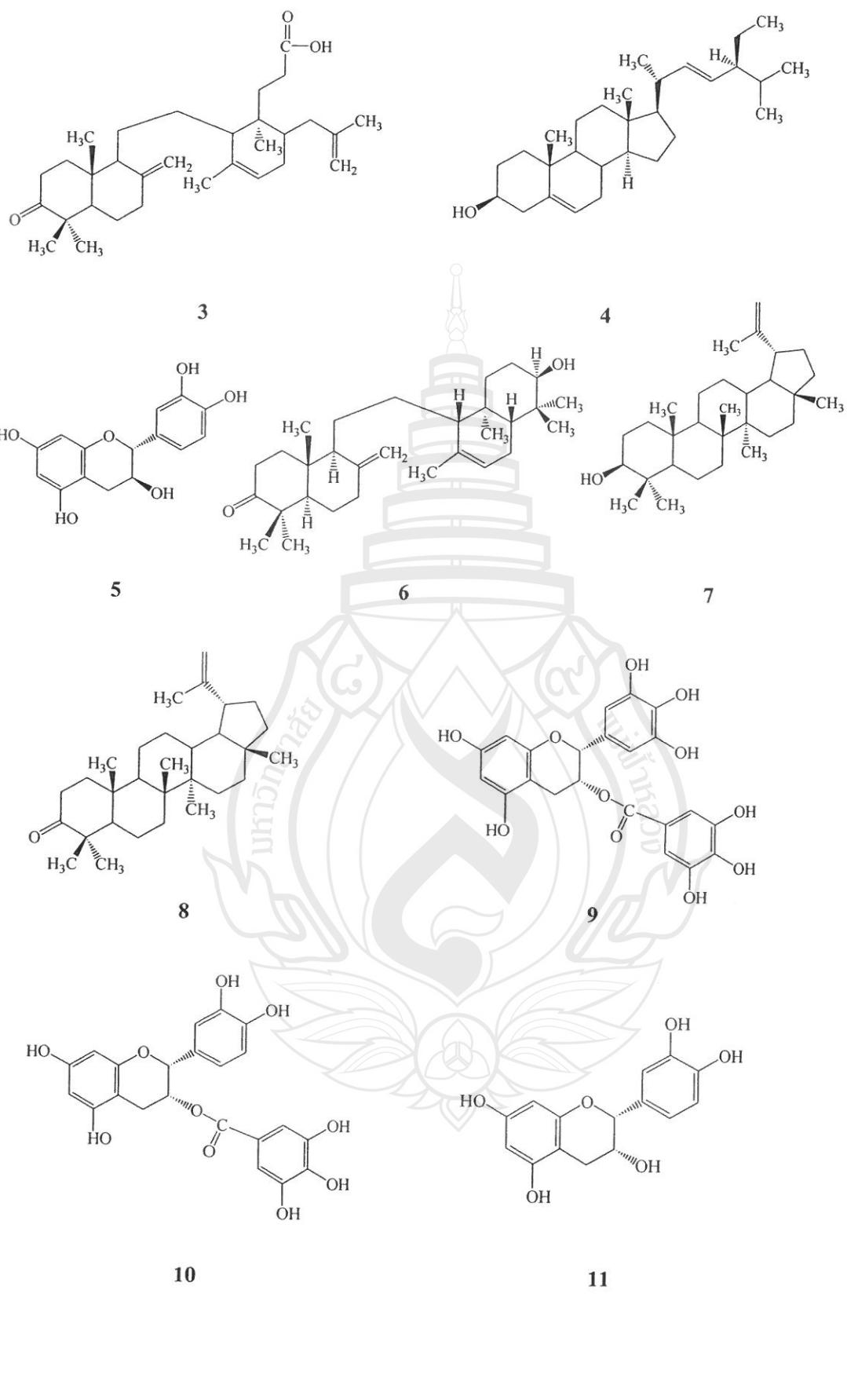
2010


PREFACE

Plants have been used worldwide in traditional medicines for the treatment of diseases. It is estimated that even today approximately two-thirds to three-quarters of the world's population rely only on medicinal plants as their primary source of medicines. The genus *Camellia* with some 100 species was found mainly in Eastern and Southeastern Asia. As early as three thousand years ago, Chinese people started to use tea, initially as remedy for detoxification. Starting from West Han period (206 BC to 23 AD) tea has become a daily drink. Today tea is accepted as one of the three major beverages worldwide, and is widely cultivated in the warm regions. Tea from *Camellia sinensis* and *Camellia assamica* is a popular beverage due to the presence of bioactive substances such as alkaloids and catechins. Green tea and its constituents catechins are best known for their antioxidant properties, which has led to their evaluation in a number of diseases associated with reactive oxygen species, such as cancer, cardiovascular and neurodegenerative diseases. Moreover, the extracts of green tea have been reported in the literature as an antioxidant in animal and vegetable oils. In addition, the antitumor activity of *di*- and *tri*-terpenes has been reported. The polyphenolic compounds present in green tea show cancer chemopreventive effect both *in vivo* and *in vitro*. Therefore, the study of phytochemistry and biological activities are very important because the information from the study of bioactive compounds will be used for development and apply into related fields, for example cosmetics, agricultures and pharmacy. Finally, I hope that the information from this research might be helpful for other researcher who needs to use the information.

ABSTRACT

Study on the chemical constituents of the dried leaves of *Camellia sinensis* var. *assamica* resulted in isolation of a new compound: 13-methyl lansic acid (**2**) and eleven known compounds: β -sitosterol (**1**), lansionic acid (**3**), stigmasterol (**4**), (+)catechin (**5**), 21*R*-hydroxyonocera-8(2b),14-dien-3-one (**6**), lupeol (**7**), lupenone (**8**), (-)epigallocatechin gallate (**9**), (-)epicatechin gallate (**10**) and (-)epicatechin (**11**). Their structures were elucidated on the basis of UV, IR and NMR spectroscopic data.


The compounds with sufficient quantity were evaluated for their antioxidation and antibacterial activities. Compounds **5**, **9**, **10** and **11** exhibited stronger antioxidant activity (IC_{50} 0.60, 0.23, 0.27 and 0.07 mM, respectively) than that of ascorbic acid (IC_{50} 1.75 mM) and BHT (IC_{50} 3.03 mM). These four compounds also showed the moderate activities to inhibit the growth of *Staphylococcus aureus*, *Escherichia coli*, *Bacillus cereus*, *Pseudomonas fluorescens* and *Salmonella typhimurium* with MIC 16-128 μ g/mL compared to those of gentamycin and vancomycin (0.5 μ g/mL).

1

2

(1)

ACKNOWLEDGMENT

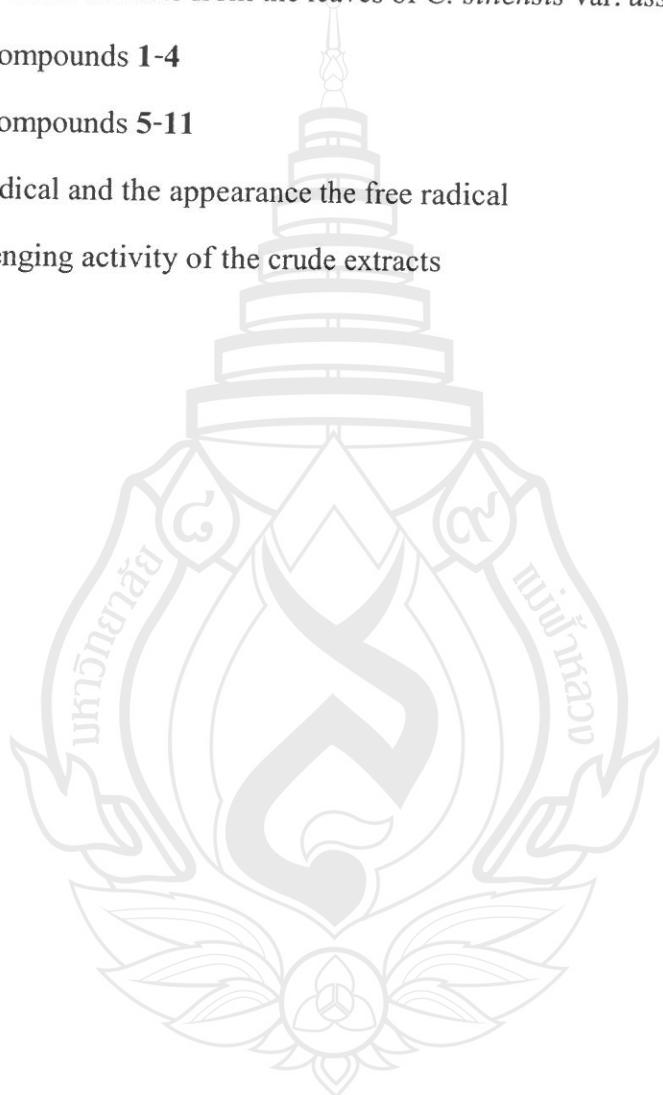
I would like to thank Mae Fah Luang University for financial support (Grant number 50201010004) and also very grateful to Associate Professor Dr. Uma Prawat, Department of Chemistry, Faculty of Science and Technology, Phuket Rajabhat University for providing some spectral data.

Suwanna Deachathai

TABLE OF CONTENTS

	Page
ABSTRACT	(1)
ACKNOWLEDGMENT	(3)
TABLE OF CONTENTS	(4)
LIST OF TABLES	(6)
LIST OF ILLUSTRATIONS	(7)
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Objectives	1
1.3 Scope of study	1
1.4 Benefit	2
1.5 Abbreviations and Symbols	2
CHAPTER 2 LITERATURE REVIEWS	5
2.1 General characteristics of <i>Camellia sinensis</i> var. <i>assamica</i>	5
2.2 Chemical constituents isolated from the leaves of <i>Camellia sinensis</i> var. <i>assamica</i>	6
2.3 Structure of compounds from the leaves of <i>Camellia sinensis</i> var. <i>assamica</i>	27
2.4 Biological activities of <i>Camellia sinensis</i> var. <i>assamica</i>	52
CHAPTER 3 METHODOLOGY	54
3.1 General methods	54
3.2 Plant material and microorganism culture materials	55
3.3 Extraction and Isolation	55
3.4 Purification	56
3.5 DPPH radical scavenging assay	62

3.6 Antimicrobial activity assays	64
CHAPTER 4 RESULTS AND DICUSSION	67
4.1 Spectroscopic data of pure compounds	67
4.2 Structural determination	73
4.3 Evaluation of antioxidative activity	96
4.4 Evaluation of antimicrobial activity	100
CHAPTER 5 CONCLUSION	103
REFERENCES	104
BIOGRAPHY	133



LIST OF TABLES

Table	Page
1 Compounds isolated from the leaves of <i>Camellia sinensis</i> var. <i>assamica</i>	6
2 Physical characteristic and weight of fractions obtained from CC of crude CH_2Cl_2 extract	57
3 Physical characteristic and weight of fractions obtained from QCC of crude MeOH extract	60
4 NMR spectral data of compound 1	74
5 NMR spectral data of compound 2	76
6 NMR spectral data of compound 3	78
7 NMR spectral data of compound 4	81
8 NMR spectral data of compound 5	82
9 NMR spectral data of compound 6	84
10 NMR spectral data of compound 7	86
11 NMR spectral data of compound 8	89
12 NMR spectral data of compound 9	91
13 NMR spectral data of compound 10	93
14 NMR spectral data of compound 11	95
15 IC_{50} values of tested crude extracts and standard antioxidants	98
16 % Inhibition of tested compounds and standard antioxidants (10 μM)	99
17 IC_{50} values of tested compounds and standard antioxidants	99
18 Antibacterial activity of crude extracts	101
19 Antibacterial activity of pure compounds	102

LIST OF ILLUSTRATIONS

Figure	Page
1 <i>Camellia sinensis</i> var. <i>assamica</i>	6
2 Extraction of crude extracts from the leaves of <i>C. sinensis</i> var. <i>assamica</i>	56
3 Isolation of compounds 1-4	58
4 Isolation of compounds 5-11	61
5 DPPH free radical and the appearance the free radical	96
8 Radical scavenging activity of the crude extracts	97

CHAPTER 1

INTRODUCTION

1.1 Statement and significance of the problem

Synthesis of many important drugs makes use of natural product starting materials. Researches are conducted in order to find major constituents with biological activity to be used as drugs or in synthesis of analog or derivatives. Pure compounds extracted from many plants and many parts of the plants are explored and tested for biological activities. However, elucidation of chemical constituents from natural products and biological activity testing are only the initial step in the process of study to find new compounds and acquire basic knowledge of biological activities. The important process is the application of the knowledge in pharmacology and medicine.

1.2 Objectives

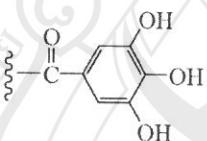
Up to the present, reports revealed the isolation of the chemical constituents, antimicrobial and antioxidation activities of green tea leaves cultivated and processed in Chiang Rai, Thailand, have not been more investigated, it was therefore of interest to investigate the chemical constituents and evaluate the antimicrobial and antioxidation activities of isolated compounds.

1.3 Scope of study

This research focused on isolation, purification, structural determination of the chemical constituents from the leaves of *Camellia sinensis* var. *assamica*, as well as evaluation of antimicrobial and antioxidation activities of the crude extracts and pure compounds.

1.4 Benefit

Camellia sinensis var. *assamica* which is one of the medicinal plants, was investigated for the chemical constituents and biological activities. Therefore, some active compounds might be applied into the cosmetic, pharmacy or agriculture. This work might be published in international journals.

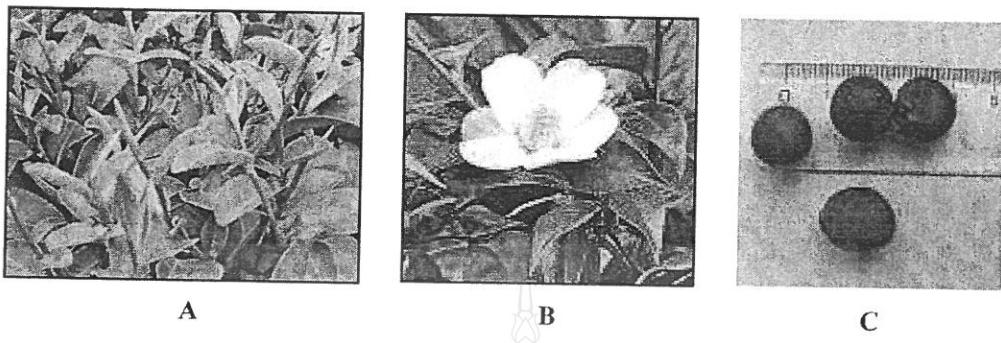

1.5 Abbreviations and Symbols

<i>s</i>	=	<i>singlet</i>
<i>d</i>	=	<i>doublet</i>
<i>t</i>	=	<i>triplet</i>
<i>q</i>	=	<i>quartet</i>
<i>m</i>	=	<i>multiplet</i>
<i>dd</i>	=	<i>doublet of doublet</i>
<i>qd</i>	=	<i>quartet of doublet</i>
<i>ddd</i>	=	<i>doublet of doublet of doublet</i>
<i>br s</i>	=	<i>broad singlet</i>
<i>g</i>	=	gram
<i>kg</i>	=	kilogram
<i>mg</i>	=	milligram
μg	=	microgram
<i> mM</i>	=	millimolar
<i> mL</i>	=	milliliter
<i> h</i>	=	hour
<i> min</i>	=	minute
<i> %</i>	=	percent
<i> nm</i>	=	nanometer
<i> cm³</i>	=	cubic centimeter

m.p.	=	melting point
cm^{-1}	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$[\alpha]_D$	=	specific rotation
λ_{max}	=	maximum wavelength
ν	=	absorption frequencies
ϵ	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
${}^{\circ}\text{C}$	=	degree celsius
Hz	=	hertz
MHz	=	megahertz
ppm	=	part per million
c	=	concentration
rpm	=	revolutions per minute
EIMS	=	Electron Impact Mass Spectrometry
IR	=	Infrared
UV	=	Ultraviolet-Visible
NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlated Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOE	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography

TLC	=	Thin Layer Chromatography
PLC	=	Preparative Thin Layer Chromatography
CH_2Cl_2	=	dichloromethane
Me_2CO	=	acetone
MeOH	=	methanol
TMS	=	tetramethylsilane
DMSO	=	dimethyl sulfoxide
CDCl_3	=	deuterochloroform
Acetone- d_6	=	hexadeuteroacetone
MICs	=	Minimum inhibition concentration
IC_{50}	=	50% Inhibition concentration
DPPH	=	1,1-diphenyl-2-picrylhydrazyl radical
BHT	=	butylated hydroxy toluene

Gallate moiety =


CHAPTER 2

LITERATURE REVIEWS

The genus *Camellia* with some 100 species was found mainly in Eastern and Southeastern Asia. As early as three thousand years ago, Chinese people started to use tea, initially as remedy for detoxification. Starting from West Han period (206 BC to 23 AD) tea has become a daily drink. Today tea is accepted as one of the three major beverages worldwide, and is widely cultivated in the warm regions (Xiao *et al.*, 2002). Tea from *Camellia sinensis* and *Camellia assamica* is a popular beverage due to the presence of bioactive substances such as alkaloids and catechins (Fernandez, *et al.*, 2003; Robb and Brown, 2001; Wang *et al.*, 2003).

2.1 General characteristics of *Camellia sinensis* var. *assamica*

Camellia sinensis var. *assamica* is widely distributed in northern, central and northeastern parts of Thailand. It has been known as “Assam” and belong to the family Theaceae. *C. sinensis* is a straggly shrub to 5 m, rarely becoming a small tree to 15 m. Bark is dark brown, smooth, thin, inner bark white. Leaves are dark green, 6-20 cm long and 2-6 cm broad, smooth and shiny, elliptic with a slightly pointed or tapering tip, blunt base and fine sharp teeth. Stalks are 0.5 cm, twigs dark brown, smooth and shiny. Flower axillary clusters of 1-3 large white or pale yellow flowers, 3.5-4.5 cm across with 5-6 spreading, rounded petals, many bright yellow stamens and a single 2-3 tipped style. Stalks woody, about 1 cm long. Fruits are 1.1-1.5 cm, rounded, splitting into 2-3 sections with many wingless seeds.

Figure 1 *Camellia sinensis* var. *assamica*:
(A) leaves, (B) flower and (C) seeds

2.2 Chemical constituents from the leaves of *Camellia sinensis* var. *assamica*

According to the information from NAPRALERT database developed by University of Illinois at Chicago and Chemical Abstracts, chemical constituents isolated from the leaves of *Camellia sinensis* var. *assamica* are presented in Table 1.

Table 1 Compounds isolated from the leaves of *Camellia sinensis* var. *assamica*

Compound	Structure	Reference
2,4-dimethylacetophenone	1	Vitzthum <i>et al.</i> , 1975
3,4-dimethoxyacetophenone	2	
<i>p</i> -ethylacetophenone	3	
1,3-diacetylbenzene	4	
1,4-diacetylbenzene	5	
<i>N</i> -ethylaniline	6	
<i>N</i> -methylaniline	7	
benzothiazole	8	
2-methylbenzothiazole	9	

Table 1 (continued)

Compound	Structure	Reference
benzoxazole	10	Vitzthum <i>et al.</i> , 1975
<i>N,N</i> -dimethylbenzylamine	11	
<i>N</i> -ethyl propionamide	12	
ligustrazine	13	
2,3-dimethyl pyrazine	14	
2,5-dimethyl pyrazine	15	
2,6-dimethyl pyrazine	16	
2-ethyl-3,5-dimethyl pyrazine	17	
2-ethyl-3,6-dimethyl pyrazine	18	
2-ethyl-5-methyl pyrazine	19	
2-ethyl-6-methyl pyrazine	20	
ethyl pyrazine	21	
methyl pyrazine	22	
trimethyl pyrazine	23	
2,4-dimethyl propiophenone	24	
<i>p</i> -ethyl propiophenone	25	
2,5-dimethyl pyridine	26	
2,6-dimethyl pyridine	27	
2-acetyl pyridine	28	
2-ethyl pyridine	29	
2-methyl pyridine	30	
2-methyl-5-ethyl pyridine	31	
2-methyl-6-ethyl pyridine	32	
2-phenyl pyridine	33	
3-ethyl pyridine	34	
3-methoxy pyridine	35	
3-methyl pyridine	36	

Table 1 (continued)

Compound	Structure	Reference
3- <i>N</i> -butyl pyridine	37	Vitzthum <i>et al.</i> , 1975
3-phenyl pyridine	38	
4-methyl pyridine	39	
3-vinyl pyridine	40	
2,4-dimethyl quinoline	41	
2,6-dimethyl quinoline	42	
2-methyl quinoline	43	
3- <i>N</i> -propyl quinoline	44	
4,8-dimethyl quinoline	45	
4- <i>N</i> -butyl quinoline	46	
6-methyl quinoline	47	
2,4,5-trimethyl thiazole	48	
2,4-dimethyl thiazole	49	
2,5-dimethyl thiazole	50	
2,5-dimethyl-4-ethyl thiazole	51	
5-methyl thiazole	52	
<i>o</i> -toluidine	53	
dihydro actinidiolide	54	Etoh and Iguchi, 1980
1',2'-epoxy 1',2'-dihydro- β -ionone	55	
1',2'- <i>threo</i> -1',2'-dihydroxy- β -ionone	56	
loliolide	57	
3(<i>S</i>)-7-dimethylocta-1,5,7-trien-3-ol	58	
(+)-3(<i>S</i>)-7-dimethylocta-1,5-diene-3,7-diol	59	
heaspirone	-	
dehydro vomifoliol	-	
(-)- <i>epi</i> -afzelechin	60	Davis <i>et al.</i> , 1996; Hashimoto <i>et al.</i> , 1989(a)

Table 1 (continued)

Compound	Structure	Reference
3- <i>O</i> -gallate- <i>epi</i> -afzelechin	61	Hashimoto <i>et al.</i> , 1989(a)
assamicain A-C	62-64	
3,3'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	65	
3,4'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	66	
3,5-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	67	
3- <i>O</i> -caffeoate- <i>epi</i> -gallocatechin	68	
3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	69	
3,5-di- <i>O</i> -gallate- <i>epi</i> -catechin	71	
(-)-3- <i>O</i> -gallate- <i>epi</i> -afzelechin	61	Hashimoto <i>et al.</i> , 1987; 1992
catechin-(4- α -8)-3-gallate- <i>epi</i> -gallocatechin	74	Hashimoto <i>et al.</i> , 1989(b)
<i>epi</i> -catechin-(4- β -8)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	79	
3- <i>O</i> -gallate- <i>epi</i> -catechin-(4- β -8)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	80	
3- <i>O</i> -gallate- <i>epi</i> -catechin-(4- β -6)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	86	
3,3'-di- <i>O</i> -gallate-procyanidin B-5	87	
β -glucogallin	88	
3,3'-di- <i>O</i> -gallate-prodelphinidin B-2	89	
3'- <i>O</i> -gallate-prodelphinidin B-2	90	
3'- <i>O</i> -gallate-prodelphinidin A-2	-	
3,3'-di- <i>O</i> -gallate-prodelphinidin B-5	-	
oolonghomobisflavan A	-	
oolonghomobisflavan B	-	
apigenin	91	Cheng <i>et al.</i> , 1987
camellianin A	-	
camellianin B	-	

Table 1 (continued)

Compound	Structure	Reference
6,8-di-C- β -D-arabinopyranosyl-apigenin	92	Chaboud <i>et al.</i> , 1986
2"-O-glucoside iso vitexin	-	
arbutin	93	Deisinger <i>et al.</i> , 1996
astragalin	94	Ozawa, 1982; Price <i>et al.</i> , 1998
avicularin	95	Price <i>et al.</i> , 1998
3-O-glucosyl-rhamnosyl-galactoside-kaempferol	96	
3-O-galactosyl-rhamnosyl-glucoside-kaempferol	97	
3-O-glucosyl-rhamnoside-kaempferol	98	
quercitrin	99	
trifolin	100	
1,2,3-trimethoxybenzene	101	Gong <i>et al.</i> , 1993
1,2,3-trimethoxy-5-ethylbenzene	102	
1,2,3-trimethoxy-5-methylbenzene	103	
1,2-dimethoxybenzene	104	
1,2-dimethoxy-4-ethylbenzene	105	
1,2-dimethoxy-4-methylbenzene	106	
2-methylbenzaldehyde	107	Renold <i>et al.</i> , 1974
4-methoxybenzaldehyde	108	
benzylbutyrate	109	
benzyl ethyl ketone	110	
carvacrol	111	
β -cyclocitral	112	
2,6,6-trimethyl cyclohex-2-en-1,4-dione	113	
2,6,6-trimethyl-cyclohex-2-en-1-one	114	
β -damascenone	115	
α -damascone	116	
β -damascone	117	

Table 1 (continued)

Compound	Structure	Reference
deca- <i>trans</i> -2- <i>cis</i> -4-dien-1-al	118	Renold <i>et al.</i> , 1974
deca- <i>trans</i> -2-en-1-al	119	
4-ethyl-7,11-dimethyl-dodeca- <i>trans</i> -2- <i>trans</i> -6,10-trien-1-al	120	
2-acetyl furan	121	
<i>trans</i> -geranic acid	122	
heptan-2-one	123	
5-isopropyl-heptan-2-one	124	
hepta- <i>trans</i> -2-en-1-al	125	
5-methyl-2-phenyl-hex-2-en-1-al	126	
<i>trans</i> -2- <i>cis</i> -4-hexadien-1-al	127	
hex- <i>cis</i> -3-en-1-ol formate	128	
<i>cis</i> -3-hexen-1-ol- <i>trans</i> -2-hexenoate	129	
hex- <i>cis</i> -3-hexen-1-ol propionate	130	
hex- <i>trans</i> -2-enyl acetate	131	
hex- <i>trans</i> -2-enyl butyrate	132	
hex- <i>trans</i> -2-enyl formate	133	
hex- <i>trans</i> -2-enyl hexanoate	134	
hex- <i>trans</i> -2-enyl propionate	135	
hex- <i>trans</i> -3-enyl butyrate	136	
hex- <i>trans</i> -3-enyl hex- <i>cis</i> -3-enoate	137	
hex- <i>trans</i> -3-enyl propionate	138	
hex- <i>trans</i> -3-enyl-2-methyl butyrate	139	
hexyl butyrate	140	
hexyl formate	141	

Table 1 (continued)

Compound	Structure	Reference
nonan-2-one	142	Renold <i>et al.</i> , 1974
nona- <i>trans</i> -2- <i>cis</i> -4-dien-1-al	143	
nona- <i>trans</i> -2- <i>cis</i> -6-dien-1-al	144	
nona- <i>trans</i> -2-en-1-al	145	
nona- <i>trans</i> -2- <i>trans</i> -4-dien-1-al	146	
octan-2-one	147	
ethyl octanoate	148	
methyl octanoate	149	
octa- <i>trans</i> -2-enoic acid	150	
octa- <i>trans</i> -2- <i>cis</i> -4-dien-1-al	151	
octa- <i>trans</i> -2- <i>trans</i> -4-dien-1-al	152	
octa- <i>trans</i> -3- <i>cis</i> -5-dien-2-one	153	
4-methyl-2-phenyl pent-2-en-1-al	154	
pent- <i>cis</i> -3-en-1-al	155	
ethyl phenyl acetate	156	
hexyl phenyl acetate	157	
phenyl acetic acid	158	
safranal	159	
4-terpineol	160	
theaspirane	161	
thymol	162	
6,10-dimethyl undecan-2-one	163	
undeca- <i>trans</i> -2-en-1-al	164	
neral	165	
safrolephenylpropanoid	-	
6,7-epoxy dihydro theaspirane	-	
6-hydroxy dihydro theaspirane	-	

Table 1 (continued)

Compound	Structure	Reference
3- <i>O</i> - β -D-galactopyranosyl(1 \rightarrow 2)- β -D-xylopyranosyl(1 \rightarrow 2)- α -L-arabinopyranosyl(1 \rightarrow 3)- β -D-glucuronopyranosyl-21- <i>O</i> -cinnamoyl-16,22-di- <i>O</i> -acetyl barringtogenol C	-	Sagesaka <i>et al.</i> , 1994
1,2,4-trihydroxybenzene	166	Kaiser, 1967
1,2,5-trihydroxybenzene	167	
1,3,4-trihydroxybenzene	168	
1,3,5-trihydroxybenzene	169	
<i>m</i> -cresol	170	
<i>o</i> -cresol	171	
<i>p</i> -cresol	172	
brassinolide	173	Ikekawa <i>et al.</i> , 1984
24-ethylbrassinone	174	
28-norbrassinolide	175	Takatsuto <i>et al.</i> , 1982
6-keto-28-homo-brassinolide	176	
6-ketobrassinolide	177	
6-keto-28-norbrassinolide	178	
brassinone	179	Abe <i>et al.</i> , 1983; Ikekawa <i>et al.</i> , 1984
24(<i>S</i>)-ethylbrassinone	180	Abe <i>et al.</i> , 1983
butan-2-ol	181	Stalcup <i>et al.</i> , 1993
ethyl-3-hydroxy butyrate	182	
butyroin	183	
ethyl lactate	184	
2-methyl-tetrahydro-furan-3-one	185	
α -ionone	186	

Table 1 (continued)

Compound	Structure	Reference
limonene	187	Stalcup <i>et al.</i> , 1993
menthol	188	
α -pinene	189	
caffeine	190	Anon, 1976; Apostolides <i>et al.</i> , 1996; Ashihara <i>et al.</i> , 1997; Ashihara and Kubota, 1987; Bellakhdar <i>et al.</i> , 1993; Blauch and Tarka, 1983; Chen and Li, 1984; Dalluge <i>et al.</i> , 1998; Dulitzky <i>et al.</i> , 1984; Fujimori <i>et al.</i> , 1991; Fujimori and Ashihara, 1994; Gong <i>et al.</i> , 1993; Goto <i>et al.</i> , 1996; Hashimoto <i>et al.</i> , 1992; Higuchi <i>et al.</i> , 1995; Horie and Kohata, 1998; Ikegaya, 1985; Jeeraphan, 1951; Kato <i>et al.</i> , 1996; Lin <i>et al.</i> , 1998; Ma and Zhang, 1982; Maruyama <i>et al.</i> , 1990; Matsuda <i>et al.</i> , 1986; Matsura <i>et al.</i> , 1991; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Nagata and Sakai, 1985; Ozawa, 1982; Poncini, 1979; Sakata <i>et al.</i> , 1991; Segawa <i>et al.</i> , 1988; Shervington <i>et al.</i> , 1998; Spiro <i>et al.</i> , 1992; Spiro, 1997; Suzuki and Takahashi, 1975; Suzuki and Takahashi, 1976(a); 1976(b); 1976(c); Tanizawa <i>et al.</i> , 1984; Tsunoda <i>et al.</i> , 1996; Valcic <i>et al.</i> , 1996; Yen and Chen, 1996; Yokozawa <i>et al.</i> , 1995; Zhang <i>et al.</i> , 1991; 1995; Zhu <i>et al.</i> , 1992
castasterone	191	Abe <i>et al.</i> , 1983; Ikekawa <i>et al.</i> , 1984
(+)-catechin	192	Ahn <i>et al.</i> , 1991; Anon, 1984; Cho <i>et al.</i> , 1993; Dalluge <i>et al.</i> , 1998; Davis <i>et al.</i> , 1996; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Hashimoto <i>et al.</i> , 1987; 1992; Koretskaya and Zaprometov, 1975; Lin <i>et al.</i> , 1996; 1998; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Nakazato <i>et al.</i> , 1996; Namiki, 1990; Nonaka <i>et al.</i> , 1983

Table 1 (continued)

Compound	Structure	Reference
(+)-catechin	192	Otake <i>et al.</i> , 1991; Ozawa, 1982; Pearson <i>et al.</i> , 1998; Saijo, 1982; Sakanaka <i>et al.</i> , 1989(c); Sanq <i>et al.</i> , 1999; Tanizawa <i>et al.</i> , 1984; Yamane <i>et al.</i> , 1996; Yokozawa <i>et al.</i> , 1995; Zhang <i>et al.</i> , 1995; Zhu <i>et al.</i> , 1992
(+)-3- <i>O</i> -gallate-catechin	193	Goto <i>et al.</i> , 1996
(+)-3- <i>O</i> -gallate-gallocatechin	194	
(+)-3- <i>O</i> -gallate-gallocatechin	194	Dalluge <i>et al.</i> , 1998; Sakanaka <i>et al.</i> , 1995
(+)-3- <i>O</i> -gallate-catechin	193	Davis <i>et al.</i> , 1996
(+)-3- <i>O</i> -gallate-gallocatechin	194	
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)-epi-gallocatechin	197	
(+)-gallocatechin	195	Ahn <i>et al.</i> , 1991; Cho <i>et al.</i> , 1993; Davis <i>et al.</i> , 1996; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Hashimoto <i>et al.</i> , 1992; Miyagawa <i>et al.</i> , 1997; Otake <i>et al.</i> , 1991; Saijo, 1982; Sakanaka <i>et al.</i> , 1989(c); Sanq <i>et al.</i> , 1999; Shu <i>et al.</i> , 1991; Valcic <i>et al.</i> , 1996; Yokozawa <i>et al.</i> , 1995
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)-epi-catechin	196	Saijo, 1982
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)-epi-gallocatechin	197	
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)-epi-gallocatechin	197	Sanq <i>et al.</i> , 1999
(-)-3- <i>O</i> -(4- <i>O</i> -methyl-gallate)-epi-gallocatechin	198	

