

**OPTIMIZING GROWING CONDITIONS FOR THE TROPICAL
MUSHROOMS, *Clitopilus* species AND *Agaricus subrufescens***

KRITSANA JATUWONG

**MASTER OF SCIENCE
IN
BIOSCIENCES**

**SCHOOL OF SCIENCE
MAE FAH LUANG UNIVERSITY**

2015

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

**OPTIMIZING GROWING CONDITIONS FOR THE TROPICAL
MUSHROOMS, *Clitopilus* species AND *Agaricus subrufescens***

KRITSANA JATUWONG

**THIS THESIS IS A PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
BIOSCIENCES**

**SCHOOL OF SCIENCE
MAE FAH LUANG UNIVERSITY**

2015

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

**OPTIMIZING GROWING CONDITIONS FOR THE TROPICAL
MUSHROOMS, *Clitopilus* species AND *Agaricus subrufescens***

KRITSANA JATUWONG

THIS THESIS HAS BEEN APPROVED
TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF BIOSCIENCE

IN

BIOSCIENCES

2015

EXAMINATION COMMITTEE

.....CHAIRPERSON

(Assoc. Prof. Kevin D. Hyde, Ph. D.)

.....ADVISOR

(Pattana Kakumyan, Ph. D.)

.....EXAMINER

(Sunita Chamyuang, Ph. D.)

.....EXTERNAL EXAMINER

(Prof. Saisamorn Lumyong, Ph. D.)

©COPYRIGHT BY MAE FAH LUANG UNIVERSITY

ACKNOWLEDGEMENTS

This study would not have been completed without the support, patience and guidance of the following people.

Firstly, I would like to express my deepest and sincere gratitude to Dr. Pattana Kakumyan, my supervisor for supervising me throughout my study. I also thank for her immense knowledge, patience, encouragement, excellent guidance, valuable suggestion that helped me a lot to improve my research and support me all the time.

I am extremely grateful to Prof. Dr. Kevin D. Hyde for his kindness and letting me being a student here. I also thank for his expert guidance and valuable suggestions to improve my work.

I would like to thank technicians and staffs at the Scientific and Technological Instations Center (STIC), Office of the Postgraduate Studies, Library, School of Science, Mae Fah Luang University, and Institute of Excellence in Fungal Research, Mae Fah Luang University, Culture Collection (MFLUCC) and Mae Fah Luang University Herbarium (MFLU HERB) for giving all the necessary assistance.

I am grateful to Kunming Institute of Botany, Kunming (KIB), China for providing the molecular data for my study. I am also very grateful to Thailand Research Fund grant “Taxonomy, Phylogeny and biochemistry of Thai Basidiomycetes (BRG 5580009)” for providing support for this study.

I wish to my sincere thanks also to Prof. Dr. Saisamorn Lumyong, Assist Prof. Dr. Ekachai Chukeatirote, Dr. Sunita Chamyuang, Dr. Naritsada Thongklang and Mr. Samantha C. Karunarathna for their advice, comment and help me throughout my research. Thanks to all of my friends at Institute of Excellence in Fungal Research, Mae Fah Luang University for their suggestions, helping me for mushroom collection and cultivation and any person whose name is not mentioned here but who has supported me in completion of this thesis.

Finally, I especially gratitude to my family. None of this would have been possible without their love and patience. They are always supporting and encouraging me with their best wishes.

Kritsana Jatuwong

Thesis title	Optimizing growing conditions for the tropical mushrooms, <i>Clitopilus</i> species and <i>Agaricus subrufescens</i>
Author	Kritsana Jatuwong
Degree	Master of Science (Biosciences)
Advisor	Pattana Kakumyan, Ph. D.

ABSTRACT

The aim of this study was to study taxonomy and phylogeny, optimal condition for mycelium growth, antibacterial, antioxidant, and enzyme activities of *Clitopilus doimaesalongensis* strain MFLUCC13-0806 and *C. chalybescens* strain MFLUCC13-0809 and to investigate the optimal conditions for the cultivation of *Agaricus subrufescens* hybrid strains in northern Thailand.

Collection of *Clitopilus* were made in the rainy season during the period 2012-2013 in northern Thailand. They were studied in terms of taxonomy and phylogeny. Two collections were identified as *Clitopilus chalybescens* and another as a new species, *C. doimaesalongensis*. *Clitopilus doimaesalongensis* (MFLUCC13-0806) and *C. chalybescens* (MFLUCC13-0809) were determined for optimal growth conditions; type of media, temperature and pH. The optimal conditions for *C. doimaesalongensis* were cultivation on malt extract agar (MEA), supplemented with sucrose and tryptone, pH can range from 5-9 at a temperature range from 27-29°C. Yeast extract agar (YEA), a pH of 5-8 and temperature range of 20-29°C were optimal conditions for *C. chalybescens* and this mushroom can use fructose, sucrose, starch, malt extract, yeast extract, tryptone and beef extract as carbon and nitrogen sources. The antibacterial activity from culture mycelium extracts and broth cultured extracts of

C. doimaesalongensis inhibited the growth of Gram positive bacteria; *Bacillus subtilis* and *Staphylococcus aureus* and Gram negative bacteria; *Pseudomonas aeruginosa*. This activity, however, was not observed on dried mycelial extracts. *Clitopilus chalybescens* could inhibit the growth of Gram positive bacteria; *B. subtilis* and *S. aureus*, but not Gram negative bacteria. Antioxidant assay indicated that the crude extracts had noticeable scavenging activity on 2,2-diphenyl-1-picryl-hydrazyle (DPPH) radical about 21.41% and 26.45% DPPH scavenging activity for *C. chalybescens* and 29.14% and 40.62% for *C. doimaesalongensis* at 40 and 50 mg/mL, respectively. Cellulase, xylanase and amylase activities were detected in *C. doimaesalongensis*.

Agaricus subrufescens is an edible mushroom, one of the most important medicinal mushroom with high potential to treat many diseases. Several strains of *A. subrufescens* have been cultivated throughout the world, especially in Brazil. The *Agaricus subrufescens* hybrid strain used in this study has bred at INRA, France and successfully cultivated. The optimum conditions for the cultivation of *A. subrufescens* hybrid strains in northern Thailand were investigated in this study. Suitable temperatures and pH for mycelium growth were established on compost extract agar. The optimum temperature and pH for mycelial growth ranged from 25-30°C and pH 7-9. The four hybrid strains could be grown and produced fruiting bodies on rice straw compost. *Agaricus subrufescens* hybrid of Thai and Brazilian CA 918-076 × CA 454-4 (T2×B) produced the highest yield (56.92 g/kg of compost) among the studied strain.

Keywords: *Clitopilus*/ optimal condition/ antibacterial activity/ antioxidant activity/
Agaricus subrufescens hybrid strain/ compost/ mushroom cultivation

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	(3)
ABSTRACT	(5)
LIST OF TABLES	(10)
LIST OF FIGURES	(12)
CHAPTER	
1 INTRODUCTION	1
1.1 Introduction	1
1.2 General Characteristic of Genus <i>Clitopilus</i>	2
1.3 Characteristics and Taxonomy Tools	6
1.4 Ecology and Distribution	8
1.5 Bioactive Compounds	10
1.6 History of Edible Mushrooms Cultivation	15
1.7 Research Objectives	17
2 TWO SPECIES OF <i>Clitopilus</i> FROM NORTHERN THAILAND	18
2.1 Introduction	18
2.2 Materials and Methods	19
2.3 Results and Discussion	24
2.4 Conclusion	34

TABLE OF CONTENTS (continued)

	Page
CHAPTER	
3 OPTIMAL CONDITIONS FOR GROWING MYCELIUM OF	
<i>Clitopilus doimaealongensis AND Clitopilus chalybescens</i>	35
3.1 Introduction	35
3.2 Materials and Methods	36
3.3 Results and Discussion	39
3.4 Conclusion	49
4 ANTIBACTERIAL, ANTIOXIDANT AND ENZYME ACTIVITIES	
OF <i>Clitopilus doimaealongensis AND Clitopilus chalybescens</i>	50
4.1 Introduction	50
4.2 Materials and Methods	51
4.3 Results and Discussion	54
4.4 Conclusion	64
5 OPTIMIZATION CONDITION FOR CULTIVATION OF	
<i>Agaricus subrufescens</i> HYBRID STRAINS	65
5.1 Introduction	65
5.2 Materials and Methods	67
5.3 Results and Discussion	69
5.4 Conclusion	75
6 CONCLUSION	76

TABLE OF CONTENTS (continued)

	Page
REFERENCES	79
APPENDICES	108
APPENDIX A MEDIA AND CHEMICAL PREPARATION	109
APPENDIX B OPTIMAL CONDITION FOR MYCELIAL GROWTH	113
APPENDIX C TLC CHRACTERIZATION OF <i>Clitopilus doimaesalongensis</i> AND <i>Clitopilus chalybescens</i>	121
APPENDIX D PROCEEDING AT CONFERENCES	122
CURRICULUM VITAE	124

LIST OF TABLES

Table	Page
1.1 Record of section and subgenus of genus <i>Clitopilus</i>	4
1.2 Distribution of <i>Clitopilus</i> species in Thailand	9
1.3 Historical recorded of edible mushrooms cultivation	16
2.1 <i>Clitopilus</i> species used in this study	20
2.2 Taxon information used for molecular analyses	23
2.3 Comparison of <i>C. doimaesalongensis</i> with the closely related species	31
3.1 Mycelial growth and mycelial dry weight of <i>C. doimaesalongensis</i> strain MFLUCC 13-0806 and <i>C. chalybescens</i> strain MFLUCC 13-0809 inoculated on different solid media at 28°C for 12 days.	41
3.2 Mycelial growth and mycelial dry weight of <i>C. doimaesalongensis</i> strain MFLUCC 13-0806 and <i>C. chalybescens</i> strain MFLUCC 13-0809 cultivated at different temperature for 12 days.	43
3.3 Mycelial growth and mycelial dry weight of <i>C. doimaesalongensis</i> strain MFLUCC 13-0806 and <i>C. chalybescens</i> strain MFLUCC 13-0809 cultivated at different pH for 12 days.	44
3.4 Mycelial growth and mycelial dry weight of <i>C. doimaesalongensis</i> strain MFLUCC 13-0806 and <i>C. chalybescens</i> strain MFLUCC 13-0809 cultivated on different carbon and nitrogen sources for 12 days.	46
4.1 Antibacterial activities of crude extracts from culture mycelium extraction of <i>C. doimaesalongensis</i> and <i>C. chalybescens</i>	55
4.2 Antibacterial activities of crude extracts from cultured broth and dried mycelial extraction of <i>C. doimaesalongensis</i>	59
4.3 Relative index (RI) value after flooding plates with iodine solution	63

LIST OF TABLES (continued)

Table	Page
5.1 Cultivars used in this study	67
5.2 Average mycelial growth rate of <i>A. subrufescens</i> cultivated on compost extract agar under various conditions for 10 days	71
5.3 Dry weight of mycelium grown on compost extract agar under various conditions for 10 days	72

LIST OF FIGURES

Figure	Page
1.1 The scientific classification of genus <i>Clitopilus</i>	2
1.2 Basidiomes of <i>Clitopilus</i> species	3
1.3 <i>Clitopilus ravus</i> (a) Basidiomata (b,c) Basidiospores	5
1.4 Distribution of <i>Clitopilus</i> in the world	8
1.5 Chemical structure of pleuromutilin	11
1.6 Natural product from Retapamulin which the product named ALTABAX®	12
2.1 Basidiomata of <i>Clitopilus</i> species in the field	20
2.2 <i>Clitopilus doimaesalongensis</i>	26
2.3 <i>Clitopilus chalybescens</i>	28
2.4 Maximum parsimony phylogram showing the phylogenetic position of <i>C. doimaesalongensis</i> sp. nov. with some selected <i>Clitopilus</i> species from GenBank based on ITS rDNA sequence data. Data were analyzed with random addition sequence, unweighted parsimony and gaps were treated as missing data. Values above the branches are parsimony bootstrap ($\geq 50\%$). The tree is rooted with <i>Lyophyllum decastes</i>	30
3.1 Mycelial growth of <i>C. doimaesalongensis</i> strain MFLUCC 13-0806 inoculated on different solid media at 28°C for 12 days	40
3.2 Mycelial growth of <i>C. chalybescens</i> strain MFLUCC 13-0809 inoculated on different solid media at 28°C for 12 days	42
3.3 Mycelial production of <i>C. doimaesalongensis</i> on different compost formula	48
4.1 Antibacterial activities of <i>C. doimaesalongensis</i> on different bacteria	56
4.2 Antibacterial activities of <i>C. chalybescens</i> on different bacteria	57
4.3 Antibacterial activities of crude extract of <i>C. doimaesalongensis</i> on different bacteria	60

LIST OF FIGURES (continued)

Figure	Page
4.4 Scavenging effect of <i>C. doimaesalongensis</i> and <i>C. chalybescens</i> mycelium extraction on DPPH radicals. The results were representative of three separated experiments	61
4.5 Scavenging effect of BHT on DPPH radicals. The results were representative of three separated experiments	62
4.6 Clear zone of hydrolysis after flooding plates with iodine solution	64
5.1 Mycelium growth on compost extracted media when incubated at 25°C and 30°C for 10 days	70
5.2 Fruiting bodies of 4 hybrid strains of <i>Agaricus subrufescens</i> were cultivated on rice straw based compost media	74
5.3 Comparison of biomass production in each strain	74

CHAPTER 1

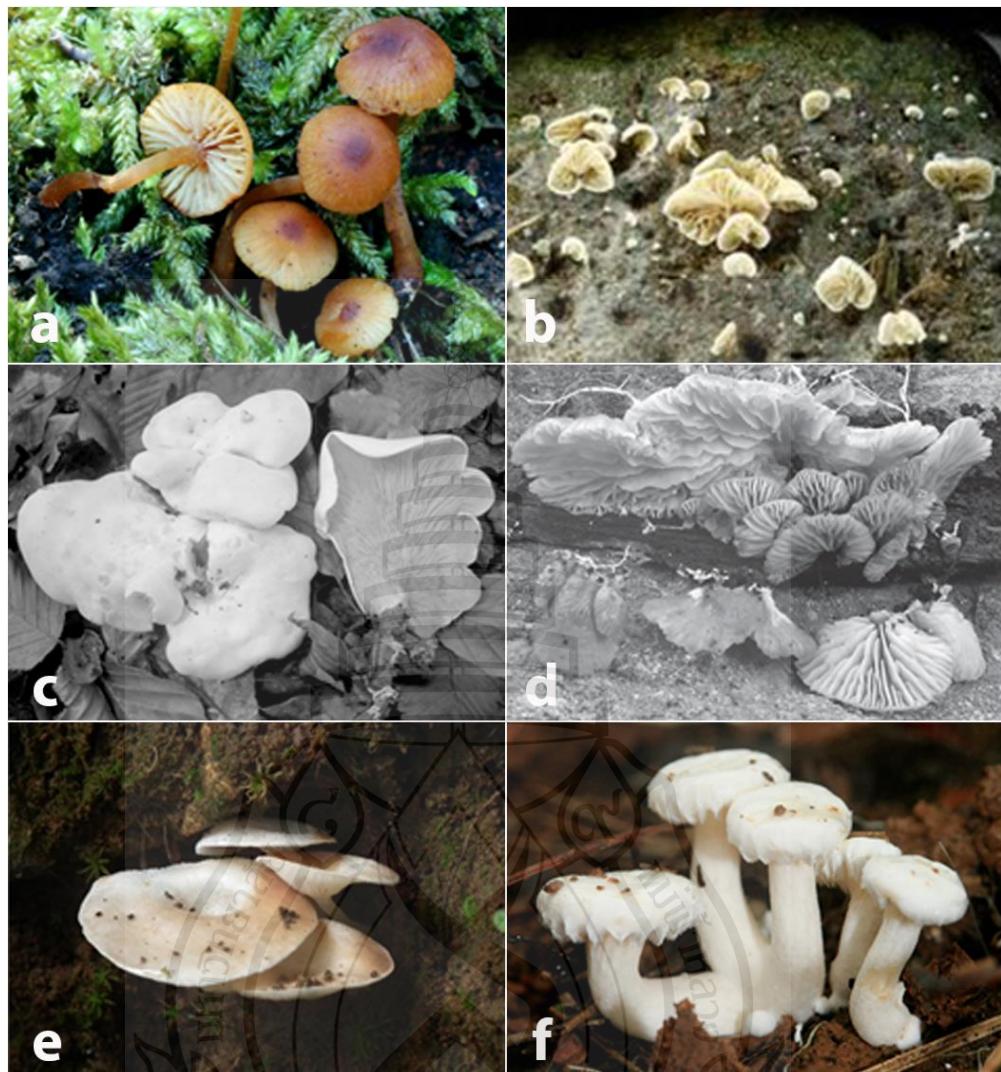
INTRODUCTION

1.1 Introduction

The basidiomycetes are very large group and popular classified because of their diversity and properties. Mushrooms are macro fungi belonging to Basidiomycota called for their characteristic sexual reproductive structures; they have the basidiospores that are produced on basidium (plural, basidia). Their basidiocarps are formed completely of secondary mycelium (Raven & George, 2002). They are abundant in the forest ecosystem around the world (Pushpa & Purushthama, 2012). Most of the mushrooms grow in humid conditions whether in the soil, on dead logs and trees (Bankole & Adekunle, 2012). These include many type of fleshy fungi such as bracket fungi, fairy clubs, toadstools, puffballs, stinkhorns, earthstars, bird's nest fungi and jelly fungi (Vyas, Chaubey & Dehariya, 2014). Some mushrooms are edible/medicinal and many of them are poisonous species (Firenzuoli, Gori & Lombardo, 2008). Mycelium mushrooms have been isolated and can be cultured in broth or agar. Fruit bodies contain biologically active polysaccharides that are the best known as most potent mushroom-derived substances with antitumor, immunomodulation and anti-cancer properties (Mizuno et al., 1996; Mizuno et al., 1999; Borchers, Stern, Hackman, Keen & Gershwin 1999; Ooi & Liu, 1999; Wasser & Weis, 1999; Tzianabos, 2000; Reshetnikov, Wasser & Tan, 2001). The family *Agaricaceae* is one of the most diverse and large of Basidiomycetes. Many of them have been introduced based on molecular and morphological studies (Vellinga, de Kok & Bruns, 2003; Thongklang, Nawaz et al., 2014; Chen et al., 2015). Their diversity are important role in evolution and ecosystem. Various studies on morphological and molecular characterization are reveals several a new genera, new species and new record were discovered such species of genus *Agaricus*, *Auricularia*, *Macrolepiota*, *Lactarius*, *Rusula* (Vellinga et al., 2003; Vellinga, 2004; Nascimento & Alves, 2014; Thongklang, Nawaz et al., 2014; Chen et al., 2015;

Liu et al., 2015; Bandara, Chen, Karunarathna, Hyde & Kakumyan, 2015). Although, genus *Clitopilus* has received little study in Thailand but it is a widespread in several country.

1.2 General Characteristic of Genus *Clitopilus*


Clitopilus (Fr. Ex Rabenh.) P. Kumm is a small genus of fungi belonging to the family of the *Entolomataceae* in the order Agaricales within the division Basidiomycota. The classification of genus *Clitopilus* is shown in Figure 1.1. A type species of this genus is *Clitopilus prunulus* commonly known as the miller or the sweetbread mushroom (Co-David, Langeveld & Noordeloos, 2009; Vyas et al., 2014).

This is a genus having mostly collybioid or clitocyboid basidiomata (Moreno, Contu, Ortega, Platas & Peláez, 2007; Takahashi & Degawa, 2011). It is traditionally included saprotrophic or mycoparasitic species (Vizzini, Musumeci, Ercole & Contu, 2011). It is separated into two groups: one is more or less clitocyboid with central stipe and decurrent lamellae, and the other group is often small pleurotoid basidiocarps with lateral and reduced stipe (Noordeloos, 2008) (Figure 1.2). Recently, the genus *Clitopilus* have been recorded of 326 species in the Index Fungorum including nine sections and four subgenus (Table 1.1).

Kingdom	:	Fungi
Division	:	Basidiomycota
Class	:	Agaricomycetes
Order	:	Agaricales
Family	:	Entolomataceae
Genus	:	<i>Clitopilus</i>

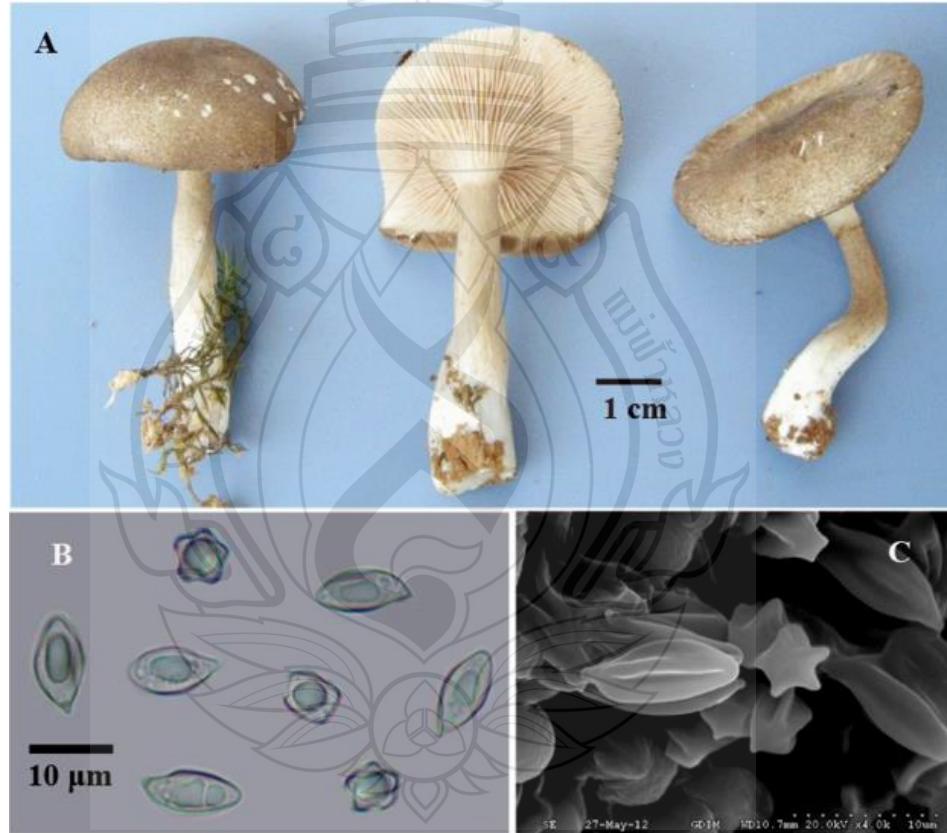
Source Index Fungorum (2015)

Figure 1.1 The scientific classification of genus *Clitopilus*

Note. (a) *Clitopilus rubroparvulus*, (b) *Clitopilus kamaka*, (c) *Clitopilus chrischonensis*, (d) *Clitopilus byssisedoides*, (e) *Clitopilus chalybescens* (this study), (f) *Clitopilus doimaesalongensis* (this study)

Source Noordeloos, Co-David & Gminder, 2010; Vizzini, Dähncke & Contu, 2011; Vizzini, Musumeci et al., 2011; Cooper, 2014

Figure 1.2 Basidiomes of *Clitopilus* species


Table 1.1 Record of section and subgenus of genus *Clitopilus*

Section and subgenus	References
<i>Clitopilus</i> sect.* <i>Clitopilus</i> (Fr. ex Rabenh.)	Kumm (1871)
<i>Clitopilus</i> sect. <i>Omphaloidei</i>	Moreno et al., (2007)
<i>Clitopilus</i> sect. <i>Clitopilopsis</i> (Maire)	Contu (2009)
<i>Clitopilus</i> sect. <i>Claudopodes</i>	Contu (2009)
<i>Clitopilus</i> sect. <i>Crepidotoides</i> (Singer)	Contu (2009)
<i>Clitopilus</i> sect. <i>Decurrentes</i> (Konrad & Maubl.)	Contu (2009)
<i>Clitopilus</i> sect. <i>Rhodocybe</i> (Maire)	Contu (2009)
<i>Clitopilus</i> sect. <i>Rufobrunnei</i> (Singer ex T.J. Baroni)	Contu (2009)
<i>Clitopilus</i> sect. <i>Tomentosi</i> (T.J. Baroni)	Contu (2009)
<i>Clitopilus</i> subgen.** <i>Clitopilus</i> (Fr. ex Rabenh.) P.	Kumm (1871)
<i>Clitopilus</i> subgen. <i>Decurrentes</i> (Konrad & Maubl.)	Contu (2009)
<i>Clitopilus</i> subgen. <i>Rhodocybe</i> (Maire)	Contu (2009)
<i>Clitopilus</i> subgen. <i>Rhodophana</i> (Kühner)	Contu (2009)

Note. * sect = section, ** subgen = subgenus

Source Index Fungorum (2015)

Clitopilus species could be easily recognized by farinaceous odor and with the distinct characters of pink or brownish pink spores and its peculiarly shaped spores with longitudinal ribs, with five to twelve in number and appearing angular in polar view (Singer, 1986; Noordeloos, 2008). The pileus usually depressed or umbilicate, whitish to grayish when dry and sometime slimy surface and a wavy margin. The gills are decurrent attached with the stipe, spaced together rather closely. The stipe is fleshy or fibrous, thick, white and ellipsoid in profile but rounded in polar view, without volva or annulus (Kauffman, 1981; Baroni, Desjardin & Hywel-Jones, 2001; Yang, 2007; Vizzini, Musumeci et al., 2011) (Figure 1.3).

Source Deng, Li & Shen (2012)

Figure 1.3 *Clitopilus ravus* (a) Basidiomata, (b,c) Basidiospores

1.3 Characteristics and Taxonomy Tools

The genera *Clitopilus* has been confused on the taxonomic and nomenclatural. It was earlier included within *Rhodocybe* Maire and *Entoloma* (Fr.) P.Kummer (Matheny et al., 2006). This genus was suggested about 30 species in 2008 then, has been published and redefined to include many species former *Rhodocybe* species by using based on sequence data in 2009 (Co-David et al., 2009).

