

บทคัดย่อ

งานวิจัยนี้เป็นการศึกษาองค์ประกอบทางเคมีของดอก ใน ราก ลำต้น และรากของชุมเห็ดเทศ (*Cassia alata* Linn.) โดยอาศัยเทคนิคทางเคมาราฟีและการตกผลึก วิเคราะห์โครงสร้างของสาร บริสุทธิ์ที่ได้ด้วยวิธีทางสเปกโตรสโคปี ได้แก่ UV IR และ NMR ส่วนสกัดพวยาและสารบริสุทธิ์ที่แยกได้ นำมาศึกษาฤทธิ์ต้านแบคทีเรียแกรมบวก จำนวน 3 ชีือ (*B. cereus* *S. aureus* และ *MRSA* SK1) และ แบคทีเรียแกรมลบ จำนวน 3 ชีือ (*E. coli* *P. aureginosa* และ *S. typhimurium*) ด้วยวิธี broth microdilution ศึกษาฤทธิ์ต้านมะเร็งด้วยวิธี resazurin microplate assay และศึกษาฤทธิ์ต้านปฏิกิริยาออกซิเดชันด้วยวิธี DPPH assay

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดพวยาของชุมเห็ดเทศ (*Cassia alata* Linn.) แยกสารได้ 23 สาร ได้แก่ hydroxyquinol (1) 2',6'-dihydroxy-4'-methoxydihydrochalcone (2) stigmasterol (3) ziganein (4) aloe-emodin (5) emodin (6) kaempferol (7) diosmetin (8) physcion (9) β -sitosterol (10) lupeol (11) caffeic acid (12) apigenin (13) *trans*-resveratrol (14) ω -hydroxyemodin (15) orientalone (16) euxanthone (17) 3-geranyloxy-1,7-dihydroxyxanthone (18) *trans*-dihydrokaempferol (19) luteolin (20) lunatin (21) 7,4'-dihydroxy-5-methoxyflavone (22) และ hydroquinone (23) ในจำนวนสารที่แยกได้ทั้งหมดมีสารที่รายงานเป็นครั้งแรกของชุมเห็ดเทศ จำนวน 16 สาร ได้แก่ สาร 1 2 4 8 9 11-19 21 และ 22

ผลการศึกษาฤทธิ์ต้านแบคทีเรียในเบื้องต้นของส่วนสกัดพวยาทั้งหมดพบว่าสามารถยับยั้งการเจริญของเชื้อแบคทีเรียแกรมบวกและแกรมลบได้ ซึ่งสอดคล้องกับฤทธิ์ต้านแบคทีเรียของสารบริสุทธิ์ 2 และ 6 สามารถยับยั้งการเจริญของเชื้อแบคทีเรีย *Bacillus cereus* สายพันธุ์ TISTR 687 และ methicillin resistant *Staphylococcus aureus* สายพันธุ์ SK1 ระดับคีมากด้วยค่า MICs เท่ากับ 8 และ 4 μ g/mL ตามลำดับ ส่วนสกัดพวยาไดคลอโรเมทีนและอะซิโนนของลำต้นชุมเห็ดเทศไม่สามารถยับยั้งการเจริญของเซลล์มะเร็งช่องปาก KB-oral carvity เซลล์มะเร็งปอด NCI-H187 และเซลล์มะเร็งเต้านม MCF7 ได้ นอกจากนี้ยังพบว่า สาร 7 แสดงฤทธิ์ต้านปฏิกิริยาออกซิเดชัน (IC_{50} $9.67 \pm 0.29 \mu$ M) ได้ดีกว่า กรดแอสคอบิก (IC_{50} $25.41 \pm 0.92 \mu$ M) ถึง 3 เท่า และสาร 14 ยังแสดงฤทธิ์ต้านปฏิกิริยาออกซิเดชัน (IC_{50} $45.90 \pm 0.22 \mu$ M) ได้ดีกว่า BHT (IC_{50} $46.56 \pm 0.45 \mu$ M) อีกด้วย

ABSTRACT

This research involved the phytochemical investigation of flowers, leaves, roots, stems, and twigs of *Cassia alata* Linn. by chromatographic techniques and crystallization. All isolated pure compounds were characterization by UV, IR, and NMR spectroscopic methods. Antibacterial activity against three Gram-positive bacteria (*B. cereus*, *S. aureus*, MRSA SK1) and three Gram-negative bacteria (*E. coli*, *P. aurenginosa*, and *S. typhimurium*) were evaluated by broth microdilution method. Anticancer and antioxidation activities of the crude extracts and isolated pure compounds were evaluated using resazurin microplate assay and DPPH assay, respectively.

Phytochemical investigation of the extracts of *C. alata* Linn. yielded 23 compounds: hydroxyquinol (1), 2',6'-dihydroxy-4'-methoxydihydrochalcone (2), stigmasterol (3), ziganein (4), aloe-emodin (5), emodin (6), kaempferol (7), diosmetin (8), physcion (9), β -sitosterol (10), lupeol (11), caffeic acid (12), apigenin (13), *trans*-resveratrol (14), ω -hydroxyemodin (15), orientalone (16), euxanthone (17), 3-geranyloxy-1,7-dihydroxyxanthone (18), *trans*-dihydrokaempferol (19), luteolin (20), lunatin (21), 7,4'-dihydroxy-5-methoxyflavone (22), and hydroquinone (23). Sixteen compounds of them (1, 2, 4, 8, 9, 11-19, 21, and 22) were reported for the first time as metabolites of *C. alata*.

The antibacterial activity screening results, all crude extracts were able to inhibit the growth of gram positive and gram negative bacteria, according to the among the isolated compounds, compounds 2 and 6 exhibited a strong antibacterial activity against *Bacillus cereus* TISTR 687 and methicillin resistant *Staphylococcus aureus* -SK1 with the MICs values of 8 and 4 μ g/mL, respectively. The dichloromethane and acetone extracts of *C. alata* stems showed inactive anticancer against KB-oral cavity cancer, NCI-H187 small cell lung cancer, and MCF7-breast cancer. Moreover, compounds 7 was found to exhibit antioxidative activity with IC_{50} value of $9.67 \pm 0.29 \mu$ M that was three times stronger than that of ascorbic acid ($IC_{50} 25.41 \pm 0.92 \mu$ M). Compound 14 was also found to show more potent antioxidative activity ($IC_{50} 45.90 \pm 0.22 \mu$ M) than BHT ($IC_{50} 46.56 \pm 0.45 \mu$ M), respectively.