Table 1 (continued)

Compound	Structure	Reference
3- <i>O</i> -gallate-epi-gallocatechin	69	Kakiuchi <i>et al.</i> , 1985
(-)-3- <i>O</i> -gallate-epi-gallocatechin	69	Park and Boo, 1991; Ruch <i>et al.</i> , 1989; Zhu <i>et al.</i> , 1992
(-)-3- <i>O</i> -gallate-epi-gallocatechin	69	Hashimoto <i>et al.</i> , 1987; Saijo, 1982
(-)-3- <i>O</i> -gallate-epi-gallocatechin	69	Lee and Lin, 1985
(-)-epi-gallocatechin	70	Hashimoto <i>et al.</i> , 1989(a) ; Lee and Lin, 1985; Nonaka <i>et al.</i> , 1983; Okada, 1978
(-)-epi-catechin	72	Ahn <i>et al.</i> , 1991; Anon, 1984; 1985; Apostolides <i>et al.</i> , 1996; Dalluge <i>et al.</i> , 1998; Davis <i>et al.</i> , 1996; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Hashimoto <i>et al.</i> , 1987; 1989(a); 1992; Horie and Kohata, 1998; Kada <i>et al.</i> , 1985; Katiyar <i>et al.</i> , 1992; Katiyar and Bhatia, 1992; Lee and Lin, 1985; Li <i>et al.</i> , 1992; Lin <i>et al.</i> , 1996; 1998; Matsuda <i>et al.</i> , 1986; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Nakazato <i>et al.</i> , 1996; Namiki, 1990; Nonaka <i>et al.</i> , 1983; Okada, 1978; Otake <i>et al.</i> , 1991; Ozawa, 1982; Pearson <i>et al.</i> , 1998; Roder, 1982; Ruch <i>et al.</i> , 1989; Saijo, 1982; Sakanaka <i>et al.</i> , 1989(b); 1989(c); 1995; Sakata <i>et al.</i> , 1991; Sanq <i>et al.</i> , 1999; Shiragami <i>et al.</i> , 1995; Shu <i>et al.</i> , 1991; Tanizawa <i>et al.</i> , 1984; Ui <i>et al.</i> , 1991; Valcic <i>et al.</i> , 1996; Yamane <i>et al.</i> , 1996; Yen and Chen, 1996; Yokozawa <i>et al.</i> , 1995; Zhang <i>et al.</i> , 1991; 1995; Zhu <i>et al.</i> , 1992

Table 1 (continued)

Compound	Structure	Reference
(-)-3- <i>O</i> -gallate-epi-catechin	73	Ahn <i>et al.</i> , 1991; Anon, 1984; 985; Apostolides <i>et al.</i> , 1996; Cho <i>et al.</i> , 1993; Dalluge <i>et al.</i> , 1998; Davis <i>et al.</i> , 1996; Furukawa and Kawakita, 1987; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Hashimoto <i>et al.</i> , 1987; 1989(a); 1992; Horie and Kohata, 1998; Kada <i>et al.</i> , 1985; Katiyar <i>et al.</i> , 1992; Katiyar and Bhatia, 1992; Lee and Lin, 1985; Li <i>et al.</i> , 1992; Lin <i>et al.</i> , 1996; 1998; Matsuda <i>et al.</i> , 1986; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Nakazato <i>et al.</i> , 1996; Nonaka <i>et al.</i> , 1983; Okada, 1978; Otake <i>et al.</i> , 1991; Ozawa, 1982; Ruch <i>et al.</i> , 1989; Saijo, 1982; Sakanaka <i>et al.</i> , 1989(a); 1989(c); Sakata <i>et al.</i> , 1991; Sanq <i>et al.</i> , 1999; Shiragami <i>et al.</i> , 1995; Tsunoda <i>et al.</i> , 1989; Valcic <i>et al.</i> , 1996; Yen and Chen, 1996; Yokozawa <i>et al.</i> , 1995; Zhang <i>et al.</i> , 1995; Zhu <i>et al.</i> , 1992
epi-gallo-catechin-(4- β -8)-3- <i>O</i> -galloyl-epi-catechin	81	Nonaka <i>et al.</i> , 1984
1- <i>O</i> -galloyl-4-6-(-)-hexahydroxy-diphenoyl- β -D-glucose	-	
catechin-(4- α -8)-epi-gallocatechin	75	Hashimoto <i>et al.</i> , 1989(a); 1989(b)
gallocatechin-(4- α -8)-epi-catechin	76	
procyanidin B-2	83	
3,3'-di- <i>O</i> -gallate-procyanidin B-2	84	Hashimoto <i>et al.</i> , 1989(a); 1989(b); 1992; Nonaka <i>et al.</i> , 1983

Table 1 (continued)

Compound	Structure	Reference
3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	69	Kada <i>et al.</i> , 1985; Okada, 1978
(-)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	69	Ahn <i>et al.</i> , 1991; Anon, 1985; Apostolides <i>et al.</i> , 1996; Boo and Jeon, 1993; Chisaka <i>et al.</i> , 1988; Cho <i>et al.</i> , 1993; Dalluge <i>et al.</i> , 1998; Davis <i>et al.</i> , 1996; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Horie and Kohata, 1998; Katiyar <i>et al.</i> , 1992; Li <i>et al.</i> , 1992; Lin <i>et al.</i> , 1996; Matsuda <i>et al.</i> , 1986; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Mukoyama <i>et al.</i> , 1991; Nakazato <i>et al.</i> , 1996; Oosu <i>et al.</i> , 1991; Otake <i>et al.</i> , 1991; Ozawa, 1982; Sakanaka <i>et al.</i> , 1989(c); Sakata <i>et al.</i> , 1991; Sanq <i>et al.</i> , 1999; Shiragami <i>et al.</i> , 1995; Spiro, 1997; Tsunenari <i>et al.</i> , 1992; Tsunoda <i>et al.</i> , 1989; Unno <i>et al.</i> , 1996; Valcic <i>et al.</i> , 1996; Watanabe <i>et al.</i> , 1998; Yamane <i>et al.</i> , 1996; Yen and Chen, 1996; Yeo <i>et al.</i> , 1995; Yokozawa <i>et al.</i> , 1992; 1993; 1995; Yoshioka <i>et al.</i> , 1996; Yoshizawa <i>et al.</i> , 1987; Zhang <i>et al.</i> , 1991; 1995
<i>epi</i> -gallocatechin	70	Anon, 1984
camellia galactoglucan	-	Takeo <i>et al.</i> , 1992
camellia polysaccharide	-	Wang and Wang, 1991
deacyl camellia saponin B	-	Kitagawa <i>et al.</i> , 1995
camellia sinensis polysaccharidetsa	-	Fang <i>et al.</i> , 1991

Table 1 (continued)

Compound	Structure	Reference
(-)-epi-gallocatechin	70	Anon, 1985; Apostolides <i>et al.</i> , 1996; Boo and Jeon, 1993; Cho <i>et al.</i> , 1993; Davis <i>et al.</i> , 1996; Goto <i>et al.</i> , 1996; Hagiwara <i>et al.</i> , 1991; Hashimoto <i>et al.</i> , 1987; 1992; Horie and Kohata, 1998; Katiyar <i>et al.</i> , 1992; Katiyar and Bhatia, 1992; Li <i>et al.</i> , 1992; Lin <i>et al.</i> , 1998; Matsuda <i>et al.</i> , 1986; Min and Peigen, 1991; Miyagawa <i>et al.</i> , 1997; Otake <i>et al.</i> , 1991; Ozawa, 1982; Roder, 1982; Ruch <i>et al.</i> , 1989; Saijo, 1982; Sakanaka <i>et al.</i> , 1989(c); 1995; Sakata <i>et al.</i> , 1991; Sanq <i>et al.</i> , 1999; Shu <i>et al.</i> , 1991; Valcic <i>et al.</i> , 1996; Yen and Chen, 1996; Yokozawa <i>et al.</i> , 1995; Zhang <i>et al.</i> , 1991; 1995; Zhu <i>et al.</i> , 1992
(-)-3,3'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	65	Nonaka <i>et al.</i> , 1983
(-)-3,4'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	66	
(-)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	69	
3'- <i>O</i> -gallate-procyanidin B-2	85	
3- <i>O</i> - <i>p</i> -coumaroae-(<i>-</i>)- <i>epi</i> -gallocatechin	-	
(-)-3,3'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	65	Hashimoto <i>et al.</i> , 1987
(-)-3,4'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	66	
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)- <i>epi</i> -catechin	196	
(-)-3- <i>O</i> -(4- <i>O</i> -methyl-gallate)- <i>epi</i> -catechin	198	

Table 1 (continued)

Compound	Structure	Reference
(-)-3- <i>O</i> -cinnamate- <i>epi</i> -gallocatechin	-	Hashimoto <i>et al.</i> , 1987
(-)-3- <i>O</i> - <i>p</i> -coumaroate- <i>epi</i> -gallocatechin	-	
(-)-3- <i>O</i> - <i>p</i> -hydroxy-benzoate- <i>epi</i> -catechin	-	
(-)-3- <i>O</i> -gallate- <i>epi</i> -gallocatechin	69	Hashimoto <i>et al.</i> , 1992
3- <i>O</i> -gallate- <i>epi</i> -gallo-catechin-(4- β -8)-gallate- <i>epi</i> -catechin	82	
(-)-3- <i>O</i> -(3- <i>O</i> -methyl-gallate)- <i>epi</i> -catechin	196	
(-)-3,5'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin	199	
3- <i>O</i> -gallate- <i>epi</i> -theaflagallin	200	
theaflavonin	201	
degalloyl theaflavonin	202	
1,4,6-tri- <i>O</i> -galloyl- β -D-glucose	-	
(-)-3- <i>O</i> - <i>p</i> -coumaroate- <i>epi</i> -gallocatechin	-	
gallate-catechin	203	Sakanaka <i>et al.</i> , 1995
(-)-3-gallate-gallicatechin	204	Taniguchi <i>et al.</i> , 1988
(-)-3-gallate-gallicatechin	204	Katiyar and Bhatia, 1992; Lin <i>et al.</i> , 1998
(-)-3-gallate-gallicatechin	204	Yokozawa <i>et al.</i> , 1995
(-)-gallicatechin	205	Lin <i>et al.</i> , 1998
chlorogenic acid	206	Ozawa, 1982; Zaprometov <i>et al.</i> , 1976
diphenylamine	207	Karawya <i>et al.</i> , 1984; 1986
<i>trans,trans</i> - α -farnesene	-	Nobumoto <i>et al.</i> , 1990
4-hydroxy-2'-methoxy angular-furocoumarin	-	Banerjee and Ganguly, 1997
citric acid	-	Ding <i>et al.</i> , 1997

Table 1 (continued)

Compound	Structure	Reference
farnesol	208	Lin <i>et al.</i> , 1984
<i>N</i> -hexadecane	209	
hex- <i>cis</i> -3-en-1-ol acetate	210	
hex- <i>cis</i> -3-en-1-ol butyrate	211	
hex- <i>cis</i> -3-en-1-ol caproate	212	
jasmonic acid methyl ester	213	
myrcene	214	
2,6,10,14-tetramethyl pentadecane	215	
linalool oxide A	-	
linalool oxide B	-	
linalool oxide C	-	
gallic acid	216	Apostolides <i>et al.</i> , 1996; Gong <i>et al.</i> , 1993; Hashimoto <i>et al.</i> , 1992; Lin <i>et al.</i> , 1998; Maruyama <i>et al.</i> , 1992; Okada, 1978; Ozawa, 1982; Zhang <i>et al.</i> , 1991
geraniol	217	Lee and Lin, 1985; Lin <i>et al.</i> , 1982; Morita <i>et al.</i> , 1994
hyperoside	218	Imperato, 1980; Mikaberidze <i>et al.</i> , 1974(a); Price <i>et al.</i> , 1998
indole-3-methyl-ethanoate	219	Roy and Ganguly, 1997
β -ionone	220	Lin <i>et al.</i> , 1982
oxide <i>trans</i> -linalool	221	
jasmone	222	Lin <i>et al.</i> , 1982; 1984
<i>cis</i> -jasmone	223	
(-)-methyl ester (1 <i>R</i> ,2 <i>R</i>) jasmonic acid	224	Wang <i>et al.</i> , 1996
(+)-methyl ester (1 <i>R</i> ,2 <i>S</i>) jasmonic acid	225	

Table 1 (continued)

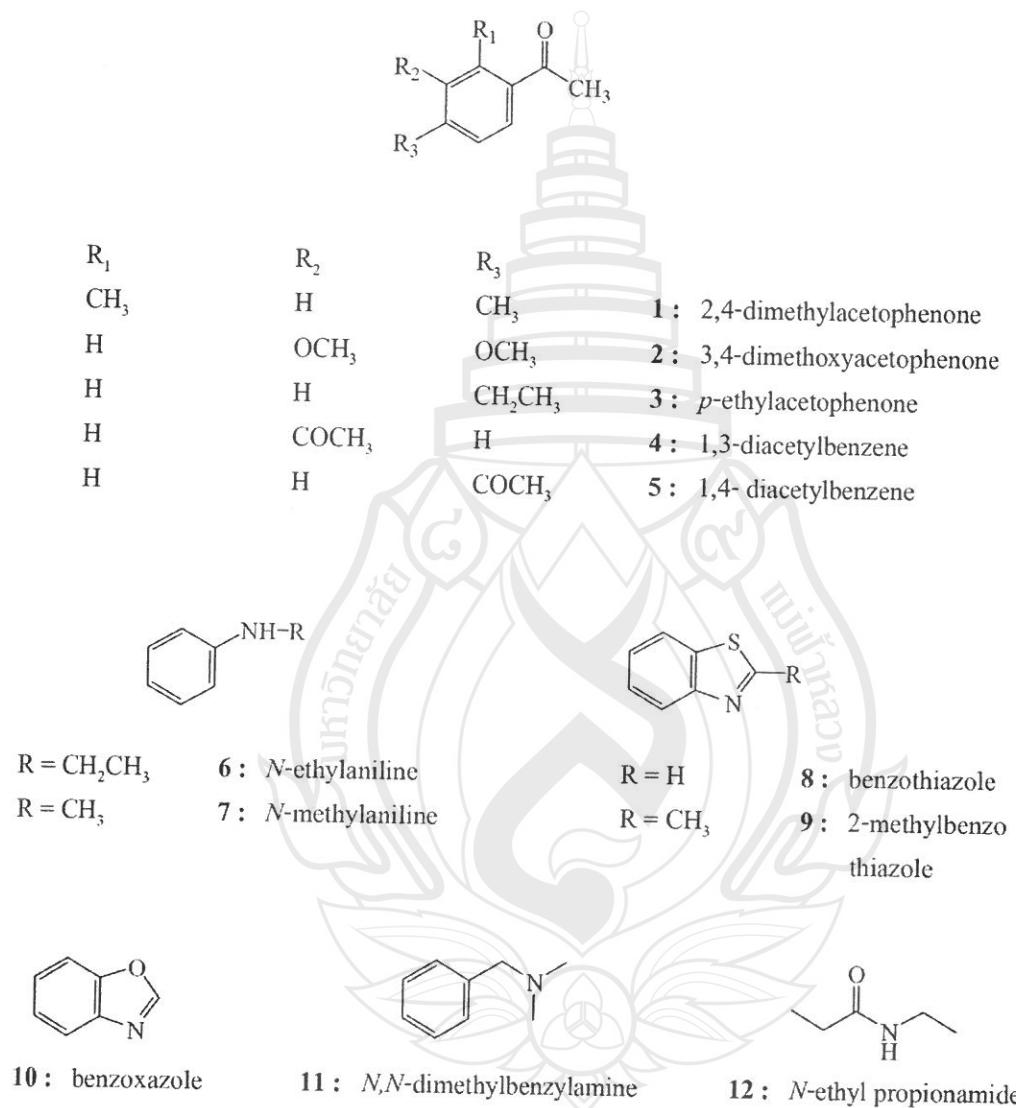
Compound	Structure	Reference
kaempferitin	226	Ozawa, 1982
nicotiflorin	227	
thearubigin	228	
tricetinidin	229	
(S)-methyl methionine	230	Ohtsuki <i>et al.</i> , 1984
methylamine	231	Neurath <i>et al.</i> , 1977
kaempferol	232	De Vries <i>et al.</i> , 1998; Hertog <i>et al.</i> , 1993; Mikaberidze <i>et al.</i> , 1974(a); Price <i>et al.</i> , 1998
geraniol-6- <i>O</i> - β -D-xylopyranosyl- β -D-glucopyranoside	-	Nishikitani <i>et al.</i> , 1996
linalool-6- <i>O</i> - β -D-xylopyranosyl- β -D-glucopyranoside	-	
geraniol- β -bicianoside	-	
geranyl-6- <i>O</i> - β -D-xylopyranosyl- β -D-glucopyranoside	-	Guo <i>et al.</i> , 1993
8-hydroxy-geranyl- β -primeveroside	-	Moon <i>et al.</i> , 1996
hex- <i>cis</i> -enyl- β -D-glucopyranoside	-	
<i>cis</i> -linalool-3-7-oxide glycoside	-	
<i>trans</i> -linalool-3-7-oxide glycoside	-	
salicylic acid-6- <i>O</i> - β -D-primeveroside	-	
<i>N</i> - <i>p</i> -coumaryl-glutamic acid	-	Imperato, 1980
kaempferol-3- <i>O</i> - β -D-rutinoside	-	
indole	-	Lee and Lin, 1985
β -sesquiphellandrene	-	
morin	233	Wang <i>et al.</i> , 1995

Table 1 (continued)

Compound	Structure	Reference
myricetin	234	Hertog <i>et al.</i> , 1993; Mikaberidze <i>et al.</i> , 1974(a)
quercetin-fructosyl-glucoside	-	
quercetin	235	De Vries <i>et al.</i> , 1998; Hertog <i>et al.</i> , 1993; Mikaberidze and Moniava, 1974(a); Price <i>et al.</i> , 1998; Zhu <i>et al.</i> , 1992
kaempferol-3-glucosyl(1→3)-rhamnosyl(1→6)-galactoside	236	Finger <i>et al.</i> , 1991
quercetin-3-glucosyl(1→3)-rhamnosyl(1→6)galactoside	237	
linalool	238	Gong <i>et al.</i> , 1993; Lee and Lin, 1985; Lin <i>et al.</i> , 1982; 1984; Morita <i>et al.</i> , 1994; Owuoe, 1989
(R)-linalool	239	Wang <i>et al.</i> , 1994
oxide(furanoid) <i>cis</i> -linalool	240	Morita <i>et al.</i> , 1994; Wang <i>et al.</i> , 1994
oxide(pyranoid) <i>cis</i> -linalool	241	
oxide(furanoid) <i>trans</i> -linalool	242	
oxide(pyranoid) <i>trans</i> -linalool	243	
nerolidol	244	Lin <i>et al.</i> , 1984; Lee and Lin, 1985
nicotine	245	Davis <i>et al.</i> , 1991
6- <i>O</i> - β -D-xylopyranosyl- β -D-glucopyranoside <i>cis</i> -linalool-3,6-oxide	-	Moon <i>et al.</i> , 1994; Nishikitani <i>et al.</i> , 1996
6- <i>O</i> - β -D-xylopyranosyl- β -D-glucopyranoside <i>trans</i> -linalool-3,6-oxide	-	Moon <i>et al.</i> , 1994
naringenin-fructosyl-glucoside	-	Imperato, 1976

Table 1 (continued)

Compound	Structure	Reference
theasinensisin A	247	Hashimoto <i>et al.</i> , 1988; 1989(a); 1992;
theasinensisin B	248	Nonaka <i>et al.</i> , 1983
theasinensisin C	246	Hashimoto <i>et al.</i> , 1988
theasinensisin D	249	
theasinensisin E	250	
theasinensisin F	-	
theasinensisin G	-	
oolongtheanine	-	
oxalic acid	251	Nakahara, 1974
2-phenylethanol	252	Lin <i>et al.</i> , 1984; Morita <i>et al.</i> , 1994
pipecolic acid	253	Higuchi <i>et al.</i> , 1995
hydroxyl proline	-	
pedunculagin	254	Ooishi <i>et al.</i> , 1994
pheophorbide A	255	Kohata <i>et al.</i> , 1998
prodelphinidin B-4	77	Hashimoto <i>et al.</i> , 1989(a); 1989(b); 1992
procyanidin B-3	256	
procyanidin B-4	258	
3'-O-gallate-procyanidin B-3	257	Cho <i>et al.</i> , 1993
3'-O-gallate-prodelphinidin B-2	90	Nonaka <i>et al.</i> , 1983
3'-O-gallate-procyanidin B-4	259	
prunasin	260	Guo <i>et al.</i> , 1998
3'-O-gallate-prodelphinidin B-4	78	Hashimoto <i>et al.</i> , 1989(b); 1992
strictinin	261	
procyanidin C-1	262	
umbelliferone	263	Mikaberidze and Moniava , 1974(b)
quercimeritrin	-	


Table 1 (continued)

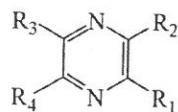
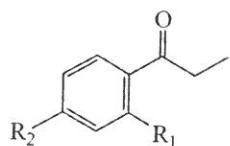
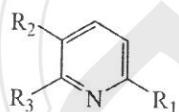
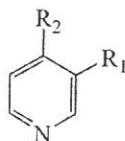

Compound	Structure	Reference
iso quercitrin	-	Imperato, 1980; Ozawa, 1982; Price <i>et al.</i> , 1998
(-)-quinic acid	264	Sakata <i>et al.</i> , 1986
succinic acid	265	Ding <i>et al.</i> , 1997
tartaric acid	266	
rutin	267	Humphreys, 1964; Ozawa, 1982; Price <i>et al.</i> , 1998
tannic acid	268	Savolainen, 1992; Wheeler, 1978
teasterone	269	Akagi <i>et al.</i> , 1997
typhasterol	270	
teasaponin B-2	-	
teasaponin B-3	-	
teasaponin B-4	-	
α -terpineol	271	Gong <i>et al.</i> , 1993; Stalcup <i>et al.</i> , 1993
theaflavin	272	Apostolides <i>et al.</i> , 1996; Davis <i>et al.</i> , 1995; Hashimoto <i>et al.</i> , 1989(b); 1992; Honda and Hara, 1993; Mukoyama <i>et al.</i> , 1991; Nonaka <i>et al.</i> , 1986; Okada <i>et al.</i> , 1977; 1978; Ozawa, 1982; Roder, 1982; Shiragami <i>et al.</i> , 1995; Shiraki <i>et al.</i> , 1994; Vijaya <i>et al.</i> , 1995; Yang <i>et al.</i> , 1997
theaflavin digallate	273	Apostolides <i>et al.</i> , 1996; Davis <i>et al.</i> , 1995; Honda and Hara, 1993; Mukoyama <i>et al.</i> , 1991; Okada, 1978; Ozawa, 1982; Shiragami <i>et al.</i> , 1995; Shiraki <i>et al.</i> , 1994
theaflavate B	-	Lewis <i>et al.</i> , 1998
3'- <i>O</i> -gallate isotheaflavin	-	
3'- <i>O</i> -gallate neotheaflavin	-	
epi-theaflavic acid	-	Cattell and Nursten, 1976
gallate-epi-theaflavic acid	-	

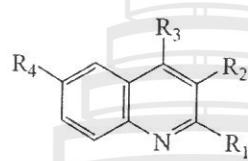
Table 1 (continued)

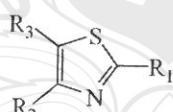

Compound	Structure	Reference
theaflagallin	-	Nonaka <i>et al.</i> , 1986
epi-theaflagallin	-	
theaflavin monogallate	-	Davis <i>et al.</i> , 1995; Mukoyama <i>et al.</i> , 1991; Namiki, 1990; Okada, 1978; Ozawa, 1982
theaflavin monogallate A	-	Honda and Hara, 1993; Shiragami <i>et al.</i> , 1995; Shiraki <i>et al.</i> , 1994
theaflavin monogallate B	-	
3-O-gallate-epi-theaflagallin	-	Hashimoto <i>et al.</i> , 1989(b); Nonaka <i>et al.</i> , 1986
3,3'-di-O-gallate-theaflavin	274	Yang <i>et al.</i> , 1997
3,3'-di-O-gallate-theaflavin	274	Hashimoto <i>et al.</i> , 1989(b); 1992; Nonaka <i>et al.</i> , 1986
3'-O-gallate-theaflavin	275	
3-O-gallate-theaflavin	276	
3'-gallate-theaflavin	275	Apostolidis <i>et al.</i> , 1996; Yang <i>et al.</i> , 1997
3-gallate-theaflavin	276	
theanine	277	Chu <i>et al.</i> , 1997; Feldheim <i>et al.</i> , 1986; Horie and Kohata, 1998; Tsushida, 1987; Yokozawa <i>et al.</i> , 1995; Zhu, 1986
theasaponin	278	Shcheglov <i>et al.</i> , 1979
theasaponin B-1	279	Kitagawa <i>et al.</i> , 1995
teasaponin B-1	279	Akagi <i>et al.</i> , 1997; Sagesaka <i>et al.</i> , 1996
theobromine	280	Ashihara <i>et al.</i> , 1997; Blauch <i>et al.</i> , 1983; Fujimori and Ashihara, 1994; Lin <i>et al.</i> , 1998; Nagata and Sakai, 1985; Suzuki and Takahashi, 1975; Zhang <i>et al.</i> , 1995
theophylline	281	Ito <i>et al.</i> , 1997; Lin <i>et al.</i> , 1998; Zhang <i>et al.</i> , 1995
theogallin	282	Hashimoto <i>et al.</i> , 1989(b); 1992; Ozawa, 1982
triacontan-1-ol	283	Narayan <i>et al.</i> , 1988
theacitrin A	284	Davis <i>et al.</i> , 1997

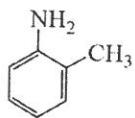
2.3 Structure of compounds from the leaves of *Camellia sinensis* var. *assamica*

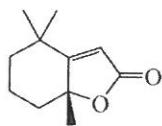


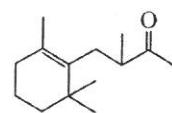

R_1	R_2	R_3	R_4	
CH_3	CH_3	CH_3	CH_3	13 : ligustrazine
CH_3	CH_3	H	H	14 : 2,3-dimethyl pyrazine
CH_3	H	CH_3	H	15 : 2,5-dimethyl pyrazine
CH_3	H	H	CH_3	16 : 2,6-dimethyl pyrazine
CH_2CH_3	CH_3	CH_3	H	17 : 2-ethyl-3,5-dimethyl pyrazine
CH_2CH_3	CH_3	H	CH_3	18 : 2-ethyl-3,6-dimethyl pyrazine
CH_2CH_3	H	CH_3	H	19 : 2-ethyl-5-methyl pyrazine
CH_2CH_3	H	H	CH_3	20 : 2-ethyl-6-methyl pyrazine
CH_2CH_3	H	H	H	21 : ethyl pyrazine
CH_3	H	H	H	22 : methyl pyrazine
CH_3	CH_3	CH_3	H	23 : trimethyl pyrazine

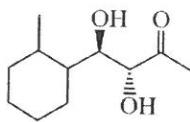

$\text{R}_1 = \text{CH}_3, \text{R}_2 = \text{CH}_3$	24 : 2,4-dimethyl propiophenone
$\text{R}_1 = \text{H}, \text{R}_2 = \text{CH}_2\text{CH}_3$	25 : <i>p</i> -ethyl propiophenone

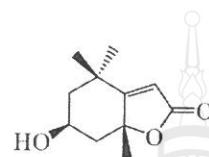

R_1	R_2	R_3	
CH_3	CH_3	H	26 : 2,5-dimethyl pyridine
CH_3	H	CH_3	27 : 2,6-dimethyl pyridine
COCH_3	H	H	28 : 2-acetyl pyridine
CH_2CH_3	H	H	29 : 2-ethyl pyridine
CH_3	H	H	30 : 2-methyl pyridine
CH_3	CH_2CH_3	H	31 : 2-methyl-5-ethyl pyridine
CH_3	H	CH_2CH_3	32 : 2-methyl-6-ethyl pyridine
C_6H_5	H	H	33 : 2-phenyl pyridine

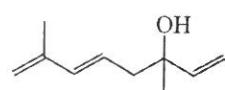

R ₁	R ₂	
CH ₂ CH ₃	H	34 : 3-ethyl pyridine
OCH ₃	H	35 : 3-methoxy pyridine
CH ₃	H	36 : 3-methyl pyridine
NHC ₄ H ₉	H	37 : 3- <i>N</i> -butyl pyridine
C ₆ H ₅	H	38 : 3-phenyl pyridine
H	CH ₃	39 : 4-methyl pyridine
CH=CH ₂	H	40 : 3-vinyl pyridine

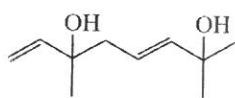

R ₁	R ₂	R ₃	R ₄	
CH ₃	H	CH ₃	H	41 : 2,4-dimethyl quinoline
CH ₃	H	H	CH ₃	42 : 2,6-dimethyl quinoline
CH ₃	H	H	H	43 : 2-methyl quinoline
H	NHC ₃ H ₇	H	H	44 : 3- <i>N</i> -propyl quinoline
H	H	CH ₃	H	45 : 4,8-dimethyl quinoline
H	H	NHC ₄ H ₉	H	46 : 4- <i>N</i> -butyl quinoline
H	H	H	CH ₃	47 : 6-methyl quinoline

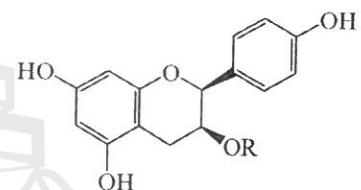

R ₁	R ₂	R ₃	
CH ₃	CH ₃	CH ₃	48 : 2,4,5-trimethyl thiazole
CH ₃	CH ₃	H	49 : 2,4-dimethyl thiazole
CH ₃	H	CH ₃	50 : 2,5-dimethyl thiazole
CH ₃	CH ₂ CH ₃	CH ₃	51 : 2,5-dimethyl-4-ethyl thiazole
H	H	CH ₃	52 : 5-methyl thiazole


53 : *o*-toluidine

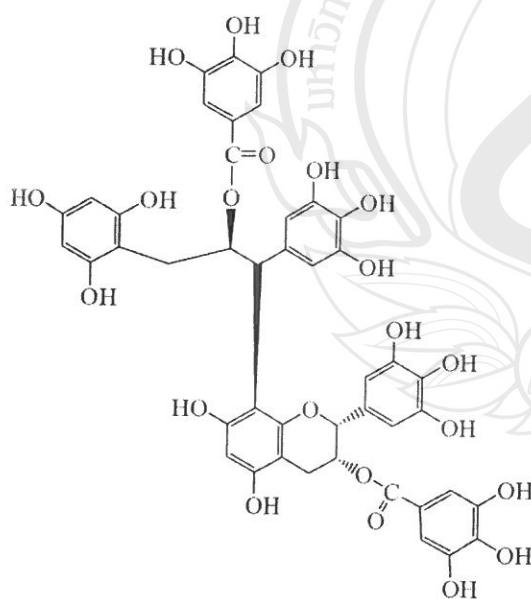

54 : dihydro actinidiolide

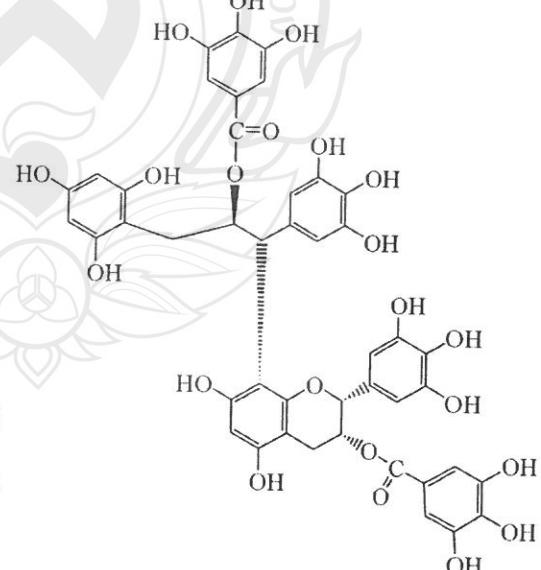

55 : 1',2'-epoxy 1',2'-dihydro- β -ionone


56 : 1',2'-*threo*-1',2'-dihydroxy- β -ionone

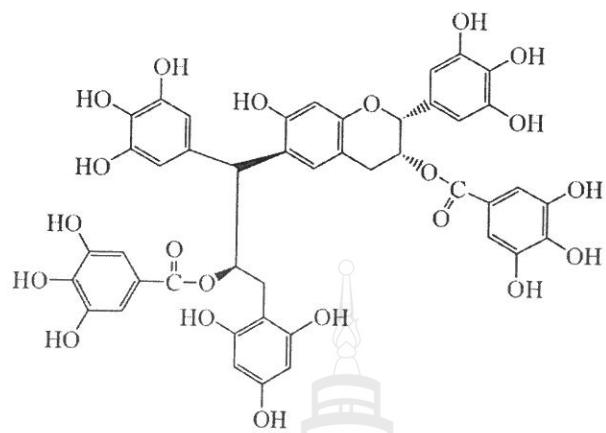

57 : loliolide

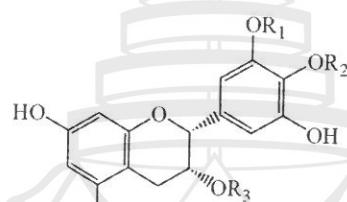
58 : 3(S)-7-dimethylocta-1,5,7-trien-3-ol