This genera *Clitopilus* was updated in Index Fungorum and MycoBank as follows:

Clitopilus (Fr. ex Rabenh.) P. Kumm., Führ. Pilzk. (Zerbst): 96 (1871)

= *Agaricus* subgen. *Clitopilus* Fr. ex Rabenh., Deutschlands

Kryptogamenflora 1: 507

= *Hexajuga* Fayod, Annales des Sciences Naturelles Botanique 9: 389 (1889)

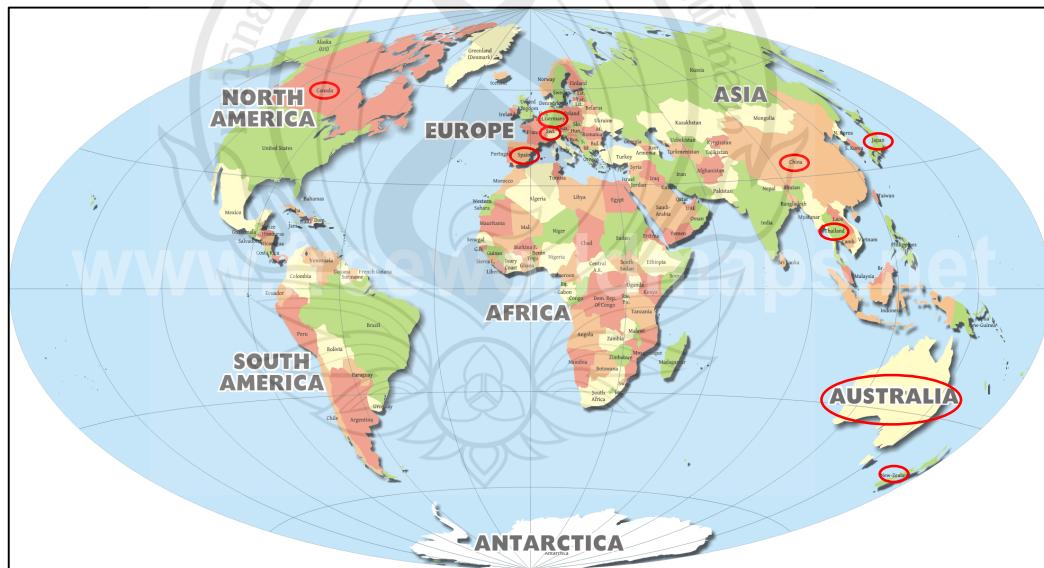
= *Orcella* Kuntze ex Earle, Bulletin of the New York Botanical Garden 5: 430 (1909)

= *Paxillopsis* J.E. Lange, Flora Agaricina Danica 5: VI (1940)

The classification of mushrooms are very important. They are identified through observing of their characters with naked eye, using hand lens, microscopes and molecular analysis is recently used. Therefore, the technique of *Clitopilus* can be classified based on morphological and molecular analyses.

1.3.1 Morphological Analysis

The taxonomic studies are very important for mushroom identification. Like other mushrooms, various studies have been reported based on macro and microscopic descriptions of *Clitopilus* species (Baroni et al., 2001; Moreno et al., 2007; Yang, 2007; Noordeloos et al., 2010; Vizzini, Dähncke & Contu, 2011; Takahashi & Degawa, 2011). The specimens are photographed in the field with the description of the macromorphological characteristic of the basidiomes. The specimens are dried under an electric drier and deposited in the herbaria.


Micromorphological characters are also studied from fresh and dried materials with standard methods, using sections mounted in 3-5% KOH, ammoniacal Congo red, Melzer's reagent, Cotton blue, Phoxin and Cresyl blue (Baroni, 1981). Microscopic structures such as spores, basidia and cystidia were observed under microscope.

1.3.2 Molecular Analysis

The molecular marker is widely used for mushroom identification and characterization. DNA typing relies on standard molecular methodologies such as PCR DNA amplification and Restriction Fragment Length Polymorphism (RFLP) mapping that may be easily applied to the taxonomic classification of any living system. The nucleotide sequencing of *Clitopilus* species use genomic DNA form either dried material or mycelium. DNA is amplified using a primers ITS1/ITS4 for the ITS region amplification (White, Bruns, Lee & Taylor, 1990; Gardes & Bruns, 1993) and primers LR0R/LR6 (Vilgalys & Hester, 1990) for the LSU. Thus, the amplification of the ITS and LUS was successful for the *Clitopilus* species (Moreno et al., 2007; Hartley et al., 2009; Vizzini, Musumeci et al., 2011; Crous et al., 2012, Cooper, 2014).

1.4 Ecology and Distribution

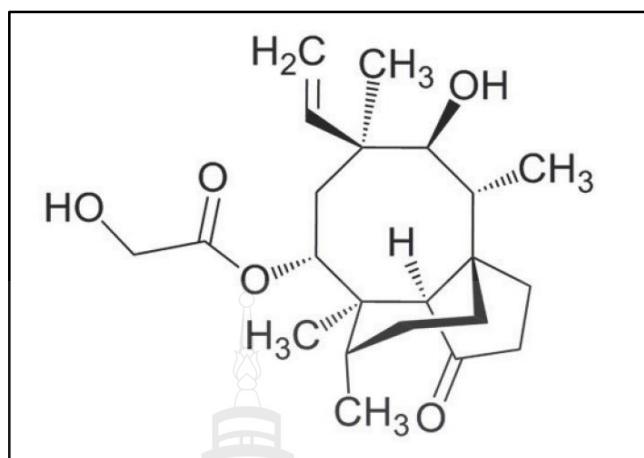
The genera *Clitopilus* is traditionally encompasses saprotrophic or mycoparasitic. Basidiomata is solitary or scattered on soil and probably can grow on decayed wood in primary forests in broadleaved or coniferous (*Pinus*) forests and in grasslands or on mosses in the rainy season or autumn (Yang, 2007; Noordeloos et al., 2010; Vizzini, Dähncke & Contu, 2011). and on its food source (Zhang, Geng, Shen, Wang & Dai, 2014). It is a widespread distribution in Europe, America, Oceania, North Africa, Southern Africa and Asia (Baroni et al., 2001; Moreno et al., 2007; Yang, 2007; Deng, Li & Shen, 2010; Noordeloos et al., 2010; Vizzini, Dähncke & Contu, 2011; Vizzini, Musumeci et a., 2011; Takahashi & Degawa, 2011; Deng et al., 2012; Crous et al., 2012; Noordeloos & Gates, 2012; Deng, Heng & Li, 2013; Cooper, 2014), especially in northern temperate areas and it has also been found in tropics and subtropics temperate area such as Taiwan, Thailand and China (Baroni et al., 2001, Yang, 2007; Deng et al., 2010; Deng et al., 2012; Deng et al., 2013) (Figure 1.4).

Figure 1.4 Distribution of *Clitopilus* in the world

Three species of *Clitopilus* were found and have been reported in Thailand including *C. prunulus*, *C. apalus* and *C. chalybescens* (Chandrasrikul et al., 2011) (Table 1.2). Moreover, several species from Canada, Switzerland, Spain, Japan, and Australia such as *C. fuscogelatinosus*, *C. giovanellae*, *C. vernalis*, *C. austroprunulus* and *C. canariensis* were reported as a new species (Redhead & Baroni, 1986; Moreno et al., 2007; Vizzini, Dähncke & Contu, 2011; Vizzini, Musumeci et al., 2011; Takahashi & Degawa, 2011; Crous et al., 2012)

Table 1.2 Distribution of *Clitopilus* species in Thailand

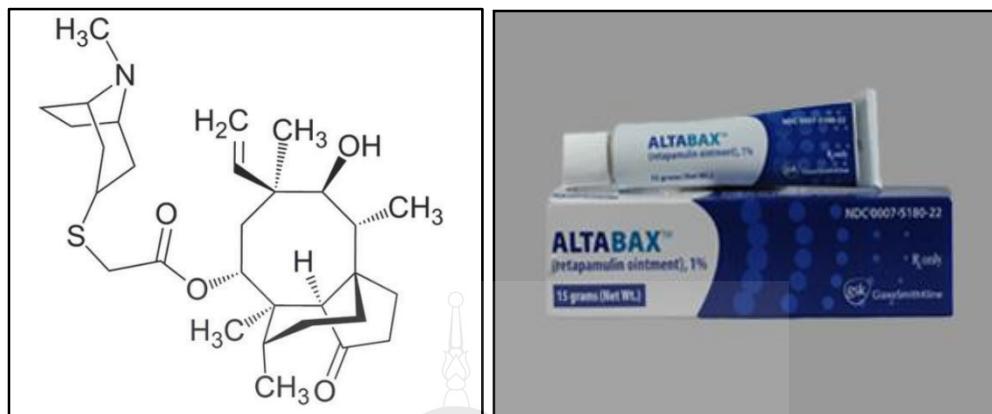
Scientific name	Location	References
<i>Clitopilus apalus</i> (Berk. & Br.) Petch	Kek river, Phetchabun	Duengkae (2006)
<i>Clitopilus chalybescens</i> T.J. Baroni & Desjardin	Khao Yai National Park, Nakhon Nayok	Baroni et al. (2001) Jones and Hyde (2004)
<i>Clitopilus prunulus</i> (Scop. ex Fr.) Kummer	Deciduous Dipterocarp Forest, Mixed Deciduous Forest and Dry Dipterocarp Forest in Northeast	Museum of medicinal mushrooms (2008)


Source Chandrasrikul et al. (2011)

1.5 Bioactive Compounds

Mushrooms have long history as nutritionally food source and a source of physiologically beneficial medicines to use in therapies (Wasser & Weis, 1999; Wasser, 2002). They need antibacterial and antifungal compounds to survive in their environment. Mushroom cell wall consists of polysaccharides (glucans) derived from both fruiting bodies and mycelium and it is well-known to have a property against bacteria and viruses (Wasser, 2002; Barros et al., 2007). In fact, many mushrooms have been established in traditional medicines for various therapeutic properties such as immunological and anti-cancer. Many medicinal functions are produced by mushrooms and fungi and are referred to other potentially important health benefits including antioxidants, anti-hypertensive and cholesterol-lowering properties, liver protection, as well as anti-inflammatory, anti-diabetic, anti-viral and anti-microbial properties (Yu et al., 2009; Zhang, Cui, Cheung & Wang, 2007; Finimundy et al., 2013). In addition, mushroom extracts have been exhibited to provide health promoting benefits (Marshall & Nair, 2009). Several pure compounds from mushrooms such as *Ganoderma lucidum* (Lingzhi), *Laetiporus sulphureus* (Chicken mushroom) and *Lentinus edodes* (Shiitake) were reported to have antioxidant, anti-tumor, anti-inflammatory and antimicrobial activities (Hong, Dunn, Shen & Pence, 2004; Wong, Chao, Chan, Chang & Liu, 2004; Turkoglu et al., 2007; Joseph et al., 2011; Kao, Jesuthasan, Bishop, Glucina & Ferguson, 2013; Klaus et al., 2013).

1.5.1 Antibacterial Activity


Some *Clitopilus* species produce bioactive compound known as a pleuromutilin (Figure 1.5). This compound processed a strong antimicrobial activity (Kavanagh, Hervey & Robbins, 1951; Kilaru, Collins, Hartley, Bailey & Foter, 2009). and has been used in veterinary medicine for over 20 years (Stewart, 1986; Papa, Zulaybar & Raymundo, 2006). Pleuromutilin was first discovered and isolated by Kavanagh et al. (1951) from *Pleurotus passeckerianus* and *Pleurotus mutilis*, which is now referred to *C. passeckerianus* and *C. scyphoides*, respectively. After that *C. insitus*, *Drosophila subatrata* and several species of genus *Pleurotus* have also been reported to produce pleuromutilin (Kavanagh, Hervey & Robbins, 1952; Knauseder & Brandl 1976; Stewart, 1986).

Source Stadler & Hoffmeister, 2015

Figure 1.5 Chemical structure of pleuromutilin

The activity of the pleuromutilin is primarily against gram-positive bacteria, such as *Staphylococcus aureus*, *Streptococcus haemolyticus* and *Bacillus subtilis* (Kavanagh et al., 1951; Kilaru et al., 2009). According to Poulsen, Karlsson, Johansson and Vester (2001) who reported that pleuromutilin derivatives; tiamulin and valnemulin, were used as veterinary medicine to treat swine dysentery and enzootic pneumonia. A novel semisynthetic pleuromutilin was discovered by GlaxoSmithKline as Retapamulin {mutilin 14-(exo-8-methyl-8-azabicyclo[3.2.1]oct-3-yl-sulfanyl)-acetate}(Pankuch et al., 2006). Retapamulin, a derivative of the fungal secondary metabolite pleuromutilin, is active against *S. aureus* and *Streptococcus pyogenes*. The first pleuromutilin derivative has been formulated as a topical antibacterial agent to use as human antibiotic for treating human skin infections (Boyd & Castaner, 2006; Butler & Buss, 2006; Jones, Fritsche, Sader & Ross, 2006; Daum, Kar & Kirkpatrick, 2007; Odou, Muller, Calvet & Dubreuil, 2007). Then, in 2007 a 1% retapamulin ointment was approved by the Food and Drug Administration and the European Medicines Agency (Parish et al., 2006) which the product named ALTABAX® (Figure 1.6) to use for the treatment of impetigo caused by *S. aureus* and *S. pyogenes* (Coutinho, 2007).

Note. (a) Chemical structure of retapamulin, (b) Retapamulin (ALTABAX®)

Source Coutinho, 2007; Stadler & Hoffmeister, 2015

Figure 1.6 Natural product from retapamulin which the product named ALTABAX®

1.5.2 Anti-tumor and Immunomodulation Properties

Many mushroom polysaccharides and polysaccharide-protein complexes have been used as a source of biological activities. Many mushroom species such as *Agaricus blazei*, *Auricularia auricular*, *Ganoderma Lucidum* and *Lentinus edodes* are known as the most potent mushroom derived substances with antitumor and immunomodulating properties (Chihara, Hamuro, Maeda, Arai & Fukuoka, 1970; Ukai et al., 1983; Miyazaki & Nishijima, 1981; Mizuno, Wasa, Ito, Suzuki & Ukai, 1992; Hobbs, 2000). Antitumor polysaccharides have been reported to obtain in fruit bodies, cultured mycelium and culture broth of basidiomycetes (Zhang et al., 2007). The antitumor activity of extracts form *C. abortivus*, *Boletus edulis* and other mushrooms were first reported by Byerrum et al. (1957). In 1996 the anti-tumor substances from *C. caespiosus* were identified as polysaccharides isolated from fruiting body (Liang, Miao & Zhang, 1996).

1.5.3 Antioxidant Activity

Antioxidant is an inhibitor of the process of oxidation reactions. Phenolic compounds (phenolic acids and flavonoids), carotenoids, tocopherol and ascorbic acid found in vegetables, fruits, eggs, legumes and nuts (Zhang & Hamauzu, 2003; Hamid, Aiyeolaagbe, Usman, Ameen & Lawal, 2010) are a good sources of antioxidants. They contain many different antioxidant components which are important protective agents for human health (Block, Patterson & Subar, 1992). Some mushrooms have currently shown potential antioxidant activity (Palacios et al., 2011). Several studies have investigated and found that some species of wild edible mushrooms are having antioxidant properties such as *Agaricus bisporus* (white and brown), *Lentinula edodes* (shiitake), *Pleurotus eryngii*, (king oyster) and *Pleurotus ostreatus* (oyster) (Reis, Martins, Barros & Ferreira, 2012; Gan, Nurul Amira & Asmah, 2013). While, Grangeia, Heleno, Barros, Martins and Ferreira (2011) reported the antioxidant property of *C. prunulus* on DPPH radicals scavenging activity.

1.5.4 Enzyme Activity

Enzyme are extracts in all living things, including in several plants, animals, microorganisms and mushrooms (Pandey et al., 2000; Sundar, Liji, Rajila & Suganyadevi, 2012). They are polypeptides which speed up chemical reaction in the cell. It has also been used as commercial applications for the development of a range of pharmaceutical and agrochemical agents such as anti-bacterial agents, anti-fungal agents, anti-viral agents, insecticides and herbicides (Bugg, 2004). In plants, agricultural residues and wastes consists of lignocellulosic (cellulose, hemicellulose and lignin content) which is needed to convert into simple sugars either enzymatic processes by (hemi)cellulolytic or chemical process by sulfuric or other acids (Kapu et al., 2012; Maitan-Alfenas, Visser & Guimaraes, 2015). Most of the mushrooms are saprophytic which mean they growing on wood, litter decomposition of organic matter (Miles & Chang, 1997). During their growth of mycelia and development into mature fruiting bodies, enzymes are secreted extracellularly to degrade the plant polymers lignin, hemicellulose and cellulose into simple and soluble molecules that are utilized by intracellular enzymes within the mushroom. The three group of enzymes consist of cellulases, hemicellulases and ligninases are involved in the breakdown of lignocellulosic biomass degradation. They includes the oxidative

(laccase, manganese peroxidase and lignin peroxidase), which are involved in lignin degradation (Hofrichter, 2002; Shah & Nerud, 2002). and hydrolytic enzymes, xylanase and cellulase, which are involved in hemicellulose and cellulose degradation, respectively (Gan, Allen & Taylor, 2003; Hu, Arantes & Saddler, 2011). Consequently, enzymes are important role in mushroom development; in addition, they also affect the food nutrient, flavour and shelf life (Scarse, 1995; Rashad, Abdou, Mahmoud & Nooman, 2009; Yang, Dai, Ding & Wyman, 2011). Both mushroom fruiting bodies and mycelia contain some important enzymes such as cellulase, amylase, xylanase, glutamate dehydrogenase, laccase, isocitrate lyase and cytochrome (Lee et al., 2007; Jonathan & Adeoyo, 2011). Amylases and cellulases are important enzymes that can be utilized for various biological activities. They have been screened and studied for their commercial utility (Wang, 1989; Diez & Alvarez, 2001). Basidiomycetes have also been reported for the production of extracellular hydrolytic enzymes that are useful in biotechnological applications (Goud, Suryam, Lakshmi & Charya, 2009). Among these Basidiomycete, some species of *Clitopilus* such as *C. prunulus* was screened for the extracellular hydrolytic enzymes and promoting amylase activity (Goud et al., 2009) but very little known about their hydrolytic or oxidative extracellular enzyme. Therefore, this study was to investigate the production of amylase, cellulase and xylanase activity in *Clitopilus doimaesalongensis*.

1.6 History of Edible Mushrooms Cultivation

The diversity of mushrooms are over 200 genera including both edible and poisonous species and have been part of the fungal diversity for around 300 million years (Chang & Miles, 2004). The wild edible mushrooms have been collected and consumed by human for thousand years because edible mushrooms are showing several bioactive substances for health benefits (Cheung, 2010; Villares, Mateo-Vivaracho & Guillamón, 2012). rich in minerals, protein and fiber. They also contain low fat, calories, carbohydrates, calcium and good vitamins (Firenzuoli et al., 2008). Edible mushrooms have been popularly consumed and have potential nutrient; they were produced as medicinally effective products that their medicine values can benefit the immune system and provide health benefits for human for example anti-tumor, anti-microbial, wound-healing and hypocholesterolemic (Chang, 1999; Dai, Yang, Cui, Yu & Zhou, 2009; Roupas, Keogh, Noakes, Margetts & Taylor, 2012). Several species has a long history for cultivation such as *Auricularia auricula* which was the first mushroom that was cultivated around 600A.D. in China and latter *Flammulina velutipes* was also cultivated in China around 800-900A.D. then, between 1000-1100A.D. *Lentinula edodes* was cultivated for the first time. Furthermore, *Volvariella volvacea* and *Tremella fuciformis* were firstly cultivated around 1700 and 1800 in China, respectively (Chang & Miles, 1987). The historical record of the intentional cultivation of several important edible mushroom are shown in Table 1.3.

Table 1.3 Historical recorded of edible mushrooms cultivation

Species	Date first cultivation	Earliest record	References
<i>Auricularia auricula</i>	600 AD	659	So Jing (So Gung) 659
<i>Flammulina velutipes</i>	800-900AD	Late T'ang Dynasty (618-907)	Han O (interpreted by Shou Cheng, 1981)
<i>Lentinula edodes</i>	1000-1100 AD	1313	Wang Cheng (interpreted by Shou Cheng, 1981)
<i>Agaricus bisporus</i>	1600 AD	1650	DeBonnefons (cited by Atkins, 1979)
<i>Volvariella volvacea</i>	1700 AD	1822	Yuen (1822)
<i>Tremella fuciformis</i>	1800 AD	1866	Fung & Chih 1983 (cited by Sze Yue, 1983)
<i>Pleurotus sajor-caju</i>	1974 AD	1974	Jandaik (1974)
<i>Pleurotus ostreatus</i>	1900 AD	1910	Falck (cited by Zadrazil)
	1930 AD		
<i>Calocybe indica</i>	1972	1974	Purkasyatha & Chandra (1974)

Source Chang & Miles, 1987

In general, there are several methods for mushrooms cultivation including cultivation of saprotrophic species in composted from waste material, cut logs or sawdust and inoculation of mushroom mycelium to the roots of living trees for mycorrhizal species (Obodai, Cleland-Okine & Vowotor, 2003; Royse & Sanchez-Vazquez, 2003; Jesus, Kohori, Andrade & Minhoni, 2013). Mushrooms occur widely around the world in difference favorable climatic, regions, seasons and habitats (Crous et al., 2006). Several species of genera such as *Agaricus*, *Auricularia*, *Pleurotus Lentinus* and *Volvariella* have become to wildly cultivate in the world (Martínez-Carrera et al., 2000).

Agaricus is a large genus with a gilled mushroom belongs to family Agaricaceae (Agaricales Basidiomycetes) over 400 members worldwide containing both edible and poisonous species (Thongklang, Nawaz et al., 2014). *Agaricus bisporus* is the most cultivated edible mushrooms under controlled conditions with the based compost formulations (Baysal et al., 2007; de Andrade, Zied, de Almeida Minhon & Filho, 2008; Jesus et al., 2013). Moreover, *Agaricus subrufescens* is well known as a medicinal mushroom also cultivated at commercial level in Brazil and some Asian countries base on compost by using the local material as substrate and casing mixtures (Llarena-Hernández, Largeau, Ferrer, Regnault-Roger C & Savoie, 2014). This species, however, has not been successfully cultivated in Thailand. Therefore, study of cultivation condition should be investigated.

1.7 Research Objectives

- 1.7.1 To collect the species of *Clitopilus* in northern Thailand and observe their characterization based on morphology.
- 1.7.2 To determine the optimization condition for mycelial growth of two tropical mushrooms, *Clitopilus* species and four hybrid strain of *A. subrufescens*.
- 1.7.3 To investigate the antimicrobial, antioxidant and enzyme activities of *Clitopilus doimaesalongensis*
- 1.7.4 To cultivate *Clitopilus* species hybrid strains of *A. subrufescens* on rice straw based compost media.

CHAPTER 2

TWO SPECIES OF *Clitopilus* FROM NORTHERN THAILAND

2.1 Introduction

Clitopilus is a small genus in the family Entolomataceae, order Agaricales traditionally including saprotrophic or mycoparasitic species, characterized by basidiomes with omphaloid, clitocyboid to pleurotoid habits, subcurrent to decurrent lamellae, pink spore prints and basidiospores distinctively furrowed by 3-12 longitudinal ribs (Singer, 1986; Noordeloos, 2008). *Clitopilus* species can easily be recognized by a characteristic farinaceous odor. The type species of *Clitopilus* was described by J. A. Scopoli in 1772 as *Agaricus prunulus* Scop., but in 1871, P. Kummer transferred it to the new genus *Clitopilus* and designated the type as *Clitopilus prunulus* (Scop.) P. Kummer.

The genus *Clitopilus* has a widespread distribution especially in northern temperate areas and was earlier included within *Rhodocybe*. Although in 2008 estimate suggested that there are about 30 species in the genus (Kirk, Cannon, Minter & Stapers, 2008) a more recent publication in 2009 using molecular phylogenetics suggests that the genus should be redefined to include many former *Rhodocybe* species (Co-Devid et al., 2009).

In Thailand, there have been very few studies on *Clitopilus*, only *C. apalus*, *C. prunulus* (Chandrasrikul et al., 2011) and *C. chalybescens* (Baroni et al., 2001) were found and isolated. This study introduced a novel species of *Clitopilus* from Thailand and a collection of *C. chalybescens* with morphological character and ITS rDNA sequence data.

2.2 Materials and Methods

2.2.1 Sample Collection

Three specimens of *Clitopilus* were collected during numerous field excursions between 2012 and 2013 in Northern Thailand (Chiang Rai and Lampang provinces). The basidiomata were photographed *in situ* and cleaned (Figure 2.1). Specimens were placed in a plastic box after encasing with aluminium foil to prevent damage and then taken to the laboratory for macromorphological studies. The specimens were dried in a standard food dryer at 40°C for 24-48 hours then, sealed in Zip lock plastic bags containing dehydrated silica gel to control humidity. All herbarium specimens are deposited in the Mae Fah Luang University Herbarium (MFLU HERB), Chiang Rai, Thailand. Faces of Fungi and Index Fungorum numbers were obtained from Subashini, Ariyawansa, Liu, Jones & Hyde (2015) and Index Fungorum (2015). The collections used in this study were shown in Table 2.1.

2.2.2 Taxonomy

2.2.2.1 Macro-morphological characteristic examination

Significant information about the specimens and macromorphological characteristics of specimens were annotated in the laboratory. All freshly collected specimens were morphologically characterized based on macrocharacters such as plieus, lamella and stipe. The colour terminology used for macromorphological identification is from the Methuen handbook of colour (Kornerup & Wanscher, 1978).