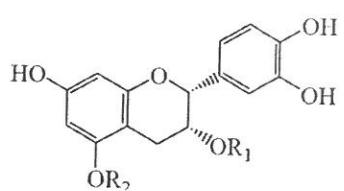

59 : (+)-3(S)-7-dimethylocta-1,5-diene-3,7-diol

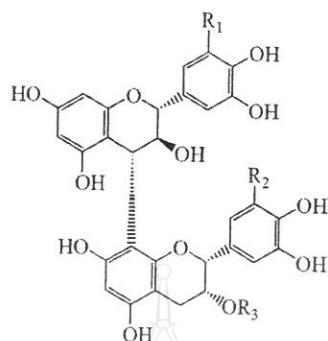

R = H
R = gallate

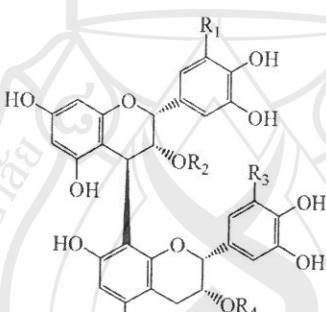
60 : (-)-epi-afzelechin

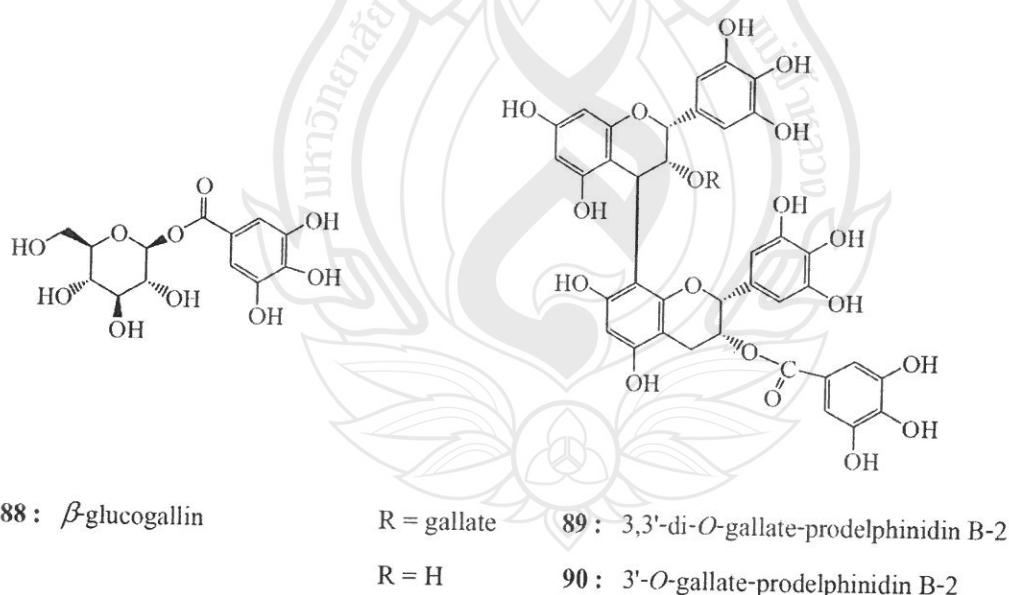
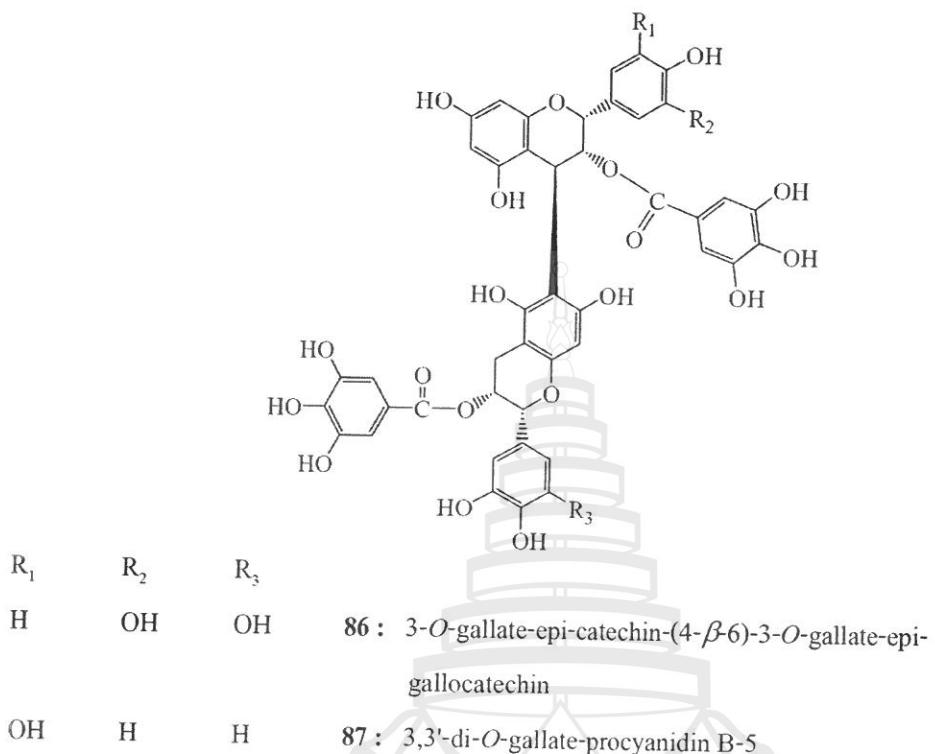

61 : 3-*O*-gallate-*epi*-afzelechin

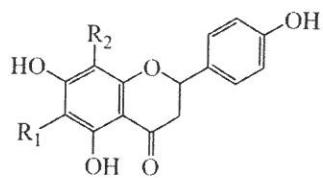

62 : assamicain A


63 : assamicain B


64 : assamicain C

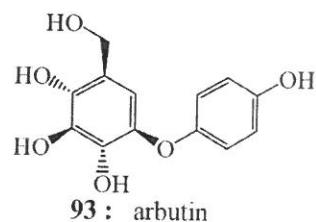

R ₁	R ₂	R ₃	R ₄	
gallate	H	gallate	H	65 : 3,3'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin
H	gallate	gallate	H	66 : 3,4'-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin
H	H	gallate	gallate	67 : 3,5-di- <i>O</i> -gallate- <i>epi</i> -gallocatechin
H	H	caffeoate	H	68 : 3- <i>O</i> -caffeoate- <i>epi</i> -gallocatechin
H	H	gallate	H	69 : 3- <i>O</i> -gallate- <i>epi</i> -gallocatechin
H	H	H	H	70 : (-)- <i>epi</i> -gallocatechin

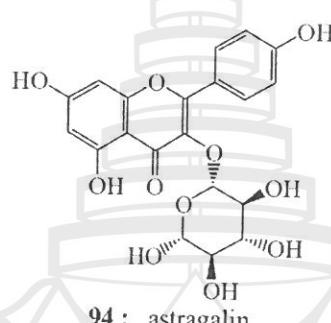


R ₁	R ₂	
gallate	gallate	71 : 3,5-di- <i>O</i> -gallate- <i>epi</i> -catechin
H	H	72 : (-)- <i>epi</i> -catechin
gallate	H	73 : (-)-3- <i>O</i> -gallate- <i>epi</i> -catechin



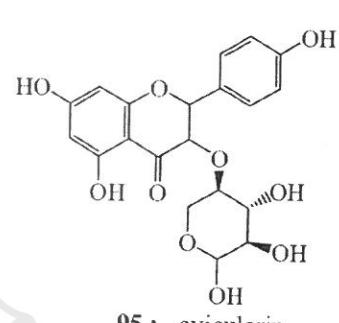
R ₁	R ₂	R ₃	
H	OH	gallate	74 : catechin-(4- α -8)-3-gallate-epi-gallocatechin
H	OH	H	75 : catechin-(4- α -8)-epi-gallocatechin
OH	H	H	76 : gallocatechin-(4- α -8)-epi-catechin
OH	OH	H	77 : prodelphinidin B-4
OH	OH	gallate	78 : 3'- <i>O</i> -gallate-prodelphinidin B-4

R ₁	R ₂	R ₃	R ₄	
H	H	OH	gallate	79 : epi-catechin-(4- β -8)-3- <i>O</i> -gallate-epi-gallocatechin
H	gallate	OH	gallate	80 : 3- <i>O</i> -gallate-epi-catechin-(4- β -8)-3- <i>O</i> -gallate-epi-gallocatechin
OH	H	H	gallate	81 : epi-gallo-catechin-(4- β -8)-3- <i>O</i> -galloyl-epi-catechin
OH	gallate	H	gallate	82 : 3- <i>O</i> -gallate-epi-gallo-catechin-(4- β -8)-gallate-epi-catechin
H	H	H	H	83 : procyanidin B-2
H	gallate	H	gallate	84 : 3,3'-di- <i>O</i> -gallate- procyanidin B-2
H	H	H	gallate	85 : 3'- <i>O</i> -gallate- procyanidin B-2




R_1	R_2
H	H
Arabinosyl	pyranosyl

91 : apigenin

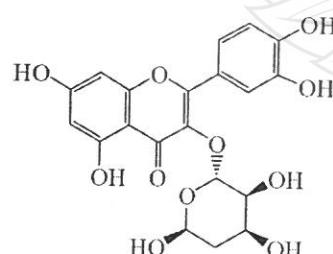

92 : 6,8-di- C - β -D-arabinopyranosylapigenin

93 : arbutin

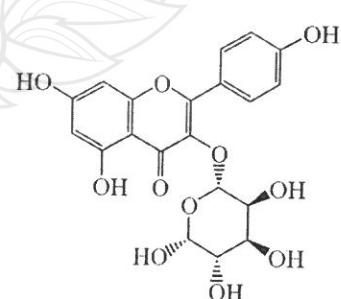
94 : astragalin

95 : avicularin

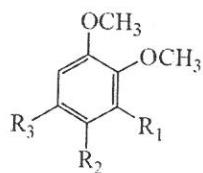
R = glu-rham-gal

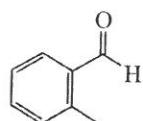

R = gal-rham-glu

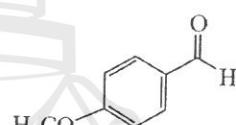
R = glu-rham

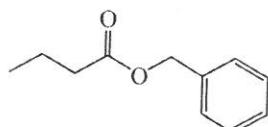

96 : 3- O -glucosyl-rhamnosyl galactoside-kaempferol

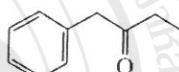
97 : 3- O -galactosyl-rhamnosyl-glucoside-kaempferol

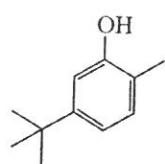

98 : 3- O -glucosyl-rhamnoside-kaempferol

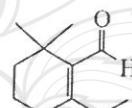

99 : quercitrin

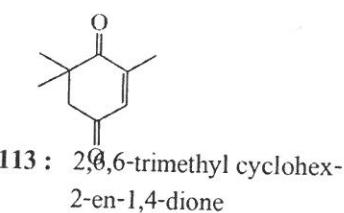

100 : trifolin

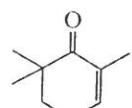

R ₁	R ₂	R ₃	
OCH ₃	H	H	101 : 1,2,3-trimethoxybenzene
OCH ₃	H	CH ₂ CH ₃	102 : 1,2,3-trimethoxy-5-ethylbenzene
OCH ₃	H	CH ₃	103 : 1,2,3-trimethoxy-5-methylbenzene
H	H	H	104 : 1,2-dimethoxybenzene
H	CH ₂ CH ₃	H	105 : 1,2-dimethoxy-4-ethylbenzene
H	CH ₃	H	106 : 1,2-dimethoxy-4-methylbenzene

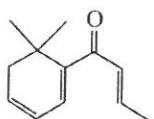

107 : 2-methylbenzaldehyde

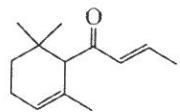

108 : 4-methoxybenzaldehyde

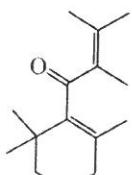

109 : benzylbutyrate

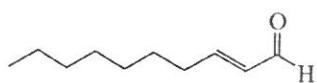

110 : benzyl ethyl ketone

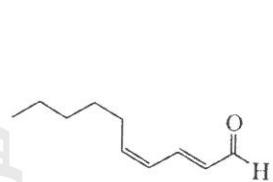

111 : carvacrol

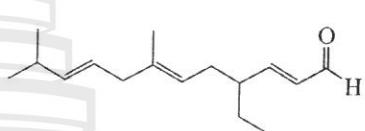

112 : β -cyclocitral

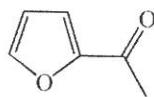

113 : 2,6,6-trimethyl cyclohex-2-en-1,4-dione

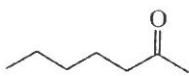

114 : 2,6,6-trimethyl cyclohex-2-en-1-one

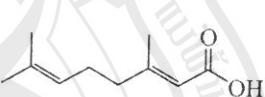

115 : β -damascenone

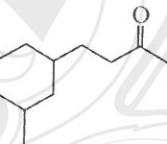

116 : α -damascone

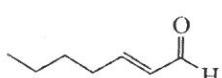

117 : β -damascone

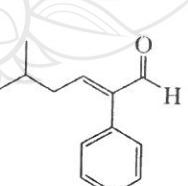

119 : deca-*trans*-2-en-1-al

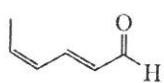

118 : deca-*trans*-2-*cis*-4-dien-1-al

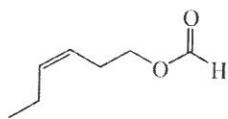

120 : 4-ethyl-7,11-dimethyl-dodeca-*trans*-2-*trans*-6,10-trien-1-al

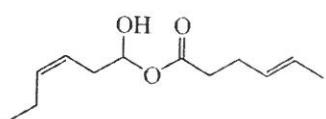

121 : 2-acetyl furan

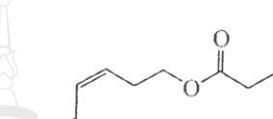

123 : heptan-2-one

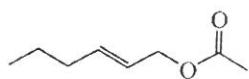

122 : *trans*-geranic acid

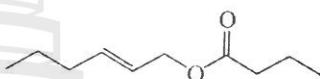

124 : 5-isopropyl-heptan-2-one

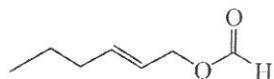

125 : hepta-*trans*-2-en-1-al

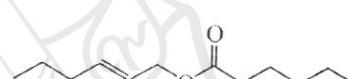

126 : 5-methyl-2-phenyl-hex-2-en-1-al

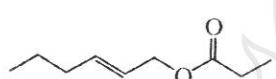

127 : *trans*-2-*cis*-4-hexadien-1-al


128 : hex-*cis*-3-en-1-ol formate

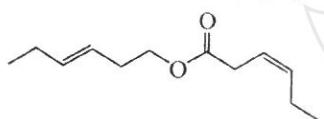

129 : *cis*-3-hexen-1-ol-*trans*-2-hexenoate


130 : hex-*cis*-3-hexen-1-ol propionate


131 : hex-*trans*-2-enyl acetate

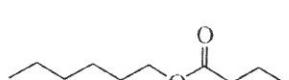
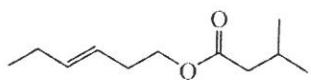

132 : hex-*trans*-2-enyl butyrate

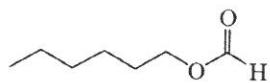
133 : hex-*trans*-2-enyl formate

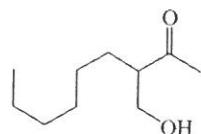

134 : hex-*trans*-2-enyl hexanoate

135 : hex-*trans*-2-enyl propionate

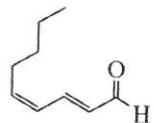
136 : hex-*trans*-3-enyl butyrate

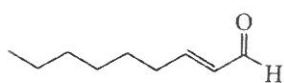



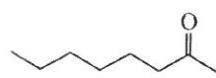

137 : hex-*trans*-3-enyl-hex-*cis*-3-enoate

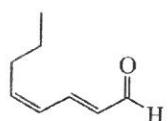

139 : hex-*trans*-3-enyl-2-methyl butyrate

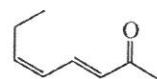
140 : hexyl butyrate

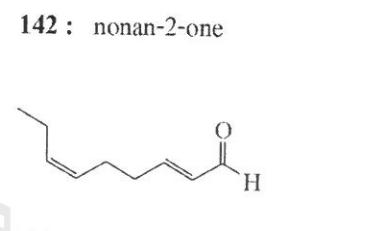
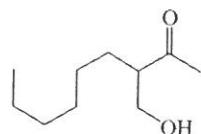



141 : hexyl formate


142 : nonan-2-one

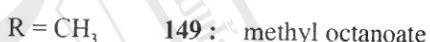

143 : nona-trans-2-cis-4-dien-1-al


145 : nona-trans-2-en-1-al

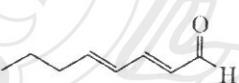


147 : octan-2-one

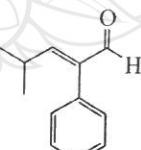
151 : octa-trans-2-cis-4-dien-1-al

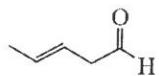
153 : octa-trans-3-cis-5-dien-2-one

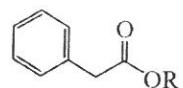

144 : nona-trans-2-cis-6-dien-1-al

146 : nona-trans-2-trans-4-dien-1-al

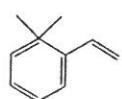

148 : ethyl octanoate

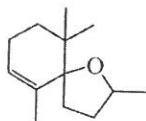

149 : methyl octanoate


150 : octa-trans-2-enoic acid


152 : octa-trans-2-trans-4-dien-1-al

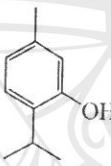
154 : 4-methyl-2-phenyl pent-2-en-1-al


155 : pent-*cis*-3-en-1-al

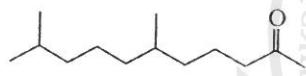

R = CH₂CH₃ 156 : ethyl phenyl acetate

R = CH₂(CH₂)₄CH₃ 157 : hexyl phenyl acetate

R = H 158 : phenyl acetic acid

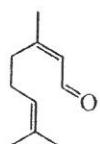


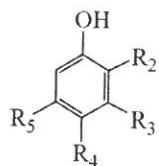
159 : safranal

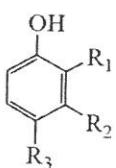


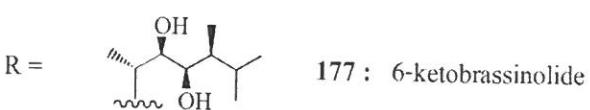
161 : theaspirane

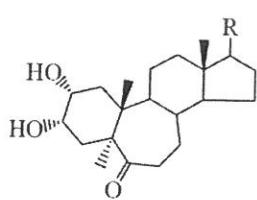
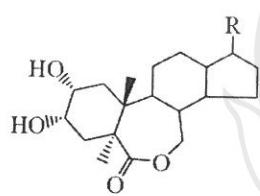
160 : 4-terpineol

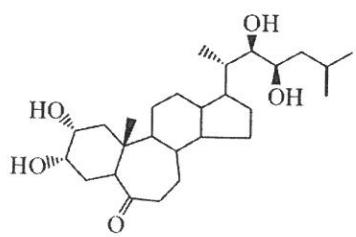

162 : thymol


163 : 6,10-dimethyl undecan-2-one

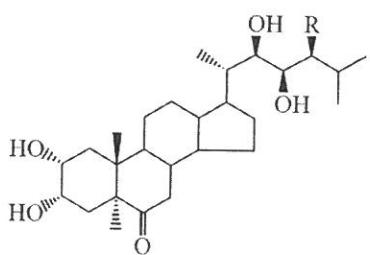

164 : undeca-*trans*-2-en-1-al





165 : neral

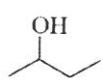


R_1	R_2	R_3	R_4	
OH	H	OH	H	166 : 1,2,4-trihydroxybenzene
OH	H	H	OH	167 : 1,2,5-trihydroxybenzene
H	OH	OH	H	168 : 1,3,4-trihydroxybenzene
H	OH	H	OH	169 : 1,3,5-trihydroxybenzene

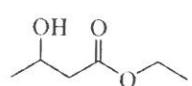


R_1	R_2	R_3	
H	CH_3	H	170 : <i>m</i> -cresol
CH_3	H	H	171 : <i>o</i> -cresol
H	H	CH_3	172 : <i>p</i> -cresol

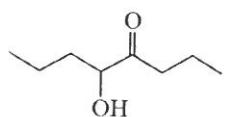
178 : 6-keto-28-norbrassinolide

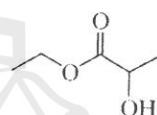


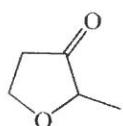
179 : brassinone

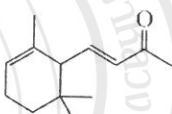

$R = H$

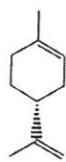
$R = CH_2CH_3$

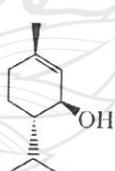

180 : 24(S)-ethylbrassinone

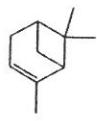

181 : butan-2-ol

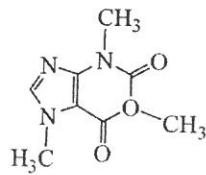

182 : ethyl-3-hydroxy butyrate

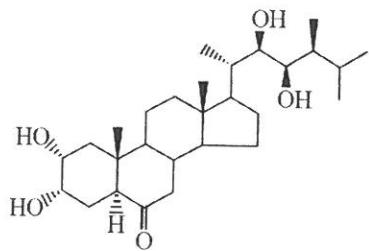

183 : butyroin

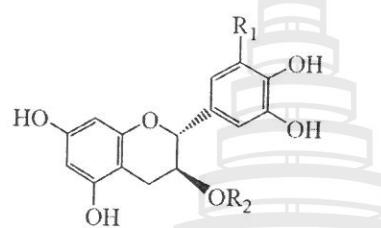

184 : ethyl lactate


185 : 2-methyl-tetrahydro-furan-3-one


186 : α -ionone


187 : limonene


188 : menthol


189 : α -pinene

190 : caffeine

191 : castasterone

R₁

H

H

OH

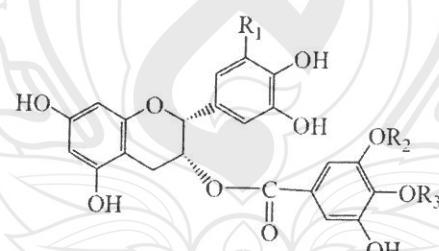
OH

R₂

H

gallate

gallate


OH

192 : (+)-catechin

193 : (+)-3-O-gallate-catechin

194 : (+)-3-O-gallate-gallocatechin

195 : (+)-gallocatechin

R₁

R₂

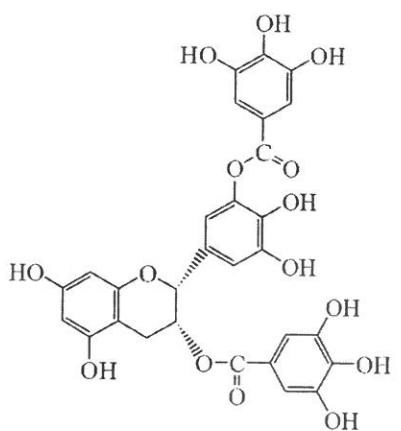
R₃

196 : (-)-3-O-(3-O-methyl-gallate)-epi-catechin

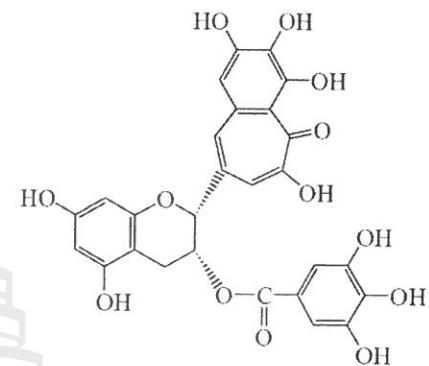
OH

CH₃

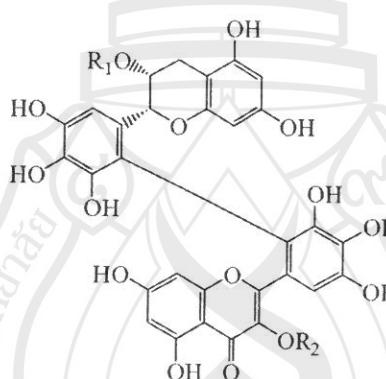
H


197 : (-)-3-O-(3-O-methyl-gallate)-epi-gallocatechin

H


H

CH₃


198 : (-)-3-O-(4-O-methyl-gallate)-epi-catechin

199 : (-)-3,5'-di-*O*-gallate-epi-gallocatechin

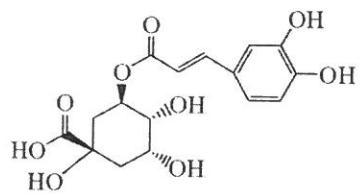
200 : 3-*O*-gallate-epi-theaflagallin

R₁
gallate
H

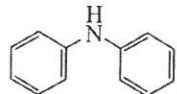
R₂
β-D-glucopyranosyl
β-D-glucopyranosyl

201 : theaflavonin

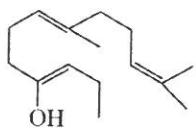
202 : degalloyl theaflavonin



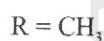
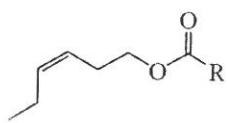
R₁
H
OH
OH


203 : gallate-catechin

204 : (-)-3-gallate-gallocatechin

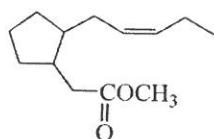

205 : (-)-gallocatechin

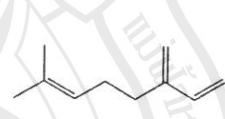
206 : chlorogenic acid

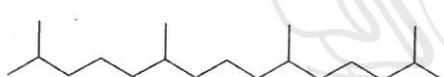


207 : diphenylamine

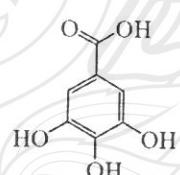
208 : farnesol

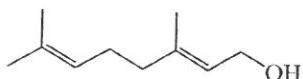
209 : *N*-hexadecane

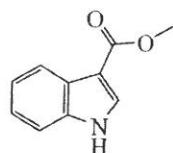

210 : hex-*cis*-3-en-1-ol acetate

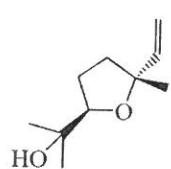

211 : hex-*cis*-3-en-1-ol butyrate

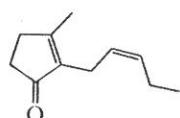

212 : hex-*cis*-3-en-1-ol caproate

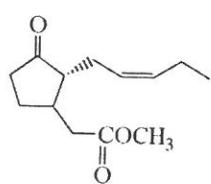

213 : jasmonic acid methyl ester

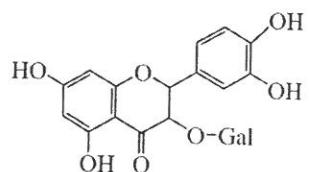

214 : myrcene

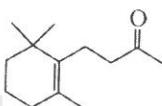

215 : 2,6,10,14-tetramethyl pentadecane

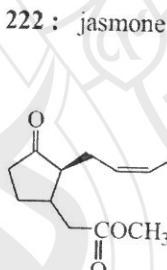

216 : gallic acid


217 : geraniol

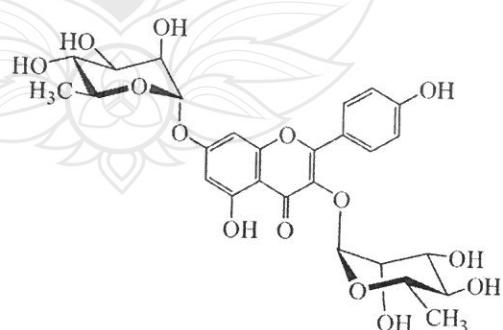

219 : indole-3-methyl-ethanoate


221 : oxide *trans*-linalool

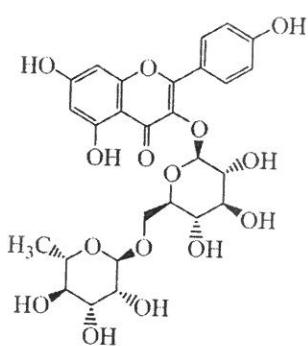

223 : *cis*-jasmone


225 : (+)-methyl ester (1R,2S) jasmonic acid

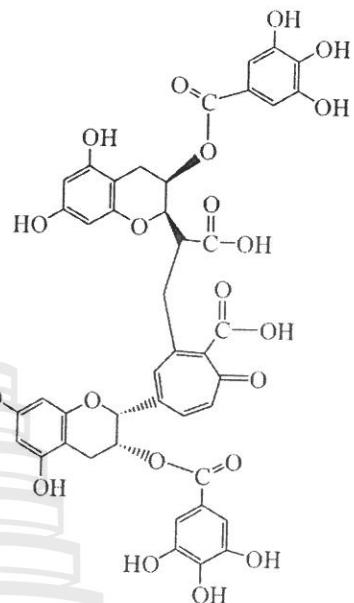
218 : hyperoside

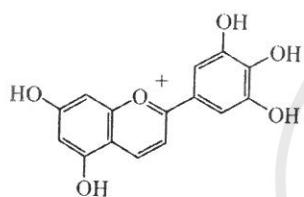


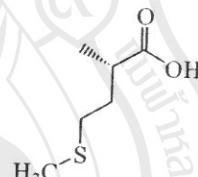
220 : β -ionone

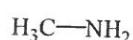


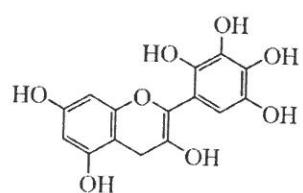
222 : jasmone


224 : (-)-methyl ester (1*R*,2*R*) jasmonic acid

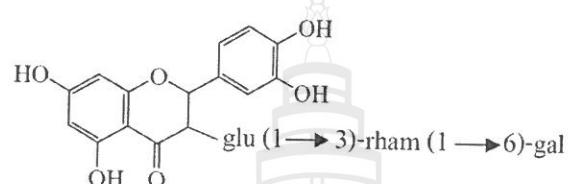

226 : kaempferitrin


227 : nicotiflorin

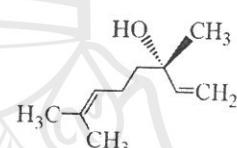

228 : thearubigin

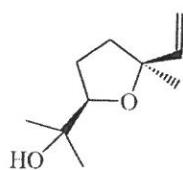

229 : tricetinidin

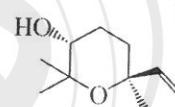

230 : (S)-methyl methionine

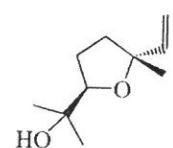

231 : methylamine

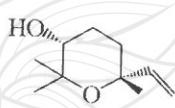
R_1	R_2	R_3	
H	H	H	232 : kaempferol
H	H	OH	233 : morin
OH	OH	H	234 : myricetin
H	OH	H	235 : quercetin