Table 2.1 *Clitopilus* species used in this study

MLFUC Code	Scientific name	Collecting site
MFLUCC13-0806	<i>C. doimaealongensis</i>	Doi Mae Salong, Mae Fah Luang District, Chiang rai
MFLUCC13-0808	<i>C. chalybescens</i>	Maechang Village, Chaeson district, Lampang
MFLUCC13-0809	<i>C. chalybescens</i>	Maechang Village, Chaeson district, Lampang

Note. Fruiting bodies on soil (a)-(b) *Clitopilus chalybescens*, (c) *Clitopilus doimaealongensis*. Scale bars: (a)-(b) = 25 mm, (c) = 10 mm.

Figure 2.1 Basidiomata of *Clitopilus* species in the field

2.2.2.2 Micro-morphological characteristic examination

Microscopic work was carried out with the dried specimens by taking free hand sections under a dissecting microscope (Motic SMZ-171). Slide preparation was implemented with 3-5% KOH and 1% Congo red. A Nikon Eclipse 80i microscope was used for microscopic evaluation of basidiospores, basidia, and pileipellis. Image acquisition was made with a Canon 550D digital camera. All these evaluations were carried out with a Nikon Eclipse 80i microscope at 200x, 400x and 1000x magnification. In order to chronicle basidiospores (spore quotient), Q is used to mean “length/width ratio” of a basidiospore in side view. Basidiospore dimensions are based on the measurements of at least 25 basidiospores made in side view and measured excluding the hilar appendix or apiculus at 1000x magnification.

2.2.3 Phylogenetic Analysis

2.2.3.1 DNA extraction, PCR and sequencing

Genomic DNA was extracted from dried specimen using the Biospin Fungus Genomic DNA Extraction Kit (Bioer Technology Co., Ltd., Hangzhou, P.R. China). The primer is designed base Internal Transcribed Spacer (ITS4) region. The PCR reaction was 25 μ l of total volumes containing 1.0 μ l template DNA, 9.5 μ l double distilled water, 1.0 μ l of each primer and 12.5 μ l of 2x power Taq PCR Master Mix [A premix and ready to use solution, including 0.1 Units/ μ l Taq DNA Polymerase, 500 μ M dNTP Mixture each (dATP, dCTP, dGTP, dTTP), 20 mM Tris-HCL pH 8.3, 100 mM KCl, 3 mM MgCl₂, stabilizer and enhancer]. The reaction was carried out with 35 cycles using the following conditions: denaturation (95°C, 30 s), annealing (52°C, 30 s), extension (72°C, 1 min) and final extension (72°C, 10 min). The primers used for sequencing were the same as those for amplification. Amplified products were confirmed with 1% agarose gel electrophoresis stained with ethidium bromide. Sequencing was performed on DNA analyser at Kunming Institute of Botany, Kunming, China.

2.2.3.2 Sequence alignment and molecular-phylogenetic analysis

Sequenced data were checked and assembled using BioEdit 7.0.9.0 (Hall, 1999) and blasted with those available in GenBank. The taxa information and GenBank accession numbers used in the molecular work are listed in Table 2.2. Sequences for each strain were aligned using Clustal X (Thompson, Gibson, Plewniak, Jeanmougin & Hugging, 1997). Alignments were manually adjusted to allow maximum sequence similarity. Alignment gaps were treated as missing data. Phylogenetic analysis were performed using PAUP* 4.0b10 (Swofford, 2002). Ambiguously aligned regions were excluded from all analyses. Trees were inferred using the heuristic search option with tree-bisection-reconnection (TBR) branch swapping and 1,000 random sequence additions. Maxtrees were unlimited, branches of zero length were collapsed and all multiple parsimonious trees were saved. Clade stability of the trees resulting from the parsimony analyses were assessed by bootstrap analysis with 5,000 replicates, each with 100 replicates of random stepwise addition of taxa (Felsenstein, 1985). Trees were figured in Treeview (Page, 1996) and formatted using PowerPoint 2013.

Table 2.2 Taxon information used for molecular analyses

Taxon	GenBank
	accession numbers (ITS)
<i>Clitopilus amarus</i>	KC885963
<i>C. abortivus</i>	FJ770404
<i>C. austroprunulus</i>	KC139084
<i>C. brunnescens</i>	HQ222033
<i>C. chrischonensis</i>	HM623128
<i>C. crispus</i>	JQ281489
<i>C. cystidiatus</i>	HM623130
<i>C. fallax</i> *	AF357018
<i>C. giovanellae</i>	EF413030
<i>C. hirneolus</i>	KC710132
<i>C. hobsonii</i>	FJ770402
<i>C. kamaka</i>	KJ461903
<i>C. passeckerianus</i>	FJ770406
<i>C. prunulus</i>	EU273512
<i>C. scyphoides</i>	FJ770390
<i>C. scyphoides</i>	FJ770401
<i>C. scyphoides</i>	KC176282
<i>C. truncate</i> *	FJ770393
<i>C. chalybescens</i>	KP938184 (this study)
<i>C. chalybescens</i>	KP938185 (this study)
<i>C. doimaesalongensis</i>	KP938183 (this study)
<i>Lyophyllum decastes</i>	AF357060

Note. * in GenBank these taxa are placed under the genus *Rhodocybe*

2.3 Results and Discussion

2.3.1 Taxonomy

2.3.1.1 *Clitopilus doimaesalongensis* Jaturwong, Karun. & K.D. Hyde (Figure 2.2)

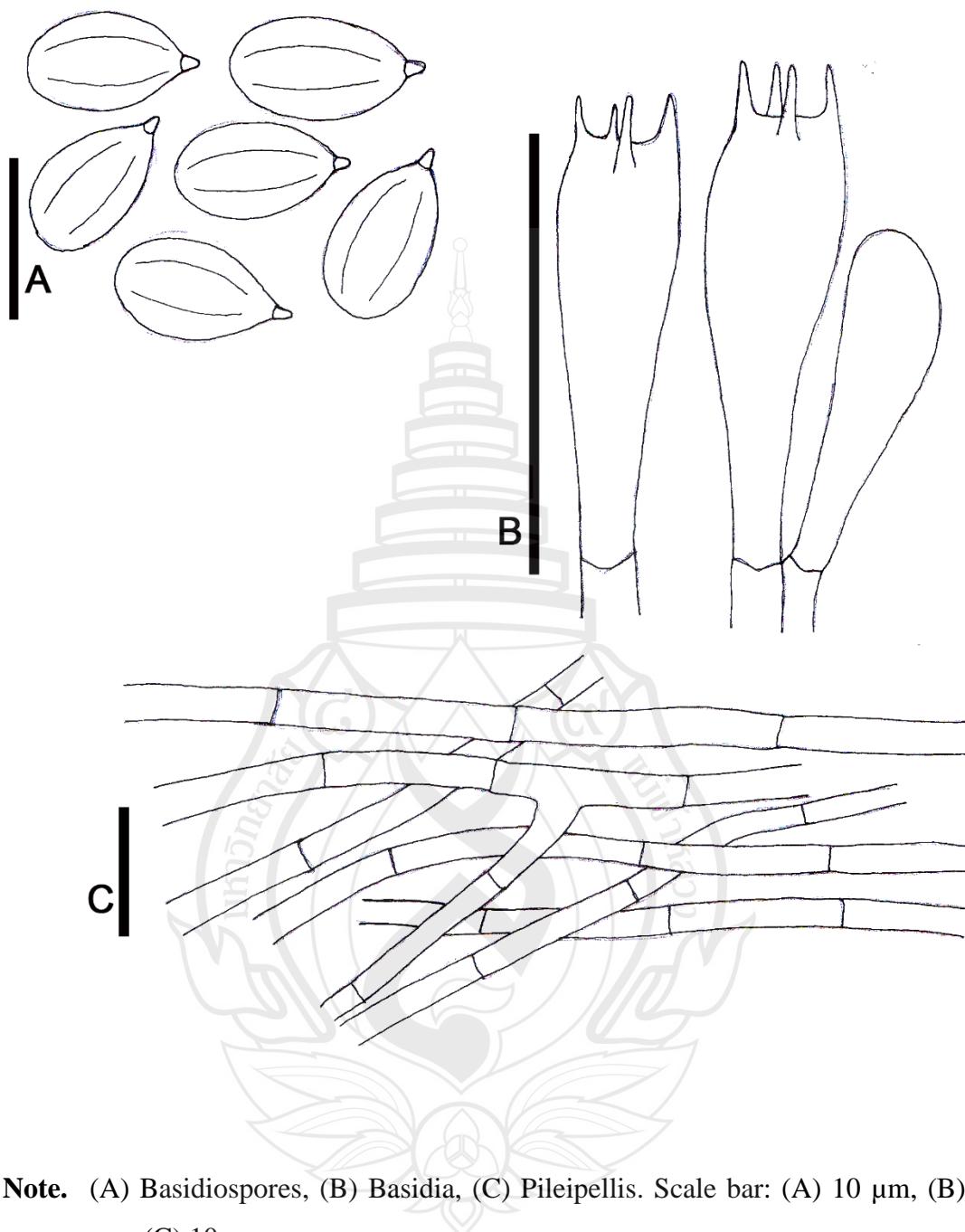
Etymology: The species epithet “doimaesalongensis” refers to the place where the fungus was collected.

Faces of fungi number: FoF 00712

MycoBank: MB 811415

Holotype: MFLU13-0519

Pileus 11-19 mm in diameter, depressed with incurved margin; surface white to chalk white (A1), without staining, dull and sticky, winkle cover with the slightly matted silky-fibrillose squamules. Lamellae decurrent, 0.7 cm wide, crowded, narrow, white (A1) when young. Stipe 17-25 × 7-4.5 mm, central, cylindrical, solid, white (A1) throughout surface, smooth with silky-fibrillose squamules, basal part with white (A1) cottony mycelium. Odour strong farinaceous.


Basidiospores 6.8-9.2 × 4.1-5.5 μm (Q=2.1-3.9, Qav=2.9, n=30), hyaline, ellipsoid in polar view, amygdaliform to limoniform in side view. Basidia 9.1-21.1 × 3.3-7 μm , clavate, 4-spored. Pileipellis a layer of loosely arranged, hyaline hyphae. Cheilocystidia absent. Clamp connections absent in all tissues.

Habitat and distribution: Gregarious on soil as small groups, only known from Thailand.

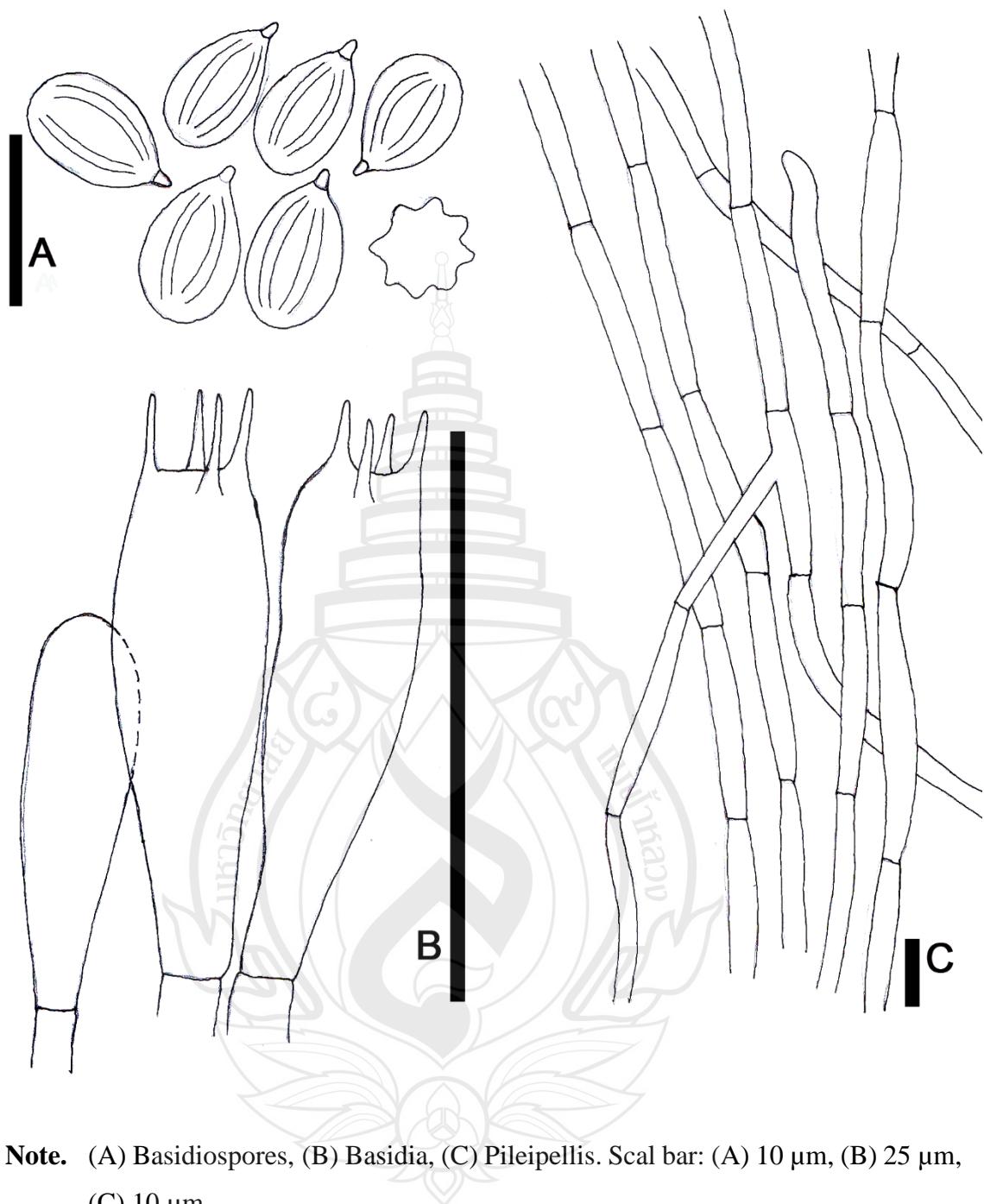
Material examined: Thailand, Chiang rai Province: Doi Mae Salong, 26 June 2013, Samantha C. Karunarathna (MFLU13-0519, holotype); ex-type living culture, MFLUCC 13-0806

Notes: *Clitopilus doimaesalongensis* is characterized by its white to chalk white, small basidiomata, with an eccentric stipe, absence of pleurocystidia and cheilocystidia and amygdaliform to limoniform basidiospores.

In section *Clitopilus*, *C. chalybescens* was described from Thailand and differs from *C. doimaesalongensis* by its dull, dry, opaque, silky-felty surface, pure white to pale greyish blue pileus, the central stipe, $5.5-7.5 \times 3.6-4.8 \mu\text{m}$ ellipsoid basidiospores, and cylindrical hyphae in the pileipellis (Baroni et al., 2001). The other closely related species to our new species are *C. chrischonensis* Musumeci Vizzini et Contu, *C. cystidiatus* Hauskn & Noordel and *C. austoprunnulus* Morgado, G.M. Gates & Noordel. *C. chrischonensis* was described from Switzerland, and differs from *C. doimaesalongensis* in its smooth cap surface, which is subglobose then irregularly convex and finally expanded without an umbo, cylindrical, 1-4 μm wide, 6-7 evident longitudinal ribs with $25-30 \times 8-13 \mu\text{m}$ size basidiospores and, suprapellis consisting of cylindrical 1-4 μm wide hyphae (Vizzini, Musumeci et al., 2011). *Clitopilus cystidiatus* was described from Austria, and differs significantly in the slightly grey or greyish ochre tinges of the pileus, effibuiata with 4-spored, ellipsoid or oblong of basidiospores and encrusted pileipellis hyphae (Noordeloos, 2008). *Clitopilus austoprunnulus* differs from *C. doimaesalongensis* by its uniformly pale grey pileus which is convex when young then expanding to concave or infundibuliform and narrow, sometimes with a slight brown tinge at the centre and the pileipellis hyphae is cylindrical, 4-8 μm wide with dark brown walls (Crous et al., 2012).

Note. (A) Basidiospores, (B) Basidia, (C) Pileipellis. Scale bar: (A) 10 μm , (B) 20 μm , (C) 10 μm .

Figure 2.2 *Clitopilus doimaesalongensis*


2.3.1.2 *Clitopilus chalybescens* T.J. Baroni & Desjardin, in Baroni, Desjardin & Hywel-Jones, Fungal Divers. 6: 13. 2001 (Figure 2.3)

Pileus 21-26 mm in diameter, infundibuliform, depressed centre with undulate to lobed margin, splitting with age; surface dry, dull, silky-fibrillose; pure white, often changing colour to yellowish white (2A2) in age. Lamellae decurrent, heavily crowded, narrow, white when young becoming pinkish white (10A2) with age. Stipe 20-25 mm, central, cylindrical, glabrous, dry, brittle, hollow, white overall, becoming yellowish white (2A2) with age. Odour strong farinaceous.

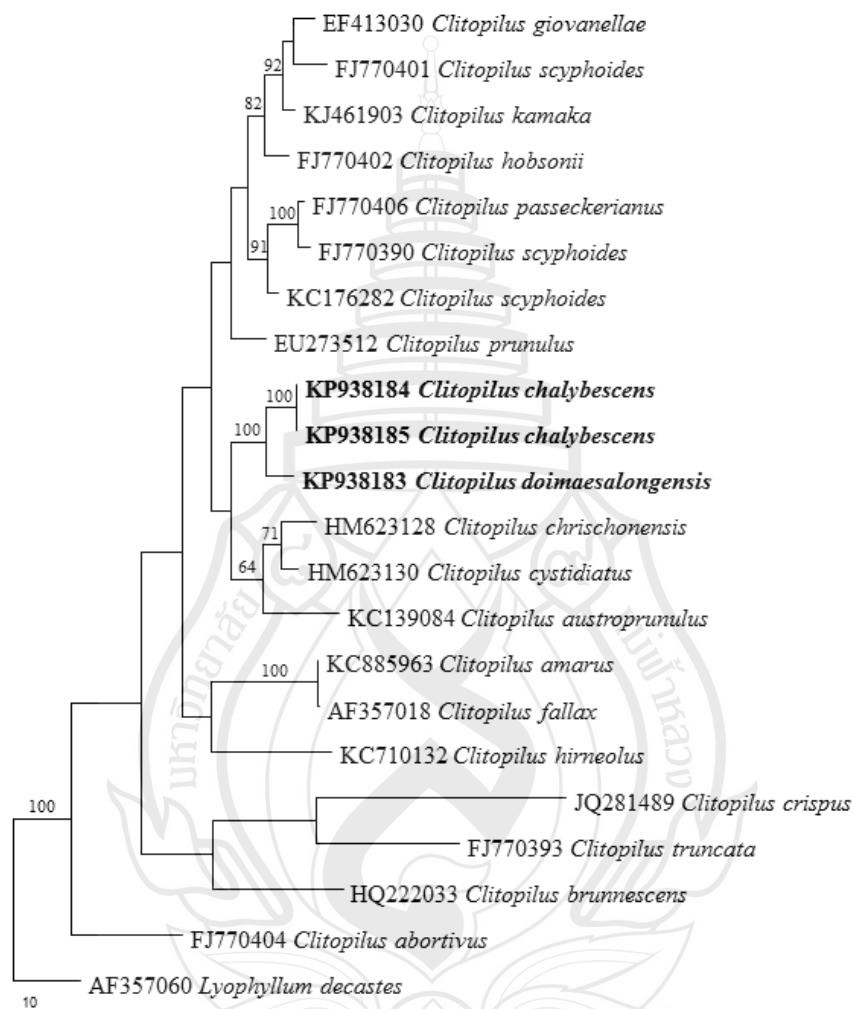
Basidiospores $5.3-7.1 \times 3.7-5.0 \mu\text{m}$, $(6.2 \times 4.2 \mu\text{m})$, $Q=1.3-2.2$, $Q_{av}=1.6$; $n=30$), hyaline, or pale pinkish in mass, ellipsoid in profile and face views, with moderately prominent longitudinal ridges, angled in polar view. Basidia $15-21 \times 5.1-7.7 \mu\text{m}$, 4-spored, clavate. Lamellar trama of parallel or interwoven, hyaline, cylindrical hyphae. Pileipellis made up of loosely arranged, non-encrusted, hyaline, cylindrical hyphae. Clamp connections absent.

Habitat and distribution: Gregarious on soil, only reported from Thailand.

Material examined: THAILAND, Lampang Province: Chaeson, Maecham Village $18^{\circ}51'58.16''\text{N}$, $99^{\circ}27'45.34''\text{E}$, alt. 1010m, 13 June 2013, Kritsana Jatuwong & Thasanee Luangharn (MFLU13-0520); 13 June 2013, Kritsana Jatuwong & Thasanee Luangharn (MFLU13-0521)

Note. (A) Basidiospores, (B) Basidia, (C) Pileipellis. Scal bar: (A) 10 μm , (B) 25 μm , (C) 10 μm .

Figure 2.3 *Clitopilus chalybescens*


2.3.2 Phylogenetic analysis

For the understanding on the phylogenetic relationships of our novel species *C. doimaesalongensis*, with other known *Clitopilus* species, we retrieved ITS sequence data from GenBank. The *Clitopilus* dataset comprised 21 collections, with 18 from GenBank, including the type species of the genus, *C. prunulus*, and the three *Clitopilus* collections from northern Thailand. *Lyophyllum decastes* (Fr.) Singer was chosen as the outgroup taxon. Of the 825 total characters, 429 characters are constant, of which 172 variable characters are parsimony-uninformative and 224 characters are parsimony-informative. The Maximum parsimony (MP) tree was produced after 6,188,809 rearrangements and the score of best tree found was 997. This most likely MP tree is presented and it was chosen to represent the phylogenetic position of *C. doimaesalongensis*.

Sequences were aligned and the alignment was subjected to Maximum parsimony analysis using PAUP to build the phylogenetic tree shown in Figure 2.4. The new species is supported by 100% bootstrap value and is closely related to *C. chalybescens* which was described from Thailand. The two sequences of *C. chalybescens* obtained from the two collections in Thailand and *C. doimaesalongensis* which was grouped in a monophyletic clade with 100% bootstrap support; new species was distinct in having unique morphological characters (Table 2.3).

According to the morphological and phylogenetic analyses of the three *Clitopilus* collections from northern Thailand, one collection was identified as a distinct new species in the genus *Clitopilus*, with 100% bootstrap support and distinct morphological features. The new species was closely related to *C. chalybescens* which was also described from Thailand. The comparison of macro- and micro-morphological characters and eight base pair differences between two sequences showed *C. doimaesalongensis* differs from *C. chalybescens* even though the phylogenetic analyses showed 100% bootstrap support. *C. chrischonensis*, *C. cystidiatus* and *C. austoprunnulus* are also phylogenetically closely related to *C. doimaesalongensis*, but according to the morphological features new species was distinct among the species in the genus.

Two of the three Thai collections were identified as *C. chalybescens* which was previously found at Khao Yai National Park, based on the macro- and micro-morphological features was described by Baroni et al. (2001). Thus we added sequence data of *C. chalybescens* to GenBank.

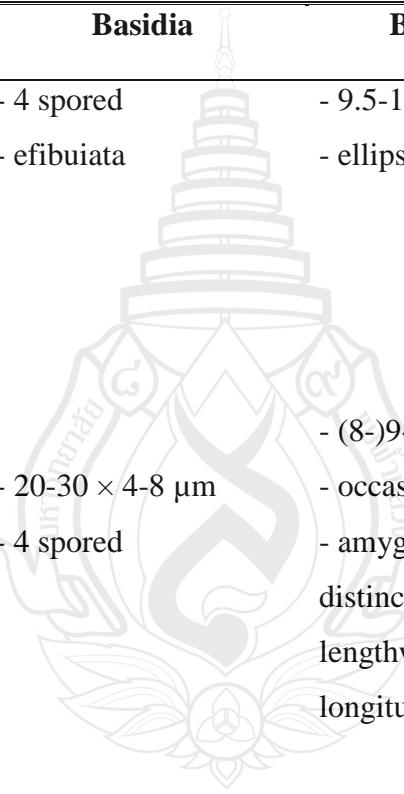


Figure 2.4 Maximum parsimony phylogram showing the phylogenetic position of *C. doimaesalongensis* sp. nov. with some selected *Clitopilus* species from GenBank based on ITS rDNA sequence data. Data were analyzed with random addition sequence, unweighted parsimony and gaps were treated as missing data. Values above the branches are parsimony bootstrap ($\geq 50\%$). The tree is rooted with *Lyophyllum decastes*

Table 2.3 Comparison of *C. doimaesalongensis* with the closely related species

Scientific name	Basidiomata	Basidia	Basidiospores	Pileipellis
<i>Clitopilus doimaesalongensis</i>	<ul style="list-style-type: none"> - 11-19 mm in diameter - depressed with incurved margin - winkle cover with the slightly matted silky-fibrillose squamules 	<ul style="list-style-type: none"> - $9.1-21.1 \times 3.3-7.0 \mu\text{m}$ size - clavate - 4 spored 	<ul style="list-style-type: none"> - $6.8-9.2 \times 4.1-5.5 \mu\text{m}$ size - ellipsoid in polar view - amygdaliform to limoniform in side view - hyaline 	<ul style="list-style-type: none"> - loosely arranged - hyaline
<i>C. chrischonensis</i>	<ul style="list-style-type: none"> - 40 mm diameter - smooth surface - first subglobose then irregularly convex - fially expanded without umbo 	<ul style="list-style-type: none"> - cylindrical - 1-4 μm wide 	<ul style="list-style-type: none"> - $9.5-11.5 (-13.5) \times 5.6 \mu\text{m}$ - hyaline with 6-7 evident longitudinal ribs 	<ul style="list-style-type: none"> - suprapellis - consisting of cylindrical - 1-4 μm wide - hyphae

Table 2.3 (continued)

Scientific name	Basidiomata	Basidia	Basidiospores	Pileipellis
<i>C. cystidiatus</i>	<ul style="list-style-type: none">- 20-70 mm diameter- slightly grey or greyish ochre tinges of the pileus mealy-smellingcontext wider (4-7.5 μm)- encrusted	<ul style="list-style-type: none">- 4 spored- efibuiata	<ul style="list-style-type: none">- 9.5-13.5 \times 5.0-6.5 μm- ellipsoid or oblong	<ul style="list-style-type: none">- a cutis of cylindrical- 4.0-7.0 μmwide hyphae
<i>C. austoprunnulus</i>	<ul style="list-style-type: none">- 40-90 mm diameter- convex when Young expanding to concave or infundibuliform- involute margin	<ul style="list-style-type: none">- 20-30 \times 4-8 μm- 4 spored	<ul style="list-style-type: none">- (8-)9-11 \times 4.5-6 μm- occasionally amygdaliformdistinctly ribbed lengthwise with 5-8 longitudinal ribs	<ul style="list-style-type: none">- a cutis of densely packed narrow- cylindrical- 4-8 μm wide hyphae with dark brown colored walls

Table 2.3 (continued)

Scientific name	Basidiomata	Basidia	Basidiospores	Pileipellis
<i>C. chalybescens</i>	- 15-45(-90) mm diameter - infundibuliform	- 17.8-21 × 6.4-8 μm - 4 sterigmate - clavete sterigmata	- 5.5-7.5 × 3.6-4.8 μm - ellipsoid in profile and face view	- Hyaline - layer of loossy - entangled - cylindrical - hypha
<i>C. crispus</i>	- 20-70 mm diameter - convex to applanat - white to chalk white	- 20-30 × 8-10 μm - subclavate - 4 spored rarely 1, 2, or 3 spored	- (5.5-)6.0-7.5 × (4.0)4.5-5.5(-6.0) μm - ellipsoid to ellipsoid in side view - angular in apical view - 8-11 longitudinal	- absent

2.4 Conclusion

In this work, we isolated three collection of *Clitopilus* species in northern Thailand (Chiang Rai and Lampang). Based on morphological and molecular analyses. Two of the three collections were identified as *C. chalybescens*. This species was previously found at Khao Yai National Park, Thailand and one of these species was identified as *C. doimaesalongensis* which was a new species observed in Thailand.