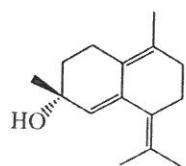

236 : kaempferol-3-glucosyl(1→3)-rhamnosyl(1→6)-galactoside

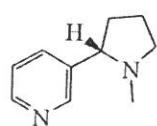

237 : quercetin-3-glucosyl(1→3)-rhamnosyl(1→6)galactoside

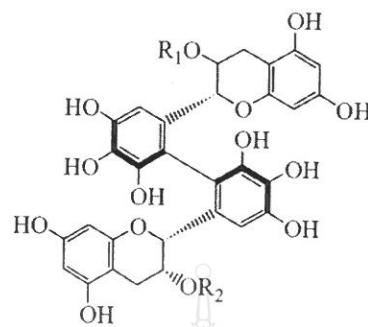

238 : linalool


239 : (R)-linalool

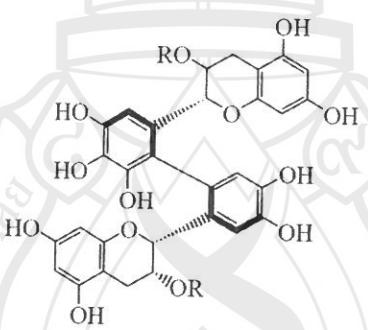

240 : oxide(furanoid) *cis*-linalool


241 : oxide(pyranoid) *cis*-linalool

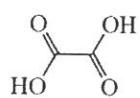

242 : oxide(furanoid) *trans*-linalool


243 : oxide(pyranoid) *trans*-linalool

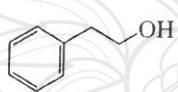
244 : nerolidol


245 : nicotine

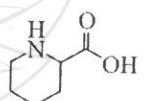
R₁
H
gallate
H

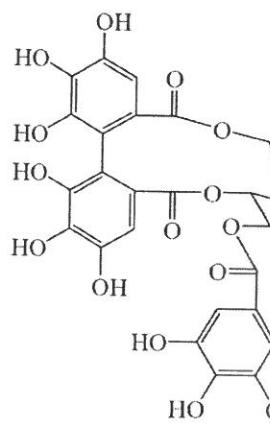

R₂
H
gallate
gallate

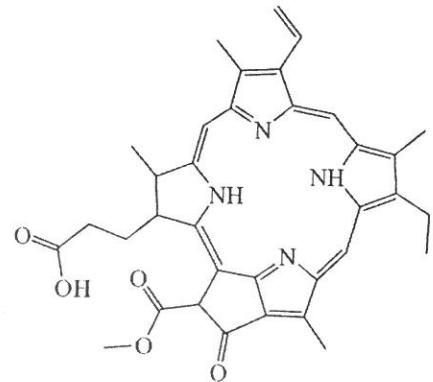
246 : theasinensisin C
247 : theasinensisin A
248 : theasinensisin B

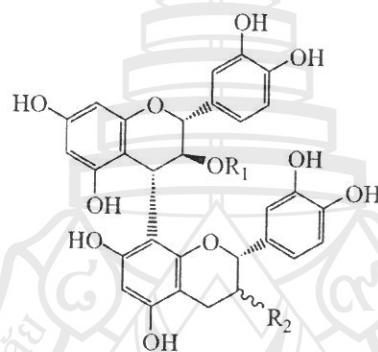


R = gallate
R = H


249 : theasinensisin D
250 : theasinensisin E


251 : oxalic acid


252 : 2-phenylethanol


253 : pipecolic acid

254 : pedunculagin

255 : pheophorbide A

R₁

H

gallate

H

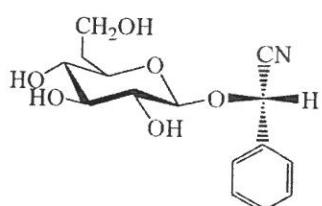
H

R₂

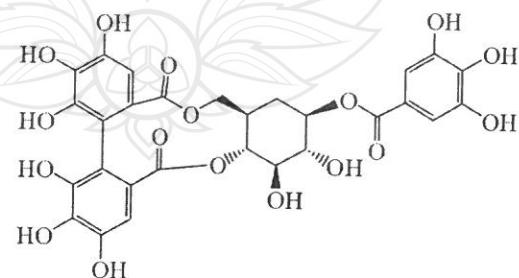
— OH

— OH

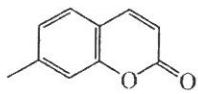
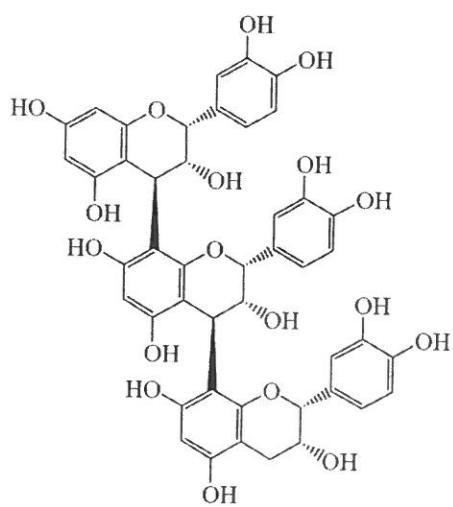
— OH

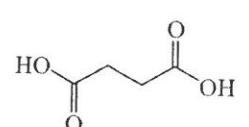

— Ogalate

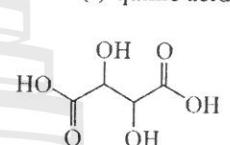
256 : procyanidin B-3

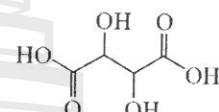

257 : 3-O-gallate-procyanidin B-3

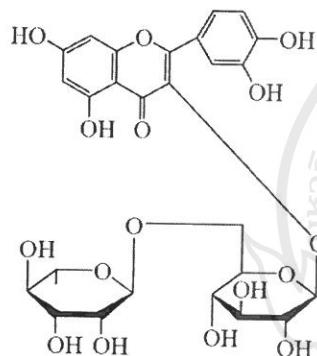
258 : procyanidin B-4

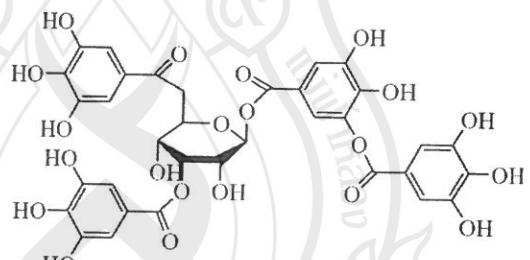


259 : 3'-O-gallate-procyanidin B-4

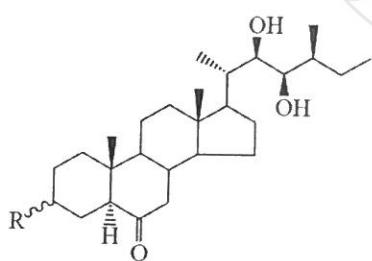

260 : prunasin


261 : strictinin


263 : umbelliferone

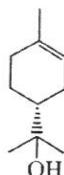

265 : succinic acid


264 : (-)-quinic acid

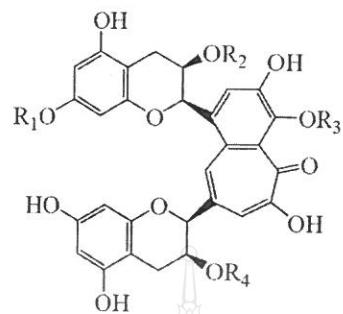

266 : tartaric acid

267 : rutin

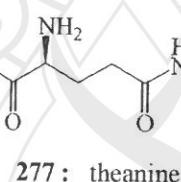
268 : tannic acid

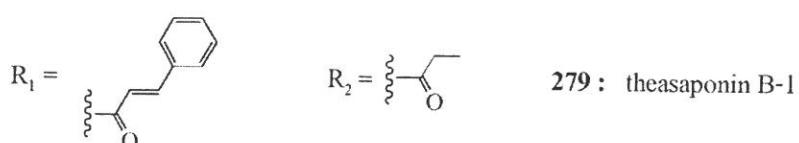
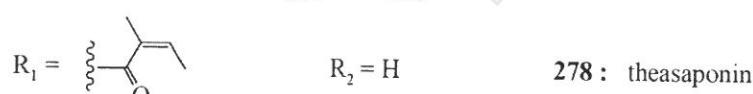
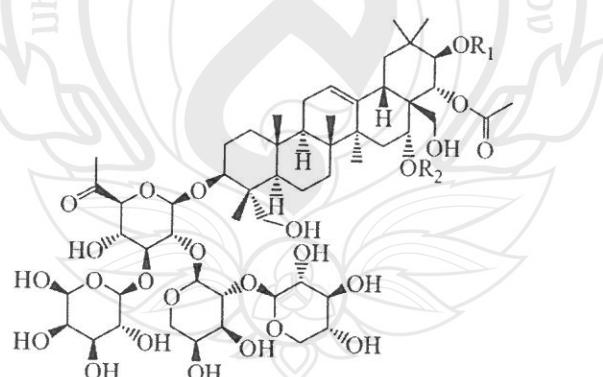


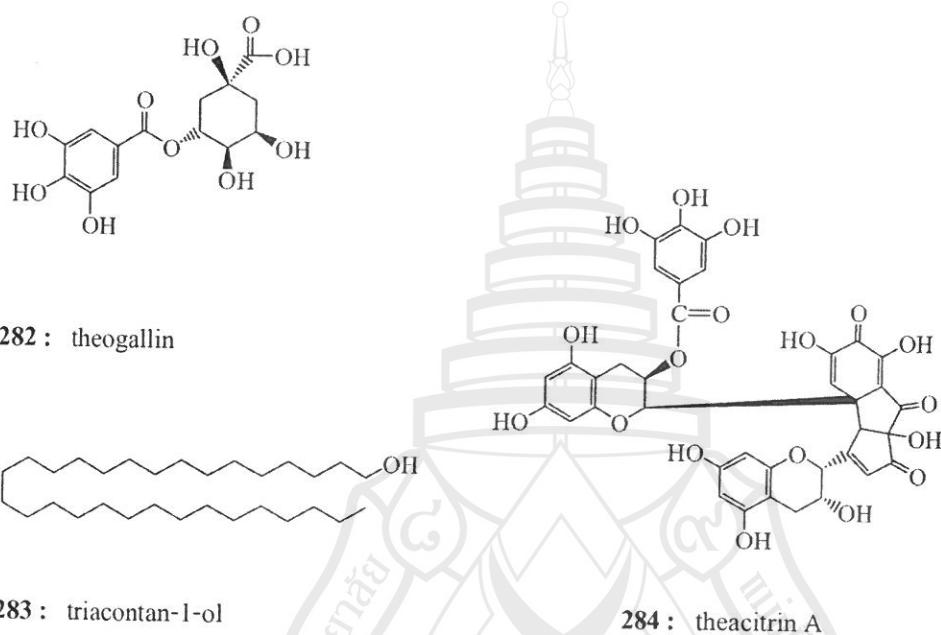
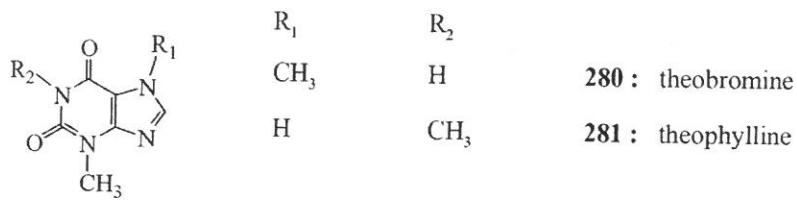
R = ---OH


269 : teasterone

R = ---OH


270 : thyphasterol




271 : α -terpineol

R_1	R_2	R_3	R_4	
H	H	H	H	272 : theaflavin
gallate	H	gallate	H	273 : theaflavin digallate
H	gallate	H	gallate	274 : 3,3'-di- <i>O</i> -gallate-theaflavin
H	H	H	gallate	275 : 3'- <i>O</i> -gallate-theaflavin
H	gallate	H	H	276 : 3- <i>O</i> -gallate-theaflavin

277 : theanine

2.4 Biological activities of *Camellia sinensis* var. *assamica*

Since ancient times, antipyretic, anti-inflammatory, antimicrobial and antioxidative properties of tea have been recognized (Siddiqui *et al.*, 2005; Ghosh *et al.*, 2006). Green tea, the dried leaf of *Camellia sinensis*, contains a variety of biologically active compounds such as polyphenols, methylxanthines, essential oils, proteins, vitamins, and amino acids. Most of their biological actions, such as lowering of plasma lipid levels, anti-inflammatory effects, antimicrobial, anticancer, and antioxidant activities, are related to the polyphenol fraction, namely, tea catechins. A widely used approach that has

increasingly been used recently is to search for new drugs from natural sources due to its success in the detection of compounds for the treatment of some parasitic diseases. Extracts as well as pure compounds obtained from *C. sinensis* have been reported to possess significant antiprotozoan activities with no side effects (Paveto *et al.*, 2004).

Green tea and its constituents catechins are best known for their antioxidant properties, which has led to their evaluation in a number of diseases associated with reactive oxygen species, such as cancer, cardiovascular and neurodegenerative diseases (Zaveri, 2006). Moreover, the extract of green tea have been reported in the literature as an antioxidant in animal and vegetable oils (Farhoosh *et al.*, 2007). In addition, the antitumor activity of di- and tri-terpenes has been reported. The polyphenolic compounds present in green tea show cancer chemopreventive effect both *in vivo* and *in vitro* (Ghosh *et al.*, 2006).

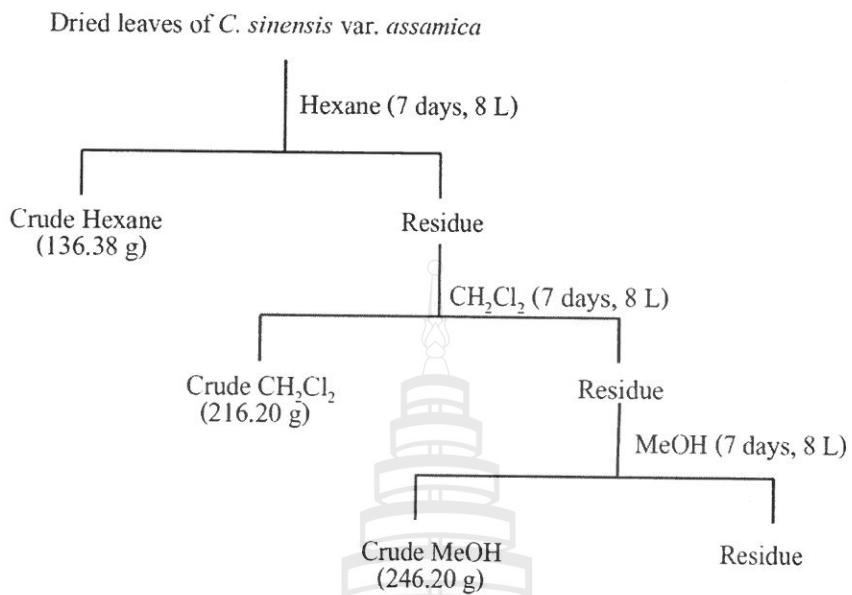
CHAPTER 3

METHODOLOGY

3.1 General methods

Quick column chromatography (QCC) was performed on silica gel 60H (Merck). Column chromatography (CC) utilized silica gel 100 (70-230 Mesh ASTM) (Merck). Pre-coated TLC aluminum sheets of silica gel 60 GF₂₅₄ (20 × 20 cm, layer thickness 0.2 mm) (Merck) were used for analytical purposes and the compounds were visualized under UV light and spray with vanillin sulfuric acid reagent. Preparative thin-layer chromatography (PLC) was carried out on glass plates using silica gel 60 GF₂₅₄ (20 × 20 cm, layer thickness 0.2 mm) (Merck). Bands were detected by exposure to short wavelength ultraviolet light. All organic solvents for extraction and chromatography were distillated at their boiling point ranges prior to use. ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a Brüker AVANCE 300 MHz or Varian UNITY INOVA 500 MHz NMR. Spectra were recorded in CDCl₃ or acetone-*d*₆ solution with tetramethylsilanes (TMS) as internal standard. The spectra were recorded as chemical shift parameter (δ) value in ppm down field from TMS. Melting points were measured in celsius (°C) and are uncorrected. They were measured on a digital Electrothermal BÜCHI Melting Point B-540 Melting Point Apparatus. The analytical grade of absolute ethanol, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical (Fluka), ascorbic acid (Fluka) and butylated hydroxy toluene (BHT, Fluka) were used for antioxidation activity testing. The absorptions of the test solution were measured with a Thermo Spectronic Genesys 20 spectrophotometer. The nutrient agar (CRITERION dehydrated culture media) and dimethyl sulfoxide (DMSO) were used for antimicrobial activity testing against 6 strains of microorganism (*Escherichia coli*, *Bacillus cereus* *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*,

Staphylococcus aureus and *Salmonella typhimorium*). Antibiotic paper discs and drugs (vancomycin, gentamycin and streptomycin) were used for control maker of antimicrobial activity.


3.2 Plant material and microorganism culture materials

Leaves of *Camellia sinensis* var. *assamica* were collected on August 2007 from Doi Mae Salong, Chiang Rai province in the northern part of Thailand.

Three microorganism cultures (*Bacillus cereus* TISTR 678, *Pseudomonas fluorescens* TISTR 358, *Salmonellae typhimurium* TISTR 292) were collected from TISTR in Mae Fah Luang University. And four microorganisms (*Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC25932 and methicillin-resistant strain MRSA SK1) were supported by Department of Microbiology, Faculty of Science, Prince of Songkla University.

3.3 Extraction and Isolation

The dried leaves of *Camellia sinensis* var. *assamica* (3.0 kg) were chopped and extracted at room temperature with hexane, CH_2Cl_2 and MeOH (7 days), respectively. Removal of the solvents from each extract under reduced pressure gave dark green viscous liquid of hexane (136.38 g), dichloromethane (216.20 g) and methanolic (246.20 g) extracts. Overall process of extraction was shown in **Figure 2**.

Figure 2 Extraction of crude extracts from the leaves of *C. sinensis* var. *assamica*

3.4 Purification

3.4.1 Purification of crude CH₂Cl₂ extract

Crude CH₂Cl₂ extract (13.0519 g) was fractionated by CC using hexane, hexane-CH₂Cl₂, CH₂Cl₂, CH₂Cl₂-Me₂CO, Me₂CO, Me₂CO-MeOH and MeOH as an eluents. The fractions containing similar components were combined into thirty-one fractions (CAD1-CAD31) (**Table 2**) and selected fractions were further purified to afford compounds **1-4** (**Figure 3**).

Table 2 Physical characteristic and weight of fractions obtained from CC of crude CH_2Cl_2 extract

Fraction	Weight (g)	Physical Characteristic
CAD1	0.2260	white needles mixed with deep green viscous liquid
CAD2	0.1150	white needles mixed with deep green viscous liquid
CAD3	0.2332	white needles mixed with deep green viscous liquid
CAD4	0.2742	yellow viscous liquid
CAD5-CAD6	0.1421	deep yellow viscous liquid
CAD7	0.2048	deep yellow viscous liquid
CAD8	0.0476	deep yellow viscous liquid
CAD9	0.0973	deep yellow viscous liquid
CAD10	0.2370	purple viscous liquid
CAD11	0.1050	deep purple viscous liquid
CAD12	0.7086	white solid mixed with deep green viscous liquid
CAD13	0.1152	white solid mixed with deep green viscous liquid
CAD14	0.6431	white needles mixed with deep green viscous liquid
CAD15	0.2335	white needles mixed with deep green viscous liquid
CAD16	0.3353	deep green viscous liquid
CAD17	1.0899	deep green viscous liquid
CAD18-CAD19	0.5319	deep green viscous liquid
CAD20	0.2038	white needles mixed with deep green viscous liquid
CAD21-CAD22	0.3683	white needles mixed with deep green viscous liquid
CAD23	0.1782	white needles mixed with deep green viscous liquid
CAD24	0.0195	white needles mixed with deep green viscous liquid
CAD25	0.0997	deep green viscous liquid
CAD26	0.3353	white solid mixed with deep green viscous liquid
CAD27	0.2060	white solid mixed with deep green viscous liquid
CAD28	0.1450	white solid mixed with deep green viscous liquid
CAD29-CAD30	1.2086	deep green viscous liquid
CAD31	0.1531	deep green viscous liquid

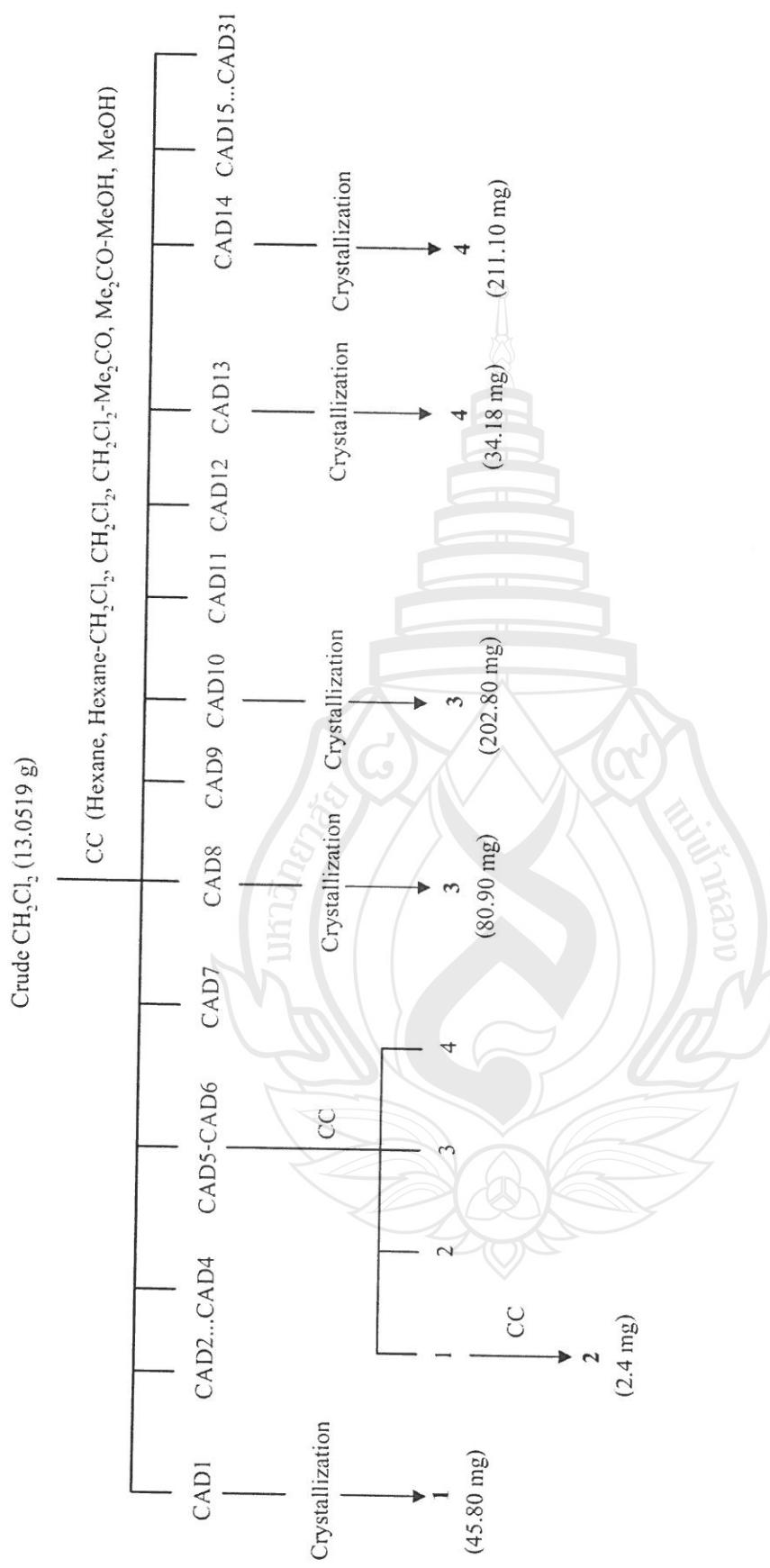


Figure 3 Isolation of compounds 1-4

Isolation of compound 1

Fraction CAD1 (0.2260 g) was crystallized in MeOH to give colorless needles of compound **1** (45.80 mg).

Isolation of compound 2

On the basis of TLC characteristic fractions CAD5 and CAD6 were combined and further purified by CC on silica gel, eluting with hexane to give four subfractions. The first subfraction was subjected to CC and eluted with 100% hexane to obtain **2** (2.4 mg) as a white solid.

Isolation of compound 3

Fractions CAD8 (0.0476 g) and CAD10 (0.2370 g) were crystallized in MeOH to give a colorless amorphous solid of **3** (80.90 mg) and (202.80 mg), respectively.

Isolation of compound 4

Fractions CAD13 (0.1152 g) and CAD14 (0.6431 g) were crystallized in MeOH to give a white powder of **4** (34.18 mg) and (211.10 mg), respectively.

3.4.2 Purification of crude MeOH extract

Crude methanolic extract (60.75 g) was subjected to QCC using silica gel as a stationary phase and eluted with hexane, hexane-CH₂Cl₂, CH₂Cl₂, CH₂Cl₂-Me₂CO, Me₂CO, Me₂CO-MeOH and then MeOH. On the basis of their TLC characteristic, the collected fractions (250 mL each) which contained the same major components were combined, fractions CAM1-CAM17 were obtained (**Table 3**). The selected fractions were further purified to obtain seven pure compounds as shown in **Figure 4**.

Table 3 Physical characteristic and weight of fractions obtained from QCC of crude MeOH extract

Fraction	Weight (g)	Physical Characteristic
CAM1-CAM6	0.0008	colorless
CAM7	0.0529	deep green viscous liquid
CAM8	0.0878	deep green viscous liquid
CAM9	0.0164	deep green viscous liquid
CAM10	0.0620	deep green viscous liquid
CAM11	0.0213	deep green viscous liquid
CAM12	0.0615	white needles mixed with deep green viscous liquid
CAM13	0.0531	white needles mixed with deep green viscous liquid
CAM14	0.0718	white solid mixed with deep green viscous liquid
CAM15	0.2901	colorless needles mixed with deep green viscous liquid
CAM16	0.3418	deep green viscous liquid
CAM17	0.7856	green solid mixed with green viscous liquid

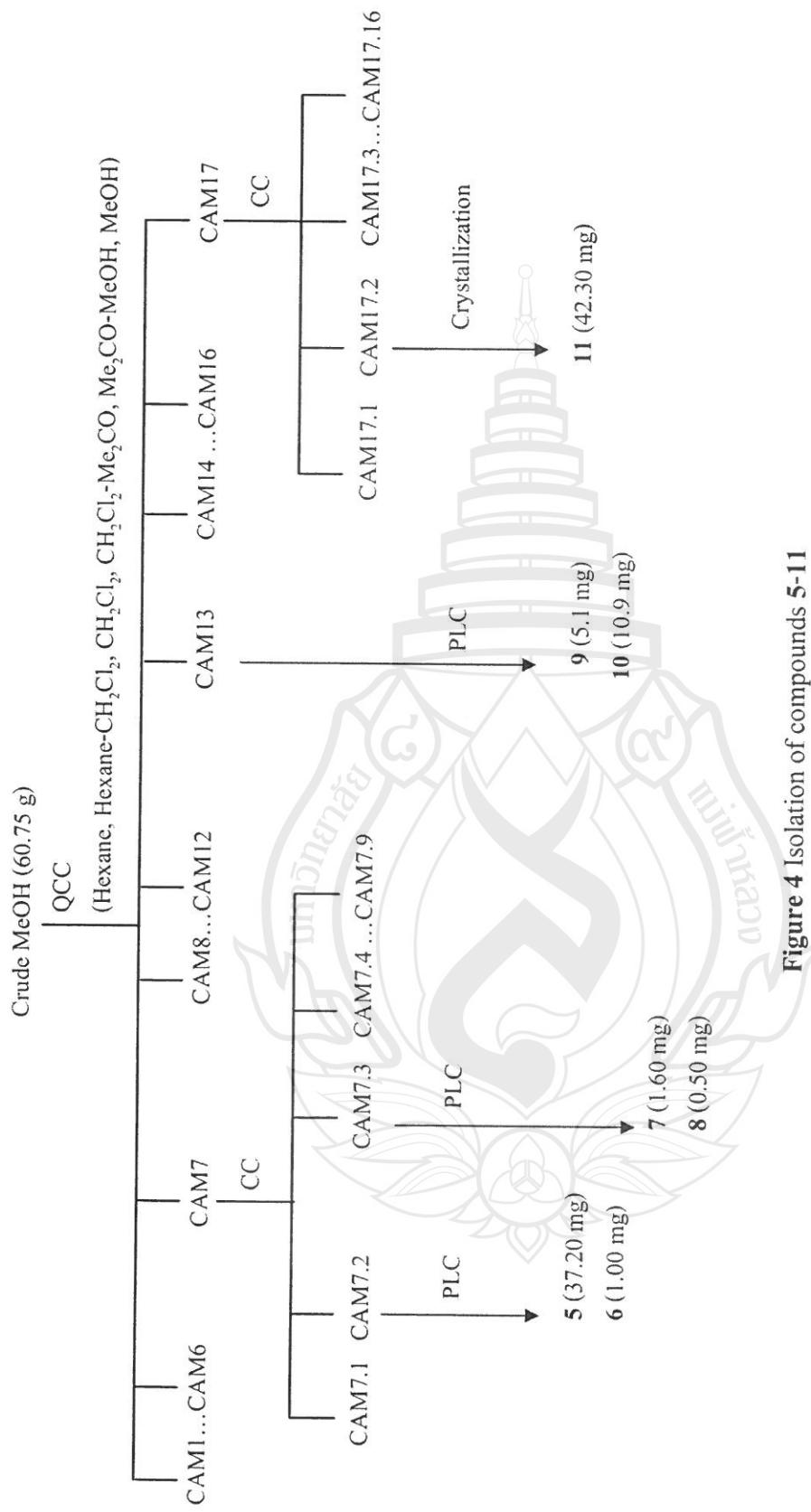


Figure 4 Isolation of compounds 5-11

Isolation of compounds 5-8

Fraction CAM7 (0.0529 g) was further separated by CC on silica gel and eluted with 50% CH_2Cl_2 -hexane. All fractions were collected and combined on the basis of TLC characteristic to give nine subfractions (CAM7.1-CAM7.9). Subfraction CAM7.2 was further purified by preparative TLC and eluted with 30% CH_2Cl_2 -hexane yielded two isolated bands. The component from the first band was obtained as a cream solid of **5** (37.20 mg). A white solid **6** (1.00 mg) was obtained from the second band. Subfraction CAM7.3 was further purified by preparative TLC, using 50% CH_2Cl_2 -hexane as an eluent. A white solid of **7** (1.60 mg) and **8** (0.50 mg) were obtained from the first and third isolated bands.

Isolation of compounds 9-10

Fraction CAM12 (0.0615 g) was further purified by CC and eluted with CH_2Cl_2 to obtain **9** (10.9 mg) and **10** (5.1 mg) as a white solid.

Isolation of compound 11

Fraction CAM17 (0.7856 g) was rechromatographed on CC and eluted with 50% CH_2Cl_2 -hexane. All fractions were collected and combined on the basis of TLC characteristic to give sixteen subfractions (CAM17.1-CAM17.16). Subfraction CAM17.2 was crystallized in CH_2Cl_2 to give **11** as a white powder (42.30 mg).

3.5 DPPH radical scavenging assay

The potential antioxidant activities of the crude extracts and pure compounds isolated from the leaves of *Camellia sinensis* var. *assamica* were assessed on the basis of scavenging activity of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The DPPH assay is one of the methods used for evaluation of antioxidative activity. The

following assay procedure was modified from those described in previous reports (Subhadhirasakul and Khumfang, 2000). The test solution in absolute ethanol (50 μ L) was mixed with 3 mL of 0.05 mM DPPH solution in ethanol. The absorbance (A) was then measured at 517 nm on a spectrophotometer. BHT and ascorbic acid were used as a positive control. The measurements were performed at least in triplicate. The result expressed as percentage inhibition. The concentration of the sample at 50% inhibition (IC_{50}) was obtained by linear regression analysis of dose-response curve, which was plotted between % inhibition and concentration (Subhadhirasakul and Khumfang, 2000).

$$\% \text{ inhibition} = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100$$

3.5.1 Screening on the free radical scavenging activity of crude extracts

The crude material was dissolved in absolute ethanol to prepare the solution with concentration of 6.1 mg/mL. The solution of each sample (50 μ L) was mixed with 0.05 mM DPPH ethanolic solution (3 mL) in a cuvette to give the solution with the final concentration of 100 μ g/mL. The trapping effect was assessed by measuring the absorbance change of the solution at 517 nm against 0.05 mM DPPH ethanolic solution after 15, 30, 45 and 60 min. Ascorbic acid and BHT were used as a positive control. The measurements were performed at least in triplicate. The degree of loss of color implied the activity.

3.5.2 Evaluation of 50% inhibition concentration (IC_{50}) of crude extracts

Crude CH_2Cl_2 and MeOH extracts showed the strong activity, they were then selected for further study. The solution of DPPH (0.05 mM, 3mL) was mixed with the sample at concentrations of 5.0, 4.0, 3.0, 2.0, 1.0, 0.5, 0.25 and 0.125 mg/mL. The absorbances were measured at 517 nm for 30 minute. The concentration that needed to

decrease % inhibition of DPPH solution to 50% inhibition (IC_{50}) was obtained by linear regression analysis of dose-response curve.

3.5.3 Screening on the free radical scavenging activity of pure compounds

The testing was performed as in **3.5.1** except the concentrations of samples were made at 0.61 mM (final concentration 10 μ M).

3.5.4 Evaluation of 50% inhibition concentration (IC_{50}) of pure compounds

Compounds **5**, **9**, **10** and **11** showed the strong activity, they were then selected for further study. The solution of DPPH (0.05 mM, 3 mL) was mixed with the sample at concentrations of 0.61, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025 and 0.0125 mM. The absorbances were measured at 517 nm for 30 min. The concentration that needed to decrease percentage inhibition of DPPH solution to 50% inhibition concentration (IC_{50}) was obtained by linear regression analysis of dose-response curve.

3.5.5 Evaluation of 50% inhibition concentration (IC_{50}) of standard antioxidants

The evaluation of IC_{50} of standard antioxidants, ascorbic acid and BHT, were study as in **3.5.4** except the standard solution concentrations were at 3.0, 2.0, 1.0, 0.5, 0.25 and 0.125 mM.

3.6 Antimicrobial activity assays

The paper disc diffusion method (Lorian, 1996) was used to screen the antimicrobial activity. Minimum inhibition concentrations (MICs) were determined by broth microdilution method (CLSI M7-A4, 2002) for bacterial assay.

3.6.1 Paper disc diffusion method

The paper disc diffusion method (Lorian, 1996) was used to screen the antimicrobial activity of the crude extracts. Three-five colonies of microbial cultures are transferred to nutrient broth and incubated for 3 hrs at 35 °C, 150 rpm shaking incubator. The turbidity of microbial suspension was adjusted with 0.85% NaCl (normal saline solution, NSS) compared to 0.5 McFarland standard. The cell culture is determined using total plate count. Spread the cultures into agar plates with sterile cotton swab. Filter papers were placed on the agar plates, containing tested microorganisms, then 10 µL of crude extracts were dropped on the filter paper. Plates were kept in the incubator at 35 °C for 18 h. This performed in duplicate for each extracts. The clear zone shown on the plate indicating in antimicrobial activity. Hexane, CH₂Cl₂ and MeOH are used for testing markers for crude hexane, CH₂Cl₂ and MeOH extracts of *C. sinensis* var. *assamica*. Antibiotic paper discs are used for control markers of antimicrobial activity.

3.6.2 Broth microdilution method

3.6.2.1 Screening of pure compounds

Test samples were dissolved in dimethyl sulfoxide (DMSO) and mixed with melted Mueller Hinton Broth (MHB) in microtiter plates. Add 50 µL of inoculum suspensions in each well. Final concentrations were 200 µg/mL. The inoculated plate were incubated at 35 °C for 16-18 h. Then drop 0.18% resazurin 10 µL in microtiter plate and incubated in 35 °C for 2-3 h. The blue color showed sample can inhibit microbial growth and pink color shown sample can not inhibit microbial growth. The test was performed in triplicates for each sample. Vancomycin, gentamycin and Streptomycin were used as a positive control drug.

3.6.2.2 Determination of minimum inhibition concentration

Minimum inhibition concentrations (MICs) were determined by the Broth microdilution method (CLSI M7-A4, 2002) for bacteria. Test samples were dissolved in dimethyl sulfoxide (DMSO). Serial 2-fold dilutions of the test samples were mixed with melted Mueller Hinton Broth (MHB) in microtiter plates. Final concentrations of the test sample in broth ranged from 1280–2.5 μ g/mL. 50 μ L of inoculum suspensions were added in each well (final concentration 1×10^4 CFU/well). The inoculated plate were incubated at 35 °C for 16-18 h. A 0.18% resazurin solution (10 μ L) was dropped in microtiter plate and incubated in 35 °C for 2-3 h. The blue color shown demonstrating inhibition of microbial growth while the pink color indicated no activity. MICs were recorded by reading the lowest concentration that inhibited visible growth. The test was performed in triplicates. Vancomycin, gentamycin and streptomycin were used as positive control drugs. Growth controls were performed on agar containing DMSO.

CHAPTER 4

RESULTS AND DISCUSSION

The leaves of *Camellia sinensis* var. *assamica* were collected from Doi Mae Salong, Chiang Rai, Thailand. The dried leaves of *Camellia sinensis* var. *assamica* were extracted with hexane, dichloromethane and methanol at room temperature, respectively. Upon chromatographic separation the crude dichloromethane extract yielded a new compound: 13-methyl lansic acid (2) and three known compounds: β -sitosterol (1), lansionic acid (3) and stigmasterol (4). Separation of methanolic extract produced seven known compounds: (+)catechin (5), 21*R*-hydroxyonocera-8(26),14-dien-3-one (6), lupeol (7), lupenone (8), (-)epigallocatechin gallate (9), (-)epicatechin gallate (10) and (-)epicatechin (11). Their structures were determined by spectroscopic evidences, especially 1D and 2D NMR spectral data.

4.1 Spectroscopic data of pure compounds

Compound 1

Melting point : 139-142 $^{\circ}$ C

IR (KBr) ν (cm $^{-1}$) : 3425, 2924, 2854

1 H NMR (500 MHz) (CDCl $_3$) (δ ppm) : 5.36 (1H, *m*, H-6), 3.53 (1H, *m*, H-3), 2.31 (1H, *m*, H-4), 2.24 (1H, *m*, H-4), 2.03 (*m*, H-12), 1.98 (2H, *m*, H-7), 1.96 (*m*, H-2), 1.86 (*m*, H-16), 1.84 (*m*, H-1), 1.83 (*m*, H-16), 1.66 (*m*, H-25), 1.59 (*m*, H-2), 1.57 (*m*, H-11), 1.50 (*m*, H-8), 1.29 (*m*, H-22), 1.28 (*m*, H-12, H-20), 1.25 (*br s*, H-28), 1.16 (*m*, H-23), 1.15 (*m*, H-15, H-17), 1.08 (*m*, H-1, H-15), 1.02 (*m*, H-11, H-14), 1.01 (3H, *s*, H-19), 1.00 (*s*, H-22), 0.93 (*m*, H-9, H-24), 0.92 (3H, *d*, *J* = 6.5 Hz, H-21), 0.85 (3H, *t*, *J* = 8.0 Hz, H-29), 0.84 (3H, *d*, *J* = 6.5 Hz, H-26), 0.81 (3H, *d*, *J* = 6.5 Hz, H-27), 0.68 (3H, *s*, H-18)

Compound 2

Melting point : 182-183.5 °C

$[\alpha]_D^{29}$ -25.30 ° (c = 0.02, CH₃OH)

IR (KBr) V (cm⁻¹) : 3465, 1730, 1650, 1520, 1400, 898

¹H NMR (500 MHz) (CDCl₃) (δ ppm) : 5.38 (m, H-15), 4.89 (s, H-26), 4.87 (s, H-23), 4.83 (s, H-29), 4.79 (s, H-29), 4.69 (s, H-23), 4.66 (s, H-26), 2.49 (m, H-19), 2.45 (m, H-1), 2.36 (m, H-7), 2.29 (m, H-1, H-2), 2.26 (m, H-17), 2.25 (m, H-5), 2.22 (m, H-16), 2.18 (m, H-19), 1.99 (dt, *J* = 12.5, 4.5 Hz, H-7), 1.89 (m, H-13), 1.85 (m, H-2), 1.84 (s, H-31), 1.81 (m, H-16), 1.81 (s, H-27), 1.79 (m, H-9), 1.77 (m, H-11, H-20), 1.77 (s, H-30), 1.72 (s, H-24), 1.68 (m, H-6), 1.66 (m, H-20), 1.61 (m, H-6), 1.46 (m, H-12), 1.29 (t, *J* = 10.5 Hz, H-11), 1.16 (t, *J* = 12.5 Hz, H-12), 0.80 (s, H-28), 0.72 (s, H-25)

¹³C NMR (125 MHz) (CDCl₃) (δ ppm) : 181.6, 181.5, 147.9, 147.3, 147.0, 135.7, 121.9, 114.0, 113.7, 107.2, 51.6, 50.6, 48.7, 47.5, 41.5, 38.6, 38.0, 32.9, 31.9, 30.4, 29.5, 29.2, 29.0, 28.5, 27.8, 27.4, 23.5, 23.1, 22.7, 17.7, 15.9

DEPT 135° (CDCl₃) (δ ppm) : 29.2, 23.5, 23.1, 22.7, 17.7, 15.9 (CH₃); 114.0, 113.7, 107.2, 38.0, 32.9, 31.9, 30.4, 29.5, 29.0, 27.8, 28.5, 27.4 (CH₂); 121.9, 51.6, 50.6, 47.5, 48.7 (CH); 181.6, 181.5, 147.9, 147.3, 147.0, 135.7, 41.5, 38.6 (C)

EIMS *m/z* (% relative intensity) : under investigation

HRMS *m/z* : under investigation

Compound 3

Melting point : 82.6-83.1 °C

IR (KBr) V (cm⁻¹) : 3400-2800, 1710, 1640, 1460, 1380, 890

¹H NMR (500 MHz) (CDCl₃) (δ ppm) : 5.40 (1H, *br s*, H-15), 4.91 (1H, *s*, H_{eq}-26), 4.89 (1H, *s*, H_{eq}-29), 4.80 (1H, *s*, H_{ax}-29), 4.69 (1H, *s*, H_{ax}-26), 2.68 (1H, *m*, H_{eq}-2), 2.45 (1H, *m*, H_{eq}-20), 2.42 (2H, *m*, H-7), 2.37 (1H, *m*, H_{ax}-2), 2.29 (1H, *m*, H_{ax}-

20), 2.20 (1H, *m*, H-17), 2.09 (1H, *m*, H_{eq}-16), 2.03 (1H, *m*, H_{eq}-1), 1.87 (1H, *m*, H_{ax}-16), 1.83 (1H, *m*, H-13), 1.79 (3H, *s*, H-30), 1.75 (3H, *m*, H-27), 1.69 (1H, *m*, H_{eq}-6), 1.68 (3H, *m*, H-5, H-19), 1.67 (1H, *m*, H_{eq}-11), 1.61 (1H, *m*, H-9), 1.50 (1H, *m*, H_{ax}-1), 1.48 (1H, *m*, H_{ax}-6), 1.40 (1H, *m*, H_{ax}-11), 1.25 (2H, *m*, H-12), 1.09 (3H, *s*, H-23), 1.05 (1H, *m*, H-1), 1.02 (3H, *s*, H-25), 0.86 (3H, *s*, H-24), 0.85 (3H, *s*, H-28)

¹³C NMR (125 MHz) (CDCl₃) (δ ppm) : 217.2, 179.7, 147.5, 147.5, 135.8, 121.8, 113.4, 107.6, 57.5, 55.0, 49.1, 48.2, 47.7, 39.3, 38.6, 37.8, 37.5, 34.7, 32.6, 29.3, 28.9, 27.2, 26.2, 26.0, 25.1, 22.9(x2), 21.7, 16.3, 14.1

Compound 4

Melting point : 156-157 °C

$[\alpha]_D^{29} + 20^\circ$ (c = 0.03 in CH₃OH)

IR (KBr) ν (cm⁻¹) : 3433, 2959, 2869

¹H NMR (500 MHz) (CDCl₃) (δ ppm) : 5.36-5.33 (*m*), 5.16 (*dd*), 5.02 (*dd*), 3.56-3.48, 1.05, 1.02, 0.86, 0.82, 0.80, 0.69

Compound 5

Melting point : 169.7-170.3 °C

$[\alpha]_D^{29} + 20^\circ$ (c = 0.03 in CH₃OH)

¹H NMR (500 MHz) (Acetone-*d*₆) (δ ppm) : 28.30 (1H, *br s*, OH), 8.11 (1H, *br s*, OH), 8.00 (1H, *br s*, OH), 7.94 (1H, *br s*, OH), 6.90 (1H, *d*, *J* = 2.0 Hz, H-2'), 6.80 (1H, *d*, *J* = 8.0 Hz, H-5'), 6.76 (1H, *dd*, *J* = 8.0, 2.0 Hz, H-6'), 6.03 (1H, *d*, *J* = 2.5 Hz, H-6), 5.88 (1H, *d*, *J* = 2.5 Hz, H-8), 4.56 (1H, *d*, *J* = 7.5 Hz, H-2), 3.99 (1H, *m*, H-3), 3.03 (1H, *br s*, OH-3), 2.90 (1H, *dd*, *J* = 16.0, 5.0 Hz, H_a-4), 2.53 (1H, *dd*, *J* = 16.0, 8.5 Hz, H_b-4)

¹³C NMR (125 MHz) (Acetone-*d*₆) (δ ppm) : 157.8, 157.2, 156.9, 145.7, 145.6, 132.1, 120.1, 115.7, 115.2, 100.6, 96.1, 95.4, 82.7, 68.3, 28.9

Compound 6

Melting point : 101-102 °C

IR (KBr) ν (cm⁻¹) : 3400-2800, 1710

¹H NMR (500 MHz) (CDCl₃) (δ ppm) : 5.42 (1H, *br s*, H-15), 4.86 (1H, *s*, H_a-26), 4.55 (1H, *s*, H_b-26), 3.27 (1H, *dd*, *J* = 7.3, 3.0 Hz, H-21), 2.41 (2H, *qd*, H-2), 2.40 (2H, *m*, H-7), 2.04 (1H, *m*, H-1), 1.95 (1H, *m*, H-11), 1.94 (1H, *m*, H-1), 1.90 (1H, *m*, H-11), 1.76 (1H, *m*, H-19), 1.72 (3H, *s*, H-27), 1.69 (1H, *m*, H-12), 1.60 (3H, *m*, H-9, H-20), 1.59 (2H, *m*, H-5), 1.58 (1H, *m*, H-13), 1.54 (1H, *m*, H-12), 1.40 (2H, *m*, H-16), 1.38 (2H, *m*, H-6), 1.13 (1H, *m*, H-17), 1.09 (3H, *s*, H-24), 1.06 (1H, *m*, H-19), 1.05 (3H, *s*, H-23), 1.00 (3H, *s*, H-30), 0.94 (3H, *s*, H-25), 0.77 (3H, *s*, H-29), 0.67 (3H, *s*, H-28)

¹³C NMR (125 MHz) (CDCl₃) (δ ppm) : 217.2, 148.0, 135.7, 121.6, 106.9, 78.3, 56.5, 54.6, 54.3, 51.5, 47.5, 39.2, 39.1, 38.1, 37.2, 36.4, 34.7, 38.0, 28.2, 27.9, 25.5, 24.9, 24.8, 23.9, 24.0, 22.2, 22.1, 15.4, 14.6, 13.3

Compound 7

Melting point : 213-215 °C

IR (KBr) ν (cm⁻¹) : 3235, 1640, 1490, 1382, 1185, 1105, 1040, 984, 943

¹H NMR (300 MHz) (CDCl₃) (δ ppm) : 4.68 (*d*, *J* = 2.4 Hz, H-29), 4.56 (1H, *m*, H-29), 3.39 (1H, *dd*, *J* = 5.7, 1.5 Hz, H-3), 2.39 (*ddd*, *J* = 5.7, 5.7, 5.4 Hz, H-19), 1.95 (1H, *m*, H-21), 1.70 (1H, *m*, H-2, H-12), 1.68 (3H, *s*, H-30), 1.65 (1H, *m*, H-13), 1.52 (1H, *m*, H-15), 1.50 (2H, *m*, H-1), 1.45 (1H, *m*, H-6, H-11), 1.40 (1H, *m*, H-5, H-16, H-22), 1.35 (1H, *m*, H-18), 1.20 (1H, *m*, H-7, H-9, H-22), 1.03 (3H, *s*, H-26), 0.96 (3H, *s*, H-23), 0.93 (3H, *s*, H-27), 0.84 (3H, *s*, H-24), 0.82 (3H, *s*, H-25), 0.78 (3H, *s*, H-28)

¹³C NMR (75 MHz) (CDCl₃) (δ ppm) : 151.1, 109.3, 76.3, 50.2, 49.0, 48.3, 48.0, 43.0, 42.9, 41.1, 40.0, 38.0, 37.6, 37.3, 35.6, 34.2, 33.1, 29.9, 28.3, 27.4, 25.4, 25.1, 22.2, 20.8, 19.3, 18.3, 18.0, 16.0, 15.9, 14.7

DEPT 135° (CDCl₃) (δ ppm) : 28.3, 22.2, 19.3, 18.0, 16.0, 15.9, 14.7 (CH₃); 109.3, 40.0, 35.6, 34.2, 33.1, 29.9, 27.4, 25.4, 25.1, 20.8, 18.3 (CH₂); 76.3, 50.2, 49.0, 48.3, 48.0, 38.0 (CH); 151.1, 43.0, 42.9, 41.1, 37.6, 37.3 (C)

Compound 8

Melting point : 168-171 °C

IR (KBr) ν (cm⁻¹) : 1701, 1280, 1139, 1085, 1062, 830, 785

¹H NMR (300 MHz) (CDCl₃) (δ ppm) : 4.70 (1H, *d*, *J* = 2.4 Hz, H_a-29), 4.58 (1H, *m*, H_b-29), 2.40 (*m*, H-2), 2.35 (1H, *m*, H-19), 1.90 (*m*, H-2, H-21, H-22), 1.72 (*m*, H-30), 1.71 (*m*, H-12, H-15), 1.66 (*m*, H-13), 1.48 (*m*, H-16), 1.43 (*m*, H-6, H-7, H-11), 1.42 (*m*, H-1), 1.36 (*m*, H-9, H-18), 1.35 (*m*, H-16), 1.32 (*m*, H-5), 1.26 (*m*, H-11), 1.21 (*m*, H-1), 1.08 (3H, *s*, H-23), 1.07 (3H, *s*, H-26), 1.00 (3H, *s*, H-24), 0.95 (3H, *s*, H-27), 0.94 (3H, *s*, H-25), 0.79 (3H, *s*, H-28)

¹³C NMR (75 MHz) (CDCl₃) (δ ppm) : 218.3, 151.0, 109.5, 55.2, 49.7, 48.3, 48.0, 47.5, 43.2, 42.9, 41.0, 40.0, 39.5, 38.5, 36.9, 36.1, 34.0, 33.8, 29.9, 27.8, 26.5, 25.3, 22.0, 21.0, 20.1, 19.4, 17.9, 16.0, 15.7, 14.5

Compound 9

Melting point : 254-255 °C

$[\alpha]_D^{29} - 181^\circ$ (c = 0.3 in CH₃OH)

¹H NMR (500 MHz) (Acetone-*d*₆) (δ ppm) : 7.02 (1H, *s*, H-2'',6''), 6.62 (1H, *s*, H-6'), 6.04 (1H, *s*, H-2'), 6.02 (1H, *d*, *J* = 2.5 Hz, H-6), 5.54 (1H, *m*, H-2), 5.05 (1H,

br s, H-1), 3.03 (1H, *dd*, *J* = 17.5, 4.5 Hz, H_a-4), 2.90 (1H, *dd*, *J* = 17.1, 2.0 Hz, H_b-4)

¹³C NMR (125 MHz) (Acetone-*d*₆) (δ ppm) : 165.9, 157.7, 157.3, 156.2, 147.3, 147.2, 146.3, 138.7, 133.5, 131.8, 123.2, 108.1, 110.0, 107.2, 100.2, 96.9, 96.4, 79.2, 70.0, 26.1

Compound 10

Melting point : 257-258 °C

$[\alpha]_D^{29} - 180$ ° (c = 0.3 in CH₃OH)

¹H NMR (500 MHz) (Acetone-*d*₆) (δ ppm) : 7.06 (1H, *d*, *J* = 1.5 Hz, H-2'), 7.02 (2H, *s*, H-2'',6''), 6.89 (1H, *dd*, *J* = 8.5, 1.5 Hz, H-6'), 6.76 (1H, *d*, *J* = 8.5 Hz, 5'), 6.05 (1H, *d*, *J* = 2.0 Hz, H-6), 6.03 (1H, *d*, *J* = 2.0 Hz, H-8), 5.54 (1H, *br s*, H-1), 5.12 (1H, *m*, H-2), 3.04 (1H, *dd*, *J* = 17.5, 5.0 Hz, H-4), 2.91 (1H, *dd*, 7.5, 2.5 Hz, H-4)

¹³C NMR (125 MHz) (Acetone-*d*₆) (δ ppm) : 170.2, 156.1, 156.0, 155.2, 144.0, 143.8, 143.8, 137.5, 130.3, 121.1, 109.2, 118.0, 114.5, 113.2, 97.9, 95.1, 94.8, 75.5, 68.0, 26.2

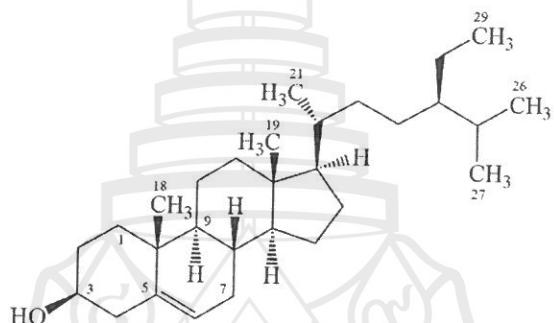
Compound 11

Melting point : 239.4 – 240.5 °C

$[\alpha]_D^{29} - 70$ ° (c = 0.03 in CH₃OH)

UV (MeOH) λ_{max} (log \mathcal{E}) : 282, 233

IR (KBr) ν (cm⁻¹) : 3323, 2921, 1631, 1606, 1519, 1469, 1281, 1142, 1090, 1060, 824, 792

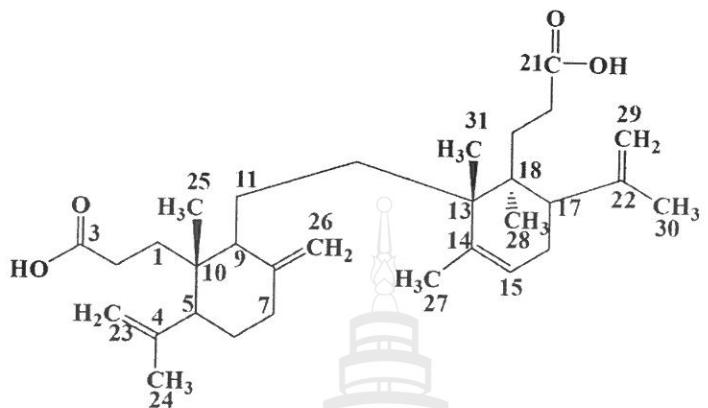

¹H NMR (500 MHz) (Acetone-*d*₆) (δ ppm) : 7.06 (1H, *d*, *J* = 1.5, Hz, H-2'), 6.84 (1H, *dd*, *J* = 8.0, 1.5, Hz, H-6'), 6.79 (1H, *d*, *J* = 8.0 Hz, H-5'), 6.02 (1H, *d*, *J* = 2.5 Hz, H-

6), 5.92 (1H, *d*, *J* = 2.5 Hz, H-8), 4.88 (1H, *s*, H-2), 4.20 (1H, *m*, H-3), 2.87 (1H, *dd*, *J* = 12.0, 4.5 Hz, H_a-4), 2.74 (1H, *dd*, *J* = 12.0, 4.5 Hz, H_b-4)

¹³C NMR (125 MHz) (Acetone-*d*₆) (δ ppm) : 157.6, 157.5, 157.2, 145.4, 145.3, 132.3, 119.4, 115.5, 115.3, 99.8, 96.1, 95.7, 79.4, 66.9, 29.0

4.2 Structural determination

Compound 1: Stigmast-5-en-3 β -ol (β -Sitosterol)



Compound 1 was colorless needles, m.p. 139-142 °C. The IR spectrum showed the absorption bands of O-H stretching (3425 cm^{-1}) and C-H stretching ($2924, 2854\text{ cm}^{-1}$). The ¹H NMR spectral data (Table 4) revealed the presence of an olefinic proton at δ 5.36 (1H, *m*, H-6) and an oxymethine proton at δ 3.53 (1H, *m*, H-3). The signals of six methyl groups were shown at δ 0.68 (*s*, H-18), 0.81 (*d*, *J* = 6.5 Hz, H-27), 0.84 (*d*, *J* = 6.5 Hz, H-26), 0.85 (*t*, *J* = 8.0 Hz, H-29), 0.92 (*d*, *J* = 6.5 Hz, H-21) and 1.01 (*s*, H-19). Accordingly the structure of 1 was proposed to be stigmast-5-en-3 β -ol. It was known as β -sitosterol (Nguyen *et al.*, 2004).

Table 4 NMR spectral data of compound **1**

Position	δ_{H} (multiplicity, J_{Hz})	
	Compound 1	β -Sitosterol
1	1.08 (m), 1.84 (m)	1.06 (m), 1.85 (m)
2	1.59 (m), 1.96 (m)	1.61 (m), 1.95 (m)
3	3.53 (1H, m)	3.54 (1H, m)
4	2.24 (1H, m), 2.31 (1H, m)	2.27 (1H, m), 2.36 (1H, m)
6	5.36 (1H, m)	5.38 (1H, m)
7	1.98 (2H, m)	1.98 (2H, m)
8	1.50 (m)	1.52 (m)
9	0.93 (m)	0.93 (m)
11	1.02 (m), 1.57 (m)	1.02 (m), 1.56 (m)
12	1.28 (m), 2.03 (m)	1.18 (m), 2.02 (m)
14	1.02 (m)	1.01 (m)
15	1.08 (m), 1.15 (m)	1.08 (m), 1.12 (m)
16	1.83 (m), 1.86 (m)	1.83 (m), 1.86 (m)
17	1.15 (m)	1.12 (m)
18	0.68 (3H, s)	0.68 (3H, s)
19	1.01 (3H, s)	1.00 (3H, s)
20	1.28 (m)	1.36 (m)
21	0.92 (3H, d, 6.5)	0.92 (3H, d, 6.4)
22	1.00 (s), 1.29 (m)	1.00 (s), 1.34 (m)
23	1.16 (2H, m)	1.18 (2H, m)
24	0.93 (m)	0.95 (m)
25	1.66 (m)	1.66 (m)
26	0.84 (3H, d, 6.5)	0.82 (3H, d, 6.8)
27	0.81 (3H, d, 6.5)	0.84 (3H, d, 6.8)
28	1.25 (br s)	1.26 (br s)
29	0.85 (3H, t, 8.0)	0.84 (3H, t, 7.6)

Compound 2: 13-methyl lansic acid

Compound **2** was obtained as a white solid, m.p. 182–183.5 °C, $[\alpha]_D^{29} -25.30^\circ$ ($c = 0.02$, CH_3OH). The IR spectrum exhibited absorption bands of hydroxyl groups at 3465 cm^{-1} , two carbonyl groups at 1710 and 1650 cm^{-1} and exomethylene groups at 898 cm^{-1} . The ^1H NMR spectral data (**Table 5**) showed *singlet* resonances of three tertiary methyl groups at δ 0.72 (H-25), 0.80 (H-28) and 1.84 (H-31), three olefinic methyl groups at δ 1.72 (H-24), 1.77 (H-30) and 1.84 (H-31). Seven olefinic protons were observed at δ 5.38 (*br s*, H-15), 4.80, 4.70 (*s*, H-23), 4.89, 4.66 (*s*, H-26) and 4.83, 4.79 (*s*, H-29). The characteristic signals of methylene protons H-11 and H-12 were resonated at δ 1.78 (*m*), 1.29 (*t*, $J = 10.0$ Hz) and 1.47 (*m*), 1.16 (*t*, $J = 12.0$ Hz), respectively. ^{13}C NMR spectrum (**Table 5**) revealed the presence of a trisubstituted olefin carbon at δ 135.7 (C-14) and 121.9 (C-15), three exomethylene carbons at δ 147.0 (C-4), 147.9 (C-8), 147.3 (C-22), 113.7 (C-23), 107.2 (C-26) and 114.0 (C-29) and two carboxyl carbons at δ 181.6 (C-3) and 181.5 (C-21). This characterization is consistent with the bicyclic triterpene skeleton (Kiang, *et al.*, 1967). The location of six methyl groups were supported by HMBC correlations between H-24 to C-23, C-5 and C-4; H-25 to C-10, C-9 and C-1; H-27 to C-15, C-14, C-13; H-28 to C-18, C-17, C-13; H-30 to C-29, C-22, C-17 and H-31 to C-18, C-13, C-12. The spectral data of **2** were similar to those of lansic acid (Tanaka *et al.*,

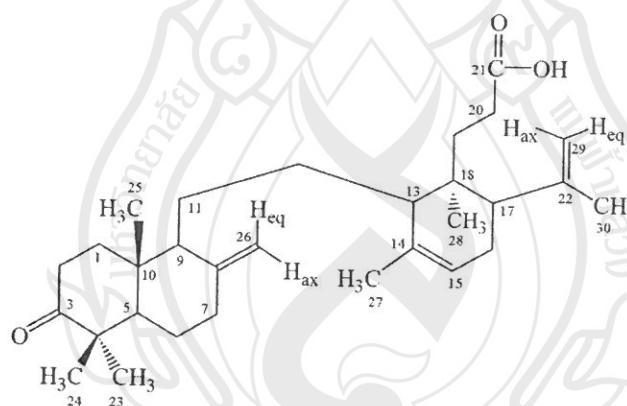

2002) except there was an additional methyl group located at C-13. Thus 13-methyl lansic acid was assigned for **2**. It is a new bicyclic triterpene derivative.

Table 5 NMR spectral data of compound **2**

Position	δ_{H} (multiplicity, J_{Hz})	δ_{C}	DEPT	HMBC
1	2.50 (m), 2.28 (m)	29.0	CH ₂	C-2, C-3
2	1.85 (m), 2.28 (m)	31.9	CH ₂	-
3	-	181.6	C	-
4	-	147.0	C	-
5	2.27 (m)	50.6	CH	C-10
6	1.67 (m), 1.60 (m)	30.4	CH ₂	-
7	2.37 (m), 1.99 (m)	38.0	CH ₂	C-6, C-9, C-26
8	-	147.9	C	-
9	1.79 (m)	51.6	CH	-
10	-	41.5	C	-
11	1.78 (m), 1.29 (t, 10.0)	27.4	CH ₂	-
12	1.47 (m) 1.16 (1H, t, 12.0)	27.8	CH ₂	C-8, C-11
13	-	47.5	C	-
14	-	135.7	C	-
15	5.38 (br s)	121.9	CH	C-9, C-17, C-27
16	2.24 (m), 1.81 (m)	29.5	CH ₂	-
17	2.27 (m)	48.7	CH	C-19
18	-	38.6	C	-
19	2.49 (m), 2.18 (m)	28.5	CH ₂	C-17, C-20, C-21
20	1.77 (m), 1.66 (m)	32.9	CH ₂	-
21	-	181.5	C	-
22	-	147.3	C	-
23	-	113.7	CH ₂	C-4, C-5, C-24
24	4.87 (s), 4.69 (s)	23.5	CH ₃	C-4, C-5, C-23

Table 5 (continued)

Position	δ_{H} (multiplicity, J_{Hz})	δ_{C}	DEPT	HMBC
25	1.72 (s)	17.7	CH_3	C-1, C-9, C-10
26	0.72 (s)	107.2	CH_2	C-7, C-8, C-9
27	4.89 (s), 4.66 (s), 1.81 (s)	23.1	CH_3	C-13, C-14, C-15
28	1.80 (s)	15.9	CH_3	C-13, C-17, C-18
29	4.83 (s), 4.79 (s)	114.0	CH_2	C-17, C-22, C-30
30	1.77 (s)	22.7	CH_3	C-17, C-22, C-29
31	1.84 (s)	29.2	CH_3	C-12, C-13, C-18

Compound 3: 3 β -Hydroxyonocera-8(26),14-dien-21-one (Lansionic acid)

Compound 3 is colorless amorphous solid, m.p. 82.6-83.1 °C. The IR spectrum showed a broad absorption bands of a hydroxyl group at 3400-2800 cm^{-1} and a non-chelated conjugated carbonyl group at 1710 cm^{-1} . The ^1H NMR spectrum (**Table 6**) exhibited the resonances of six tertiary methyl groups at δ 0.85 (H-28), 0.86 (H-24), 1.02 (H-25), 1.09 (H-23), 1.75 (H-27) and 1.79 (H-30). The characteristic signals of methylene protons were observed at δ 4.91 (1H, s, H_{eq}-26), 4.69 (1H, s, H_{ax}-26), 4.89 (1H, s, H_{eq}-29) and 4.80 (1H, s, H_{ax}-29). ^{13}C NMR spectral data (**Table 6**) showed the signals of a ketone at δ 217.2 (C-3), a carboxyl group at δ 179.7 (C-21), a trisubstituted olefin at δ 135.8

(C-14) and 121.8 (C-15), and two exomethylenes at δ 107.6 (C-26) and 113.4 (C-29). ^1H and ^{13}C NMR spectral data as well as melting point were in good agreement with those of 3β -hydroxyonocera-8(26),14-dien-21-one or lansionic acid (Tanaka *et al.*, 2002).