CHAPTER 3

OPTIMAL CONDITIONS FOR GROWING MYCELIUM OF *Clitopilus doimaesalongensis* AND *Clitopilus chalybescens*

3.1 Introduction

Several mushrooms are highly nutritionally and pharmaceutically important. They have long been used as medicines and edible mushroom are used for foods because they contains high levels of proteins, fibbers, carbohydrates and low fat (Grangeia et al., 2011; Luangharn, Hyde & Chukeatirote, 2014; Rizal, Hyde, Chukeatirote & Chamyuang, 2015). Thus, edible mushrooms have also been consumed and cultivated in many countries including Thailand. They have been reported about 22 species as commercially grown in Thailand (Thawthong et al., 2014).

Mushrooms are popular used to treat various human diseases such as cancer, diabetes, hyperlipidemia, arteriosclerosis, and chronic hepatitis and have demonstrated many interesting biological activity (Valverde, Hernández-Pérez & Paredes-López, 2015). There are several mushrooms compounds such as Lentinan from *Lentinus edodes* (Chihara et al., 1970) Schizophyllan from *Schizophyllum commune* (Tabata, Ito, Kojima, Kawabata & Misaki, 1981) and Krestin from *Coriolus versicolor* (Ng, 1998) were used as antitumor agents. Some species of *Clitopilus* have been reported to use as food and medicine (Boa, 2004) and many species are possessed biological activities (Kavanagh et al., 1951; Kilaru et al., 2009). Optimization the condition for mycelial growth may improve the production of mycelium and increase quality of mycelium (Papa et al., 2006). In addition, several study have been investigated to obtain optimal condition for mycelial growth from several mushrooms such as *Ganoderma lucidum* which was optimized for growth conditions using different culture media and physical

parameters (pH, aeration, illumination and temperature) (Magday Jr, Bungihan & Dulay, 2014). Furthermore, *A. polytricha* (Xu & Yun, 2003), *Phlebopus portentosus* (Thongklang, Hyde, Bussaban & Lumyong, 2011), *Macrolepiota deters* (Rizal, Hyde, Chukeatirote, Kakumyan & Chamyuang, 2014), *L. tigrinus* (Dulay, Cabrera, Kalaw & Reyes, 2012), and many species of *Pleurotus* (Klomklung, Karunarathna, Chukeatirote & Hyde, 2014; Hoa & Wang, 2015), have also been investigated for their optimal growth condition of different environmental and nutritional factors. Although several study have been attempted extensively to obtain optimal culture conditions for mycelial growth from several mushroom but it has not been demonstrated extensively for *Clitopilus* species except *C. passeckerianus* (Vicente, Raymundo & Quimio, 2006). Thus, this study aims to determine the suitable conditions for mycelial culturing in solid media of *C. doimaesalongensis* and *C. chalybescens* which were isolated in this study and have not been carried out in Thailand so far.

3.2 Materials and Methods

3.2.1 The Sample Collection and Isolation

Two collections of *Clitopilus* strains including *C. doimaesalongensis* (MFLUCC 13-0806) and *C. chalybescens* (MFLUCC 13-0809) were collected from Chiang Rai and Lampang province, respectively. Internal tissues from the mushroom fruiting bodies were transferred to potato dextrose agar (PDA) and incubated at 25°C for 10 days. Then, re-subculture until obtain axenic culture. The axenic cultures were maintained on PDA slants tubes and in 15% glycerol. The cultures were deposited at the culture collection of Mae Fah Luang University (MFLUCC) and coded as *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809.

3.2.2 Effect of Culture Media

A plug of mycelium with a 5 mm diameter was separately grown on five different culture media including potato dextrose agar (PDA), malt extract agar (MEA), corn meal agar (CMA), sabouraud dextrose agar (SDA) and yeast extract agar (YEA).

The culture plates were incubated in darkness at 25°C. The growth of mycelium was evaluated by determination of the colony radial growth and mycelial dry weight in three replicates after inoculated for 12 days. The mycelial dry weight was processed by placed agar mycelial in a beaker, then the medium was melted and washed away with hot water. Mycelium was dried at 40°C for 24 hrs and evaluated using analytical balance (Mettler Toledo ML204).

3.2.3 Effect of Temperatures

The optimal media obtained from previous experiment (3.2.2) was used to determine the best temperature. The plug of mycelium was centrally placed on the media plates and incubated in the dark at different temperatures; 20, 25, 26, 27, 28, 29 and 30°C for 12 days. The growth of mycelium was determined by measuring the colony diameter and mycelial dry weight as previously describe in 3.2.2.

3.2.4 Effect of pH

The optimal pH of optimal media was evaluated. The media was adjusted separately to pH 4, 5, 6, 7, 8 and 9 with 1N NaOH or 1N HCl using a digital pH meter before sterilization. The medium were poured into Petri dish. The media plates were inoculated with a mycelium plug. All cultures were incubated at the optimal temperature. The growth of mycelium was determined by measuring the colony diameter and mycelial dry weight as previously describe in 3.2.2.

3.2.5 Supplement of Carbon and Nitrogen Source

Three different carbon sources including fructose, sucrose and starch was supplemented separately in the optimal media to study their effect on mycelial growth. Nitrogen sources including beef extract, tryptone and KNO₃ were used to study their effect on mycelial growth. Malt extract and yeast extract were used as control for the optimal media. The media were sterilized at 121°C for 15 min. The mycelium plug was transferred to the centre of studied media, then all plates were incubated at 28°C for 12 days. The growth of mycelium was determined by measuring the colony diameter and mycelial dry weight as previously describe in 3.2.2.

3.2.6 Cultivation of *Clitopilus doimaesalongensis*

3.2.6.1 Spawn preparation

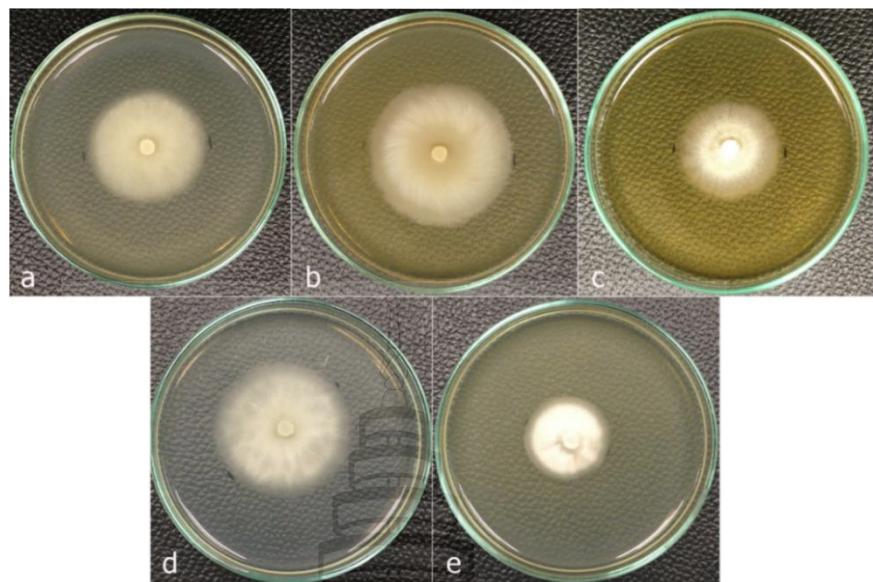
The spawn of *C. doimaesalongensis* strain MFLUCC 13-0806 was prepared using sorghum as a substrate. The sorghum was firstly washed and soaked in distilled water for 24 hours, then washed 1-2 times before boiled for 15 minutes and the excess water was drained. Fifty grams of sorghum were placed into glass bottles and autoclaved at 121°C for 15 minutes. After cooling to room temperature, the substrate was inoculated with the mycelium of *C. doimaesalongensis* from agar culture. All the bottles were incubated at 28°C for 14 days or until completely colonized by mycelia.

3.2.6.2 Compost preparation

Various studies have been studied to find out the suitable variables whether composition of compost, type of casing layer, environmental conditions and methods of cultivation which are important variables for the mushroom cultivation to obtain yields, earliness and quality of mushroom production (Zied et al., 2011; Zied et al., 2012). Thus, the present study was to determine potential for cultivation of *C. doimaesalongensis*. Three compost formulation were prepared using rice straw as main substrate for composting and growing the mushroom. The substrate was supplemented with various ingredient by adding organic and inorganic fertilizers depended on the formula; Formula 1compost, rice straw was mixed with calcium carbonate, urea, rice bran, ammonium sulfate, calcium sulfate and water. Formula 2 compost was prepared by using rice straw mixed with pig manure, superphosphate, calcium ammonium nitrate, rice bran and water. Formula 3 compost was prepared by mixing rice straw mixed with chicken manure: rice hull (1:1), calcium sulfate, urea and water. Each compost formulation was fermented and periodically turned for 20-30 days, then pasteurized for 6 hours by maintaining the temperature at 55-60°C. After cooling down, the 5 kg of formula 1 and 2 were transferred to plastic tray (35×25×20 cm) then, inoculated with 2% (w/w) of inoculum and incubated in dark room at the temperature approximately 22°C with relative humidity at 85%. The completely colonized compost was then covered with the pasteurized casing. The formula 3 compost was placed into polypropylene bags (6.50×12.50 inch), sterilized at 121°C for 30 minute. After sterilization, the compost bags were cooled down to room temperature, inoculated with inoculum and incubated at 28°C.

3.2.7 Statistical Analysis

Experimental values were given as mean \pm standard deviation (SD). The data of the experiment was analysed by using one way analysis of variance (ANOVA) in SPSS version 11.5 program for windows and treatments mean compared using Duncan' test ($p \leq 0.05$) followed by post-hoc tests.


3.3 Results and Discussion

3.3.1 Mushrooms Morphology

Basidiocarps of *C. doimaesalongensis* and *C. chalybescens* occurred in gregarious soil were collected. Fresh fruiting body of *C. doimaesalongensis* was occurred with white to chalk white of surface, depressed with incurved margin with pileus size 11-19 mm in diameter. Fresh fruiting body of *C. chalybescens* was the umbilicate when young then infudibuliform (funnel-shaped) with white to yellowish white surface. Basidiocarps with pileus in diameter size 21-26 mm.

3.3.2 Effect of Culture Media

Five different culture media were used to examine a suitable media for mycelial growth of *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809. After 12 days of incubation at 28°C, the result of *C. doimaesalongensis* was occurred with an average 5.30 cm of colony radial on MEA and CMA agar plate followed by PDA, YEA and SDA (Figure 3.1). However, the highest yield of mycelial dry weight was occurred on MEA medium with an average 107.03 mg (Table 3.1). For the *C. chalybescens* the highest mycelial dry weight of mycelial was occurred on MEA medium followed by YEA media with an average of 69.97 mg and 62.27 mg, respectively (Table 3.1). The fastest growth rate of this *C. chalybescens* on the agar plate with an average 8.63 cm of colony radial growth was observed in YEA media followed by CMA, MEA, SDA and PDA, respectively (Figure 3.2). Papa et al. (2006) and Vicente et al. (2006) reported a mycological agar was selected as a suitable agar medium for *C. passeckerianus*. However, this study found that MEA and YEA could promoted the growth of both *C. doimaesalongensis* and *C. chalybescens* and was selected for the further studies.

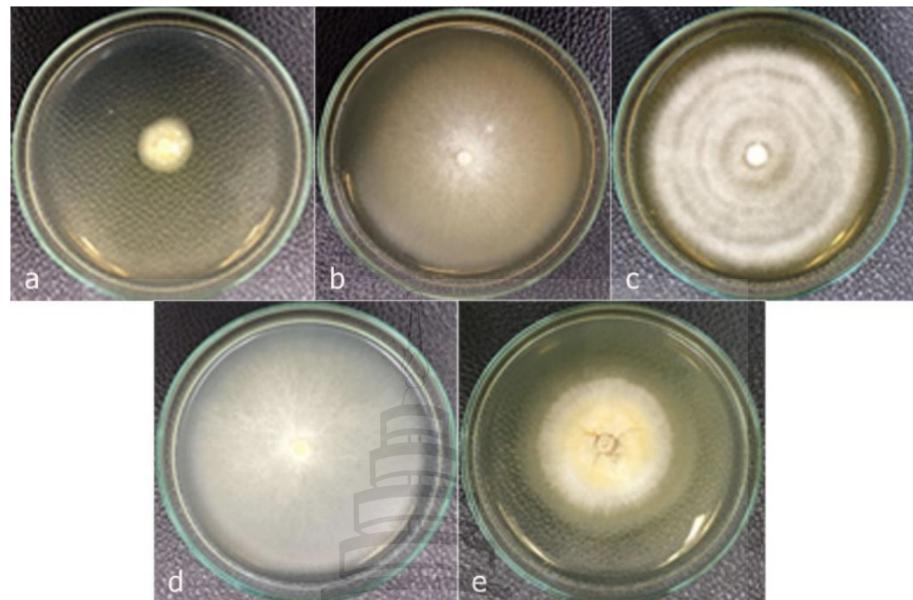

Note. (a) potato dextrose agar (PDA), (b) malt extract agar (MEA), (c) yeast extract agar (YEA), (d) corn meal agar (CMA), (e) sabouraud dextrose agar (SDA)

Figure 3.1 Mycelial growth of *C. doimaesalongensis* strain MFLUCC 13-0806 inoculated on different solid media at 28°C for 12 days

Table 3.1 Mycelial growth and mycelial dry weight of *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809 inoculated on different solid media at 28°C for 12 days.

Culture media	<i>C. doimaesalongensis</i>		<i>C. chalybescens</i>	
	Colony diameter (cm)	Mycelial dry weight (mg)	Colony diameter (cm)	Mycelial dry weight (mg)
PDA	4.63±0.07 ^b	64.44±4.68 ^b	2.27±0.50 ^d	14.03±2.30 ^c
MEA	5.30±0.10 ^a	107.03±13.68 ^a	7.90±0.36 ^b	69.97±2.78 ^a
YEA	3.83±0.17 ^c	23.57±10.05 ^c	8.63±0.21 ^a	62.27±6.48 ^{ab}
CMA	5.30±0.00 ^a	52.17±6.53 ^b	8.47±0.06 ^{ab}	54.23±7.62 ^b
SDA	3.23±0.07 ^d	53.77±6.06 ^b	6.63±0.42 ^c	56.63±2.04 ^b

Note. Values with the same letter are not significantly different ($p\leq 0.05$) by the Duncan's test.

Note. (a) potato dextrose agar (PDA), (b) malt extract agar (MEA), (c) yeast extract agar (YEA), (d) corn meal agar (CMA), (e) sabouraud dextrose agar (SDA)

Figure 3.2 Mycelial growth of *C. chalybescens* strain MFLUCC 13-0809 inoculated on different solid media at 28°C for 12 days

3.3.3 Effect of Temperature

Different mushrooms have different optimal temperature such as the growth rate of *C. passeckerianus* was optimal at 24°C (Vicente et al., 2006), *Pleurotus eryngii* and *Veriticillium fungicolum* was at 25°C (Zervakis, Philippoussis, Ioannidou & Diamantopoulou, 2001; Siwulski, Sobieralski, Górska, Lisiecka & Sas-Golak, 2011), *Pleurotus ostreatus* and *Pleurotus pulmonarius* has maximum growth at 30°C and *Volvariella volvacea* can grow at 35°C (Zervakis et al., 2001). The optimum temperature is one of the most important factors in mushrooms cultivation, metabolic production and sporulation (Chang & Mile, 2004). Therefore, study of effect of temperature on the mushroom growth should be investigated. In this study, *C. doimaesalongensis* and *C. chalybescens* mycelia were grown under different temperatures (20-30°C). The result showed that both of mushrooms were able to grow in the wide range of temperature from 20-30°C. Nevertheless, the statistical

analysis indicated that the temperature 27-29°C were optimal temperature for the mycelial growth of *C. doimaesalongensis* and 20-29°C for *C. chalybescens*. (Table 3.2).

Table 3.2 Mycelial growth and mycelial dry weight of *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809 cultivated at different temperature for 12 days.

Temperatures (°C)	<i>C. doimaesalongensis</i>		<i>C. chalybescens</i>	
	Colony diameter (cm)	Mycelial dry weight (mg)	Colony diameter (cm)	Mycelial dry weight (mg)
20	3.53±0.25 ^d	35.5±5.13 ^d	9.00±0.00 ^a	48.7±18.71 ^{ab}
25	4.97±0.06 ^b	84.0±7.99 ^{bc}	9.00±0.00 ^a	56.2±8.03 ^a
26	4.43±0.06 ^b	76.7±3.69 ^c	9.00±0.00 ^a	46.0±1.12 ^{ab}
27	5.57±0.06 ^a	101.2±10.76 ^{abc}	9.00±0.00 ^a	42.2±3.69 ^{ab}
28	5.53±0.15 ^a	115.1±13.77 ^a	9.00±0.00 ^a	51.8±1.43 ^a
29	5.47±0.12 ^a	106.3±18.27 ^{ab}	8.73±0.25 ^a	40.9±6.35 ^{ab}
30	1.03±0.12 ^e	2.1±0.30 ^e	6.77±0.31 ^b	25.8±4.37 ^b

Note. Values with the same letter are not significantly different ($p\leq 0.05$) by the Duncan's test.

3.3.4 Effect of pH

The effect of initial pH for mycelial biomass of *C. doimaesalongensis* and *C. chalybescens* was studied under different initial pH (4-9). The result showed that the optimal pH for *C. doimaesalongensis* was pH 7 with a maximum colony radial growth rate 6.00 cm and pH 5, 6 and 7 for *C. chalybescens* with the colony radial growth 9.00, 8.70 and 8.73 cm, respectively. Mycelial dry weight, 61.8 mg was obtained at pH 7 after inoculated for 12 days (Table 3.3). Gbolagade, Fasidi, Ajayi and Sobowale (2006) reported the optimal pH of mycelial growth of *Lentinus subnudus* was pH 5-5.5 with

the acidic medium and Kuforiji and Fasidi (1998) observed an optimal pH for mycelial growth of *Pleurotus tuberregium*, *Phellinus japonica* and *P. linteus* was at 5-7, 6-7 and 7, respectively. Eventhough they are not the same mushroom and cannot compared in this study, many results indicated that almost mushroom can grow in acidic pH range.

Table 3.3 Mycelial growth and mycelial dry weight of *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809 cultivated at different pH for 12 days.

pH	<i>C. doimaesalongensis</i>		<i>C. chalybescens</i>	
	Colony diameter (cm)	Mycelial dry weight (mg)	Colony diameter (cm)	Mycelial dry weight (mg)
4	2.67±0.15 ^d	18.00±3.92 ^b	5.30±0.26 ^d	15.33±8.02 ^d
5	4.90±0.10 ^c	33.90±1.40 ^a	9.00±0.00 ^a	61.80±5.66 ^a
6	5.53±0.25 ^b	38.73±2.74 ^a	8.70±0.52 ^a	45.47±3.55 ^{bc}
7	6.00±0.10 ^a	42.67±1.67 ^a	8.73±0.25 ^a	54.76±5.20 ^{ab}
8	5.43±0.29 ^b	38.00±11.77 ^a	7.23±0.06 ^c	41.07±7.46 ^c
9	5.27±0.15 ^b	43.47±3.70 ^a	8.20±0.17 ^b	37.03±10.08 ^c

Note. Values with the same letter are not significantly different ($p\leq 0.05$) by the Duncan's test.

3.3.5 Supplement of Carbon and Nitrogen Sources

Mushrooms require a different source of nutrition for promoting their mycelial growth. Generally, carbon and nitrogen sources play a significant role in mushroom cell proliferation and metabolite biosynthesis (Ribeiro et al., 2008). The effect of carbon sources for the mycelial growth of two selected isolates were determined in this study. *Clitopilus doimaesalongensis* showed the largest colony with 8.47 cm when sucrose was supplemented in the medium but the highest yield of dry weight, 98.73 mg were obtained when malt extract was used. Using tryptone as nitrogen source gave the largest colony diameter (6.87 cm) but yeast extract gave the highest cell biomass with 89.50 mg of cell dry weight (Table 3.4) while *C. chalybescens* mycelium grew in a wide range of carbon sources including malt extract, fructose and sucrose (Table 3.4). Among the studied nitrogen sources, tryptone, yeast extract and beef extract, all supplemented media gave the same colony diameter (9.0 cm) but not with KNO_3 supplemented media (Table 3.4). There were no significant differences in the mean growth rate of the *C. chalybescens* mycelium in the media with different carbon and nitrogen sources. Glucose was reported as a good carbon source for *Ganoderma applanatum* (Jeong, Jeong, Yang, Islam & Song, 2009) and promoted mycelial growth of *Lignosus rhinoceros* (Lai, Siti Murni, Fauzi, Abas Mazni & Saleh, 2011). While, Jayasinghe et al. (2008) reported that dextrin was the best carbon source for mycelial growth of *Ganoderma lucidum*. For the best nitrogen source for mycelial growth of *Lignosus rhinoceros* was KNO_3 (Lai et al., 2011) and mycelial growth rate of *Tricholoma terreum* was maximum when yeast extract was supplemented (Kibar & Peksen, 2011). Therefore, favorable sources for the mycelial growth of selected mushrooms are necessary for their mycelial growth.

Table 3.4 Mycelial growth and mycelial dry weight of *C. doimaealongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809 cultivated on different carbon and nitrogen sources for 12 days.

Culture media	<i>C. doimaealongensis</i>		<i>C. chalybescens</i>	
	Colony diameter (cm)	Mycelial dry weight (mg)	Colony diameter (cm)	Mycelial dry weight (mg)
Carbon source				
Fructose	7.43±0.06 ^b	34.30±2.43 ^b	9.00±0.00 ^a	80.67±14.67 ^a
Sucrose	8.47±0.06 ^a	33.53±1.00 ^b	9.00±0.00 ^a	31.40±6.73 ^b
Starch	7.57±0.12 ^b	23.60±1.82 ^c	8.73±0.46 ^a	94.27±8.18 ^a
Malt extract	6.40±0.10 ^c	98.73±0.65 ^a	9.00±0.00 ^a	95.80±12.82 ^a
Nitrogen source				
Yeast extract	5.83±0.06 ^c	89.50±8.88 ^a	9.00±0.00 ^a	67.33±13.98 ^a
Tryptone	6.87±0.06 ^a	72.73±2.56 ^b	9.00±0.00 ^a	55.55±10.72 ^{ab}
Beef extract	6.56±0.06 ^b	74.30±11.64 ^b	9.00±0.00 ^a	38.43±5.62 ^b
KNO ₃	2.13±0.06 ^d	2.40±0.17 ^c	0.00±0.00 ^d	0.00±0.00 ^c

Note. Values with the same letter are not significantly different ($p\leq 0.05$) by the Duncan's test.

3.3.6 Cultivation of *C. doimaesalongensis*

Clitopilus species have not been successfully cultivated in Thailand. In this study, we attempt to grow the *C. doimaesalongensis* using rice straw as the main substrate. The compost was inoculated with 2% of *C. doimaesalongensis* inoculum. The result show that the mycelium could grow on the formula 1 compost and completely colonized after inoculated the inoculum for 40 days, then cover with the sterilized casing layer. However, the mycelial did not grow well on casing surface (Figure 3.3(a)-(c)). The mycelium could slightly grow on compost formula 2 after incubated for 10 days and contaminated by other fungi (Figure 3.3(d)-(e)). As the result from the compost formulas mentioned above indicated that cultivation in the plastic tray could not succeed because of contamination by fungal disease. The environmental conditions are most important to the growth of mushroom. Thus, the formula 3 compost was developed and cultivated in the polypropylene bags for controlling the system. The result showed that mycelium could slightly grow after inoculated for 7-14 days at 28°C. However, it still contaminated by other fungi (Figure 3.3(f)-(h)). Several factors such as substrate, temperature, humidity, water, ventilation, level of ingredient supplement (organic and inorganic) etc. are important factors for mushroom production (Duc, 2005; Zied et al., 2011). The future work may carry out the improvement of the compost formulation, observing for suitable conditions for vegetative growth and improving the casing method or formula to get the fruiting body.

Note. Mycelial production of *C. doimaesalongensis* (a) compost formula 1 after inoculated for 7 days, (b) after inoculated for 40 days, (c) casing, (d)-(e) compost formula 2 after inoculated for 10 days, (f)-(g) compost formula 3 after inoculated for 7 days, (h) after inoculated for 14 days

Figure 3.3 Mycelial production of *C. doimaesalongensis* on different compost formula.

3.4 Conclusion

The data on optimal condition for mushroom growth is important for a possibility to grow the mushroom *in vitro*. In this study MEA was optimal medium for *C. doimaesalongensis* strain MFLUCC 13-0806 and YEA was optimal medium for *C. chalybescens* strain MFLUCC 13-0809 compared with PDA which is a general medium and widely used for fungal cultivation. The optimal pH for mycelial growth of *C. doimaesalongensis* was pH 7 and this strain can grow in a wide range of temperature between 27-29°C. Sucrose and tryptone were a suitable carbon and nitrogen source, respectively while *C. chalybescens* can grow in a wide range of temperature (20-29°C), pH (5-7) and also carbon and nitrogen sources. Even though we do not focus to obtain fruiting bodies of *C. doimaesalongensis* *in vitro*, the data on optimal condition in this study are expected to possibly achieve this aim.

CHAPTER 4

ANTIBACTERIAL, ANTIOXIDANT AND ENZYME ACTIVITIES OF *Clitopilus doimaesalongensis* AND *Clitopilus chalybescens*

4.1 Introduction

Mushrooms have long been used as food and traditional medicines around the world, especially in Japan, Korea and China (Park et al., 2012). Medicinal mushrooms play an important role in several aspects of human activity and are used in the prevention and treatment of many diseases (Roupa et al., 2012). Many published data indicates that both of fruiting body and the mycelium of mushrooms have various biological functions such as antitumor, antioxidant, anti-aging, and immunological properties (Wasser, 2002; Daba & Ezeronye, 2003; Roupa et al., 2012; Zhong, Liu, Xie, Zhao, Song & Zhong, 2013). Many mushrooms and fungi have been isolated and developed to produce many important antibiotics, and could be beneficial for humans (Yamaç & Bilgili, 2006). Mushrooms produce a wide range of extracellular enzymes such as cellulolytic, xylanolytic, fibrinolytic and lignocellulolytic enzymes (Buswell et al., 1996; Lee, Lee, Lee & Kim, 2011; Praveen et al., 2012; Liu et al., 2014). The extracellular enzymes is enable mushroom that degrade complex organic matter into soluble substances and thereafter absorb them as food (Yang et al., 2011). Moreover, enzymatic activity such as amylases and cellulases are important enzymes that can be utilized for various biological activities (Jonathan & Adeoyo, 2011). Cellulases, xylanases, and ligninase have also been used in the brewing, baking, starch-processing, leather, and textile industries (Gurung, Ray, Bose & Rai, 2013).

Some *Clitopilus* species was reported to produce a biologically activity compound which processed on antitumor activity, antioxidant activity, antimicrobial activity and enzyme activity (Kavanagh et al., 1951; Liang et al., 1996; Kilaru et al., 2009; Wasser, 2002; Hartley et al., 2009; Goud et al., 2009; Grangeia et al., 2011). Consequently, the aims of this study were to evaluate antimicrobial and antioxidant activities of the mycelial extracts from *C. doimaesalongensis* strain MFLUCC 13-0809 and *C. chalybescens* strain MFLUCC 13-0806 and to screen the enzyme activity including, amylase, cellulase and xylanase activities of *C. doimaesalongensis* which are the enzymes that might be involve ability of degrading substrates.

4.2 Materials and Methods

4.2.1 The Sample Isolation

The process to obtain an axenic culture of the mushroom is the first stage for mushroom isolation. The isolation of *C. doimaesalongensis* strain MFLUCC 13-0806 and *C. chalybescens* strain MFLUCC 13-0809 were isolated from inside of mushroom fruiting bodies and transferred to potato dextrose agar (PDA), incubated at 25°C for 10 days and re-subcultured until obtain axenic cultures. The axenic cultures were maintained on PDA slants and deposited at the culture collection of Mae Fah Luang University (MFLUCC).

4.2.2 Preparation of Crude Extracts

4.2.2.1 Culture mycelium extraction

The mycelium of *C. doimaesalongensis* and *C. chalybescens* were grown on malt extract agar (MEA) and yeast extract agar (YEA), respectively at 28°C for 30 days. The mycelium was macerated with ethyl acetate (EtOAc) and soak overnight at the room temperature for the first extraction, and eight hours each for the second and third extraction. The combined supernatants were concentrated and dried to afford crude extract. The samples were stored at 4°C for further use.

4.2.2.2 Culture broth and dry mycelium extraction

The mycelium of *C. doimaesalongensis* was grown in malt extract broth (MEB). The starter mycelium was prepared in Erlenmeyer flasks with 30 mL of liquid medium and incubated in the incubation shaker at 150 rpm, 28°C for 1 week. Then, it was transferred to 100 mL of fresh medium and incubated 1 week prior up scaling to 400 mL of fresh medium and incubated for 2 weeks at the same condition. The culture broth was filtrated through a Whatman filter paper no 1 to separate the mycelia from the liquid using aspirator bump. The obtained mycelia were washed several times with sterilized distilled water and then freeze-dried in freeze-dryer. The freeze-dried mycelium was kept in glass vacuum desiccators and filtrate sample was kept at -20°C until use for extraction.

The extraction process was carried out both from the filtrate and freeze-dried mycelium. The filtrate was extracted with an equal volume of ethyl acetate (EtOAc). The freeze-dried samples were macerated and soaked in EtOAc at a ratio of 1:20 (w/v) overnight at the room temperature for the first extraction, and eight hours each for the second and third extraction. The supernatants from all extraction were concentrated and dried to afford crude extracts. The samples were stored at 4°C for further use.

4.2.3 Test Microorganism

Test microorganisms including Gram positive bacteria; *Bacillus subtilis* TISTR 008, *Staphylococcus aureus* TISTR 1466 and Gram negative bacteria; *Escherichia coli* TISTR 780, *Pseudomonas aeruginosa* TISTR 781 were used for antibacterial activity by the disc diffusion method. Tested microorganisms in this study were obtained from the TISTR Culture Collection of the Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand.

4.2.4 Antibacterial Activity Assay

Antibacterial activity of the mushroom extracts was carried out by the disc diffusion method against test microorganism. Bacterial suspensions were inoculated into nutrient broth (NB) at 37°C to obtain approximately 3×10^8 CFU/mL (O.D = 0.5 McFarland).

Crude extracts were prepared at 20 mg/mL concentration in HPLC grade methanol. A 20 μ L of each crude extract was pipette to a 6 mm diameter sterilized paper discs prior bioassays. The Petri dish (90 mm diameter) containing Nutrient Agar (NA) was inoculated with 1000 μ L of bacterial suspension. The prepared extract discs were placed on the bacterial loan with methanol as a negative control and amoxicillin as a positive control. Inoculated plates were incubated at 37°C for 24 hrs. Three replicate experiments were carried out. Inhibition zone was recorded after 24 hrs of incubation. An average inhibition zone was calculated for 6 replicates.

4.2.5 Antioxidant Activity Assay

The scavenging activity of the DPPH free radical was assayed according to the method of Brand-William, Cuvelier and Berset (1995) with slight modification. The range of crude extract used included 5 to 50 mg/mL. The assay was performed in 96-well microtiter plates. The reaction mixture in each of the 96-wells was included 30 μ L of the crude extract and 220 μ L of methanolic solution of DPPH. The mixture was incubated in the dark at room temperature and measured absorbance at 517 nm every 30 minutes for 2 hrs. All measurements were performed in triplicate. Standard antioxidants of Butylated hydroxytoluene (BHT) was used as positive control by varying the concentration to 3.125, 6.25, 12.5, 25, 50, 100 and 200 μ g/mL. The DPPH radical scavenging activity percentage was calculated using the following formula:

$$\text{Scavenging effect (\%)} = ([A_{\text{blank}} - A_{\text{sample}}]/A_{\text{blank}}) \times 100$$

Where,

A_{blank} = Absorbance of the control solution, DPPH solution without the tested sample.

A_{sample} = Absorbance of the test extract, DPPH solution with the tested sample.

4.2.6 Enzyme Activity Assay

The isolated of *C. doimaesalongensis* mycelium was screened for the enzyme activity of amylase, cellulase and xylanase. Carboxymethyl cellulose (CMC); soluble cellulose, was used as a substrate for screening of cellulase. Starch media was used for screening of amylase and wood xylan agar was used for xylanase activity. A mycelium plug was inoculated into the center of media. All the plates were incubated at 28°C for 4 days, then the plates were strained by flooding with iodine solution and zone of clearance around the colony was measured. The relative index (RI) of enzymatic activity was calculated using the following formula:

$$\text{Relative index (RI)} = \frac{\text{Zone of clearance (mm)}}{\text{Colony size (mm)}}$$

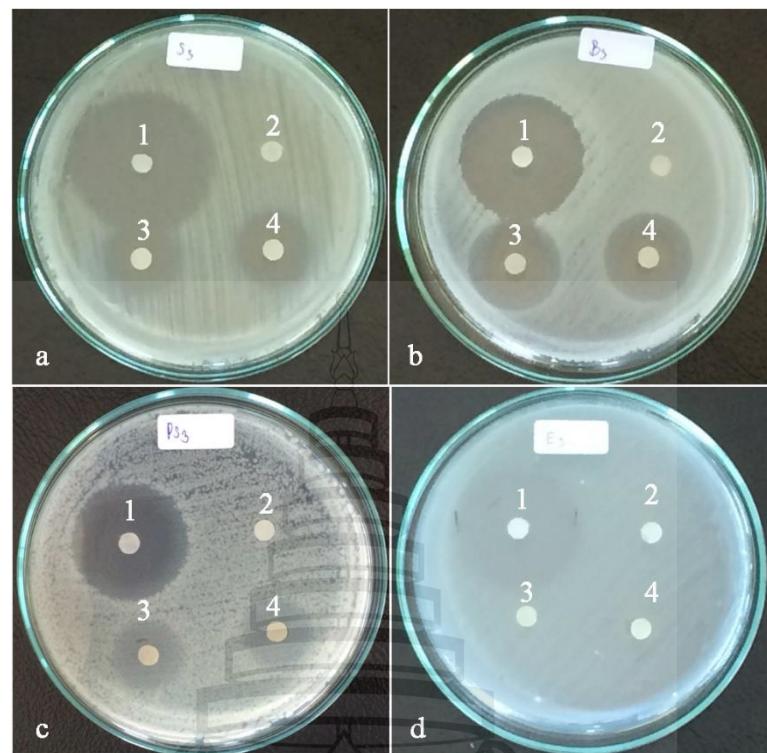
4.2.7 Statistical Analysis

Experimental values were given as mean \pm standard deviation (SD). The data of the experiment was analyzed by using one way analysis of variance (ANOVA) in SPSS version 11.5 program for windows and treatments mean compared using Duncan' test ($p \leq 0.05$) followed by post-hoc tests.

4.3 Results and Discussion

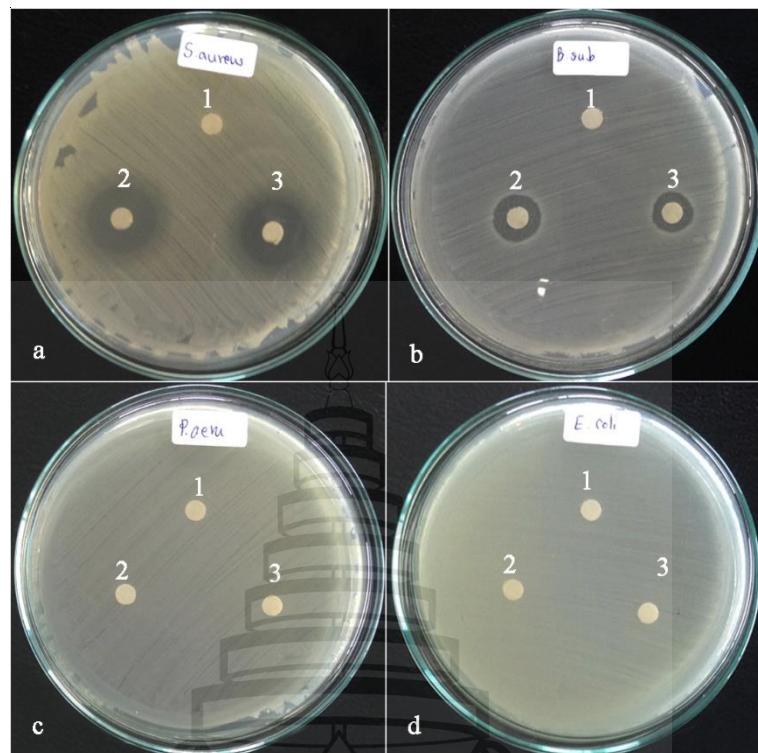
4.3.1 Antibacterial Activity of Crude Extract from Culture Mycelium Extraction of *C. doimaesalongensis* Cultivated in MEA and *C. chalybescens* Cultivated in YEA

In this study an antibacterial activity of *C. doimaesalongensis* and *C. chalybescens* from cultured mycelial extract were screened using disc diffusion method. The crude extracts were tested against four species of bacteria. The results were shown in Table 4.1. The crude extracts obtained from *C. doimaesalongensis* showed activities against *S. aureus*, *B. subtilis* and *P. aeruginosa* but did not inhibit the growth of *E. coli* (Figure 4.1). It showed the highest activity against *S. aureus* (21.3 mm) followed by *P. aeruginosa* (16.8 mm) and *B. subtilis* (16.0 mm),


respectively. Crude extract obtained from *C. chalybescens* showed activities against Gram positive but did not against bacterial Gram negative (Figure 4.2). Interestingly, the result in this study showed that crude extract of *C. doimaesalongensis* inhibited growth of some Gram negative bacteria which was not found in *C. chalybescens*.

The result of inhibition was consistent with the previous study that can be found from several Basidiomycete extracts such as *Agrocybe perfecta*, *Hexagonia hydnoides*, *Irpex lacteus*, *Nothopanus hygrophanus*, *Pycnoporus sanguineus* and *Tyromyces duracinus* (Rosa et al., 2003; Alves et al., 2012). According to Kavanagh et al. (1951) and Kavanagh et al. (1952) who reported a biologically active compound; pleuromutilin produced by *C. passeckerianus* (*Pleurotus passeckerianus*), *C. scyphoides* (*Pleurotus multilis*) and other species of the genus *Clitopilus* mainly inhibited Gram positive bacteria such as *S. aureus*, *Streptococcus haemolyticus*, and *B. subtilis* but not with Gram negative bacteria.

Table 4.1 Antibacterial activities of crude extracts from culture mycelium extraction of *C. doimaesalongensis* and *C. chalybescens*


Bacteria	Inhibition zone (mm)	
	<i>C. doimaesalongensis</i>	<i>C. chalybescens</i>
<i>Bacillus subtilis</i> (+)	16.0±0.00 ^b	13.2±0.58 ^b
<i>Staphylococcus aureus</i> (+)	21.3±1.76 ^a	19.0±1.32 ^a
<i>Pseudomonas aeruginosa</i> (-)	16.8±0.76 ^b	N/O [*]
<i>Escherichia coli</i> (-)	N/O [*]	N/O [*]

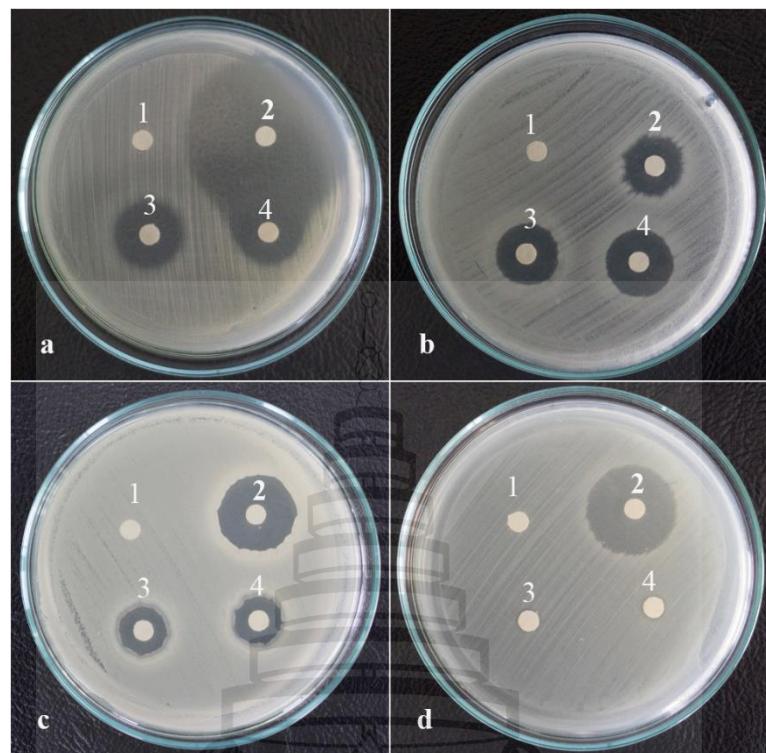
Note. N/O^{*} means no inhibition zone detected

Note. The zones of inhibition that indicate antibacterial activity against bacteria strains (a) *S. aureus*, (b) *B. subtilis*, (c) *P. aeruginosa* and (d) *E. coli* with 1 methanol as negative control, 2 amoxicillin as positive control and 3-4 samples of crude extract of *C. doimaesalongensis*.

Figure 4.1 Antibacterial activities of *C. doimaesalongensis* on different bacteria

Note. The zones of inhibition that indicate antibacterial activity against bacteria strains (a) *S. aureus*, (b) *B. subtilis*, (c) *P. aeruginosa* and (d) *E. coli* with 1 methanol as negative control, 2-3 samples of crude extract of *C. chalybescens*.

Figure 4.2 Antibacterial activities of *C. chalybescens* on different bacteria


4.3.2 Antibacterial Activity of Crude Extract from Culture Broth and Dried Mycelium Extraction of *C. doimaesalongensis* Cultivated in MEB

The crude extracts of *C. doimaesalongensis* from cultured MEB media were screened against four species of bacteria. The result was shown in Table 4.2. The crude extracts obtained showed activities against *S. aureus*, *B. subtilis*, and *P. aeruginosa* but did not inhibit the growth of *E. coli* (Figure 4.3). The inhibition against all bacterial strain were not observed from dried mycelial extract. The result was consistent with the previous study that antimicrobial activity against bacteria and yeast can be found from several Basidiomycetes (*Agrocybe perfecta*, *Hexagonia hydnoides*, *Irpex lacteus*, *Nothopanus hygrophanus*, *Pycnoporus sanguineus* and *Tyromyces duracinus*) (Rosa et al., 2003). The extracts of *Agaricus bisporus* has been shown activity against *B. subtilis*, *S. aureus*, but not activity against *E. coli* (Akyuz & Kirbag, 2009). According to Kavanagh et al. (1952) and Hartley et al. (2009) reported a biologically active compound, pleuromutilin is also produced by *C. passeckerianus* (*Pleurotus passeckerianus*), *C. scyphoides* (*Pleurotus multilis*) and other species of the genus *Clitopilus* inhibited gram positive bacteria such as *S. aureus*, *S. haemolyticus*, and *B. subtilis* and had no effect on *E. coli* (Kavanagh et al., 1951).

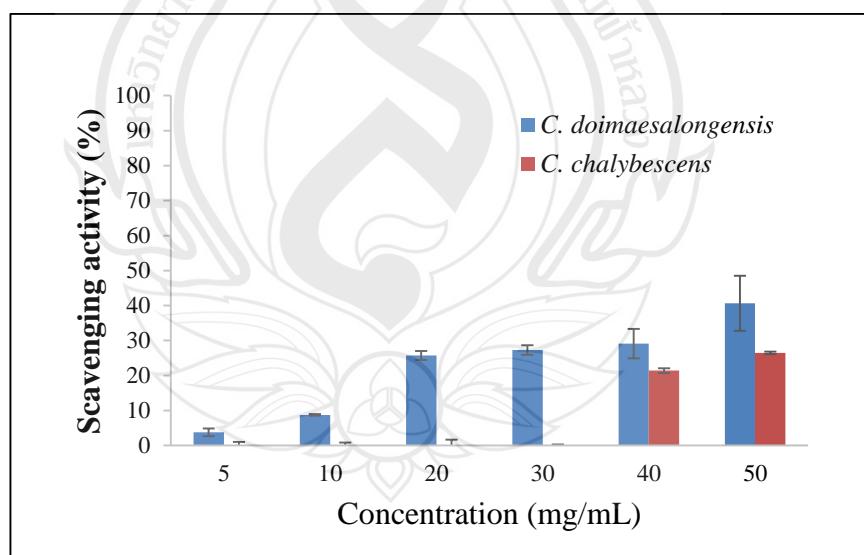
Table 4.2 Antibacterial activities of crude extracts from cultured broth and dried mycelial extraction of *C. doimaealongensis*

Bacteria	Inhibition zone (mm)					
	Cultured broth extract	Amoxicillin	Methanol	Freeze-dried	Amoxicillin	Methanol
				mycelial extract		
<i>Bacillus subtilis</i> (+)	17.7 ± 0.82 ^b	17.0 ± 0.00 ^c	N/O*	N/O*	16.7 ± 0.58 ^d	N/O*
<i>Staphylococcus aureus</i> (+)	21.0 ± 3.40 ^a	50.7 ± 2.89 ^a	N/O*	N/O*	47.0 ± 0.00 ^a	N/O*
<i>Pseudomonas aeruginosa</i> (-)	15.3 ± 0.52 ^c	22.0 ± 1.73 ^{bc}	N/O*	N/O*	24.3 ± 0.58 ^c	N/O*
<i>Escherichia coli</i> (-)	N/O*	26.7 ± 3.06 ^b	N/O*	N/O*	29.0 ± 1.73 ^b	N/O*

Note. N/O* means no inhibition zone detected

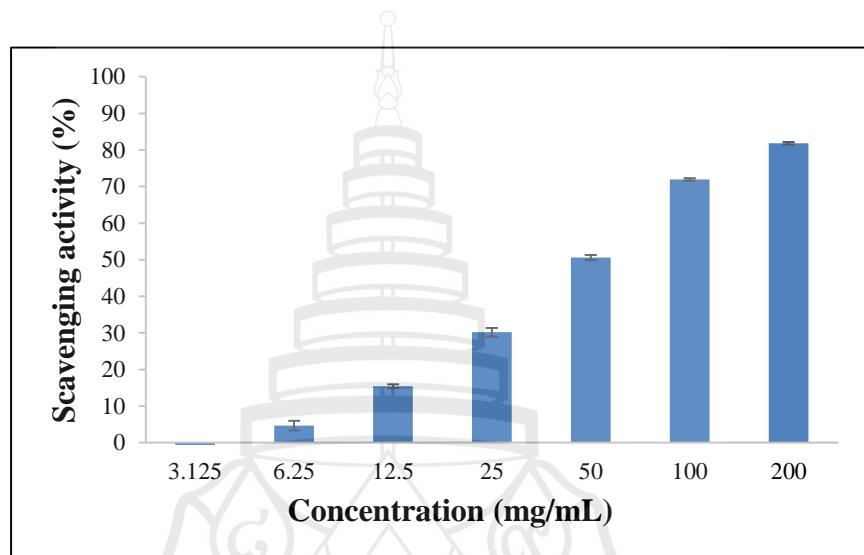
Note. The zones of inhibition that indicate antibacterial activity against bacteria strains (a) *S. aureus*, (b) *B. subtilis*, (c) *P. aeruginosa* and (d) *E. coli* with 1 negative control, 2 positive control and 3-4 sample of crude extract.

Figure 4.3 Antibacterial activities of crude extract of *C. doimaesalongensis* on different bacteria


4.3.3 Antioxidant Activity

The mycelial extract was subjected to evaluate antioxidant activity. The DPPH free radical scavenging method was used for the analysis. It is a widely used method to evaluate antioxidant activities in a relatively short time compared with other methods. DPPH exhibits a deep purple color with absorption maximum at 517 nm. In DPPH radical scavenging assay, an antioxidant compound can donate a hydrogen free radical to DPPH radical molecule, which is discoloration from purple to yellow (Kedare & Singh, 2011). Therefore, the antioxidant activity of a substance can be evaluated as its

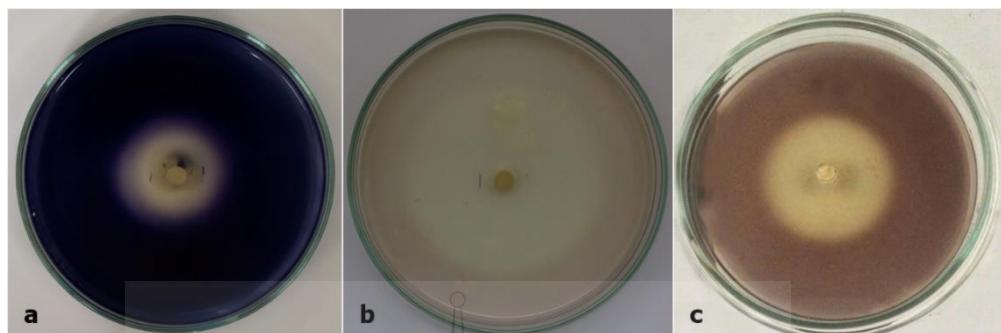
ability on scavenging the DPPH free radical (Duh, Tu & Yen, 1999; Chang, Yang, Wen, & Chern, 2002).