Table 6 NMR spectral data of compound 3

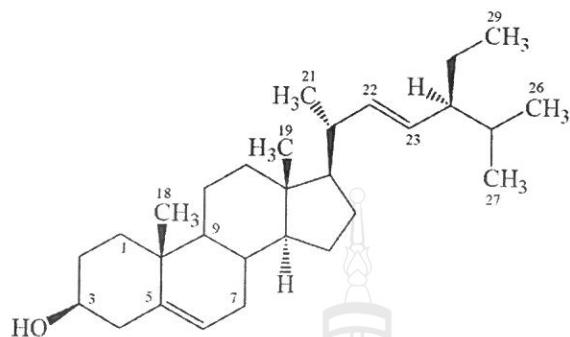
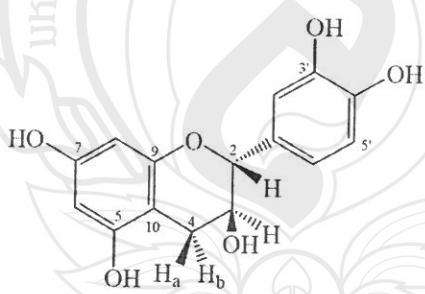

Position	Compound 3		Lansionic acid	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}^*	δ_{H} (multiplicity, J_{Hz})	δ_{C}
1	H_{ax} : 1.50 (1H, <i>m</i>)	37.5	1.57 (1H, <i>m</i>)	37.6
	H_{eq} : 2.03 (1H, <i>m</i>)		2.02 (1H, <i>m</i>)	
2	H_{ax} : 2.37 (1H, <i>m</i>)	34.7	2.38 (1H, <i>m</i>)	34.7
	H_{eq} : 2.68 (1H, <i>m</i>)		2.61 (1H, <i>m</i>)	
3	-	217.2	-	217.2
4	-	47.7	-	47.8
5	1.68 (1H, <i>m</i>)	55.0	1.66 (1H, <i>m</i>)	55.1
6	H_{ax} : 1.48 (1H, <i>m</i>)	25.1	1.48 (1H, <i>m</i>)	25.1
	H_{eq} : 1.69 (1H, <i>m</i>)		1.69 (1H, <i>m</i>)	
7	2.42 (2H, <i>m</i>)	37.8	2.43 (2H, <i>m</i>)	37.8
8	-	147.5	-	147.5
9	1.61 (1H, <i>m</i>)	57.5	1.61 (1H, <i>m</i>)	57.5
10	-	39.3	-	39.3
11	H_{ax} : 1.40 (1H, <i>m</i>)	26.2	1.39 (1H, <i>m</i>)	26.3
	H_{eq} : 1.67 (1H, <i>m</i>)		1.67 (1H, <i>m</i>)	
12	1.25 (2H, <i>m</i>)	27.2	1.21 (2H, <i>m</i>)	27.2
13	1.83 (1H, <i>m</i>)	48.2	1.82 (1H, <i>m</i>)	48.3
14	-	135.8	-	135.8

Table 6 (continued)

Position	Compound 3		Lansionic acid	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}^*	δ_{H} (multiplicity, J_{Hz})	δ_{C}
15	5.40 (1H, br s)	121.8	5.36 (1H, br s)	121.8
16	H_{ax} : 1.87 (1H, <i>m</i>)	29.3	1.86 (1H, <i>m</i>)	29.4
	H_{eq} : 2.09 (1H, <i>m</i>)		2.19 (1H, <i>m</i>)	
17	2.20 (1H, <i>m</i>)	49.1	2.20 (1H, <i>m</i>)	49.2
18	-	38.6	-	38.7
19	1.68 (2H, <i>m</i>)	32.6	1.68 (2H, <i>m</i>)	32.6
20	H_{ax} : 2.29 (1H, <i>m</i>)	28.9	2.27 (1H, <i>m</i>)	28.6
	H_{eq} : 2.45 (1H, <i>m</i>)		2.43 (1H, <i>m</i>)	
21	-	179.7	-	178.0
22	-	147.5	-	147.6
23	1.09 (3H, <i>s</i>)	26.0	1.07 (3H, <i>s</i>)	25.9
24	0.86 (3H, <i>s</i>)	21.7	1.00 (3H, <i>s</i>)	21.7
25	1.02 (3H, <i>s</i>)	14.1	0.84 (3H, <i>s</i>)	14.1
26	H_{ax} : 4.69 (1H, <i>s</i>)	107.6	4.89 (1H, <i>s</i>)	107.6
	H_{eq} : 4.91 (1H, <i>s</i>)		4.61 (1H, <i>s</i>)	
27	1.75 (3H, <i>m</i>)	22.9	1.72 (3H, <i>m</i>)	22.9
28	0.85 (3H, <i>s</i>)	16.3	0.81 (3H, <i>m</i>)	16.3
29	H_{ax} : 4.80 (1H, <i>s</i>)	113.4	4.81 (1H, <i>s</i>)	114.0
	H_{eq} : 4.89 (1H, <i>s</i>)		4.77 (1H, <i>s</i>)	
30	1.79 (3H, <i>s</i>)	22.9	1.76 (3H, <i>s</i>)	22.8

* Carbon type was deduced from DEPT experiments.

Compound 4: 5,22-Stigmastadien-3 β -ol (Stigmasterol)



Compound 4 was obtained as a white solid, m.p. 156-157 °C, $[\alpha]_D^{29} -55.48$ ° (c = 0.02, CH₃OH). In IR spectrum, the absorption bands of C-H stretching (2959 and 2869 cm⁻¹) and O-H stretching (3433 cm⁻¹) were shown. The ¹H NMR spectrum (**Table 7**) contained signals for an oxymethine proton at δ 3.56-3.48, three olefinic protons at δ 5.36-5.33 (m), 5.16 (dd) and 5.02 (dd) and six methyl groups at δ 1.02, 1.05, 0.86, 0.82, 0.80 and 0.69. The ¹H NMR data, optical rotation value and melting point were corresponded to the previous reported data (Forgo and Köver, 2004). Therefore, compound 4 was assigned to be 5,22-stigmastadien-3 β -ol or stigmasterol.

Table 7 NMR spectral data of compound 4

Position	δ_{H} (multiplicity, J_{Hz})	
	Compound 4	Stigmasterol
3	3.56-3.48 (m)	3.51 (m)
6	5.36-5.33 (m)	5.34 (m)
18	0.69	0.70 (s)
19	1.02	10.1 (s)
21	1.05	1.03 (d, 6.2)
22	5.16 (dd)	5.17 (dd, 15.2, 8.6)
23	5.02 (dd)	5.04 (dd, 15.2, 8.6)
26	0.86	0.85 (d, 6.4)
27	0.80	0.80 (d, 6.4)
29	0.82	0.81 (t, 7.3)

Compound 5: 3,5,7,3',4'-Pentahydroxyflavan ((+)-Catechin)

Compound **5** was isolated as a cream solid, m.p. 169.7-170.3 °C. The optical rotation was $[\alpha]_D^{29} +20^\circ$ ($c = 0.03$ in CH_3OH). The ^1H NMR spectrum (**Table 8**) showed two *doublet* signals with *meta*-coupling ($J = 2.5$ Hz) at δ 6.03 (H-6) and 5.88 (H-8). The resonances of aromatic protons H-2', H-6' and H-5' were observed at δ 6.90 (1H, *d*, $J = 2.0$ Hz), 6.76 (1H, *dd*, $J = 8.0$ and 2.0 Hz) and 6.80 (1H, *d*, $J = 8.0$ Hz).

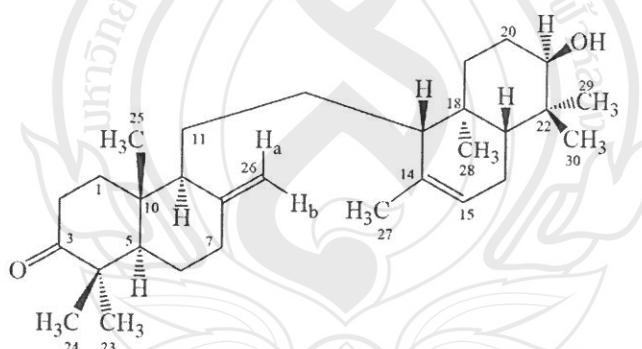

Hz), respectively. In addition, the resonance of H-2 (δ 4.56, *d*, *J* = 7.5 Hz), H-3 (δ 4.00, *m*), H_a-4 (δ 2.90, *dd*, *J* = 16.0 and 5.0 Hz) and H_b-4 (δ 2.53, *dd*, *J* = 16.0 and 8.5 Hz) indicated that the configuration of H-2 and H-3 are *trans*. ^{13}C NMR exhibited the existence of a methylene carbon (δ 28.9), seven methine carbons (δ 120.1 115.7, 115.2, 96.1, 95.4, 82.7 and 68.3) seven quaternary carbons (δ 157.8, 157.2, 157.0, 145.7 and 132.1). The ^1H and ^{13}C NMR data, optical rotation value and melting point were corresponded to 3,5,7,3',4'-pentahydroxyflavan (Panthong, 1999). Therefore, **5** was proposed to be (+)catechin.

Table 8 NMR spectral data of compound **5**

Position	Compound 5		(+)-Catechin	
	δ_{H} (multiplicity, <i>J</i> _{H₂})	δ_{C}	δ_{H} (multiplicity, <i>J</i> _{H₂})	δ_{C}
2	4.56 (1H, <i>d</i> , 7.5)	82.7	4.84 (1H, <i>br s</i>)	78.1
3	4.00 (1H, <i>m</i>)	68.3	4.19 (1H, <i>br s</i>)	65.6
4	H _a : 2.90 (1H, <i>dd</i> , 16.0, 5.0)	28.9	2.84 (1H, <i>dd</i> , 16.5, 4.5) 2.76 (1H, <i>dd</i> , 16.5, 2.5)	27.9
5	H _b : 2.53 (1H, <i>dd</i> , 16.0,	157.8	-	156.4
6	8.5)	96.1	6.05 (1H, <i>d</i> , 2.0)	95.6
7	-	157.2	-	156.2
8	6.03 (1H, <i>d</i> , 2.5)	95.4	5.96 (1H, <i>d</i> , 2.0)	94.5
9	-	157.0	-	155.5
10	5.88 (1H, <i>d</i> , 2.5)	100.6	-	98.3
1'	-	132.1	-	130.4
2'	-	145.7	7.25 (1H, <i>d</i> , 2.0)	144.8
3'	-	145.7	-	144.2

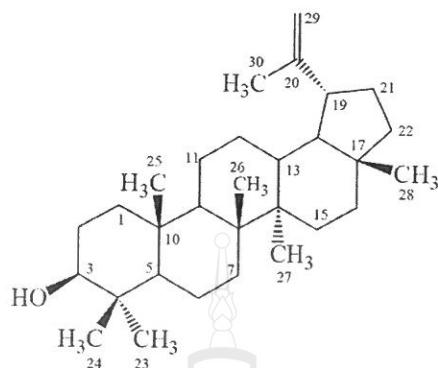
Table 8 (continued)

Position	Compound 5		(+)-Catechin	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
4'	-	145.7	-	144.4
5'	6.80 (1H, <i>d</i> , 8.0)	120.1	6.83 (1H, <i>d</i> , 8.0)	117.8
6'	6.76 (1H, <i>dd</i> , 8.0, 2.0)	115.2	6.80 (1H, <i>dd</i> , 8.0, 2.0)	114.1
OH-3	3.03 (1H, <i>br s</i>)	-	3.64 (1H, <i>br s</i>)	-
OH-5	8.11 (1H, <i>br s</i>)	-	8.85 (1H, <i>br s</i>)	-
OH-7	8.30 (1H, <i>br s</i>)	-	8.74 (1H, <i>d</i> , 2.0)	-
OH-3'	8.00 (1H, <i>br s</i>)	-	8.40 (1H, <i>br s</i>)	-
OH-4'	7.94 (1H, <i>br s</i>)	-	8.17 (1H, <i>br s</i>)	-

Compound 6: 21*R*-Hydroxyonocera-8(26),14-dien-3-one

Compound **6** was a colorless amorphous solid, m.p. 101-102 °C. The IR spectrum showed a broad absorption band at 3400-2800 cm^{-1} and a strong absorption at 1710 cm^{-1} . The ^1H NMR spectral data (**Table 9**) indicated that **6** was similar to **3**. Six *singlet* signals of methyl protons H-23 (δ 1.05), H-24 (δ 1.09), H-25 (δ 0.94), H-27 (δ 1.72), H-29 (δ 0.77) and H-30 (δ 1.00) were observed. Two *singlet* signals

for terminal methylene protons H_a -26 (δ 4.86) and H_b -26 (δ 4.55) were displayed in the spectrum. The resonances of an olefinic and an oxymethine protons were detected at δ 5.42 (*br s*, H-15) and δ 3.27 (*dd*, J = 7.0, 3.0 Hz, H-21), respectively. The ^{13}C NMR and DEPT experiments indicated the existence of a carbonyl carbon (δ 217.2), seven methyl carbons (δ 28.2, 24.9, 22.2, 22.1, 15.4, 14.6 and 13.3), ten methylene carbons (δ 106.9, 38.1, 38.0, 37.2, 34.7, 27.9, 25.5, 24.8, 24.0 and 29.9), six methine carbons (δ 121.6, 56.5, 54.6, 54.3, 51.5 and 27.9) and six quarternary carbons (δ 148.0, 135.7, 47.5, 39.2, 39.1 and 36.4). The assignment was in agreement with the previous data of 21*R*-hydroxyonocera-8(26),14-dien-3-one (Tanaka *et al.*, 2002).


Table 9 NMR spectral data of compound 6

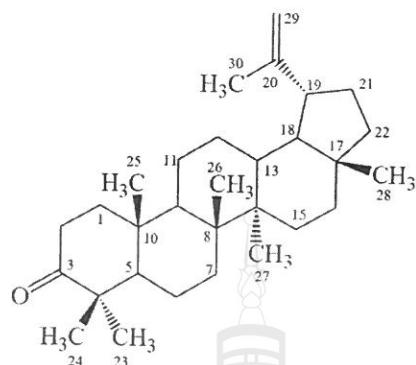
Position	Compound 6		21 <i>R</i> -Hydroxyonocera-8(26),14-dien-3-one	
	δ_{H} (<i>multiplicity, J_{Hz}</i>)	δ_{c}	δ_{H} (<i>multiplicity, J_{Hz}</i>)	δ_{c}
1	2.04 (1H, <i>m</i>), 1.94 (1H, <i>m</i>)	38.1	2.01 (1H, <i>m</i>), 1.93 (1H, <i>m</i>)	37.8
2	2.41 (2H, <i>qd</i>)	34.7	2.37 (2H, <i>m</i>)	34.7
3	-	217.2	-	217.2
4	-	47.5	-	47.8
5	1.59 (2H, <i>m</i>)	54.3	1.57 (1H, <i>m</i>)	55.2
6	1.38 (2H, <i>m</i>)	24.8	1.35 (2H, <i>m</i>)	25.7
7	2.40 (2H, <i>m</i>)	38.0	2.41 (2H, <i>m</i>)	37.9
8	-	148.0	-	147.4
9	1.60 (1H, <i>m</i>)	56.5	1.64 (1H, <i>m</i>)	56.6
10	-	39.2	-	38.7
11	1.95 (1H, <i>m</i>), 1.90 (1H, <i>m</i>)	23.9	1.95 (1H, <i>m</i>), 1.92 (1H, <i>m</i>)	23.5

Table 9 (continued)

Position	Compound 6		21 <i>R</i> -Hydroxyonocera-8(26),14-dien-3-one	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
12	1.69 (1H, <i>m</i>), 1.54 (1H, <i>m</i>)	24.0	1.69 (1H, <i>m</i>), 1.51 (1H, <i>m</i>)	25.1
13	1.58 (1H, <i>m</i>)	54.6	1.57 (1H, <i>m</i>)	55.3
14	-	135.7	-	135.2
15	5.42 (1H, <i>br s</i>)	121.6	5.37 (1H, <i>br s</i>)	122.1
16	1.40 (2H, <i>m</i>)	25.5	1.49 (2H, <i>m</i>)	25.8
17	1.13 (1H, <i>m</i>)	51.5	1.16 (1H, <i>m</i>)	49.6
18	-	36.4	-	36.5
19	1.76 (1H, <i>m</i>), 1.06 (1H, <i>m</i>)	37.2	1.76 (1H, <i>m</i>), 1.06 (1H, <i>m</i>)	37.2
20	1.60 (2H, <i>m</i>)	27.9	1.60 (2H, <i>m</i>)	27.4
21	3.27 (1H, <i>dd</i> , 7.0, 3.0)	78.3	3.23 (1H, <i>dd</i> , 11.0, 5.0)	79.2
22	-	39.1	-	39.2
23	1.05 (3H, <i>s</i>)	28.2	1.08 (3H, <i>s</i>)	26.0
24	1.09 (3H, <i>s</i>)	22.1	1.01 (3H, <i>s</i>)	21.6
25	0.94 (3H, <i>s</i>)	14.6	0.83 (3H, <i>s</i>)	14.2
26	H_a : 4.86 (1H, <i>s</i>), H_b : 4.55 (1H, <i>s</i>)	106.9	4.89 (1H, <i>s</i>) 4.60 (1H, <i>s</i>)	107.6
27	1.72 (3H, <i>s</i>)	24.9	1.68 (3H, <i>s</i>)	22.3
28	0.67 (3H, <i>s</i>)	13.3	0.69 (3H, <i>s</i>)	13.6
29	0.77 (3H, <i>s</i>)	15.4	0.82 (3H, <i>s</i>)	15.1
30	1.00 (3H, <i>s</i>)	22.2	0.95 (3H, <i>s</i>)	17.9

Compound 7: Lup-20(29)-en-3 β -ol (Lupeol)

Compound 7 was isolated as colourless crystal, m.p. 213-215 °C. The IR spectrum exhibited the absorption band of O-H stretching at 3235 cm^{-1} . The ^1H NMR spectrum (**Table 10**) showed the characteristic signals of a terminal olefinic methylene protons at δ 4.68 and 4.56 (1H each, *d*, J = 2.4 Hz) for H_a-29 and H_b-29, respectively. In addition, ^1H NMR spectrum showed the resonances of an oxymethine proton (δ 3.39, *dd*, J = 5.7 and 1.5 Hz, H-3) and seven methyl groups (δ 0.96 (H-23), 0.84 (H-24), 0.82 (H-25), 1.03 (H-26), 0.93 (H-27), 0.78 (H-28) and 1.68 (H-30)) were observed. ^1H NMR and ^{13}C NMR spectral data as well as melting point were identical with those of lup-20(29)-en-3 β -ol which was known as lupeol (Imam *et al.*, 2007)


Table 10 NMR spectral data of compound 7

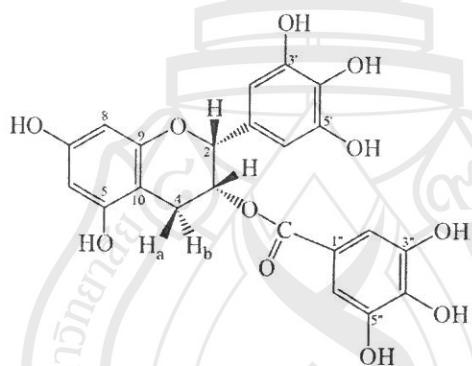
Position	Compound 7		Lupeol	
	δ_{H} (<i>multiplicity, J_{Hz}</i>)	δ_{C}	δ_{H} (<i>multiplicity, J_{Hz}</i>)	δ_{C}
1	1.50 (2H, <i>m</i>)	35.6	1.68 (2H, <i>d</i>)	38.6
2	1.70 (<i>m</i>)	27.4	1.61 (1H, <i>d</i>), 1.54 (1H, <i>q</i>)	27.3
3	3.39 (1H, <i>dd</i> , 5.7, 1.5)	76.3	3.18 (1H, <i>dd</i>)	78.9
4	-	37.6	-	38.8
5	1.40 (<i>m</i>)	50.2	0.69 (1H, <i>d</i>)	55.2

Table 10 (continued)

Position	Compound 7		Lupeol	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
6	1.45 (m)	18.3	1.54 (1H, d), 1.39 (1H, q)	18.2
7	1.20 (m)	33.1	1.41 (2H, m)	34.2
8	-	41.1	-	40.7
9	1.20 (m)	49.0	1.28 (1H, d)	50.3
10	-	37.3	-	37.1
11	1.45 (m)	20.8	1.42 (1H, d), 1.29 (1H, q)	20.9
12	1.70 (m)	25.1	1.07 (1H, q), 1.68 (2H, d)	25.0
13	1.65 (m)	38.0	1.67 (1H, t)	38.0
14	-	42.9	-	42.7
15	1.52 (m)	25.4	1.71 (1H, t), 1.01 (1H, d)	27.4
16	1.40 (m)	34.2	1.49 (1H, d), 1.38 (1H, t)	35.5
17	-	43.0	-	42.9
18	1.35 (m)	48.3	1.37 (1H, t), 0.91 (1H, t)	48.2
19	2.39 (ddd, 5.7, 5.7, 5.4)	48.0	2.39 (1H, m)	47.9
20	-	151.1	-	150.8
21	1.95 (1H, m)	29.9	1.93 (1H, m)	29.8
22	1.40 (1H, m), 1.20 (m)	40.0	1.42 (1H, m), 1.20 (1H, m)	39.9
23	0.96 (3H, s)	28.3	0.98 (3H, s)	27.9
24	0.84 (3H, s)	22.2	0.79 (3H, s)	15.3
25	0.82 (3H, s)	16.0	0.27 (3H, s)	16.1
26	1.03 (3H, s)	15.9	1.04 (3H, s)	15.9
27	0.93 (3H, s)	14.7	0.97 (3H, s)	14.5
28	0.78 (3H, s)	18.0	0.84 (3H, s)	17.9
29	4.68 (1H, d, 2.4), 4.56 (1H, m)	109.3	4.69 (1H, m), 4.56 (1H, m)	109.3
30	1.68 (3H, s)	19.3	1.69 (3H, s)	19.2

Compound 8: 3-oxo-Lupeol (Lupenone)

Compound 8 was isolated as a white solid, m.p. 168-171 °C. The IR spectrum showed the absorption band of C=O stretching at 1701 cm^{-1} . The ^1H NMR spectrum (**Table 11**) indicated that it was a triterpene derivative of 7. The ^1H NMR spectrum exhibited the resonances of an isoprenyl side chain at δ 1.72 (H-30), 4.70 (*d*, *J* = 2.4 Hz, H_a-29) and 4.58 (*m*, H_b-29). Four *multiplet* signals at δ 1.42, 1.21 and 2.40, 1.90 were in agreement with the α,β -unsaturated ketone. The six methyl groups H-23, H-24, H-25, H-26, H-27 and H-28 resonated at δ 1.08, 1.00, 0.94, 1.07, 0.95 and 0.79, respectively. The ^{13}C NMR signals at δ 19.4, 109.5, 151.0 and 218.3 were attributed to the isopropenyl and carbonyl carbons, respectively. The absence of the methine proton signal at C-3 indicated that the carbonyl group located at C-3. The resulting structure was confirmed by ^{13}C NMR spectral data (**Table 11**). 3-oxo-Lupeol was assigned for compound 8. It was known as lupenone (Boonsri, 2004).

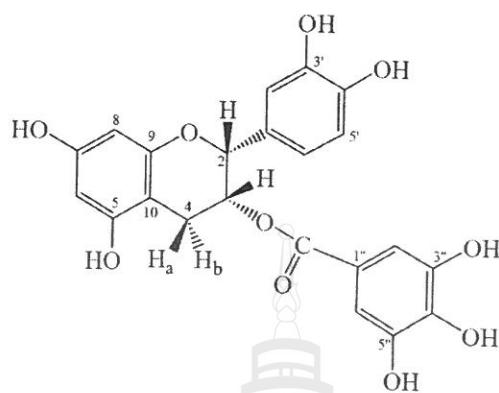

Table 11 NMR spectral data of compound **8**

Position	Compound 8		Lupenone	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
1	1.21 (m), 1.42 (m)	39.5	1.20 (m), 1.40 (m)	39.6
2	1.90 (m), 2.40 (m)	33.8	1.89 (m), 2.43 (m)	34.1
3	-	218.3	-	218.2
4	-	47.5	-	47.3
5	1.32 (m)	55.2	1.30 (m)	54.9
6	1.43 (m)	20.1	1.45 (m)	19.7
7	1.43 (m)	34.0	1.45 (m)	33.6
8	-	41.0	-	40.8
9	1.36 (m)	49.7	1.38 (m)	49.8
10	-	36.9	-	36.9
11	1.43 (m), 1.26 (m)	22.0	1.28 (m), 1.45 (m)	21.5
12	1.71 (m)	25.3	1.70 (m)	25.2
13	1.66 (m)	38.5	1.68 (m)	38.2
14	-	43.2	-	42.9
15	1.71 (m)	27.8	1.70 (m)	47.4
16	1.35 (m), 1.48 (m)	36.1	1.36 (m), 1.48 (m)	35.5
17	-	42.9	-	43.0
18	1.36 (m)	48.3	1.38 (m)	48.2
19	2.35 (m)	48.0	2.43 (m)	48.0
20	-	151.0	-	105.9
21	1.90 (m)	29.9	1.90 (m)	29.8
22	1.90 (m)	40.0	1.90 (m)	40.0
23	1.08 (3H, s)	26.5	1.07 (s)	26.6
24	1.00 (3H, s)	21.0	1.02 (s)	21.0
25	0.94 (3H, s)	15.7	0.93 (s)	15.8
26	1.07 (3H, s)	16.0	1.07 (s)	16.0

Table 11 (continued)

Position	Compound 8		Lupenone	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
27	0.95 (3H, <i>s</i>)	14.5	0.95 (<i>s</i>)	14.5
28	0.79 (3H, <i>s</i>)	17.9	0.79 (<i>s</i>)	18.0
29	H_a : 4.70 (1H, <i>d</i> , 2.4) H_b : 4.58 (1H, <i>m</i>)	109.5	4.68 (<i>d</i> , 2.1) 4.57 (<i>m</i>)	109.4
30	1.72 (<i>m</i>)	19.4	1.70 (<i>s</i>)	19.3

Compound 9: (-)-Epigallocatechin gallate


Compound 9 is a white powder, m.p. 254-255 °C. The optical rotation was $[\alpha]_D^{29} -181^\circ$ ($c = 0.3$ in CH_3OH). The ^1H NMR spectrum (**Table 12**) showed two aromatic *singlets* at δ 6.62 (2H, $\text{H-2}',6'$) and 7.02 (2H, $\text{H-2}'',6''$) which could be assigned for the symmetric protons in catechin B-ring and the galloyl moiety, respectively. Two *meta*-coupled protons, originated from catechin A-ring, were observed at δ 6.02 (1H, *d*, $J = 2.5$ Hz, H-6) and 6.04 (1H, *d*, $J = 2.5$ Hz, H-8). In addition, the signals at δ 5.05 (*br s*), 5.54 (*m*), 3.03 (*dd*, $J = 17.5, 4.5$, $\text{H}_a\text{-4}$) and 2.90 (*dd*, $J = 17.1, 2.0$, $\text{H}_b\text{-4}$) showed the typical resonances of H-2 , H-3 and H-4 of catechin skeleton. Considering the coupling constant of H-2 (*broad singlet*), the relative stereochemistry of H-2 and H-3 should be a *cis*-configuration. A carbonyl

carbon (δ 165.9) and three sp^3 carbons (δ 79.2, 70.0 and 26.1) were detected in ^{13}C NMR spectrum (**Table 12**). (-)Epigallocatechin gallate (Kim *et al.*, 2001) then was proposed for **9**.

Table 12 NMR spectral data of compound **9**

Position	Compound 9		(-)Epigallocatechin gallate	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
2	5.05 (1H, <i>br s</i>)	79.2	5.05 (1H, <i>br s</i>)	78.5
3	5.54 (1H, <i>m</i>)	70.0	5.53 (1H, <i>m</i>)	69.7
4	H_a : 3.03 (1H, <i>dd</i> , 17.5, 4.5) H_b : 2.90 (1H, <i>dd</i> , 17.1, 2.0)	26.1	3.02 (1H, <i>dd</i> , 17.5, 4.6) 2.89 (1H, <i>dd</i> , 17.4, 2.2)	25.2
5	-	156.2	-	157.8
6	6.02 (1H, <i>d</i> , 2.5)	96.9	6.02 (1H, <i>d</i> , 2.4)	96.8
7	-	157.3	-	158.2
8	6.04 (1H, <i>d</i> , 2.5)	96.4	6.04 (1H, <i>d</i> , 2.0)	96.2
9	-	157.7	-	157.5
10	-	100.2	-	99.4
1'	-	107.2	-	107.1
2'	6.62 (1H, <i>s</i>)	147.3	6.61 (1H, <i>s</i>)	146.6
3'	-	133.5	-	133.5
4'	-	146.3	-	146.6
5'	-	108.1	-	107.1
6'	6.62 (1H, <i>s</i>)	131.8	6.61 (1H, <i>s</i>)	131.1
1''	-	123.2	-	122.2
2'', 6''	7.02 (1H, <i>s</i>)	110.0	7.02 (2H, <i>s</i>)	110.3
3'', 5''	-	147.2	-	146.3
4''	-	138.7	-	139.2
C=O	-	165.9	-	166.5

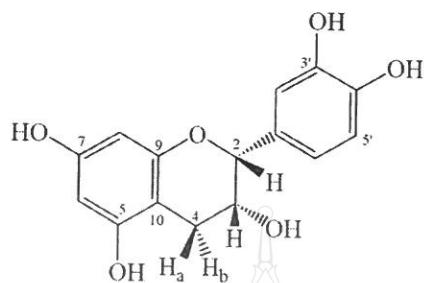

Compound 10: (-)Epicatechin gallate

Table 13 NMR spectral data of compound **10**

Position	Compound 10		(-)Epicatechin gallate	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
2	5.54 (1H, <i>br s</i>)	75.5	5.55 (1H, <i>br s</i>)	76.7
3	5.12 (1H, <i>m</i>)	68.0	5.14 (1H, <i>m</i>)	68.0
4	3.04 (1H, <i>dd</i> , 17.5, 5.0) 2.91 (1H, <i>dd</i> , 17.5, 2.5)	26.2	3.06 (1H, <i>dd</i> , 17.5, 5.0) 2.93 (1H, <i>dd</i> , 17.5, 2.5)	25.9
5	-	156.0	-	156.1
6	6.05 (1H, <i>d</i> , 2.0)	94.8	6.04 (1H, <i>d</i> , 2.0)	95.1
7	-	156.1	-	156.4
8	6.03 (1H, <i>d</i> , 2.0)	95.1	6.07 (1H, <i>d</i> , 2.0)	94.4
9	-	155.2	-	155.7
10	-	97.9	-	97.6
1'	-	130.3	-	130.0
2'	7.06 (1H, <i>d</i> , 1.5)	113.2	7.08 (1H, <i>d</i> , 2.0)	113.5
3'	-	143.8	-	144.1
4'	-	144.0	-	144.2
5'	6.76 (1H, <i>d</i> , 8.5)	114.5	6.78 (1H, <i>d</i> , 8.5)	114.2
6'	6.89 (1H, <i>dd</i> , 8.5, 1.5)	118.0	6.91 (1H, <i>dd</i> , 8.5, 2.0)	117.8
1''	-	121.1	-	120.4
2'', 6''	7.02 (2H, <i>s</i>)	109.2	6.94 (2H, <i>s</i>)	108.5
3'', 5''	-	144.8	-	144.6
4''	-	137.5	-	137.5
C=O	-	170.2	-	169.6

Compound 11: 3, 5, 7, 3', 4'-Pentahydroxyflavan ((-)Epicatechin)

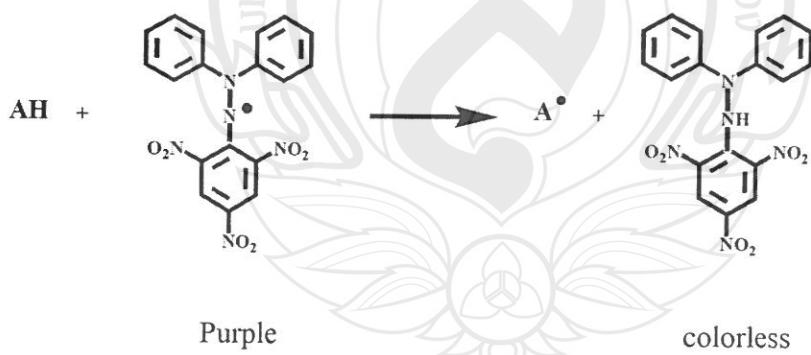

Compound 11 was obtained as white powder, m.p. 239.4-240.5 °C. The optical rotation was $[\alpha]_D^{29} -70^\circ$ ($c = 0.03$ in CH_3OH). The UV spectrum showed maxima absorptions at 282 and 233 nm. The IR spectrum exhibited the absorption band of O-H stretching (3323 cm^{-1}) and C=C stretching (1519 cm^{-1}). The ^1H NMR spectrum (Table 14) exhibited the resonances of five aromatic protons, two methine protons and a methylene proton. Two *doublet* resonances ($J = 2.5 \text{ Hz}$) at δ 6.02 (1H) and 5.92 (1H) were corresponded to the *meta*-coupling of aromatic protons H-6 and H-8, respectively. A *doublet* at δ 7.06 ($J = 1.5 \text{ Hz}$), a *doublet of doublet* at δ 6.84 ($J = 8.0, 1.5 \text{ Hz}$) and a *doublet* at δ 6.79 ($J = 8.0 \text{ Hz}$) were assigned for the resonances of aromatic protons H-2', H-6' and H-5', respectively. The spectra further showed the resonances of H-2 (δ 4.88, *s*), H-3 (δ 4.20, *m*), H_a-4 (δ 2.87, *dd*, $J = 12.0, 4.5 \text{ Hz}$) and H_b-4 (δ 2.74, *dd*, $J = 12.0, 4.5 \text{ Hz}$). The chemical shift of H-2 and H-3 indicated that these two protons were next to oxygen-bearing carbons. In addition, the resonances of H-2 and H-3 suggested that the configuration of H-2 and H-3 are *cis* (Sethi *et al.*, 1984). The ^{13}C NMR spectral data corresponded to the assigned structure. Therefore, 11 was proposed to be (-) epicatechin of which the (-) isomer was indicated from optical rotation ($[\alpha]_D^{29} -70^\circ$). The assignment was in agreement with the previous data of (-) epicatechin (Panthong, 1999).