Scavenging effects of *C. chalybescens* and *C. doimaesalongensis* mycelial extract at different concentrations; 5, 10, 20, 30, 40, 50 mg/mL were shown in Figure 4.4. The DPPH radical scavenging activity effect of this were 21.41% and 26.45% at 40 and 50 mg/mL, respectively for *C. chalybescens* and *C. doimaesalongensis* were 29.14% and 40.62% at 40 and 50 mg/mL, respectively.

Huang (2000) found the methanolic extracts from mycelia of *Antrodia camphorata* and *Agaricus blazei* exhibited high antioxidant activities of 87.7% and 93.6%, respectively at concentrations as low as 0.5 mg/mL. Tsai (2002) found methanolic extract from *Ganoderma tsugae* mycelia exhibited a poor antioxidant activity of 7.6-19.3% at 0.5-20 mg/mL. Grangeia et al. (2011) were reported DPPH radical scavenging activity of *Clitopilus prunulus* shown EC₅₀ values of 1.75±0.13 mg/mL. Obviously, different mushroom extract were showed different exhibition for the antioxidant activities.

Figure 4.4 Scavenging effect of *C. doimaesalongensis* and *C. chalybescens* mycelium extraction on DPPH radicals. The results were representative of three separated experiments

The scavenging effect of BHT at different concentration (3.125, 6.25, 12.5, 25, 50, 100 and 200) was shown in Figure 4.5. The scavenging effect of BHT was higher than *C. doimaesalongensis* and *C. chalybescens* mycelial extracts at the same concentration, this might due to the degree of purity of used sample.


Figure 4.5 Scavenging effect of BHT on DPPH radicals. The results were representative of three separated experiments

4.3.4 Enzyme Activities

Many wild mushrooms were screened for enzymatic activities and they were detected enzymatic activities such as laccase, xylanase, protease, lipase and urease (Elisashvili, Chichua, Kachlishvili, siklauri, Khardziani, 2003; Jonathan & Adeoyo, 2011; Krupodorova, Ivanova & Barshteyn, 2014). Krupodorova et al. (2014) who reported the enzymatic activity of several macrofungi that showed the presence of different enzyme activities such as *Auriporia aurea*, *Cordyceps sinensis*, *Hericium erinaceus*, *Hohenbuehelia myxotricha*, *Lepista luscina* and *Pleurotus ostreatus* were show amylase activity; *Crinipellus schevczenkovi*, *Auriporia aurea*, *Hypsizygus marmoreus*, *Lyophyllum schimeji*, *Oxyporus obducens*, and *Spongipellis litschaueri* were produced the enzyme activity of laccase. Therefore, the *C. doimaesalongensis* was selected to observe activities of enzymes amylase, cellulase and xylanase by detecting a clear zone of hydrolysis after flooding plates with iodine solution in this study. The result showed that *C. doimaesalongensis* produced the highest level of cellulase activity followed by xylanase and amylase activities as the results in Table 4.3 and Figure 4.6. As the result in this study was occurred cellulase produce the highest level which was showed similar to previous study by Jonathan and Adeoyo (2011) who reported the high cellulolytic activities in *Coriolus versicolor* and *Pleurotus tuber-regium*.

Table 4.3 Relative index (RI) value after flooding plates with iodine solution

Enzyme	zone of clearance (mm)	Relative index (RI)
Amylase	38.5±1.00 ^c	2.24±0.17 ^c
Cellulase	60.5±0.71 ^a	3.80±0.38 ^a
Xylanase	40.7±1.15 ^b	1.54±0.41 ^b

Note. (a) Amylase production on starch agar, (b) Cellulase production on CMC agar, (c) Xylanase production on xylan agar.

Figure 4.6 Clear zone of hydrolysis after flooding plates with iodine solution

4.4 Conclusion

The assay of antibacterial and antioxidant activities *in vitro* demonstrated that crude mycelial extract of *C. chalybescens* exhibited antibacterial activities against Gram positive while crude extract from cultured broth of *C. doimaesalongensis* exhibited the cell growth of Gram positive and some Gram negative bacteria. However, crude extract from dried mycelial extraction did not inhibit all bacterial strains. Crude mycelial extract of *C. doimaesalongensis* and *C. chalybescens* showed scavenging activity of DPPH radical. Moreover, *C. doimaesalongensis* was demonstrated to produce cellulase, amylase, and xylanase activities which may be useful for the further experiment to select the substrate for growing the mushroom. Cellulase is important enzymes that can be utilized for various biological activities and in this study the result demonstrated cellulase was produced. Therefore, the optimization condition of growth condition for enzymes production may be useful for the further study for their commercial utility in biotechnological applications (Goud, Suryam, Lakshmi pathi & Charya, 2009). The fermentation of *C. doimaesalongensis* and *C. chalybescens* in culture media could be used for the production of antibacterial metabolites. This alternative way instead direct extraction from mushroom fruiting body might attribute the presence of novel bioactive metabolites from different growth stages of the mushroom.

CHAPTER 5

OPTIMIZATION CONDITION FOR CULTIVATION OF *Agaricus subrufescens* HYBRID STRAINS

5.1 Introduction

Agaricus subrufescens Peck. was cultivated in the late 1800s in eastern north America and described by Peck C.H. in 1893 (Kerrigan, 2005) and firstly isolated in the 1960s in Brazil (Farnet et al., 2013). This mushroom has main characters as chocolate brown basidiospores, a hemispherical to convex to plano-convex shape of pileus, an almond-like or aniseed odor, positive Schäffer's and KOH reactions, a yellow discoloration, the surface is dry and covered by fibrillose squamulose. It is a saprobe and inhabits rooting leave, it often grows in clusters or scattered occasionally singly on soil. This mushroom was discovered in north America, south America and also has been found in Hawaii, Taiwan, Philippines and Thailand (Kerrigan, 2005; Wisitrassameewong et al., 2012). The first test for production of *A. subrufescens* has been cultivated as basic of cultivation of *A. bisporus* (Kopytowski-Filho, Minhoni & Rodriguez Estrada, 2006; Largeteau, Llarena-Hernández, Regnault-Roger & Savoie, 2011) then, the process of composting for *A. subrufescens* has been wildly practiced to improve yield (Zied et al., 2011; Colauto et al., 2011; Zied et al., 2012). *Agaricus subrufescens* is popular as a medicinal food having a potential to treat many common diseases such as arteriosclerosis, cancer, diabetes, cronic hepatitis and hyperlipidaemia (Mizuno et al., 1990; Hobbs, 2002; Firenzuol et al., 2008; Liu et al., 2008; Jumes et al., 2010). It is a popular market mushroom as extensively cultivated in Brazil and in oriental countries such as Japan or China (Farnet et al., 2013). Studies of genetic breeding of this mushroom have been investigated to achieve high yield and productivities (Thongklang, Hoang et al., 2014). The aim of hybridization is to combine desirable characteristics from different strains. Thongklang,

Hoang et al. (2014) could obtain the hybridization among *A. subrufescens* isolates from Brazil, France and Thailand. Straw is the agricultural waste that remains after harvested the grain and chaff such as barley, oats, rice, rye and wheat are produced worldwide (Tran, 1997; Bushuk, 2002). Their compositions which are consist of hemi-cellulose, cellulose and lignin which can be utilized for energy, animal feed, building materials, paper production and compost production to be used as an organic fertilizer for mushroom cultivation (Rashad, 2013; Yang, Guo & Wan, 2013). Rice and wheat straw have been used as basal substrate for various cultivated mushrooms for the example oyster mushroom (*Pleurotus ostreatus*) (Yang, et al., 2013), paddy straw mushroom (*Volvariella volvacea*) (Thiribhuvanamala, Krishnamoorthy, Manoranjitham, Praksasm & Krishnan, 2012). In general, each mushroom species are required different nutrition for their growing so the optimal conditions need to investigate for growing mycelium or cultivation of fruiting body (Luangharn, Karunaratnha, Hyde & Chukeatirote, 2014; Magday Jr et al., 2014).

The commercial compost based on wheat straw is commonly used for cultivation of *A. bisporus* and production of *A. subrufescens* was firstly done on basis of *A. bisporus* cultivation. Thongklang, Hoang et al. (2014) have also been used commercial compost and successfully cultivated *A. subrufescens* hybrid strains of Thai × France, Thai × Brazilian and France × Brazilian in France and the result showed that Thai × France and Thai × Brazilian hybrid strain produced the highest yield of fruiting body. As we would like to introduce the cultivation of these mushroom in Thailand, in this study *A. subrufescens* of Thai × France and Thai × Brazilian hybrid provided by N. Thongklang (Thongklang, Hoang et al., 2014) obtained from INRA, France were firstly optimized and cultivated under growing condition in Chiang Rai, Thailand using compost prepared base on rice straw as the main substrate.

5.2 Materials and Methods

5.2.1 Strains of Mushroom

Agaricus subrufescens hybrid strains was obtained between Thai strain CA918 and Brazilian CA454, Thai strain CA918 and French strain CA487 (Table 5.1). All strains were maintained on potato dextrose agar (PDA) and transferred to a fresh PDA as master plate for inoculation.

Table 5.1 Cultivars used in this study

Strains	Code	Type
CA918-075 × CA454-4	Hybrid of Thai and Brazilian	T1xB
CA918-076 × CA454-4	Hybrid of Thai and Brazilian	T2xB
CA918-075 × CA487-35	Hybrid of Thai and French	T1xF
CA918-076 × CA487-35	Hybrid of Thai and French	T2xF

5.2.2 Optimization Condition for Growth of Mycelium

5.2.2.1 Effect of temperature

The mycelial growth of the four hybrid strains of *A. subrufescens* were studied on a different range of temperature. All pure culture isolates were grown on PDA, then a 0.5 mm-diameter plug from the edge of growing mycelium was transferred to compost extract media in triplicate and incubated at 16, 20, 25, 30 and 35°C. Mycelial growth was evaluated by determination of dry weight and colony radius every 2 days for 10 days. For determination of dry weight, the agar-mycelial was removed by placed in a beaker, and then the medium was melted and washed out with hot water.

5.2.2.2 Effect of initial pH

The optimal pH for mycelial growth was determined by using compost extracted agar. The initial pH of the media was adjusted separately by 1N HCl or 1N NaOH to pH 4, 5, 6, 7, 8 and 9 and then autoclaved at 121°C for 15 minutes. A 5 mm diameter plug of mycelium was inoculated at the center of plate. All culture media were incubated at 30°C. Mycelial growth was evaluated by determination of dry weight and colony radius every 2 days for 10 days. Dry weight of mycelium was determined by the method described above.

5.2.3 Spawn Production

The sorghum were washed and soaked in distilled water for 24 hours, then washed 1-2 times before boiled for 15 minutes. After draining the excess water, the grains were sterilized, cooled down to room temperature, then inoculated with the mycelium and incubated at 25°C for 14 days or until completely colonized.

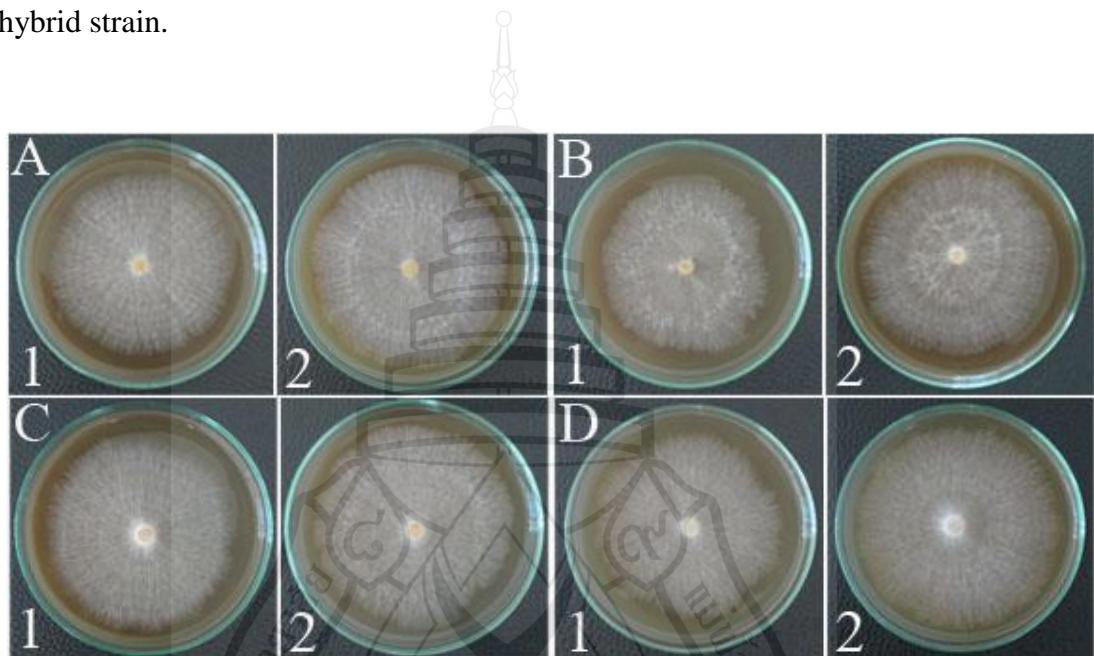
5.2.4 Mushroom Cultivation

The compost media based on rice straw as main substrate was mixed with calcium carbonate, urea, rice bran, di ammonium phosphate, gypsum and water, followed by pasteurization for 6 hours by maintaining the temperature at 55-60°C. The compost was cooled down to room temperature and inoculated with 2% (w/w) of the prepared spawn. A 5 kg of the mixture was placed in plastic tray (35×25×20 cm). The inoculated compost was incubated at 25°C with relative humidity at 91-95% for the beginning of colonization. The completely colonized compost was then covered with the pasteurized casing (2.5 inch thickness). The fresh weight of fruiting bodies were recorded after casing for 18 days. The experiments were performed with five replicated per strain and cultivation condition.

5.2.5 Statistical Analysis

The mycelial growth and mycelial dry weight were verified by calculating the average of triplicate measurements in centimeter (cm) of mycelium diameter and milligram (mg) of mycelial dry weight and yield of fresh weight mushroom using statistical analysis and significant differences were determined by Tukey's test with a significance level $p \leq 0.05$ followed by post-hoc test in a one-way ANOVA analysis using SPSS version11.5 program.

5.3 Results and Discussion


5.3.1 The Effect of Temperature on Mycelial Growth

Agaricus subrufescens grew on compost extracted agar and inoculated in the range temperatures at 16, 20, 25, 30 and 35°C. In this study, the optimal temperature for mycelial growth was found at 25 and 30°C (Table 5.2), the highest dry weight of mycelial was also occurred at 25 and 30°C (Table 5.3) (Figure 5.1). Four strains of *A. subrufescens* in this study showed optimal temperature between 25-30°C for mycelial growth which was relatively to previous reported by Chang (2008) at 23-37°C, Colauto et al. (2008) 28-31°C, Huang (1997) 20-33°C, Neves et al. (2005) 25-30°C, Quimi et al. (1990) 28-30°C, Mendonca, Kasuya, Cadorin and Vieira (2005) 25-30°C, and Zied et al. (2011) 25-29°C. Therefore, the suitable temperature for mycelium growth should be maintained from 25-30°C.

5.3.2 The Effect of Initial pH on Mycelial Growth

The mycelial growth was evaluated in the culture media with initial pH values from 4 to 9. The result form this study showed that optimal pH for mycelial growth was range between 7 to 9 for *A. subrufescens* hybrid strain Thai × Brazilian (T1xB and T2xB) and pH range between 6 to 9 for Thai × France strain (T1xF and T2xF) (Table 5.2), the mycelial dry weight for all strains are also shown in Table 5.3. All strains used in this study were able to grow at pH 4-9. The optimal pH of *Agaricus bisporus* on compost cultivation was reported as pH 7.5 by Gerrits (1988) and Rinker (1993). The optimal pH for the substrate reaction range between 6-7, strong acid or basic condition

inhibited mycelium growth. Colauto et al. (2008) reported the optimal mycelial growth on malt extract agar of *A. brasiliensis* was between 5.5 and 6.0. While, Kopytowski Filho, Minhoni, Andrade and Zied (2008) and Calvalcante et al. (2008) reported that the optimal pH for compost substrate and casing soil for *A. subrufescens* was pH 7.0-7.5. This result indicated that neutral pH range was optimal pH for *A. subrufescens* hybrid strain.

Note. (1) 25°C and (2) 30°C. (A) strain T1xB, (B) strain T2xB, (C) strain T1xF and (D) strain T2xF.

Figure 5.1 Mycelium growth on compost extracted media when incubated at 25°C and 30°C for 10 days

Table 5.2 Average mycelial growth rate of *A. subrufescens* cultivated on compost extract agar under various conditions for 10 days

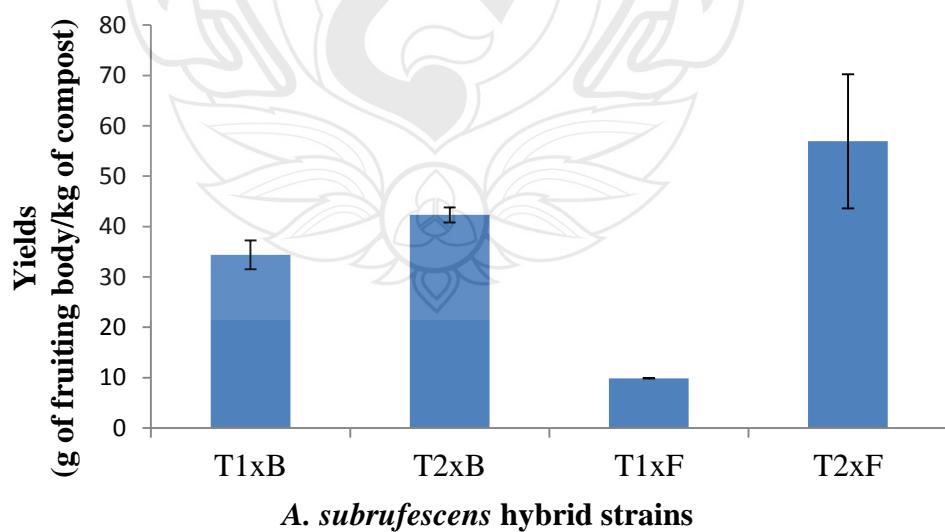
Condition	Growth rate (cm of mycelial radius)*			
	T1×B	T2×B	T1×F	T2×F
Temperatures (°C)				
16	2.37±0.06 ^c	1.83±0.06 ^c	2.87±0.15 ^c	2.57±0.21 ^c
20	3.00±1.00 ^b	2.53±0.06 ^b	4.00±0.27 ^b	3.90±0.10 ^b
25	7.37±0.06 ^a	7.23±0.06 ^a	7.33±0.06 ^a	6.57±0.38 ^a
30	7.50±0.10 ^a	7.37±0.12 ^a	7.77±0.21 ^a	7.00±0.17 ^a
35	1.47±0.06 ^d	1.57±0.06 ^d	1.43±0.06 ^d	1.33±0.06 ^d
pH				
4	4.23±0.21 ^c	4.47±0.06 ^c	4.77±0.06 ^b	3.93±0.06 ^b
5	5.03±0.06 ^{bc}	4.63±0.06 ^c	4.83±0.15 ^b	3.97±0.06 ^b
6	5.10±0.00 ^b	5.40±0.46 ^b	6.07±0.40 ^a	6.17±0.87 ^a
7	5.83±0.21 ^{ab}	5.97±0.15 ^{ab}	7.03±0.45 ^a	6.63±0.83 ^a
8	5.93±0.23 ^a	6.00±0.10 ^a	6.77±0.68 ^a	6.50±0.50 ^a
9	6.53±0.55 ^a	5.87±0.15 ^{ab}	6.05±0.44 ^a	6.43±0.55 ^a

Note. * Within a column, values followed by the same letter are not different at $p \leq 0.05$ by Tukey's test.

Table 5.3 Dry weight of mycelium grown on compost extract agar under various conditions for 10 days.

Condition	Dry weight (mg)*			
	T1×B	T2×B	T1×F	T2×F
Temperature (°C)				
16	3.00±0.707 ^d	3.87±0.15 ^b	10.10±1.51 ^b	7.47±0.42 ^d
20	9.23±1.16 ^c	7.27±2.28 ^b	15.77±1.11 ^b	14.73±3.14 ^b
25	32.57±2.77 ^b	51.23±2.43 ^a	68.03±2.41 ^b	32.30±2.23 ^b
30	48.67±2.37 ^a	54.80±1.22 ^a	85.67±4.18 ^a	56.33±4.54 ^a
35	4.33±0.42 ^d	3.50±0.10 ^b	3.00±0.61 ^d	5.10±0.10 ^d
pH				
4	14.60±0.92 ^b	14.57±0.91 ^c	15.57±1.14 ^b	11.73±1.50 ^c
5	16.63±1.07 ^b	15.90±1.51 ^c	20.10±0.53 ^b	12.53±2.20 ^c
6	17.17±1.43 ^b	27.60±1.50 ^{ab}	76.27±2.50 ^a	29.70±2.92 ^b
7	24.53±1.31 ^a	30.17±2.81 ^a	77.03±2.15 ^a	39.50±4.30 ^a
8	23.37±1.00 ^a	25.13±1.55 ^b	76.07±2.79 ^a	38.30±2.91 ^{ab}
9	27.67±3.27 ^a	27.86±1.88 ^a	75.37±2.45 ^a	38.50±4.10 ^a

Note. * Within a column, values followed by the same letter are not different at $p \leq 0.05$ by Tukey's test.


5.3.3 Mushroom Cultivation

Thailand is an agricultural country and agricultural wastes is easy to find and use as substrates for cultivating mushrooms such as rice straw. In this study, *A. subrufescens* hybrid strains presented in Table 5.1 were used for cultivation on rice straw based material of compost. The production of fruiting bodies on compost were shown in Figure 5.2 and the result shown in Figure 5.3 indicated that the hybrid of Thai × France strain type T2×F produced the highest yield of fruiting bodies with 56.92 ± 13.30 g/kg compost while hybrid of Thai × Brazilian stain type T2×B produced 42.35 ± 1.47 g/kg compost followed by hybrid of Thai × Brazilian strain type T1×B and hybrid of Thai × France strain type T1×F which produce the yield of fruiting bodies 34.07 ± 2.87 and 9.86 ± 0.04 g/kg compost, respectively.

These *A. subrufescens* hybrid strains showed a potential to grow under studied condition at the temperature 25°C with 91-95% relative humidity in northern Thailand and produce the fruiting bodies after casing for 18 days. The hybrid strains of *A. subrufescens* from two homokaryotic single-spore isolates, CA454-3 from the Brazilian stain and CA487-100 from the French strain were provided by E. Huangand & P. Callac. They have been cultivated by Llarene-Hernandez et al. (2013) and they obtained the fruiting production 109.1 g/kg compost after casing for 30 days at $23 \pm 0.5^\circ\text{C}$ with $98 \pm 2.0\%$ relative humidity. Mushroom requires suitable conditions such as temperature and humidity to produce fruiting bodies (Dias, Abe & Schwan, 2004; Mantovani et al., 2007; Dias, 2010). Iwade and Mizuno (1997) reported the suitable humidity during the formation of primordia of *A. blazei* was 60-75% and 70-85% relative humidity for development of fruiting bodies. While, Wang, Li, Li and Han (2010) reported relative humidity was kept at 85-90% for mycelium growth and the relative humidity should be at 95-99% for fruiting body formation. Llarene-Hernandez et al. (2013) and Thongklang, Hoang et al. (2014) have been successfully cultivated *A. subrufescens* hybrid strains on wheat straw based compost and obtained higher yield of mushroom production comparing to this study. This might be affected by difference type of straw as we used rice straw instead of wheat straw to prepare the compost in this study. Therefore, the results from this study mentioned that standard conditions including temperature, humidity, pH, type of waste materials, additive of compost formulation and casing are important factors for mushroom cultivation and have to be concerned.

Figure 5.2 Fruiting bodies of 4 hybrid strains of *Agaricus subrufescens* cultivated on rice straw based compost media.

Figure 5.3 Comparison of biomass production in each strain

5.4 Conclusion

The results from this study demonstrated that mycelium of *A. subrufescens* able to grow at the temperature range between 25-30°C and initial pH range between pH 6-9. Fruiting body of these strains can be produced by using rice straw compost prepared in Chiang rai, Thailand. The yield of the production, however, should be improved to reach a commercial scale.

CHAPTER 6

CONCLUSION

In conclusion, *Clitopilus* is a genus belonging to the family of the *Entolomataceae*. It is commonly known as the miller or the sweetbread mushroom. It is a widespread distribution especially in northern temperate areas. Some species had a potential of antibacterial, antioxidant and enzyme activities. However, it has been very few studies in Thailand. Therefore, we focus to isolate the genus *Clitopilus* and study on taxonomy and phylogeny, optimization condition for mycelial growth, antibacterial, antioxidant activities and enzyme activity. From the study many fruiting body samples of *Clitopilus* were collected from Lampang and Chiang Rai province throughout the wet seasons of 2013. The collections of *Clitopilus* were identified based on their morphological characters then, the pure culture was obtained from sterile tissue inside mushroom fruiting bodies that was grown on PDA and incubated at 25°C. The specimens were dried in a standard food dryer at 40°C. The pure cultures and dried specimens were deposited at Mae Fah Luang University Culture Collection (MFLUCC) and Mae Fah Luang University Herbarium (MFLU HERB), respectively.

Base on the study of taxonomy, morphological characters and ITS rDNA sequencing data, we could identify two species from three collections. The first two collections collected from Lampang, Thailand were identified as *C. chalybescens*. Another one collection collected from Chiang Rai was identified as a new species in Thailand and given name as *C. doimaesalongensis*. These two species were *C. chalybescens* strain MFLUCC13-0809 and *C. doimaesalongensis* strain MFLUCC13-0806, respectively.


The most suitable substrate and physical conditions or environmental factor are very important for mycelial and fruit bodies growth (Chihara et al., 1970; Ukai et al., 1983; Miyazaki & Nishijima, 1981; Mizuno, 1992; Hobbs, 2000; Zhang et al., 2007). To get information about the growth conditions, the effect of different culture media, temperature, pH and carbon/nitrogen sources on the mycelial growth were investigated. We found that both species were able to grow on different culture media. The optimal condition for mycelial growth of *C. doimaesalongensis* was observed in MEA supplemented with sucrose as carbon source and tryptone as nitrogen source, pH 7 and incubated at the temperature range from 27-29°C while the optimal condition for *C. chalybescens* was YEA, pH 5-8 at the temperature range from 20-29°C and this mushroom can use wide range of carbon sources including fructose, sucrose, starch or malt extract and also various nitrogen sources including yeast extract, tryptone or beef extract.

As we can isolate a new species in this study, the study of bioactive compounds such as antibacterial and antioxidant activities, biomass degrading enzymes from this new species should be investigated. The results of the antibacterial activity from crude extract obtained from culture mycelium and cultured broth of *C. doimaesalongensis* showed their ability to inhibit the growth of Gram positive bacteria (*B. subtilis* and *S. aureus*) and Gram negative bacteria (*P. aeruginosa*), but it could not be found this effective activity from the crude extract obtained from dried mycelial sample. Interestingly, the result of crude extract from *C. doimaesalongensis* was different from the result obtained from the crude extract of *C. chalybescens* which only inhibited against Gram positive bacteria (*B. subtilis* and *S. aureus*). The crude extract of culture mycelium from *C. doimaesalongensis* and *C. chalybescens* were used to observe the antioxidant activity and the result showed that these two species slightly exhibited antioxidant properties. As during growth and fruiting of mushrooms species on a particular waste material produce a wide range of extracellular enzymes that extracellular enzyme production during growth produce the enzymes essential to degrade the major components of the waste substrate and to degrade complex organic matter into soluble substances, and absorb it as food (Leatham, 1985; Tan & Wahab, 1997). For the result of enzyme activities test, *C. doimaesalongensis* was demonstrated

to produce cellulase, amylase, and xylanase activities which may be useful for the further experiment to select the substrate for growing the mushroom.

Some *Clitopilus* species are potentially edible, and cultivatable, but studies have not been reported to cultivate *Clitopilus* (Thawthong et al., 2014). The genus *Clitopilus* is also important for medicinally important secondary metabolites. The result in this study demonstrated that the biological active components from the mycelium and broth culture extract of *C. doimaesalongensis* showing their mode of action. Thus, future research should focus on the cultivation and secondary metabolite analyses of our new species *C. doimaesalongensis*.

Several mushrooms have various biological functions. Therefore, they have long been collected and used as food and traditional medicines for thousands of year. Many edible mushrooms have been widely cultivated in many countries around the world such as *Agaricus bisporus*, *Auricularia auricular*, *Lentinula edodes* and *Volvariella volvacea*, however, about 22 species have been reported in Thailand as commercially grown (Thawthong et al., 2014). *Agaricus subrufescens* is one of the popular mushroom consume as a medicinal food. It was first cultivated in eastern north America and has been introduced to cultivate in many countries such as Brazil and Japan (Kerrigan, 2005). *Agaricus subrufescens* was successfully developed a new hybrid strain from Thai and French strains (Thongklang, Sysouphanthong et al., 2014). In this study four *A. subrufescens* hybrid strains obtained from INRA, France were firstly optimized and cultivated under growing condition in Chiang Rai, Thailand. From this study, it was found that these hybrid strain can grow at the temperature range from 25-30°C and initial pH range between pH 6-9. The fructification of *A. subrufescens* hybrids strain can be done using rice straw compost under growing condition at 25°C and 95% humidity in Chiang Rai, Thailand. However, the yield obtained were lower than previous study by Llarence-Hernandez et al. (2013) and Thongkalng, Sysouphanthong, et al. (2014) who successfully grew these mushroom in France. Suggestion for further work by changing compost formulations, casing type, and also condition for cultivation, improving quality and yield of these mushrooms as a commercial scale in Thailand.

REFERENCES

REFERENCES

Akyuz, M. & Kirbag, S. (2009). Antimicrobial activity of *Pleurotus eryngii* var. *ferulae* grown on various agro-wastes. *EurAsian Journal of BioSciences*, 3(8), 58-63. doi:10.5053/ejobios.2009.3.0.8

Alves, M. J., Ferreira, I. C., Dias, J., Teixeira, V., Martins, A. & Pintado, M. (2012). A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. *Planta Medica*, 78(16), 1707-1718. doi:10.1055/s-0032-1315370

Bandara, A. R., Chen, J., Karunarathna, S. C. Hyde, K. D., Kakumyan, P. (2015). *Auricularia thailandica* sp. nov. (*Auriculariaceae, Auriculariales*) a widely distributed species from Southeastern Asia. *Phytotaxa*, 208(2), 147-156. doi:10.11646/phytotaxa.208.2.3

Bankole, P. O. & Adekunle, A. A. (2012). Studies on biodiversity of some mushrooms collected in Lagos State, Nigeria using biotechnological methods. *Journal of Yeast and Fungal Research*, 3(4), 37-48. doi:10.5897/JYFR12.008

Baroni, T. J. (1981) A revision of the genus *Rhodocybe* Maire (*Agaricales*). In *Beihefte Zur Nova Hedwigia* (Vol. 67, pp. 1-194). Vaduz [Liechtenstein]: J. Cramer.

Baroni, T.J., Desjardin, D.E. & Jones, N.H. (2001). *Clitopilus chalybescens*, a new species from Thailand. *Fungal Divers*, 6, 13-17.

Barros, L., Calhelha, R.C., Vaz J.A., Ferreira I.C.F.R., Baptista, P. & Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. *European Food Research and Technology*, 225(2), 151-156. doi:10.1007/s00217-006-0394-x.

Baysal, E., Yigitbasil, O.N., Colak, M., Toker, H., Simsek, H. & Yilmaz, F. (2007). Cultivation of *Agaricus bisporus* on some compost formulas and locally available casing materials. Part I: Wheat straw based compost formulas and locally available casing materials. *African Journal of Biotechnology*, 6(19), 2225-2230. doi:10.4314/ajb.v6i19.58009

Block, G., Patterson, B. & Subar, A. (1992). Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. *Nutr Cancer*, 18(1), 1-29.

Boa, E. R. (2004). *Wild edible fungi: a global overview of their use and importance to people*. Rome: Food and Agriculture Organization of the United Nations.

Borchers, A. T., Stern, J. S., Hackman, R. M., Keen, C. L. & Gershwin, E. M. (1999). Mushrooms, tumors, and immunity. *Society for Experimental Biology and Medicine*, 221(4), 281-293. doi:10.1046/j.1525-1373.1999.d01-86.x

Boyd, B. & Castaner, J. (2006). Retapamulin. Pleuromutilin antibiotic. *Drugs Future*, 31(2), 107-113.

Brand-Williams, W., Cuvelier, M. E. & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. *LWT-Food Science and Technology*, 28(1), 25-30. doi:10.1016/S0023-6438(95)80008-5

Bugg, T. D. H. (2004). *Introduction to Enzyme and Coenzyme Chemistry*. Oxford, UK: Blackwell Publishing.

Bushuk, W. (2001). Rye production and uses worldwide. *Cereal Foods World*, 46(2), 70-73.

Buswell, J. A., Cai, Y. J., Chang, S. T., Peberdy, J. F., Fu, S. Y. 46, NO. 2S. (1996). Lignocellulolytic enzyme profiles of edible mushroom fungi. *World J Microb Biot*, 12(5), 537-542.

Butler, M. S. & Buss, A. D. (2006). Natural products the future scaffolds for novel antibiotics?. *Biochem Pharmacol*, 71(7), 919-929.

Byerrum, R. U., Clarke, D. A., Lucas, E. H., Ringler, R. L., Stevens, J. A. & Stock, C. C. (1957). Tumor inhibitors in *Boletus edulis* and other *Holobasidiomycetes*. *Antibiot Chemother*, 7(1), 1-4.

Calvalcante, J. L. R., Gomes, V. F. F., Filho, J. K., Minhoni, M. T. D. A. & de Andrade, M. C. N. (2008). Cultivation of *Agaricus blazei* in the environmental protection area of the Baturite region under three types of casing soils. *Acta Scientiarum. Agronomy*, 30(4):513-517. doi:10.4025/actasciagron.v30i4.5309

Chandrasrikul, A., Suwanarit, U., Lumyong, S., Payapanon, A., Sanoamuang, N., Pukahuta, V., Sardsud, U., Duengkae, D., Klinhom, U., Thingkantha, S. & Thongklam, S. (2011). *Checklist of mushrooms (Basidiomycetes) in Thailand. Office of Natural Resources and Environmental policy and Planning*. Thailand: Office of Natural Resources and Environmental policy and Planning.

Chang, S. T. & Miles, P. G. (1987). *Edible mushrooms and their cultivation*. Hong Kong: Chinese University Press.

Chang, S. T. (1999). Global impact of edible and medicinal mushrooms on human welfare in the 21st century: Nongreen revolution. *International Journal of Medicinal Mushrooms*, 1(1), 1-7. doi:10.1615/IntJMedMushrooms.v1.i1.10

Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. *J Food Drug Anal*, 10(3), 178-182.

Chang, S. T. & Mile, P. G. (2004). *Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact* (2nd ed.). United States of America: CRC press.

Chang, S. T. (2008). Overview of mushroom cultivation and utilization as functional foods. In P.C.K. Cheung (Ed.), *Mushrooms as Functional Foods* (pp.1-33). Canada: Jonh Wiley & Sons.

Chen, J., Zhao, R., Parra, L.A., Guelly, A.K., de Kesel, A., Rapior, S., Hyde, K.D., Chukeatirote, E. & Callac, P. (2015). *Agaricus* section *Brunneopicti*: a phylogenetic reconstruction with descriptions of four new taxa. *Phytotaxa*, 192(3), 145-168. doi:10.11646/phytotaxa.192.3.2

Cheung, P. C. K. (2010). The nutritional and health benefits of mushrooms. *Nutrition Bulletin*, 35(4), 292-299. doi:10.1111/j.1467-3010.2010.01859.x

Chihara, G., Hamuro, J., Maeda, Y. Y., Arai, Y. & Fukuoka, F. (1970). Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from *lentinus edodes*(Berk.) Sing. (an edible mushroom). *Cancer Res*, 30(11), 2776-2781.

Co-David, C., Langeveld, D. & Noordeloos, M. E. (2009). Molecular phylogeny and spore evolution of Entolomataceae. *Persoonia*, 23, 147-176. doi:10.3767/003158509X480944

Colauto, N. B., Aizono, P. M., de Carvalho, L. R. M., Paccola-Meirelles, L. D. & Linde, G. A. (2008). Temperature and pH conditions for mycelial growth of *Agaricus brasiliensis* on axenic cultivation. *Semina: Ciências Agrárias, Londrina*, 29(2), 307-312.

Colauto, N. B., Silveira, A. R. D., Eira, A. F. D. & Linde, G. A. (2011). Production flush of *Agaricus blazei* on Brazilian casing layers. *Brazilian Journal of Microbiology*, 42(2), 616-623. doi:10.1590/S1517-83822011000200026

Cooper, J. A. (2014). New species and combinations of some New Zealand agarics belonging to *Clitopilus*, *Lyophyllum*, *Gerhardtia*, *Clitocybe*, *Hydnangium*, *Mycena*, *Rhodocollybia* and *Gerronema*. *Mycosphere*, 5(2), 263-288. doi:10.5943/mycosphere/5/2/2

Coutinho, B. (2007). Steps new drug reviews Retapamulin (Altabax) 1% Topical Ointment for the Treatment of Impetigo. *Am Fam Physician*, 76(10), 1537-1541.

Crous, P. W., Rong, I. S., Wood, A., Lee, S., Glen, H., Botha, W., Slippers, S., de Beer W. Z., Wingfield, M. J. & Hawksworth, D. L. (2006). How many species of fungi are there at the tip of Africa?. *Stud Mycol*, 55, 13-33.

Crous, P. W., Shivas, R. G., Wingfield, M. J., Summerell, B. A., Rossman, A. Y., Alves, J. L., Adams, G. C., Barreto, R. W., Bell, A., Coutinho, M. L., Flory, S. L., Gates, G., Grice, K. R., Hardy, G. E. St. J., Kleczewski, N. M., Lombard, L., Longa, C. M. O., Louis-Seize, G., Macedo, F., Mahoney, D. P., Maresi, G., Martin-Sanchez, P. M., Marvanová, L., Minnis, A. M., Morgado, L. N., Noordeloos, M. E., Phillips, A. J. L., Quaedvlieg, W., Ryan, P. G., Saiz-Jimenez, C., Seifert, K. A., Swart, W. J., Tan, Y. P., Tanney, J. B., Thu, P. Q., Videira, S. I. R., Walker, D. M. & Groenewald J. Z. (2012). Fungal Planet description sheets: 128-153. *Persoonia*, 29, 146-201. doi:10.3767/003158512X661589

Daba, A. S. & Ezeronye O. U. (2003). Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. *African Journal of Biotechnology*, 2(12), 672-678.

Dai, Y. C., Yang, Z. L., Cui, B. K., Yu, C. J. & Zhou, L. W. (2009). Species diversity and utilization of medicinal mushrooms and fungi in China (review). *International Journal of Medicinal Mushrooms*, 11(3), 287-302. doi:10.1615/IntJMedMushr.v11.i3.80

Daum, R. S., Kar, S. & Kirkpatrick, P. (2007). Retapamulin. *Nature Reviews Drug Discovery*, 6(11), 865-866. doi:10.1038/nrd2442

de Andrade, M. C. N., Zied, D. C., de Almeida Minhon, M. T. & Filho, J. K. (2008). Yield of four *Agaricus bisporus* strains in three compost formulations and chemical composition analyses of the mushrooms. *Brazillian Journal of Microbiol*, 39(3), 593-598. doi: 10.1590/S1517-838220080003000034

Deng, W. Q., Li, T. H. & Heng, S. Y. (2010). A new variety of crepidotoid *Clitopilus* from Taiwan, China. *Mycosistema*, 29(6), 924-926.

Deng, W. Q., Li, T. H. & Shen, Y. H. (2012). A new species of *Clitopilus* from southwestern China. *Mycotaxon*, 122, 443–447. doi:10.5248/122.443

Deng, W. Q., Heng, S. Y. & Li, T. H. (2013). A small cyathiform new species of *Clitopilus* from Guangdong, China. *Mycosistema*, 32(5), 781-784.

Dias, E. S., Abe, C. & Schwan, R. F. (2004). Truths and myths about the mushroom *Agaricus blazei*. *Scientia Agricola*, 61(5), 545-549. doi:10.1590/S0103-90162004000500014

Dias, E. S. (2010). Mushroom cultivation in Brazil, challenges and potential for growth. *Ciência e Agrotecnologia*, 34(4), 795-803. doi:10.1590/S1413-70542010000400001

Diez, V. A. & Alvarez, A. (2001). Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. *Food Chemistry*, 75(4), 417-422. doi:10.1016/S0308-8146(01)00229-1

Duc, P. H. (2005). Regional studies- Mushrooms and cultivation of mushrooms in Vietnam. In MuahWorld (Ed.), *Mushroom growers' handbook 2: Shiitake cultivation* (pp. 260-269). Korea: Mush World.

Duengkae, K. (2006). Monitoring on species diversity of macrofungi in Khek watershed, Phetchabun Province. *Songklanakarin JSciTechnol*, 28(2), 293-303.

Duh, P. D., Tu, Y. Y. & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (*Chrysanthemum morifolium* Ramat). *LWT-Food Sci Technol*, 32(5), 269-277.

Dulay, R., Cabrera, E. C., Kalaw, S. P. & Reyes, R. G. (2012). Optimal growth conditions for basidiospore germination and morphogenesis of Philippine wild strain of *Lentinus tigrinus* (Bull.) Fr. *Mycosphere*, 3(6), 926-933. doi:10.5943/mycosphere/3/6/6

Elisashvili, V., Chichua, D., Kachlishvili, E., Tsiklauri, N. & Khardziani, T. (2003). Lignocellulolytic enzyme activity during growth and fruiting of the edible and medicinal mushroom *Pleurotus ostreatus* (Jacq:Fr.)Kumm (Agaricomycetideae). *Int J Med Mushrooms*, 5(2), 193-198.

Farnet, A. M., Qasemian, L., Peter-Valence, F., Ruaudel, F., Savoie, J. M. & Ferré, E. (2013). Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of *Agaricus subrufescens* during the first two weeks of cultivation. *Bioresource Technology*, 131, 266-273. doi:10.1016/j.biortech.2012.12.141

Felsenstein, J. (1985). Phylogenies and the comparative method, *Am Nat*, 125(1), 1-15.

Finimundy, T. C., Gambato, G., Fontanab, R., Camassolab, M., Salvador, M., Mourad, S., Hess, J., Henriques, J. A. P., Dillonb, A. J. P. & Roesch-Ely, M. (2013). Aqueous extracts of *Lentinula edodes* and *Pleurotus sajor-caju* exhibit high antioxidant capability and promising in vitro antitumor activity. *Nutr Res*, 33(1), 76-84.

Firenzuoli, F., Gori, L. & Lombardo, G. (2008). The medicinal mushroom *Agaricus blazei* Murrill: review of literature and pharmaco-toxicological problems. *Evidence-Based Complementary and Alternative Medicine*, 5(1), 3-15. doi:10.1093/ecam/nem007

Gan, Q., Allen, S. J., & Taylor, G. (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. *Process Biochemistry*, 38(7), 1003-1018. doi:10.1016/S0032-9592(02)00220-0

Gan, C. H., Nurul Amira, B. & Asmah, R. (2013). Antioxidant analysis of different types of edible mushrooms (*Agaricus bisporous* and *Agaricus brasiliensis*). *Int Food Res J*, 20(3), 1095-1102.

Gardes, M. & Bruns, T.D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. *Molecular Ecology*, 2(2), 113-118.doi:10.1111/j.1365-294X.1993.tb00005.x

Gbolagade, J. S., Fasidi, I. O., Ajayi, E. J. & Sobowale, A. A. (2006). Effect of physico-chemical factors and semi-synthetic media on vegetative growth of *Lentinus subnudus* (Berk.), an edible mushroom from Nigeria. *Food Chemistry*, 99(4), 742-747. doi:10.1016/j.foodchem.2005.08.052

Gerrits, J.P.G. (1988). Nutrition and compost. In *The cultivation of mushrooms* (pp.29-72). Rustington: Darlington Mushroom Laboratories.

Goud, M. J. P., Suryam, A., Lakshmi pathi, V. & Singara Charya, M. A. (2009). Extracellular hydrolytic enzyme profiles of certain South Indian basidiomycetes. *African Journal of Biotechnology*, 8(3), 354-360.

Grangeia, C., Heleno, S. A., Barros L., Martins, A. & Ferreira, I. C. F. R. (2011). Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. *Food Research International*, 44(4), 1029-1035. doi:10.1016/j.foodres.2011.03.006

Gurung, N., Ray, S., Bose, S. & Rai, V. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. *BioMed Res Int*, 2013, 1-18.

Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp Ser*, 41, 95-98.

Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A., Ameen, O. M. & Lawal, A. (2010). Antioxidants: Its medicinal and pharmacological applications. *Afr J Pure Appl Chem*, 4(8), 142-151.

Hartley, A. J., de Mattos-Shipley, K., Collins, C. M., Kilaru, S., Foster, G. D. & Bailey, A. M. (2009). Investigating pleuromutilin-producing *Clitopilus* species and related basidiomycetes. *FEMS Microbiology Letters*, 297(1), 24-30.doi:10.1111/j.1574-6968.2009.01656.x

Hoa, H. T. & Wang, C. L. (2015). The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (*Pleurotus ostreatus* and *Pleurotus cystidiosus*). *Mycobiology*, 43(1), 14-23.doi:10.5941/MYCO.2015.43.1.14

Hobbs, C. (2000). Medicinal values of *Lentinus edodes* (Berk.) Sing. (Agaricomycetidae). A literature review. *International Journal Medical Mushrooms*, 2(4), 287-302.doi:10.1615/IntJMedMushr.v2.i4.90

Hobbs, C. (2002). *Medicinal mushrooms: an exploration of tradition, healing, and culture*. Santa Cruz, CA: Botanica Press.

Hofrichter, M. (2002). Review: lignin conversion by manganese peroxidase (MnP). *Enzyme and Microbial Technology*, 30(4), 454-466. doi:10.1016/S0141-0229(01)00528-2

Hong, K. J., Dunn, D. M., Shen, C. L. & Pence, B. C. (2004). Effects of *Ganoderma lucidum* on apoptotic and anti-inflammatory function in HT-29 human colonic carcinoma cells. *Phytotherapy Research*, 18(9), 768-770.doi:10.1002/ptr.1495

Hu, J., Arantes, V. & Saddler, J. N. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?. *Biotechnol Biofuels*, 4(1), 1-14.

Huang, N.L. 1997. Brazilian mushroom (Gee Song Rong). In Huang (Ed.), *Cultivation of eighteen rare and precious gourmet mushrooms* (pp.95-101). China: Agricultural Press.

Huang, L. C. (2000). *Antioxidant properties and polysaccharide composition analysis of *Antrodia camphorata* and *Agaricus blazei**. Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.

Index Fungorum, *Clitopilus*, Retrieved October 04, 2015 from
<http://www.indexfungorum.org./names/names>.

Iwade, I. & Mizuno, T. (1997). Cultivation of Kawariharatake (*Agaricus blazei* Murill). *Food Rev Int*, 13(3), 338-390.

Jayasinghe, C., Imtiaz, A., Hur, H., Lee, G. W., Lee, T. S. & Lee, U. Y. (2008). Favorable culture conditions for mycelial growth of Korean wild strains in *Ganoderma lucidum*. *Mycobiology*, 36(1), 28-33.
 doi:10.4489/MYCO.2008.36.1.028

Jeong, Y. T., Jeong, S. C., Yang, B. K., Islam, R. & Song, C. H. (2009). Optimal culture conditions for mycelial growth and exo-polymer production of *Ganoderma applanatum*. *Mycobiology*, 37(2), 89-93. doi:10.4489/MYCO.2009.37.2.089

Jesus, J. P. F., Kohori, C. B., Andrade, M. C. N. & Minhoni, M. T. A. (2013). Yield of different white button strains in sugar cane by product-based composts. *African Journal of Agricultural Research*, 8(9), 824-831. doi:10.5897/AJAR12.1750

Jonathan, S. G. & Adeoyo, O. R. (2011). Evaluation of ten wild Nigerian mushrooms for amylase and cellulase activities. *Mycobiology*, 39(2), 103-108. doi:10.4489/MYCO.2011.39.2.103

Jones, E. B. G. & Hyde, K. D. (2004). Introduction to Thai fungal diversity. In E. B. G. Jones, M. Tantcharoen & K. D. Hyde (Eds.), *Thai Fungal Divers* (pp. 7-35). Thailand: BIOTEC.

Jones, R., Fritsche, T., Sader, H. & Ross, J. (2006). Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant gram-positive cocci. *Antimicrobial Agents and Chemotherapy*, 50(7), 2583-2586. doi:10.1128/AAC.01432-05

Joseph, S., Sabulal, B., George, V., Antony, K. R. & Janardhanan, K. K. (2011). Antitumor and anti-inflammatory activities of polysaccharides isolated from *Ganoderma lucidum*. *Acta Pharmaceutica*, 61(3), 335-342. doi: 10.2478/v10007-011-0030-6

Jumes, F. M. D., Lugarini, D., Pereira, A. L. B., de Oliveira, A., Christoff, A. D. O., Linde, G. A. & Acco, A. (2010). Effects of *Agaricus brasiliensis* mushroom in Walker-256 tumor-bearing rats. *Can J Physiol Pharmacol*, 88(1), 21-27.

Kapu, N. U. S., Manning, M., Hurley, T. B., Voigt, J., Cosgrove, D. J. & Romaine, C. P. (2012). Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars. *Bioresource Technology*, 114, 399-405. doi:10.1016/j.biortech.2012.02.139.

Kao, C., Jesuthasan, A. C., Bishop, K. S., Glucina, M. P. & Ferguson, L. R. (2013). Anti-cancer activities of *Ganoderma lucidum*: active ingredients and pathways. *Funct Food Health Dis*, 3(2), 48-65.

Kavanagh, F., Hervey, A. & Robbins, W. J. (1951). Antibiotic substances from Basidiomycetese VIII. *Pleurotus Multilus* (Fr.) Sacc. and *Pleurotus passeckerianus* Pilat*. *Proc Natl Acad Sci U S A*, 37(9), 570-574.

Kavanagh, F., Hervey, A. & Robbins, W. J. (1952). Antibiotic substances from Basidiomycetese IX. *Drosophila subatrata* (Batsch ex Fr.) Quel. *Proc Natl Acad Sci U S A*, 38(7), 555-560.

Kauffman, C.H. (1981). The Agaricaceae of Michigan. *MichGeol Biol Surv*, 26(5), 1-117.

Kedare, S. B. & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. *Journal of Food Science and Technology*, 48(4), 412-422. doi: 10.1007/s13197-011-0251-1

Kerrigan, R. W. (2005) *Agaricus subrufescens*, a cultivated edible and medicinal mushroom, and its synonyms. *Mycologia*, 97(1), 12-24.

Kibar, B. & Peksen, A. (2011). Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom *Tricholoma terreum*. *Zemdirbyste Agriculture*, 98(4), 409-414.

Kilaru, S., Collins C. M., Hartley, A. J., Bailey, A. M. & Foster, G. D. (2009). Establishing Molecular Tools for Genetic Manipulation of the Pleuromutilin-Producing Fungus *Clitopilus passeckerianus*. *Applied and Environmental Microbiology*, 75(22), 7196-7204. doi:10.1128/AEM.01151-09

Kirk, P. M., Cannon, P. F., Minter, D. W. M. & Stalpers, J. A. (2008). *Dictionary of the fungi* (10th ed.). Trowbridge: Cromwell Press.