Table 14 NMR spectral data of compound **11**

Position	Compound 11		(-)Epicatechin	
	δ_{H} (multiplicity, J_{Hz})	δ_{C}	δ_{H} (multiplicity, J_{Hz})	δ_{C}
2	4.88 (1H, <i>s</i>)	79.4	4.81 (1H, <i>br s</i>)	79.8
3	4.20 (1H, <i>m</i>)	66.9	4.17 (1H, <i>m</i>)	67.4
4	H_a : 2.87 (1H, <i>dd</i> , 12.0, 4.5) H_b : 2.74 (1H, <i>dd</i> , 12.0, 4.5)	29.0	2.85 (1H, <i>dd</i> , 16.8, 4.8) 2.72 (1H, <i>dd</i> , 16.8, 2.8)	29.2
5	-	157.6	-	157.9
6	6.02 (1H, <i>d</i> , 2.5)	95.7	5.93 (1H, <i>d</i> , 2.0)	95.8
7	-	157.5	-	157.6
8	5.92 (1H, <i>d</i> , 2.5)	96.1	5.90 (1H, <i>d</i> , 2.0)	96.3
9	-	157.2	-	157.3
10	-	99.8	-	100.0
1'	-	132.3	-	132.2
2'	7.06 (1H, <i>d</i> , 1.5)	115.3	6.96 (1H, <i>d</i> , 1.6)	115.2
3'	-	145.4	-	145.9
4'	-	145.3	-	145.7
5'	6.79 (1H, <i>d</i> , 8.0)	115.5	6.74 (1H, <i>d</i> , 8.0)	115.8
6'	6.84 (1H, <i>dd</i> , 8.0, 1.5)	119.4	6.79 (1H, <i>dd</i> , 8.4, 2.0)	119.3

4.3 Evaluation of antioxidative activity

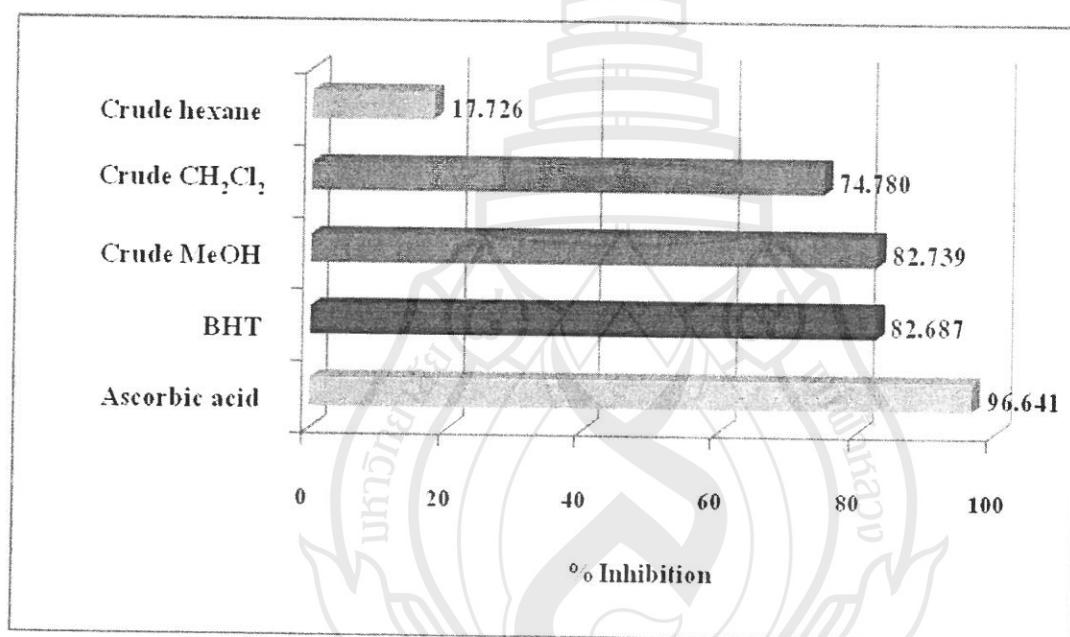

Estimation of antioxidative effects has been carried out by various methods. The DPPH assay is one of the method used for antioxidant testing on free radical terminator because its odd electron can be used as a convenient tool for the antioxidant assay. The DPPH free radical is a dark violet solid, its solubility is not great, alcoholic solutions having concentrations of approximately 5×10^{-4} are nevertheless densely colored. Its solution shows a strong absorption band at $\lambda 517$ nm (in ethanol), when DPPH radical accepts an electron or a hydrogen radical, a more stable compound will be formed and consequently its characteristic absorption at 517 nm vanishes (deep violet turns colorless). The capacity of the substances to donate electrons can be estimated from the degree of loss of color (Blois, 1958). Coexistence of an antioxidant compound (AH) and a free radical (DPPH \cdot) leads to the disappearance of DPPH free radical and the appearance the free radical (A \cdot) as shown in **Figure 5**.

Figure 5 DPPH free radical and the appearance the free radical

4.3.1 Free radical scavenging activity of crude extracts

To determine the scavenging activity, the crude extracts of *C. sinensis* var. *assamica* leaves were tested for scavenging activity at the final concentration of 100 $\mu\text{g}/\text{mL}$. The activity was monitored by following the decrease of absorbance of the solution at 517 nm for 30 min. The results were expressed as % inhibition (Figure 6). The activity was exhibited by the dichloromethane as well as by the methanolic extracts.

Figure 6 Radical scavenging activity of the crude extracts

The assessment of the antioxidation activity of the crude material was extended. In comparable to the standard antioxidants (BHT and ascorbic acid) and crude dichloromethane and methanolic extracts were evaluated for IC_{50} . The oxidation effect was evaluated as the concentration required to scavenge 50% DPPH free

radical. Their IC_{50} were exhibited at 1.75 and 0.30 mM, respectively whereas IC_{50} of ascorbic acid and BHT were shown at 0.10 and 0.70 mM (**Table 15**).

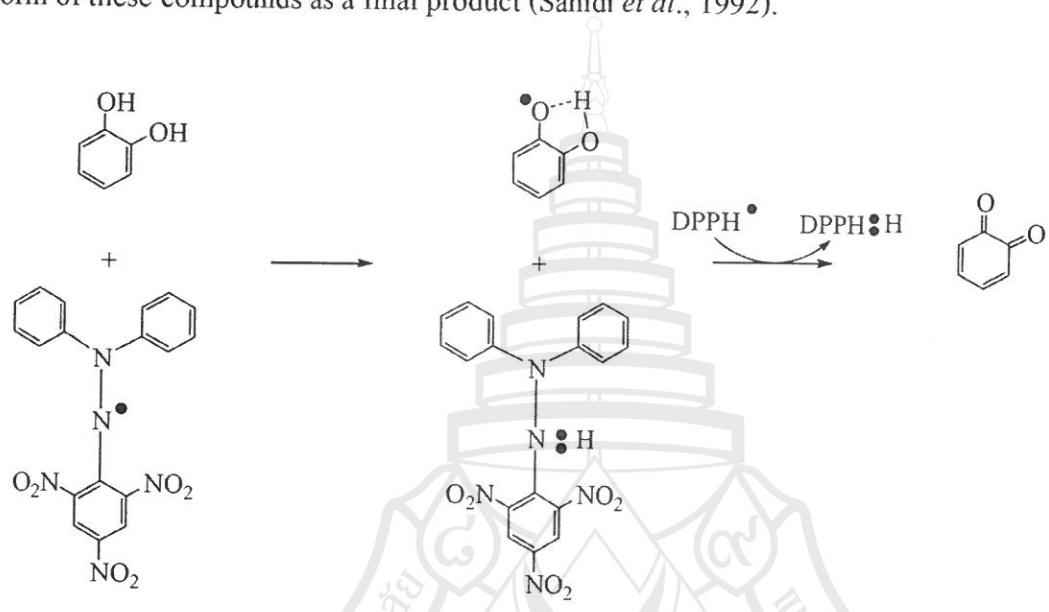
Table 15 IC_{50} values of tested crude extracts and standard antioxidants

Sample	$IC_{50} \pm S.D. (mM, 30 \text{ min})$
Crude CH_2Cl_2	1.75 ± 0.020
Crude MeOH	0.30 ± 0.028
BHT	0.71 ± 0.013
Ascorbic acid	0.10 ± 0.004

4.3.2 Free radical scavenging activity of pure compounds

Radical scavenging activities of pure compounds were examined. The samples were tested at the final concentration of 10 μM . The absorption of the solutions were measured at 517 nm (30 min). Ascorbic acid and BHT were used as reference compounds. The activity was expressed in the % inhibition. The results showed that compounds **5**, **9**, **10** and **11** exhibited higher activity than that of ascorbic acid and BHT (**Table 16**). The other compounds showed moderate to weak activity.

The assessment of the activity was extended for compounds **5**, **9**, **10** and **11**. The oxidation effect was evaluated as the concentration required to scavenge 50% DPPH free radical (IC_{50}). Their IC_{50} were exhibited at 0.60, 0.23, 0.27 and 0.07 mM, respectively whereas IC_{50} of ascorbic acid and BHT were shown at 1.75 and 3.03 mM, respectively (**Table 17**). Moreover the results indicated that compounds **5**, **9**, **10** and **11** acted as a radical scavenger more effective than ascorbic acid.


Table 16 %Inhibition of tested compounds and standard antioxidants (10 μ M)

Sample	% Inhibition \pm S.D. (10 μ M, 30 min)
Control (0.05 mM DPPH)	-
Compound 1	0.458 \pm 0.004
Compound 2	0.305 \pm 0.005
Compound 3	0.305 \pm 0.002
Compound 4	0.153 \pm 0.001
Compound 5	50.992 \pm 0.078
Compound 6	0.763 \pm 0.002
Compound 7	1.069 \pm 0.001
Compound 8	1.069 \pm 0.003
Compound 9	83.664 \pm 0.004
Compound 10	81.985 \pm 0.001
Compound 11	86.565 \pm 0.002
BHT	13.130 \pm 0.025
Ascorbic acid	31.450 \pm 0.014

Table 17 IC₅₀ values of tested compounds and standard antioxidants

Sample	IC ₅₀ \pm S.D. (mM, 30 min)
Compound 5	0.60 \pm 0.003
Compound 9	0.23 \pm 0.001
Compound 10	0.27 \pm 0.003
Compound 11	0.07 \pm 0.002
BHT	3.03 \pm 0.002
Ascorbic acid	1.75 \pm 0.005

The mechanism of trapping by compounds **5**, **9**, **10** and **11** exhibited by a phenolic characteristic which was proposed to donate hydrogen radical to DPPH. The phenoxy radical which formed was stabilized through an intramolecular hydrogen bonding. A subsequent interaction with a second DPPH radical afforded the dehydro form of these compounds as a final product (Sahidi *et al.*, 1992).

4.4 Evaluation of Antibacterial activity

4.4.1 Antibacterial activity of crude extracts

Dried leaves of *C. sinensis* var. *assamica* were extracted with hexane, CH_2Cl_2 and MeOH to give crude hexane extract (HC), dichloromethane extract (DC) and methanolic extract (MC). Each extract was tested for antibacterial activity on *Escherichia coli* (EC), *Bacillus cereus* (BC), methicillin-resistant strain MRSA SK1, *Pseudomonas fluorescens* (PF), *Pseudomonas aeruginosa* (PA), *Staphylococcus aureus* (SA) and *Salmonella typhimurium* (ST). It was found that the extracts showed no activity (Table 18).

Table 18 Antibacterial activity of crude extracts

Sample	Antibacterial activity (MIC, $\mu\text{g/mL}$)						
	Gram Negative				Gram Positive		
	EC	PF	PA	ST	BC	MRSA SK1	SA
HC	>1280	1280	>1280	1280	1280	>1280	>1280
DC	>1280	640	>1280	1280	1280	>1280	1280
MC	>1280	1280	>1280	1280	640	1280	1280
Gentamycin	0.5	0.125	0.5	0.5	-	-	-
Vancomycin	-	-	-	-	0.5	0.5	0.5

4.4.2 Antibacterial activity of pure compounds

Some of the pure compounds obtained from each extract were evaluated for their antibacterial activity against *Escherichia coli* (EC), *Pseudomonas fluorescens* (PF), *Salmonella typhimurium* (ST), *Bacillus cereus* (BC) and *Staphylococcus aureus* (SA). Flavans **5**, **9**, **10** and **11** (MIC 16-128 $\mu\text{g/mL}$) were more active than the methanolic extract (**Table 19**), however it was less active than gentamycin and vancomycin, the standard antibiotic. The other compounds were not tested due to insufficient quantities.

Table 19 Antibacterial activity of pure compounds

Sample	Antibacterial activity (MIC, $\mu\text{g/mL}$)				
	Gram Negative			Gram Positive	
	EC	PF	ST	BC	SA
Compound 1	>200	64	32	64	>200
Compound 4	>200	>200	>200	>200	>200
Compound 5	64	64	128	16	64
Compound 7	>200	>200	>200	>200	>200
Compound 9	32	64	16	64	128
Compound 10	16	32	32	32	128
Compound 11	16	32	64	32	64
Gentamycin	0.5	0.125	0.5	-	-
Vancomycin	-	-	-	0.5	0.5

CHAPTER 5

CONCLUSION

In conclusion, the search on the chemical constituents from the leaves of *Camellia sinensis* var. *assamica* resulted in the isolation of a new compound: 13-methyl lansic acid (**2**) together ten known compounds: β -sitosterol (**1**), lansionic acid (**3**), stigmasterol (**4**), (+) catechin (**5**), 21*R*-hydroxyonocera-8(26),14-dien-3-one (**6**), lupeol (**7**), lupenone (**8**), (-) epigallocatechin gallate (**9**), (-) epicatechin gallate (**10**) and (-) epicatechin (**11**).

Compounds **5**, **9**, **10** and **11** showed the moderate activity to inhibit the growth of *Escherichia coli*, *Pseudomonas fluorescens*, *Salmonella typhimurium*, *Bacillus cereus* and *Staphylococcus aureus* with MIC 16-128 μ g/mL. Moreover flavans **5**, **9**, **10** and **11** exhibited stronger antioxidant activity (IC_{50} 0.60, 0.23, 0.27 and 0.07 mM, respectively) than that of ascorbic acid (IC_{50} 1.75 mM) and BHT (IC_{50} 3.03 mM).

REFERENCES

- Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., Ikekawa, N., Ikeda, M., Sassa, T., Kitsuwa, T. and Marumo, S. 1983. Occurrence of three new brassinosteroids, brassione, (24S)-24-ethylbrassinone and 28-norbrassinolide, in higher plants. *Experientia*, 39, 351-353.
- Ahn, Y.J., Kawamura, T., Kim, M. Yamamoto, T. and Mitsuoka, T. 1991. Tea polyphenols: Selective growth inhibitors of *Clostridium* spp. *Agricultural and Biological Chemistry*, 55, 1425-1426.
- Akagi, M., Fukuishi, N., Kan, T., Sagesaka, Y.M. and Akagi, R. 1997. Anti-allergic effect of tea leaf saponin (TLS) from tea leaves (*Camellia sinensis* var. *sinensis*). *Biological and Pharmaceutical Bulletin*, 20, 565-567.
- Anon. 1976. Determination of caffeine in instant tea by ultraviolet spectrophotometry. *Sheng Wu Hua Hsueh Yu Sheng Wu Wu li Hsueh Pao* 8, 225.
- Anon. 1984. Extraction of tannins especially catechins. Patent-Japan Kokai Tokyo Koho-59, 216, 884.
- Anon. 1985. Tea catechins. Patent-Japan Kokai Tokyo Koho-60, 13, 780.
- Apostolides, Z. Balentine, D.A., Harbowy, M.E. and Weisburger, J.H. 1996. Inhibition of 2-amino-1-methyl-6-phenolimidazo[4,5-*b*] pyridine (PhIP) mutagenicity by black and green tea extracts and polyphenols. *Mutation*

Research/Environmental Mutagenesis and Related Subjects, 359, 159-163.

Aquiar, R.M., David, J.P. and David, J.M. 2005. Unusual naphthoquinones, catechin and triterpene from *Byrsonima microphylla*. *Phytochemistry*, 66, 2388-2392.

Ashihara, H. and Kubota, H. 1987. Biosynthesis of purine alkaloids in *Camellia* plants. *Plant and Cell Physiology*, 28, 535-539.

Ashihara, H., Gillies, F.M. and Corozier, A. 1997. Metabolism of caffeine and related purine alkaloids in leaves of tea (*Camellia sinensis* L.). *Plant and Cell Physiology*, 38, 413-419.

Banerjee, J. and Ganguly, S.N. 1997. A new Furocoumarin from the leaves of *Camellia sinensis* (L.) O. Kuntz. *Natural Product Science*, 3, 11-13.

Bellakhdar, J., Berrada, M., Rkhi-Tetouanis, S. and Il Idrissi, A. 1993. Caffeine and tannins in cultivated Moroccan teas. *Al Biruniya*, 4, 87-96.

Blauch, J.L. and Tarka Jr, S.M. 1983. HPLC determination of caffeine and theobromine in coffee, tea, and instant hot cocoa mixes. *Journal of Food Science*, 48, 745-7-750.

Boo, Y.C. and Jeon, C.O. 1993. Antioxidants of green tea leaves and *Moutan cortex*. *Han'Guk Nonghwa Hakhoe Chi*, 36, 326-331.

Boonsri, S. 2003. Chemical constituents from *Clerodendrem serratum* and *Mesua*

leunstleri. Thesis. Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla. Thailand.

Cattell, D.J. and Nursten, H.E. 1976. Fractionation and chemistry of acetate-soluble thearubigins from black tea. *Phytochemistry*, 15, 1967-1970.

Chaboud, A., Raynaud, J. and Debourcieu, L. 1986. 6,8-di-*C*- β -D-arabinopyranosyl-apigenin from *Thea sinensis* var. *macrophylla*. *Journal of Natural Product*, 49, 1145.

Chen, S. and Li, J. 1984. An improved method for detection of caffeine in theine. *Yaowu Fenxizazhi*, 4, 375-376.

Cheng, G.R., Jin, J.L. and Wen, Y.X. 1987. The structures of two new falvanoid glycoside from bai-shui-cha, a kind of *Camellia sinensis* (L.). *Yao Hsueh Hsueh Pao*, 22, 203-207.

Chisaka, T., Matsuda, H., Kubomura, Y., Mochizuki, M., Yamahara, J. and Fujimura, H. 1988. The effect of crude drugs on experimental hypercholesterolemia: mode of action of (-)-epigallocatechin gallate in tea leaves. *Chemical Pharmaceutical Bulletin*, 36, 227-233.

Cho, Y.J., An, B.J. and Choi, C. 1993. Isolation and enzyme inhibition of tannins from Korean green tea. *Han'Guk Saenghwa Hakhoe Chi*, 26, 216-223.

Chu, D.C., Kobyashi, K., Junega, L.R. and Yamamoto, T. 1997. Theanine-its synthesis, isolation, physiological activity. *Chem Appl Green Tea* (1997), 129-135.

Dalluge, J.J., Nelson, B.C., Thomas, J.B. and Sander, L.C. 1998. Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. *Journal of Chromatography A*, 793, 265-274.

Davis, R.A., Stiles, M.F., De Bethizy, J.D. and Reynolds, J.H. 1991. Dietary nicotine: A source of urinary cotinine. *Food and Chemical Toxicology*, 29, 821-827.

Davis, A.L., Cai, Y. and Davis, A.P. 1995. ^1H and ^{13}C NMR assignments of theaflavin monogallate and theaflavin digallate. *Magnetic Resonance in Chemistry*, 33, 549-552.

Davis, A.L., Cai, Y., Davis, A.P. and Lewis, J.R. 1996. ^1H and ^{13}C NMR assignments of some green tea polyphenols. *Magnetic Resonance in Chemistry*, 34, 887-890.

Davis, A.L., Lewis, J.R., Cai, Y., Powell, C., Davis, A.P., Wilkins, J.P.G., Pundey, P. and Clifford, M.N. 1997. A polyphenolic pigment from black tea. *Phytochemistry*, 46, 1397-1402.

De Vries, J.H.M., Hollman, P.C.H., Meyboom, S., Buszman, M.N.C.P., Zock, P.L., Van Staveren, W.A. and Katan, M.B. 1998. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as

biomarkers for dietary intake. *American Journal Clinical Nutrition*, 68, 60-65.

Deisinger, P.J., Hill, T.S. and English, J.C. 1996. Human exposure to naturally occurring hydroquinone. *Journal of Toxicology and Environmental Health*, 47, 31-46.

Ding, M.Y., Chen, P.R. and Luo, G.A. 1997. Simultaneous determination of organic acid and inorganic anions in tea by ion chromatography. *Journal of Chromatography A*, 764, 341-345.

Dulitzky, M., De La Teja, E. and Lewis, H.F. 1984. Determination of caffeine in tea by high-performance liquid chromatography and a modified digestion procedure. *Journal of Chromatography A*, 317, 403-405.

Etoh, H. K. and Iguchi, M. 1980. Studies on the aroma of tea. Part IV: 3S-(+)-3,7-dimethyl-1,5-octadiene-3,7-diol and ionone derivatives from tea. *Agroindustry Biology Chemistry*, 44, 2999-3000.

Fang, J.N., Zhang, Z.H., Song, G.Q. and Liu, B.N. 1991. Structural features of a polysaccharide from the leaves of *Thea sinensis*. *Chinese Journal of Chemistry*, 9, 547-551.

Farhoosh, R., Golmovahhed, G.A. and Khodaparast, M.H.H. 2007. Antioxidant activity of various extracts of old tea leaves and black tea wastes (*Camellia sinensis* (L.)) *Food Chemistry*, 200, 231-236.

Feldheim, W., Youngvanit, P. and Cummings P.H. 1986. Investigation of the presence and significance of theanine in the tea plant. *Journal of the Science of Food and Agriculture*, 37, 527-534.

Fernandez, P.L., Lopez, A., Pablos, F., Gonzalez, A.G. and Martin, M.J. 2003. The use of catechins and purine alkaloids as descriptors for the differentiation of tea beverages. *Microchemical Acta*, 142, 79-84.

Finger, A., Engelhard, U.H. and Wray, V. 1991. Flavonol triglycosides containing galactose in tea. *Phytochemistry*, 30, 2057-2060.

Fujimori, N., Suzuki, T. and Ashihara, H. 1991. Seasonal variations in biosynthetic capacity for the synthesis of caffeine in tea leaves. *Phytochemistry*, 30, 2245-2248.

Fujimori, N. and Ashihara, H. 1994. Biosynthesis of theobromine and caffeine in developing leaves of *Coffea arabica*. *Phytochemistry*, 36, 1359-1361.

Furukawa, H. and Kawakita, T. 1987. Anticholesteremics containing epicatechin gallate ad/or epigallocatechin isolated from teas. Patent-Japan Kokai Tokyo Koho-62, 30, 711.

Ghosh, P., Besra, S.E., Tripathi, G., Mitra, S. and Vedasiromoni, J.R. 2006. Cytotoxic and apoptogenic effect of tea (*Camellia sinensis* var. *assamica*) root extract (TRE) and two of its steroidal saponins TS1 and TS2 on human leukemic cell lines K 562 and U 937 and on cells of CML and ALL patients. *Leikemia Research*, 30, 459-468.

Gong, Z.L., Watanabe, N., Yagi, A., Etoh, H., Sakata, K., Ina, K. and Liu, Q.J. 1993.

Compositional change of pu-erh tea during processing. *Bioscience, Biotechnology and Biochemistry*, 57, 1745-1746.

Goto, T., Yoshida, Y., Kiso, M. and Nagashima, H. 1996. Simultaneous analysis of individual catechins and caffeine in green tea. *Journal of Chromatography A*, 749, 295-299.

Guo, W.F., Sakata, K., Watanabe, N., Nakajima, R.Y., Yagi, A., Ina, K. and Luo, S.J. 1993. Geranyl 6-*O*- β -D-xylopyranosyl- β -D-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea. *Phytochemistry*, 33, 1373-1375.

Guo, W.F., Sasaki, N., Fukuda, M., Yagi, A., Watanabe, N. and Sakata, K. 1998. Isolation of an aroma precursor of benzaldehyde from tea leaves (*Camellia sinensis* var. *sinensis*). *Bioscience, Biotechnology dan Biochemistry*, 62, 2052-2054.

Hagiwara, N., Ahn, Y.J., Ishida, M., Tateishi, M., Sakanaka, S., Kim, M. and Yamamoto, T. 1991. Tea catechins: Inhibitors of 12-*O*-tetradecanoylphorbol-13-acetate-induced epstein-barr virus activation. *Shoyakugaku Zasshi*, 45, 199-202.

Hashimoto, F., Nonaka, G.I. and Nishioka, I. 1987. Tannins and related compounds LVI isolation of four new acylated flavan-3-ols from oolong tea (1). *Chemical and Pharmaceutical Bulletin*, 35, 616-616.

Hashimoto, F., Nonaka, G.I. and Nishioka, I. 1988. Tannins and related compounds LXIX isolation and structure elucidation of B,B'-linked bisflavanoids, theasinensis D-G and oolongtheanin from oolong tea. *Chemical and Pharmaceutical Bulletin*, 36, 1676-1684.

Hashimoto, F., Nonaka, G.I. and Nishioka, I. 1989(a). Tannins and related compounds LXXVII novel chalcan-flavan dimmers, assamicains A, B and C, and new flavan-3-ol and proanthocyanidins from the fresh leaves of *Camellia sinensis* (L.) var. *assamica kitamura*. *Chemical and Pharmaceutical Bulletin*, 37, 77-85.

Hashimoto, F., Nonaka, G.I. and Nishioka, I. 1989(b). Tannins and related compounds XC 8-C-ascorbyl(-)-epigallocatechin-3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea (3). *Chemical and Pharmaceutical Bulletin*, 37, 3255-3263.

Hashimoto, F., Nonaka, G.I. and Nishioka, I. 1992. Tannins and related compounds CXIV structures of novel fermentation products, theogallin, theaflavonin and desgalloyl theaflavonin from black tea, and changes of tea leaf polyphenols during fermentation. *Chemical and Pharmaceutical Bulletin*, 40, 1383-1389.

Hertog, M.G.L., Hollman, P.C.H. and Van De Putte, B. 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juice. *Journal of Agricultural and Food Chemistry*, 41, 1242-1246.

- Higuchi, K., Suzuki, T. and Ashihara, H. 1995. Pipecolic acid from the developing fruits (pericarp and seeds) of *Coffea arabica* and *Camellia sinensis*. *Colloq. Sci. Int. Cafe (CR)*, 16, 389-395.
- Honda, M. and Hara, Y. 1993. Inhibition of rat small intestinal sucrase and alpha-glucosidase activities by teapolyphenols. *Bioscience, Biotechnology & Agrochemistry*, 57, 123-124.
- Horie, H. and Kohata, K. 1998. Application of capillary electrophoresis to tea quality estimation. *Journal of Chromatography A*, 802, 219-223.
- Humphreys, F.R. 1964. The occurrence and industrial production of rutin in Southeastern Australia. *Economic Botany*, 18, 195-253.
- Ikegaya, K. 1985. Determination of caffeine in tea by high-performance liquid chromatography. *Nippon Shokuhin Kogyo Gakkaishi*, 32, 61-66.
- Ikekawa, N., Takatsuto, S., Kitsuwa, T., Saito, H., Morishita, T. and Abe, H. 1984. Analysis of natural brassinosteroids by gas chromatography and gas chromatography-mass spectrometry. *Journal of Chromatography A*, 290, 289-302.
- Imperato, F. 1976. D-fructose in flavonol and flavanone glycosides from *Camellia sinensis*. *Phytochemistry*, 15, 439-440.
- Imperato, F. 1980. *N-p*-coumarylglutamic acid, an unusual hydroxycinnamic acid-amino acid derivative from black tea. *Chem Ind (London)*, 388.

Ito, E., Crozier, A. and Ashihara, H. 1997. Theophylline metabolism in higher plants. *Biochimica et Biophysica Acta*, 1336, 323-330.

Jeeraphan, R. 1951. Tea Leaves. Undergraduate special project report. Faculty of Pharmacy, Chulalongkorn University, Bangkok Thailand. pp. 9.

Kada, T., Kaneko, K., Matsuzaki, S., Matsuzaki, T. and Hara, Y. 1985. Detection and chemical identification of natural bio-antimutagens: A case of the green tea factor. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 150, 127-132.

Kaiser, H.E. 1967. Cancer-promoting effects of phenols in tea. *Cancer-Philadelphia*, 20, 614.

Kakiuchi, N., Hattori, M., Namba, T., Nishizawa, M. and Yamagishi, T. 1985. Inhibitory effect of tannins on reverse transcriptase from RNA tumor virus. *Journal Natural of Products*, 48, 614-621.

Karawya, M.S., Wahab, S.M.A., El-Olemy, M.M. and Farrag, N.M. 1984. Diphenylamine, an antihyperglycemic agent from onion and tea. *Journal of Natural Products*, 47, 775-780.

Karawya, M.S., Khayyal, S.E., Farrag, N.M. and Ayad, M.M. 1986. Screening of diphenylamine as an antihyperglycemic agent in certain edible plant organs. *Acta Pharmaceutica Hungarica*, 56, 55-58.

Katiyar, S.K., and Bhatia, A.K. 1992. Epicatechin derivatives and fatty acid composition of a traditional product made in Sikkim from leaves *Camellia sinensis*. *Journal of the Science of Food and Agriculture*, 60, 271-273.

Katiyar, S.K., Agarwal, R., Wood, G.S. and Mukhtar, H. 1992. Inhibition of 12-O-tetradecanoylphorbol-13-acetate caused tumor promotion in 7,12-dimethybenz[A] anthracene-initiated sencar mouse skin by a polyphenolic fraction isolated from green tea. *Cancer Research*, 52, 6890-6897.

Kato, M., Kanehara, T., Shimizu, H., Suzuki, T., Gillies F.M., Crozier, A. and Ashihara, H. 1996. Caffeine biosynthesis in young leaves of *Camellia sinensis*: In vitro studies on N-methyltransferase activity involved in the conversion of Xanthosine to caffeine. *Plant Physiology*, 98, 629-636.

Kitagawa, I., Kobayashi, S., Sagesaka, H. and Uemurat, T. 1995. Extraction of saponins from tea leaves. Patent-Japan Kokai Tokyo Koho-07, 61, 998.

Kohata, K., Hanada, K., Yamaguchi, Y. and Horie, H. 1998. Pheophorbide A content and chlorophyllase activity in green tea. *Bioscience, Biotechnology and Biochemistry*, 62, 1660-1663.

Koretskaya, T.F. and Zaprometov, M.N. 1975. Phenolic compounds in the tissue culture of *Camellia sinensis* and effect of light on their formation. *Fiziol Rast (Moscow)*, 22, 941.

Lee, M.H. and Lin, C.T. 1985. Changes of flavor components of Ti-Kuan-Yin tea during manufacture. *Chung-Kuo Nung Yeh Hua Hsueh Hui Chih*, 23, 127-132.

Lewis, J.R., Davis, A.L., Cai, Y., Davis, A.P. Wilkins, J.P.G. and Pennington, M. 1998. Theaflavate B, isotheaflavin-3'-*O*-gallate and neotheaflavin-3'-*O*-gallate: Three polyphenolic pigments from black tea. *Phytochemistry*, 49, 2511-2519.

Li, B.D., Tang, F., Tang, J. and Ho, C.T. 1992. Determination of the composition of tea antioxidant by gas chromatography and high performance liquid chromatography. *Nanjing Nongye Daxue Xuebao*, 15, 73-78.

Lin, Z.K., Hua, Y.F., Gu, Y.H., Ma, J., Chen, P. and Xiao, Y. 1982. Study on the chemicals constituents of the volatile oils from the fresh leaves of *Camellia sinensis*. *Chih Wu Hsueh Pao*, 24, 440-450.

Lin, Z.K., Hu, Y.F. and Gu, Y.H. 1984. Analysis of the aroma of Sichuan oolong tea. *You-Ji Hua Hsueh*, 1, 21-24.

Lin, Y.L., Juan, I.M., Chen, Y.L., Liang, Y.C. and Lin, J.K. 1996. Composition of polyphenols in fresh tea lives and associations of their oxygen-radical-absorbing capacity with anti proliferative actions in fibroblast cells. *Journal of Agricultural & Food Chemistry*, 44, 1387-1393.

Lin, J.K., Lin, C.L., Liang, Y.C., Lin-Shiau, S.Y. and Juan, I.M. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. *Journal of Agricultural & Food Chemistry*, 46, 3635-3642.

Lorian, V. 1996. Antibiotics in Laboratory Medicines, 4th edition. William and ilkins, Baltimore. pp. 28-32.

Ma, Y.D. and Zhang, R.M. 1982. The application of reverse phase high performance liquid chromatography to determinate tea-caffeine content. *Chung-Shan Da Hsueh Pao*, 3, 108.

Maruyama, M., Sato, K. and Iwai, T. 1990. A study on isolation of natural products from plants as a teaching material, caffeine from tea leaves. *Miyagi Kyoiku Daigaku Kiyo Dai-2-Bunsatsu*, 25, 45-54.

Maruyama, T., Matsumoto, T. and Osawa, K. 1992. Catechins of *Camellia sinensis* for treatment of periodontosis. Patent-Japan Kokai Tokyo Koho-04, 77, 424.

Matsuda, H., Chisaka, T., Kubomura, Y., Yamahara, J., Sawada, T., Fujimura, H. and Kimura, H. 1986. Effects of crude drugs on experimental hypercholesterolemia. I. Tea and its active principles. *Journal of Ethnopharmacology*, 17, 213-224.

Matsura, T., Tsunoda, T. and Arai, M. 1991. Theanine manufacture with tissue cultures of tea. Patent- Japan Kokai Tokyo Koho-03, 187, 388.

Mikaberidze , K.G. and Moniava, I.I. 1974(a). Flavonoids of the leaves. *Chem Nat Comp*, 10, 527.

Mikaberidze , K.G. and Moniava, I.I. 1974(b). Umbelliferone from tea leaves. *Chem Nat Comp*, 10, 81.

Min, Z. and Peigen, X. 1991. Quantitative analysis of the active constituents in green tea. *Phytotherapy Research*, 5, 239-240.

Miyagawa, C., Wu, C., Kennedy, D.O., Nakatani, T., Ohtani, K., Sakanaka, S., Kim, M. and Matsui-Yuasai, I. 1997. Protective effect of green tea extract and tea polyphenols against the cytotoxicity of 1,4-naphthoquinone in isolated rat hepatocytes. *Bioscience, Biotechnology and Biochemistry*, 61, 1901-1905.

Moon, J.H., Watanabe, N., Sakata, K., Yagi, K.A., Ina, K. and Luo, S. 1994. *Trans*- and *cis*-linalool 3,6-oxide-6-*O*- β -D-xylopyranosyl- β -D-glucopyranosides isolated as an aroma precursors from leaves for oolong tea. *Bioscience, Biotechnology and Biochemistry*, 58, 1742-1744.

Moon, J.H., Watanabe, N., Iijima, Y., Yagi, A. and Sakata, K. 1996. *Cis* and *trans*-linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-hexenyl- β -D-glucopyranoside as an aroma precursors from tea leaves of oolong tea. *Bioscience, Biotechnology and Biochemistry*, 60, 1815-1819.

Morita, K., Wakabayashi, M., Kubota, K., Kobayashi, A. and Herath, N.L. 1994.

Aglycone constituents in fresh tea leaves cultivated for green and black tea. *Bioscience, Biotechnology and Biochemistry*, 58, 687-690.

Mukoyama, A., Ushijima, H., Nishimura, S., Koike, H., Toda, M., Hara, Y. and

Shimamura, T. 1991. Inhibition of rotavirus and enterovirus infections by tea extracts. *Japanese Journal Medical Science Biology*, 44, 181-186.

Nagata, T. and Sakai, S. 1985. Purine base patterns of *Camellia irrawadiensis*.

Phytochemistry, 24, 2271-2272.

Nakahara, K. 1974. Oxalic acid content of vegetable foods. *Eiyo to Shokuryo*, 27, 33-36.

Nakazato, K., Takeo, C., Kawasaki, T., Fukui, Y. and Fukui, K. 1996. Oolong tea extracts containing tannins for treatment of steroid-induced skin diseases.

Patent-Japan Kokai Tokyo Koho-08, 03, 053.

Namiki, K. 1990. Platelet aggregation inhibitory components of tea. *Fragrance Journal*, 18, 67-70.

Narayan, M.S., Bhattacharya, B., Dhanaraj, N. and Seshadri, R. 1988. Free and bound triacontanol in tea leaves. *Journal of Agricultural and Food Chemistry*, 43, 229-233.

Neurath, G.B., Dunger, M., Pein, F.G., Ambrosius, D. and Schreiber, O. 1977. Primary and secondary amines in the human environment. *Food and Cosmetics Toxicology*, 15, 275-282.

Nguyen, A.T., Malonne, H., Duez, P., Vanhaelen-Faster, R., Vanhalen, M. and Fontaine, J. 2004. Cytotoxic constituents from *Plumbago zeylanica*. *Fitoterapia*, 75, 500-5004.

Nishikitani, M., Kubota, K., Kobayashi, A. and Sugawara, F. 1996. Geranyl-6-O- α -L-arabinopyranosyl- β -D-glucopyranoside isolated as an aroma precursor from leaves of a green tea cultivar. *Bioscience, Biotechnology and Biochemistry*, 60, 929-931.

Nobumoto, Y., Kubota, K., Kobayashi, A. and Yamanishi, T. 1990. Structure of alpha-farnesene in the essential oil of oolong tea. *Agricultural and Biological Chemistry*, 54, 247-248.

Nonaka, G.I., Kawahara, O. and Nishioka, I. 1983. Tannins and related compounds XV a new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf.(1). *Chemical and Pharmaceutical Bulletin*, 31, 3906-3914.

Nonaka, G.I., Sakai, R. and Nishioka, I. 1984. Hydrolysable tannins and proanthocyanidins from green tea. *Pochemistry*, 23, 1753-1755.

Nonaka, G.I., Hashimoto, F. and Nishioka, I. 1986. Tannins and related compounds XXXVI isolation and structures of theaflagallins, new red pigments from black tea. *Chemical and Pharmaceutical Bulletin*, 34, 61-65.

Ohtsuki, K., Kawabata, M., Taguchi, K., Kokura, H. and Kawamura, S. 1984. Determination of S-methylmethionine, vitamin U, in various teas. *Agricultural and Biological Chemistry*, 48, 2471-2475.

Okada, F., Takeo, T., Okada, S. and Tamemasa, O. 1977. Antiviral effect of theaflavins on *Tobacco mosaic virus*. *Agricultural and Biological Chemistry*, 41, 791.

Okada, F. 1978. Antiviral effects of tea catechins and black tea theaflavins on plant viruses. *Jarq*, 12, 27-32.

Ooishi, K., Kato, J. and Hayamizu, K. 1994. Topoisomerase inhibitors containing tannins, especially pedunculagin, for treatment of cancer. Patent-Japan Kokai Tokyo Koho-06, 72, 885.

Oosu, H., Takeo, C., Mukai, I., Sugiyama, K. and Yokota, M. 1991. Extraction of antiallergic epigallocatechin gallate from tea leaves. Patent-Japan Kokai Tokyo Koho-03, 157, 330.

Otake, S., Makimura, M., Kuroki, T., Nishihara, Y. and Hirasawa, M. 1991. Anticaries effects of polyphenolic compounds from Japanese green tea. *Caries Research*, 25, 438-443.

- Owuoe, P.O. 1989. Differentiation of teas by the variations of linalool and geraniol contents. *Bulletin of the Chemical Society of Ethiopia*, 3, 31-35.
- Ozawa, T. 1982. Separation of the components in black tea infusion by chromatography on toyopearl. *Agricultural and Biological Chemistry*, 46, 1079-1081.
- Panthong, K. 1999. Investigation of bioactive compound from *Callophyllum teysmannii* var. *inophylloide* (Guttiferae), *Venitago harmandiana* (Rhamoaceae) and *Anogeissus acuminata* var. *lanceolata* (Combretaceae). Ph.D. Thesis. Mahidol University, Thailand.
- Park, S.N. and Boo, Y.C. 1991. Flavonoids for protection of cells against chemically active species of oxygen, their extraction from plants, and their use in cosmetics. *Patent-Fr Demande-2*, 651, 132.
- Paveto, C., Güida, M.C., Esteva, M.I., Martino, V., Coussio, J., Flawiá, M.M. and Torres, H.N. 2004. Anti-trypanosoma cruzi activity of green tea (*Camellia sinensis*) catechins. *Antimicrobial Agents and Chemotherapy*, 48, 69-74.
- Pearson, D.A., Frankel, E.N., Aeschbach, R. and German, J.B. 1998. Inhibition of endothelial cell mediated low-density lipoprotein oxidation by green tea extracts. *Journal of Agricultural and Biological Chemistry*, 46, 1445-1449.
- Poncini, L. 1979. Isolation of 1,3,7-trimethylxanthine (caffeine) from tea. *School Sci. Rev.*, 60, 720-721.

Price, K.R., Rhodes, M.J.C. and Barnes, K.A. 1998. Flavonol glycoside content and composition of tea infusion made from commercially available teas and tea products. *Journal of Agricultural and Biological Chemistry*, 46, 2517-2522.

Renold, W., Naf-Muller, R., Keller, U., Willhalm, B. and Ohloff, G. 1974. An investigation of the tea aroma part 1. New volatile black tea constituents. *Helvetica Chimica Acta*, 57, 1301.

Robb, C.S. and Brown, P.R. 2001. Catechins in tea: Chemistry and analysis. *Advances in Chromatography*, 41, 379-410

Roder, E. 1982. Close effects of healing plants. *Dtsch Apoth Ztg*, 122, 2081-2092.

Roy, M. and Ganguly, S.N. 1997. Isolation and characterization of indole-3-methylethanoate from *Camellia sinensis* (L.) O. Kuntz. and its biological activity. *Natural Product Science*, 3, 106-107.

Ruch, R.J., Cheng, S.J. and Klaunig, J.E. 1989. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. *Carcinogenesis*, 10, 1003-1008.

Sagesaka, Y.M., Uemura, T., Watanabe, N., Sakata, K. and Uzawa, J. 1994. A new glucuronide saponin from tea leaves (*Camellia sinensis* var. *sinensis*). *Bioscience, Biotechnology and Biochemistry*, 58, 2036-2040.

Sagesaka, Y.M., Uemura, T., Suzuki, Y., Sugiura, T., Yoshida, M., Yamaguchi, K. and Kyuki, K. 1996. Antimicrobial and anti-inflammatory actions of tea leaf saponin. *Yakugaku Zasshi*, 116, 238-243.

Saijo, R. 1982. Isolation and chemical structures of two new catechins from fresh tea leaf. *Agricultural and Biological Chemistry*, 46, 1969-1970.

Sakanaka, S., Hatta, H., Ebina, T., Nishimoto, K., Kin, B., Yamamoto, T. and Yamazaki, N. 1989(a). Catechin derivatives from green tea as drugs for treatment of viral gastroenteritis and formulations containing them. Patent-Japan Kokai Tokyo Koho-01, 265, 023.

Sakanaka, S., Ito, Y., Kin, B. and Yamazaki, N. 1989(b). Dental caries and periodontosis treating agents containing catechins. Patent-Japan Kokai Tokyo Koho-01, 90, 124.

Sakanaka, S., Kim, M., Taniguchi, M. and Yamamoto, T. 1989(c). Antibacterial substances in Japanese green tea extract against *Streptococcus mutans*, a cariogenic bacterium. *Agricultural and Biological Chemistry*, 53, 2307-2311.

Sakanaka, S., Maaku, S., Shu, S. and Kin, B. 1995. Isolation and purification of anticancer polyphenols from tea. Patent-Japan Kokai Tokyo Koho-07, 238, 078.

Sakata, K., Sakuraba, S., Yagi, A., Ina, K., Hara, T. and Takeo, T. 1986. Isolation and identification of (-)-quinic acid as an unidentified major tea-component. *Agricultural and Biological Chemistry*, 50, 1919-1921.

Sakata, I., Ikeuchi, K., Maruyama, I. and Okuda, T. 1991. Quantitative analysis of (-)-epigallocatechin gallate in tea leaves by high performance liquid chromatography. *Yakugaku Zasshi*, 111, 790-793.

Sanq, M., Suzuki, J., Miyase, T., Yoshino, K. and Maeda-Yamamoto, M. 1999. Novel anti allergic catechin derivatives isolated from oolong tea. *Journal of Agricultural and Biological Chemistry*, 47, 1906-1910.

Savolainen, H. 1992. Tannin content of tea and coffee. *Journal of Applied Toxicology*, 12, 191-192.

Segawa, M., Mori, K. and Toda, F. 1988. Application of host-guest complexation method to isolation of natural products. *Chemistry Letters* (1988), 10, 1755-1758.

Sethi, V.K., Taneja, S.C., Dhar, K.L. and Atal, C.K. 1984. (-)-Epiafzelechin 5-O- β -D-glucoside from *Crataeva religiosa*. *Phytochemistry*, 23, 2402-2403.

Shcheglov, V.V., Baranova, S.I., Anisimov, M.M., Antonov, S., Afiyatullov, S.S., Levina, E.V., Sharypov, V.F., Stonik, V.A. and Elyakov, G.B. 1979. Antimicrobial spectrum of some triterpene and steroid glycosides. *Antibiotiki (Moscow)*, 24, 270-273.

Shervington, A., Shervington, L.A., Afifi, F. and El-Omari, M.A. 1998. Caffeine and theobromine formation by tissue cultures of *Camellia sinensis*. *Phytochemistry*, 47, 1535-1536.

Shiragami, T., Shobu, Y., Morino, M. and Yoshikumic, C. 1995. Polyphenols extraction of the compound from *Camellia sinensis* (L.) O. Kuntze for use as anticancer agent-resistance inhibitors. *Patent-Japan Kokai Tokyo Koho-07*, 330, 599.

Shiraki, M., Hara, Y., Osawa, T., Kumon, H., Nakayama, T. and Kawakishi, S. 1994. Antioxidative and antimutagenic effects of the a flavins from black tea. *Mutation Research*, 323, 29-34.

Shu, D., Ri, G., Kubo, M. and Ando, M. 1991. Extraction of hypoglycemics from tea. *Patent-Japan Kokai Tokyo Koho-03*, 83, 929.

Siddiqui, I.A., Raisuddin, S. and Shukla, Y. 2005. Protective effects of black tea on testosterone induced oxidative damage in prostate. *Cancer Letter*, 227, 125-132.

Spiro, M. 1997. Coffee, tea and chemistry. *Chemical Review*, 6, 11-15.

Spiro, M., Jaganyi, D. and Broom, M.C. 1992. Kinetics and equilibria of tea infusion: Part 9. The rates and temperature coefficients of caffeine extraction from green chun mee and black assam bukial teas. *Food Chemistry*, 45, 333-335.

Stalcup, A.M., Ekborg, K.H., Gasper, M.P. and Armstrong, D.W. 1993. Enantiomeric separation of chiral components reported to be in coffee, tea or cocoa. *Journal of Agricultural and Biological Chemistry*, 41, 1684-1689.

Subhadhirasakul, S. and Khumfang, P. 2000. Screening of barakol from Cassia plants and some of its biological activities. *Journal of Science and Technology*, 22, 429-434.

Suzuki, T. and Takahashi, E. 1975. Biosynthesis of caffeine by tea leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine. *Biochemistry Journal*, 146, 87.

Suzuki, T. and Takahashi, E. 1976(a). Caffeine and biosynthesis in *Camellia sinensis*. *Phytochemistry*, 15, 1235-1239.

Suzuki, T. and Takahashi, E. 1976(b). Further investigation of the biosynthesis of caffeine in the tea plant (*Camellia sinensis*) methylating of transfer ribonucleic acid by tea leaf extracts. *Biochemistry Journal*, 160: 181.

Suzuki, T. and Takahashi, E. 1976(c). Metabolism of methionine and biosynthesis of caffeine in the tea plant (*Camellia sinensis*). *Biochemistry Journal*, 160, 171.

Takatsuto, S., Ikekawa, N., Abe, H., Morishita, T., Uchiyama, M., Ikeda, M., Sasa, T., Marumo, S. and Kitsuwa, T. 1982. Microanalysis of brassinolide and its application to the identification of new brassinosteroids in plants. *Proceeding*

of 25th Symposium On The Chemistry of Natural Product Tokyo (1982), 290-297.

Takeo, C., Kinugass, H., Oosu, H., Kawasaki, T., Takakuwa, N., Shimizu, M. and Kondo, H. 1992. Extraction of hypoglycemic from tea. Patent-Japan Kokai Tokyo Koho-04, 124, 139.

Tanaka, T., Inshibashi, M., Fujimoto, H., Okuyama, E., Koyano, T., Kowithayakorn T., Hayashi, M. and Komiyama, K. 2002. New onoceranoid triterpene constituents from *Lansium domesticum*. *Journal Natural Product*, 65: 1709-1711.

Taniguchi, S., Miyashita, Y., Ueyama, T., Haji, K., Hirase, Y., Takemoto, T. and Arihara, S. 1988. Isolation of (-)-gallocatechin gallate from tea and pharmaceutical compositions containing it. Patent-Japan Kokai Tokyo Koho-63, 30, 418.

Tanizawa, H., Toda, S., Sazuka, Y., Taniyama, T., Hayashi, T., Arichi, S. and Takino, Y. 1984. Natural antioxidants. I. Antioxidative components of tea leaf (*Thea sinensis* (L.)). *Chemical and Pharmaceutical Bulletin*, 32, 2011-2014.

Tsunenari, S., Kibayashi, K. and Furusawa, Y. 1992. Green tea and its effective substances, epigallocatechin gallate (EGCG), reduce paraquat toxicity in mice. *Hochudoku*, 10, 84-85.

Tsunoda, T., Uchiyama, A., Arai, M., Mukai, I., Honjo, H., Nakayama, Y. and Ando, T. 1989. Ten catechins as anticholesteremics. Patent-Japan Kokai Tokyo Koho-01, 299, 224.

Tsunoda, T., Takihara, T., Sakane, I. and Tsukamoto, S. 1996. Caffeine and/or catechins from tea extracts as promoters of alcohol metabolism. Patent-Japan Kokai Tokyo Koho-08, 169, 831.

Tsushida, T. 1987. Metabolism of L-theanine in tea leaves. *Jarq*, 21, 42-46.

Ui, M., Yasuda, H., Shibata, M., Maruyama, T., Horita, H., Hara, T. and Yasuda, T. 1991. Effects of tea catechins in halitosis and their application in chewing gum. *Nippon Shokuhin Kogyo Gakkaishi*, 38, 1098-1102.

Unno, T., Kondo, K., Itakura, H. and Takeo, T. 1996. Analysis of (-)-epigallocatechin gallate in human serum obtained after ingesting green tea. *Bioscience, Biotechnology and Biochemistry*, 60, 2066-2068.

Valcic, S., Timmermann, B.N., Alberts, D.S., Wachter, G.A., Krutzsch, M., Wymer, J. and Guillen, J.M. 1996. Inhibitor effect of six green tea catechins and caffeine on the growth of four selected human tumor cell lines. *Anticancer Drugs*, 7, 461-468.

Vijaya, K., Ananthans, S. and Nalini, R. 1995. Antibacterial effect of theaflavin, polyphenon 60 (*Camellia sinensis*) and *Euphorbia hirta* on shigella spp-A cell culture study. *Journal of Ethnopharmacology*, 49, 115-118.

Vitzthum, O.G., Werkhoff, P. and Hubert, P. 1975. New volatile constituents of black tea aroma. *Journal of Agroindustry Food Chemistry*, 23, 999.

Wang, D.G. and Wang, S.R. 1991. Isolation, purification, analysis, and antihyperlipidemia effect of green tea polysaccharide. *Zhongguo Yaoke Daxue Xuebao*, 22, 225-228.

Wang, D.M., Ando, K., Morita, K., Kubota, K. and Kobayashi, A. 1994. Optical isomers of linalool oxides in tea aroma. *Bioscience, Biotechnology and Biochemistry*, 58, 2050-2053.

Wang, Z.Y., Wang, L.D., Lee, M.J., Ho, C.T., Huang, M.T., Conney, A.H. and Yang, C.S. 1995. Inhibition of *N*-nitrosomethylbenzylamine induced esophageal tumorigenesis in rats by green and black tea. *Carcinogenesis*, 16, 2143-2148.

Wang, D.M., Kubota, K. and Kobayashi, A. 1996. Optical isomers of methyl jasmonate in tea aroma. *Bioscience, Biotechnology and Biochemistry*, 60, 508-510.

Wang, H.F., Provan, G.J. and Helliwell, K. 2003. HPLC determination of catechins in tea leaves and tea extracts using relative response factors. *Food Chemistry*, 81, 307-312.

Watanabe, J., Kawabata, J. and Niki, R. 1998. Isolation and identification of Acetyl-coa carboxylase inhibitors from green tea (*Camellia sinensis*). *Bioscience, Biotechnology and Biochemistry*, 62, 532-534.

Wheeler, S.R. 1978. Tea and tannins. *Science*, 204, 6.

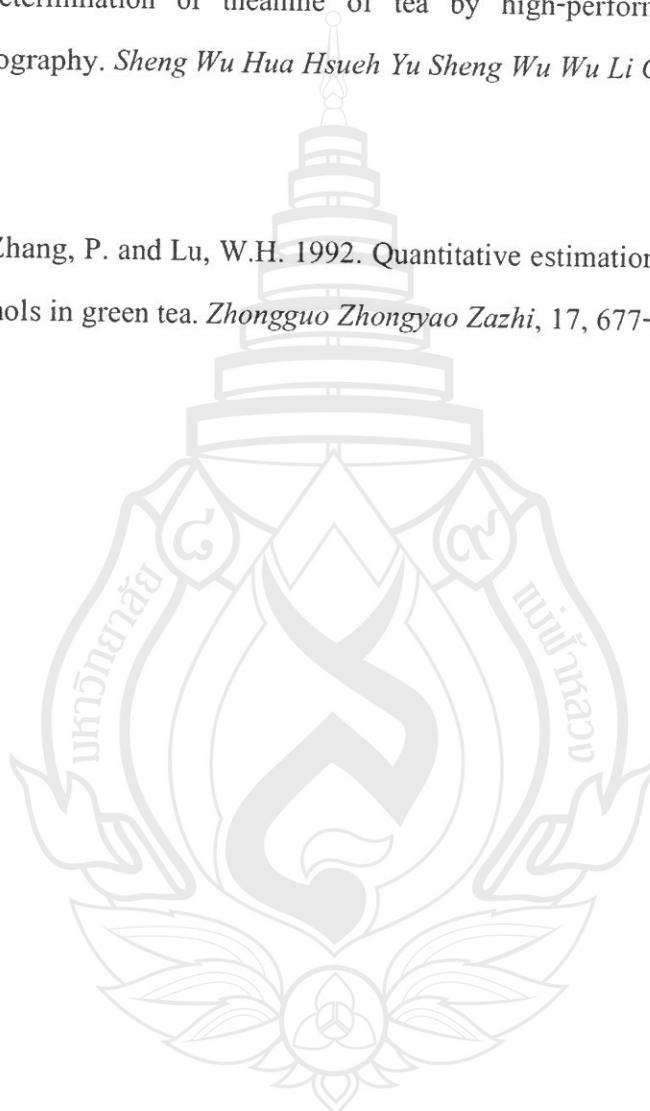
Xiao, P.G. and Li, Z.Y. 2002. Tea bioactivity and therapeutic potential edited by Yong-su Zhen. Taylor and Francis. *London and New York*. pp. 17.

Yamane, T., Nakatani, H., Kikuoka, N., Matsumoto, H., Iwata, Y., Kitao, Y., Oya, K. and Takahashit, T. 1996. Inhibitory effects and toxicity of green tea polyphenols for gastrointestinal carcinogenesis. *Cancer Letter*, 77, 1662-1667.

Yang, G.Y., Liu, Z.J., Seril, D.N., Lioa, J., Ding, W., Kim, S.B., Bondoc, F. and Yang, C.S. 1997. Black tea constituents, theaflavins, inhibit 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) induced lung tumorigenesis in A/J mice. *Carcinogenesis*, 18, 2361-2365.

Yen, G.C. and Chen, H.Y. 1996. Relationships between antimutagenic activity and major components of various teas. *Mutagenesis*, 11, 37-41.

Yeo, S.G., Ahn, C.W., Lee, Y.W., Lee, T.G., Park, Y.H. and Kim, S.B. 1995. Antioxidative effects of tea extracts from green tea, oolong tea and black tea. *Hanguk Yongyang siklong Hakhoe Chi*, 24, 299-304.


Yokozawa, T., Oura, H., Sakanaka, S. and Kim, M. 1992. Effect of tannins in green tea on the unary methylguanidine excretion in rats indicating a possible radical scavenging action. *Bioscience, Biotechnology and Biochemistry*, 56, 986-989.

- Yokozawa, T., Oura, H., Iwano, M. Dohi, K. and Hattori, M. 1993. Inhibitory effects of crude drug components on the proliferation of cultured humanmesangial cells. *Japanese of Journal Nephrology*, 35, 11-17.
- Yokozawa, T., Oura, H., Nakagawa, H., Sakanaka, S. and Kim, M. 1995. Effects of component of green tea on the proliferation of vascular smooth muscle cells. *Bioscience, Biotechnology and Biochemistry*, 59, 2134-2136.
- Yoshioka, H., Akai, G., Yoshinaga, K., Hasegawa, K. and Yoshioka, H. 1996. Protecting effect of green tea percolate and its main constituents against gamma ray-induced scission of DNA. *Bioscience, Biotechnology and Biochemistry*, 60, 117-119.
- Yoshizawa, S., Horiuchi, T., Fujiki, H., Yoshida, T., Okuda, T. and Sugimura, T. 1987. Antitumor promoting activity of (-)epigallocatechin gallate, the main constituent of tannin in green tea. *Phytotherapy Research*, 1, 44-47.
- Zaprometov, M.N., Zagorskina, N.V. and Koretskaya, T.F. 1976. Effects of some precursors on the formation of phenolic compounds in tea plant tissue cultures. *Fiziol Rast*, 23, 1274.
- Zaveri, N.T. 2006. Green tea and its polyphenolic catechins: Medical uses in cancer and noncancer applications. *Life Science*, 78, 2073-2080.
- Zhang, K.Q., Wu, P., Chen, Q.Y., Bao, Y.D. and He, Q.T. 1991. Preparation of antioxidants from chinese tea. *Shih P'in Yu Fa Hsiao Kung Yeh*, 1, 1-10.

Zhang, L., Duan, H.J., Fang, H.J., Wang, Z.S. and Liu, Z.H. 1995. Studies on analysis of catechins and alkaloids in tea by HPLC. *Yao Hsueh Hsueh Pao*, 30, 920-924.

Zhu, H. 1986. Determination of theanine of tea by high-performance liquid chromatography. *Sheng Wu Hua Hsueh Yu Sheng Wu Wu Li Chin Chan*, 6, 65-66.

Zhu, M., Xiao, P., Zhang, P. and Lu, W.H. 1992. Quantitative estimation of principle polyphenols in green tea. *Zhongguo Zhongyao Zazhi*, 17, 677-678.

BIOGRAPHY

- 1. Name** Dr. Suwanna Deachathai
Address School of Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
E-mail Address sdeachathai@hotmail.com

Education background

Year	Level	สาขาวิชา	สถาบันการศึกษา
2006	Ph.D.	Organic Chemistry	Prince of Songkla University
2001	M.Sc.	Organic Chemistry	Prince of Songkla University
1999	B.Sc.	Chemistry	Prince of Songkla University

Educational Attainment

1995-1999 Bachelor of Science in Chemistry. Prince of Songkla University.

1999-2001 Master of Science in Organic Chemistry. Prince of Songkla University.

Research Supervisor: Asst. Prof. Dr. Wilawan Mahabusarakam

Thesis Title: Chemical Constituents from *Derris scandens* and
Antioxidation Properties

2002-2005 Ph.D. Student in Organic Chemistry. Prince of Songkla University.

Research Supervisor: Asst. Prof. Dr. Wilawan Mahabusarakam.

Thesis Title: Chemical Constituents from the flowers, fruits and seeds
of *Garcinia dulcis* and Antioxidation Properties

2005 Visiting Ph.D. student at The University of Western Australia, School
of Medicine and Pharmacology, Royal Perth Hospital, PERTH WA
Research Supervisor: Assoc. Prof. Dr. Kevin D. Croft

2003 Visiting Ph.D. student at State Key Laboratory of Phytochemistry & Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming 650204, China
Research Supervisor: Prof. Dr. Chong-Ren YANG & Assoc. Prof. Dr. Ying-Jun Zhang
Research Title: Isolation of High Polarity Compounds from *Garcinia dulcis*

Publications

1. W. Mahabusarakam, **S. Deachathai**, S. Phongpaichit, C. Jansakul, W.C. Taylor.
“A benzil and isoflavone derivatives from *Derris scandens* Benth.”
Phytochemistry, 65, 1185-1191, 2004.
2. **S. Deachathai**, W. Mahabusarakam, S. Phongpaichit, W.C. Taylor.
“Phenolic Compounds from the Fruit of *Garcinia dulcis*” *Phytochemistry*, 66, 2368-2375, 2005.
3. **S. Deachathai**, W. Mahabusarakam, S. Phongpaichit, W.C. Taylor, Y.-J. Zhang, C.-R. Yang. “Phenolic Compounds from the Flowers of *Garcinia dulcis*”
Phytochemistry, 67, 464-469, 2006.
4. **S. Deachathai**, W. Mahabusarakam, N. Towatana, S. Phongpaichit, W.C. Taylor.
“Phenolic compounds from the seeds of *Garcinia dulcis*” *Natural Product Research*, 22, 15, 1327–1332, 2008.

Presentations

1. **S. Deachathai**, T. Promgool, M. Treesub, R. Yulianthi and A. Somsri, Antioxidant Activity of the Phenolic Compounds from Three Thai Medicinal Plants, The 1st SFRR-Thai Meeting and Workshop on Advance of Free Radicals, Oxidative Stress and Their Evaluation Methods, 15-16 December, 2008. **(Poster presentation)**
2. Trinop Promgool, Manita Treesub and **Suwanna Deachathai**, Chemical constituents from the roots of *Garcinia cowa* Roxb., antimicrobial and antioxidation properties., 34th Congress on Science and Technology of Thailand (STT 34), 31 October – 2 November, 2008. **(Oral presentation)**
3. Achjanee Somsri and **Suwanna Deachathai**, Chemical Constituents from the Root of *Mucuna macrocarpa* Wall., International Conference on Mathematics and Natural Sciences 2008, 28-30 October, 2008. **(Oral presentation)**
4. Rolly Yulianthi and **Suwanna Deachathai**, Chemical constituents from dried leaves of *Camellia sinensis* var. *assamica* in Chiang Rai, Thailand, International Conference on Mathematics and Natural Sciences 2008, 28-30 October, 2008. **(Oral presentation)**
5. **Suwanna Deachathai**, Chemical constituents from the roots of *Garcinia cowa* Roxb., International Conference on Mathematics and Natural Sciences 2008, 28-30 October, 2008. **(Oral presentation)**
6. Achjanee Somsri and **Suwanna Deachathai** (2007) Chemical Constituents from the Root of *Mucuna macrocarpa* Wall., Antimicrobial and Antioxidation Properties. TSB 19th Annual Meeting, Bangkok, Thailand. (Poster Presentation)

7. Achjanee Somsri and **Suwanna Deachathai** (2007) Chemical Constituents from the Root of *Mucuna macrocarpa* Wall., Antimicrobial and Antioxidation Properties. STT 33, Walailak University, Nakorn Sri Thummarat, Thailand.
(Poster Presentation)
8. P. Thongbai, P. Damrongkul Eungwanichayapant, **S. Dechathai**, S. Popluechai, S. Unto, Ratana Kalapa and Patanapong Sengkeaw (2007) Improving Jatropha Plant to be more Suitable Biodiesel Crop. Proceedings of the 6th Asian Crop Science Association Conference and BioAsia 2007, Bangkok, Thailand.
(Poster Presentation)