Klaus, A., Kozarski, M., Niksic, M., Jakovljevic, D., Todorovic, N., Stefanoska, I. & Van Griensven, L. J. (2013). The edible mushroom *Laetiporus sulphureus* as potential source of natural antioxidants. *International Journal of Food Sciences and Nutrition*, 64(5), 599-610. doi:10.3109/09637486.2012.759190.

Klomklung, N., Karunarathna, S. C., Hyde, K. D. & Chukeatirote, E. (2014). Optimal conditions of mycelial growth of three wild edible mushrooms from northern Thailand. *Acta Biologica Szegediensis*, 58(1), 39-43.

Knauseder, F. & Brandl, E. (1976). Pleuromutilins fermentation, structure and biosynthesis. *J Antibiot*, 29(2), 125-131.

Kopytowski-Filho, J., Minhoni, M. T. A. & Rodriguez Estrada, A. (2006). *Agaricus blazei* “the Almond Portobello”: cultivation and commercialization. *Am Mushroom Institute*. 54, 22-28.

Kopytowski Filho, J., Minhoni, M. T. A., Andrade, M. C. N. & Zied, D. (2008). Effect of compost supplementation (soybean meal and Champfood) at different phases (spawning and before casing) on productivity of *Agaricus blazei* ss. Heinemann (*A. brasiliensis*). *The International Society for Mushroom Science*, 17, 260-270.

Kornerup, A. & Wanscher H. H. (1978). *Methuen Handbook of Color* (3rd ed.). London: Eyre Methuen.

Krupodorova, T., Ivanova, T. & Barshteyn, V. (2014). Screening of extracellular enzymatic activity of macrofungi. *J Microbiol, Biotechnol Food Sci*, 3(4), 315-318.

Kuforiji, O.O. & Fasidi, I. O. (1998). Growth requirement of *Pleuroteus tuberregium*, a Nigerian mushroom. *Pro Niger Soc Microbiol*, 1(1), 73-78.

Largeteau, M. L., Llarena-Hernández, R. C., Regnault-Roger, C. & Savoie, J. M. (2011). The medicinal *Agaricus* mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorization. *Applied Microbiology and Biotechnology*, 92, 897-907. doi:10.1007/s00253-011-3630-7

Lai, W. H., Siti Murni, M. J., Fauzi, D., Abas Mazni, O. & Saleh, N. M. (2011). Optimal culture conditions for mycelial growth of *Lignosus rhinocerus*. *Mycobiology*, 39(2), 92-95. doi: 10.4489/MYCO.2011.39.2.092

Leatham, G. F. (1985). Extracellular enzymes produced by the cultivated mushroom *Lentinus edodes* during degradation of a lignocellulosic medium. *Appl Environ Microbiol*, 50(4), 859-867.

Lee, J. W., Gwak, K. S., Kim, S. I., Kim, M., Choi, D. H. & Choi, I. G. (2007). Characterization of xylanase from *Lentinus edodes* M290 cultured on waste mushroom logs. *J Microbiol Biotech*, 17(11), 1811-1817.

Lee, S. J., Lee, Y. M., Lee, H. B., & Kim, J. J. (2011). Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes. *J Microbiol Biotech*, 21(12), 1322-1329.

Liang, Z., Miao, C. & Zhang, Y. (1996). Influence of chemical-modified structures on antitumor activity of polysaccharides from *clitopilus caespitosus*. *Zhongguo Yao Xue Za Zhi*, 31(10), 613-615.

Liu, Y., Fukuwatari, Y., Okumura, K., Takeda, K., Ishibashi, K. I., Furukawa, M., Ohno, N., Mori, K., Gao, M. & Motoi, M. (2008). Immunomodulating activity of *Agaricus brasiliensis* KA21 in mice and in human volunteers. *Evidence-Based Complementary and Alternative Medicine*, 5(2), 205-219.
doi:10.1093/ecam/nem016

Liu, X. L., Zheng, X. Q., Peng-zhi Qian, P. Z., Kopparapu, N. K., Yong-ping Deng, Y. P., Nonaka, M. & Harada, N. (2014). Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of *Pleurotus ostreatus*. *Journal of Microbiology and Biotechnology*, 24(2), 245-253.
doi:10.4014/jmb.1307.07063

Liu, J. K., Hyde, K. D., Jones, E. B. G., Ariyawansa, H. A., Bhat, D. J., Boonmee, S., Maharachchikumbura, S. S. N., McKenzie, E. H. C., Phookamsak, R., Phukhamsakda, C., Shenoy, B. D., Abdel-Wahab, M. A., Buyck, B., Chen, J., Chethana, K. W. T. Singtripop, C., Dai, D. Q., Dai, Y. C., Daranagama, D. A., Dissanayake, A. J., Doilom, M., D'souza, M. J., Fan, X. L., Goonasekara, I. D., Hirayama, K., Hongsanan, S., Jayasiri, S. C., Jayawardena, R. S., Karunaratna, S. C., Li, W. J., Mapook, A., Norphanphoun, C., Pang, K. L., Perera, R. H., Peršoh, D., Pinruan, U., Senanayake, I. C., Somrithipol, S., Suetrong, S., Tanaka, K., Thambugala, K. M., Tian, Q., Tibpromma, S., Udayanga, D., Wijayawardene, N. N., Wanasinghe, D., Wisitrassameewong, K., Zeng, X. Y., Abdel-Aziz, F. A., Adamčík, S., Bahkali, A. H., Boonyuen, N., Bulgakov, T., Callac, P., Chomnunti, P., Greiner, K., Hashimoto, A., Hofstetter, V., Kang, J. C., Lewis, D., Li, X. H., Liu, X. Z., Liu, Z. Y.,

Matsumura, M., Mortimer, P. E., Rambold, G., Randrianjohany, E., Sato G., Sri-Indrasutthi, V., Tian, C. M., Verbeken, A., Brackel, W., Wang, Y., Wen, T. C., Xu, J. C., Yan, J. Y., Zhao, R. & Camporesi, E. (2015). Fungal diversity notes 1-110: taxonomic and phylogenetic contributions to fungal species. *Fungal Diversity*, 72(1), 1-197. doi:10.1007/s13225-015-0324-y

Llarena-Hernandez, C. R., Largeau, M. L., Ferrer, N., Regnault-Rogerb, C. & Savoiea, J. M. (2013). Optimization of the cultivation conditions for mushroom production with European wild strains of *Agaricus subrufescens* and Brazilian cultivars. *Journal of the Science of Food and Agriculture*, 94(1), 77-84. doi:10.1002/jsfa.6200

Llarena-Hernández, C. R., Largeau, M. L., Ferrer, N., Regnault-Roger, C., & Savoie, J. M. (2014). Optimization of the cultivation conditions for mushroom production with European wild strains of *Agaricus subrufescens* and Brazilian cultivars. *Journal of the Science of Food and Agriculture*, 94(1), 77-84. doi:10.1002/jsfa.6200

Luangharn, T., Hyde, K. D. & Chukeatirote, E. (2014). Proximate analysis and mineral content of *Laetiporus sulphureus* strain MFLUCC 12-0546 from Northern Thailand. *Chiang Mai JSci*, 41(4), 765-770.

Luangharn, T., Karunarathna, S. C., Hyde, K. D. & Chukeatirote, E. (2014). Optimal conditions of mycelia growth of *Laetiporus sulphureus* sensu lato. *Mycology*, 5(4), 221-227. doi:10.1080/21501203.2014.957361

Magday Jr, J. C., Bungihan, M. E., & Dulay, R. M. R. (2014). Optimization of mycelial growth and cultivation of fruiting body of Philippine wild strain of *Ganoderma lucidum*. *Current Research in Environmental & Applied Mycology*, 4(2), 162-172. doi:10.5943/cream/4/2/4

Maitan-Alfenas, G. P., Visser, E. M. & Guimaraes, V. M. (2015). Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. *Current Opinion in Food Science*, 1(1), 44-49. doi: 10.1016/j.cofs.2014.10.001

Mantovani, T. R. D., Linde, G. A. & Colauto, N. B. (2007). Effect of addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on *Agaricus brasiliensis* growth. *Can J Microbiol*, 53(1), 139-143.

Marshall, E. & Nair, N. G. (2009). *Make money by growing mushrooms*. Rome. Food and Agriculture Organization of the United Nations.

Martínez-Carrera, D., Aguilar, A., Martínez, W., Bonilla, M., Morales, P. & Sobal, M. (2000). Commercial production and marketing of edible mushrooms cultivated on coffee pulp in Mexico. In T. Sera, C. Soccot, A. Pandey & S. Roussos (Eds.), *Coffee biotechnology and quality* (pp. 471-488). Neterhlands: Kluwer Academic.

Matheny, P. B., Curtis, J. M., Hofstetter, V., Aime, M. C., Moncalvo, J. M., Ge, Z. W., Slot, J. C., Ammirati, J. F., Baroni, T. J., Bouger, N. L., Hughes, K. W., Lodge, D. J., Kerrigan, R. W., Seidl, M. T., Aanen, D. K., DeNitis, M., Daniele, G. M., Desjardin, D. E., Kropp, B. R., Norvell, L. L., Parker, A., Vellinga, E. C., Vilgalys, R., Hibbett, D. S. (2006). Major clades of *Agaricales*: a multilocus phylogenetic overview. *Mycologia*, 98(6), 982-995. doi:10.3852/mycologia.98.6.982

Mendonca, M. D., Kasuya, M. C., Cadorin, A. & Vieira, A. J. (2005). *Agaricus blazei* cultivation for a living in Brazil. In *Shitake cultivation* (pp.208-218). Korea: MushWorld.

Miles, P. G. & Chang, S. T. (1997). *Mushroom biology: concise basics and current developments*. London: World Scientific.

Miyazaki, T., & Nishijima, M. (1981). Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of *Ganoderma lucidum*. *Chemical & Pharmaceutical Bulletin*, 29(12), 3611-3616. doi:10.1248/cpb.29.3611

Mizuno, T., Hagiwara, T., Nakamura, T., Ito, H., Shimura, K., Sumiya, T. & Asakura, A. (1990). Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake,” the fruiting body of *Agavicus blazei* Murill. *Agric Biol Chem*, 54(11), 2889-2896.

Mizuno, T., Wasa, T., Ito, H., Suzuki, C. & Ukai, N. (1992). Antitumor active polysaccharides isolated from the fruiting body of *Hericium erinaceum*, and edible, and medicinal mushroom called Yamabushitake or Houtou. *Bioscience, Biotechnology, and Biochemistry*, 56(2), 347-348. doi:10.1271/bbb.56.347

Mizuno, T., Yeohlui, P., Kinoshita, T., Zhuang, C., Ito, H. & Mayuzumi, Y. (1996). Antitumor activity and chemical modification of poly-saccharides from Niohshimeji mushroom, *Tricholoma giganteum*. *Bioscience, Biotechnology and Biochemistry*, 60(1), 30-33. doi:10.1271/bbb.60.30

Mizuno, M., Minato, K., Ito, H., Kawade, M., Terai, H. & Tsuchida, H. (1999). Antitumor polysaccharide from the mycelium of liquid-cultures *Agaricus blazei* Mill. *Biochemistry and Molecular Biology International*, 47(4), 707-714. doi:10.1080/15216549900201773

Moreno, G., Contu, M., Ortega, A., Platas, G. & Peláez, F. (2007). Molecular phylogenetic studies show *Omphalina giovanellae* represents a new section of *Clitopilus* (Agaricomycetes). *Mycological Research*, 111(12), 1399-1405. doi:10.1016/j.mycres.2007.09.009

Museum of medicinal mushrooms. (2008). In Research and International Affairs of school of science, Mahasarakham University. Retrieved May 20, 2010, from <http://www.sac.or.th>

Nascimento, C. C. & Alves, M. H. (2014). New records of *Agaricaceae* (Basidiomycota, Agaricales) from Araripe National Forest, Ceara State, Brazil. *Mycosphere*, 5(2), 319-332. doi:10.5943/mycosphere/5/2/6

Neves, M. A., Kasuya, M. C., Araujo, E. F., Leite, C. L., Camelini, C. M., Ribas, L. C. & de Mendonca, M. M. (2005). Physiological and genetic variability of commercial isolates of culinary-medicinal mushroom *Agaricus brasiliensis* S. Wasser et al. (Agaricomycetidae) cultivated in Brazil. *International Journal of Medicinal Mushrooms*, 7(4), 553-564. doi: 10.1615/IntJMedMushr.v7.i4.50

Ng, T. B. (1998). A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom *Coriolus versicolor* (Basidiomycetes: Polyporaceae). *General Pharmacology: The Vascular System*, 30(1), 1-4.

Noordeloos, M. E. (2008). *Clitopilus*. In H. Knudsen & J. Vesterholt (Eds), *Funga Nordica: Agaricoid, Boletoïd and Cyphelloïd Genera* (pp. 431-432), Copenhagen: Nordsvam.

Noordeloos, M., Co-David, D. & Gminder, A. (2010). *Clitopilus byssisedoides*, a new species from a hothouse in Germany. *Mycotaxon*, 112, 225-229. doi:10.5248/112.225

Noordeloos, M. E. & Gates, G. M. (2012). *The Entolomataceae of Tasmania*. New York: Springer.

Obodai, M., Cleland-Okine, J. & Vowotor, K. A. (2003). Comparative study on the growth and yield of *Pleurotus ostreatus* mushroom on different lignocellulosic by-products. *J Ind Microbiol Biotechnol*, 30(3), 146-149.

Odou, M. F., Muller, C., Calvet, L. & Dubreuil, L. (2007). In vitro activity against anaerobes of retapamulin, a new topical antibiotic for treatment of skin infections. *Journal of Antimicrobial Chemotherapy*, 59(4), 646-651. doi:10.1093/jac/dkm019

Ooi, V. E. C. & Liu, F. (1999). A review of pharmacological activities of mushroom polysaccharides. *International Journal of Medicinal Mushrooms*, 1(3), 195-206. doi:10.1615/IntJMedMushrooms.v1.i3.10

Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. *Comput Appl Biosci*, 12(4): 357-358.

Palacios, I., Lozano, M., Moro, C., D'arrigo, M., Rostagno, M. A., Martínez, J. A., García-Lafuente, A., Guillamón, E. & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. *Food Chemistry*, 128(3), 674-678. doi:10.1016/j.foodchem.2011.03.085

Pandey, A., Soccolla, C. R., Nigamb, P., Soccollc, V. T., Vandenberghe, L. P. S. & Mohana, R. (2000). Biotechnological potential of agro-industrial residues. II: Cassava bagasse. *Bioresource Technology*, 74(1). 81-87. doi:10.1016/S0960-8524(99)00143-1

Pankuch, G. A., Lin, G., Hoellman, D. B., Good, C. E., Jacobs, M. R. & Appelbaum, P. C. (2006). Activity of retapamulin against *Streptococcus pyogenes* and *Staphylococcus aureus* evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies. *Antimicrobial Agents and Chemotherapy*, 50(5), 1727-1730. doi:10.1128/AAC.50.5.1727-1730.2006

Papa, I. A., Zulaybar, T. O. & Raymundo, A. K. (2006). Increasing Pleuromutilin activity of *Clitopilus passeckerianus* by chemical mutagenesis and improvement of production medium. *Philipp Agric Sci*, 89(1), 20-33.

Parish, L. C., Jorizzo, J. L., Breton, J. J., Hirman, J. W., Scangarella, N. E., Shawar, R. M. & White, S. M. (2006). Topical retapamulin ointment (1%, wt/wt) twice daily for 5 days versus oral cephalexin twice daily for 10 days in the treatment of secondarily infected dermatitis: results of a randomized controlled trial. *Journal of the American Academy of Dermatology*, 55(6), 1003-1013. doi:10.1016/j.jaad.2006.08.058

Park, H. L., Lee, H. S., Shin B. C., Liu J. P., Shang, Q., Yamashita. H. & Lim, B. (2012). Traditional medicine in China, Korea, and Japan: A brief introduction and comparison. *Evidence-BasedComplementary and Alternative Medicine*, 2012, 1-9. doi:10.1155/2012/429103

Poulsen, S. M., Karlsson, M., Johansson, L. B. & Vester, B. (2001). The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. *Mol Microbiol*, 41(5). 1091-1099.

Praveen, K., Usha, K. Y., Shanthi, B., Ramanjaneyulu, G., Naveen, M. & Reddy, R. B. (2012). Production of cellulolytic enzymes by a mushroom-stereum ostrea. *Int J Res Biochem Biophys*, 2(1): 1-4.

Pushpa, H. & Purushothama, K. B. (2012). Biodiversity of mushrooms in and around Bangalore (Karnataka) India. *Am Eurasian J Agric Environ Sci*, 12(6), 750-759.

Quimio, T. H., Chang, S. T. & Royse, D. J. (1990). *Technical guidelines for mushroom growing in the tropics*. Rome: Food & Agriculture Organization of the United Nations (FAO).

Rashad, M. M., Abdou, H. M., Mahmoud, A. E. & Nooman, M. U. (2009). Nutritional analysis and enzyme activities of *Pleurotus ostreatus* cultivated on *Citrus limonium* and *Carica papaya* wastes. *Aust J Basic & Appl Sci*, 3(4), 3352-3360.

Rashad, R. T. (2013). Separation of some rice straw components and studying their effect on some hydro-physical properties of two different soils. *J Environ Chem Eng*, 1(4), 728-735.

Raven, P. H. & George B. J. (2002). *Biology* (6th ed.). Boston: McGraw-Hill Science.

Redhead, S. A. & Baroni, T. J. (1986). *Clitopilus fuscogelatinosus* and *Rhodocybe carlottae*, new species in the Entolomataceae (Agaricales) from Canada. *Canadian Journal of Botany*, 64(7), 1450-1452. doi:10.1139/b86-197.

Reis, F. S., Martins, A., Barros, L. & Ferreira, I. C. F. R. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. *Food and Chemical Toxicology*, 50(5), 1201-1207. doi:10.1016/j.fct.2012.02.013.

Reshetnikov, S. V., Wasser, S. P. & Tan, K. K. (2001). Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. *International Journal of Medicinal Mushrooms*, 3(4), 361-394. doi:10.1615/IntJMedMushr.v3.i4.80

Ribeiro, B., Andrade, P. B., Baptista, P., Barros, L., Ferreira, I. C., Seabra, R. M. & Valentão, P. (2008). *Leucopaxillus giganteus* mycelium: Effect of nitrogen source on organic acids and alkaloids. *J. Agric Food Chem*, 56(12), 4769-4774.

Rinker, D. L. (1993). *Commercial mushroom production*. Ontario: Queen's Printer for Ontario.

Rizal, L. M., Hyde, K. D., Chukeatirote, E., Kakumyan, P. & Chamyuang, S. (2014). Optimal mycelial conditions and spawn production for the domestication of *Macrolepiota deters*. In *Proceedings of the 26th Annual Meeting of the Thai Society for Biotechnology and International Conference* (pp.175-181). Thailand: Chiang rai.

Rizal, L. M., Hyde, K. D., Chukeatirote, E. & Chamyuang, S. (2015). Proximate analysis and mineral constituents of *Macrolepiota dolichaula* and soils beneath its fruiting bodies. *Mycosphere*, 6(4), 414-420. doi:10.5943/mycosphere/6/4/3

Rosa, L. H., Machado, K. M. G., Jacob, C. C., Capelari, M., Rosa, C. A. & Zani, C. L. (2003). Screening of Brazilian basidiomycetes for antimicrobial activity. *Memórias do Instituto Oswaldo Cruz*, 98(7), 967-974. doi:10.1590/S0074-02762003000700019

Roupas, P., Keogh, J., Noakes, M., Margetts, C. & Taylor P. (2012). The role of edible mushrooms in health: Evaluation of the evidence. *Journal of Functional Foods*, 4(4), 687-709. doi:10.1016/j.jff.2012.05.003

Royse, D. J. & Sanchez-Vazquez, J. E. (2003). Influence of precipitated calcium carbonate (CaCO_3) on shiitake (*Lentinula edodes*) yield and mushroom size. *Bioresource Technology*, 90, 225-228. doi:10.1016/S0960-8524(03)00119-6

Scarse, R. (1995). Cultivating mushrooms the potential. *Mycologist*, 9(1), 18-19.

Shah, V. & Nerud, F. (2002). Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. *Can J Microbiol*, 48(10), 857-870.

Singer, R. (1986). *The Agaricales in Modern Taxonomy* (4th ed.). Koenigstein: Koeltz Scientific Books.

Siwulski, M., Sobierski, K., Górska, R., Lisiecka, J. & Sas-Golak, I. (2011). Temperature and pH impact on the mycelium growth of *Mycogone perniciosa* and *Verticillium fungicola* isolates derived from Polish and foreign mushroom growing houses. *J Plant Prot Res*, 51(3), 268-272.

Stadler, M. & Hoffmeister, D. (2015). Fungal natural products-the mushroom perspective. *Frontiers in Microbiology*, 2015(6), 1-4.
doi:10.3389/fmicb.2015.00127

Stewart, K. R. (1986). A method for generating protoplasts from *Clitopilus pinsitus*. *The Journal of Antibiotics*, 39(10), 1486-1487. doi:10.7164/antibiotics.39.1486

Subashini, C. J., Ariyawansa, H. A., Liu J. K., Jones, E. B. G. & Hyde, K. D. (2015). The Faces of Fungi database: Fungal names linked with morphology, molecular and human attributes, Database. [Unpublished paper]. Fungal Diversity

Sundar, R., Liji, T., Rajila, C. & Suganyadevi, P. (2012). Amylase production by *Aspergillus niger* under submerged fermentation using *Ipomoea batatas*. *Int J Appl Biol Pharm*, 3(2), 175-182.

Swofford, D. L. (2003). *PAUP**. *Phylogenetic analysis using parsimony (*and other methods) version 4.0 b10*. Massachusetts: Sinauer Associates.

Tabata, K., Ito, W., Kojima, T., Kawabata, S., & Misaki, A. (1981). Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by *Schizophyllum commune* Fries. *Carbohydr Res*, 89(1), 121-135.

Takahashi, H. & Degawa, Y. (2011). Two new species of *Agaricales* and a new Japanese record for *Boletellus betula* from Japan. *Mycoscience*, 52(5), 312-318. doi:10.1007/s10267-011-0109-4

Tan, Y. H., & Wahab, M. N. (1997). Extracellular enzyme production during anamorphic growth in the edible mushroom, *Pleurotus sajor-caju*. *World J Microb Biot*, 13(6), 613-617.

Thawthong, A., Karunaratna, S. C., Thongklang, N., Chukeatirote, E., Kakumyan, P., Chamyuang, S. & Hyde, K. D. (2014). Discovering and domesticating wild tropical cultivatable mushrooms. *Chiang Mai J Sci*, 41(4), 731-764.

Thiribhuvanamala, G., Krishnamoorthy, S., Manoranjitham, K., Praksasm, V., & Krishnan, S. (2012). Improved techniques to enhance the yield of paddy straw mushroom (*Volvariella volvacea*) for commercial cultivation. *Afr J Biotechnol*, 11(64), 12740-12748.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 25(24), 4876-4882. doi: 10.1093/nar/25.24.4876

Thongklang, N., Hyde, K. D., Bussaban, B. & Lumyong, S. (2011). Culture condition, inoculum production and host response of a wild mushroom, *Phlebopus portentosus* strain CMUHH121-005. *Maejo Int J SciTech*, 5(3), 413-425.

Thongklang, N., Hoang, E., Estrada, A. E. R., Sysouphanthong, P., Moinard, M., Hyde, K. D. & Callac, P. (2014). Evidence for amphithallism and broad geographical hybridization potential among *Agaricus subrufescens* isolates from Brazil, France, and Thailand. *Fungal Biology*, 118(12), 1013-1023.
doi:10.1016/j.funbio.2014.10.004

Thongklang, N., Nawaz, R., Khalid, A. N., Chen, J., Hyde, K. D., Zhao, R., Parra, L. A., Hanif, M., Moinard, M. & Callac, P. (2014). Morphological and molecular characterization of three *Agaricus* species from tropical Asia (Pakistan, Thailand) reveals a new group in section *Xanthodermatei*. *Mycologia*, 106(6), 1220-1232. doi: 10.3852/14-076.

Thongklang, N., Sysouphanthong, P., Callac, P. & Hyde, K. D. (2014). First cultivation of *Agaricus flocculipes* and a novel Thai strain of *A. subrufescens*. *Mycosphere*, 5(6), 814-820. doi:10.5943/mycosphere/5/6/11

Tran, D. V. (1998). World rice production: main issues and technical possibilities. *Cahiers Options Méditerranéennes*, 24(2), 57-69.

Tsai, S. Y. (2002). *Antioxidant properties and their cytotoxic activities on tumor cells of Ganoderma tsugae and Agrocybe cylindracea and antimutagenic properties of Agrocybe cylindracea*. Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.

Turkoglu, A., Durub, M.E., Mercanc, N., Kivrakb, I. & Gezera, K. (2007). Antioxidant and antimicrobial activities of *Laetiporus sulphureus* (Bull.) Murrill. *Food Chemistry*, 101(1), 267-273. doi:10.1016/j.foodchem.2006.01.025

Tzianabos, A. O. (2000). Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biological function. *Clinical Microbiology Reviews*, 13(4), 523-533. doi:10.1128/CMR.13.4.523-533.2000

Ukai, S., Kiho, T., Hara, C., Morita, M., Goto, A., Imaizumi, N. & Hasegawa Y. (1983). Polysaccharides in fungi: XIII. Antitumor activity of various polysaccharides isolated from *Dictyophora indusiata*, *Ganoderma japonicum*, *Cordyceps cicadae*, *Auricularia auricula-judae* and *Auricularia* species. *ChemPharm Bull*, 31(2), 741-744.

Valverde, M. E., Hernández-Pérez, T. & Paredes-López, O. (2015). Edible Mushrooms: Improving Human Health and Promoting Quality Life. *Int JMicrobiol*, 2015, 1-14.

Vellinga, E. C., de Kok, R. P. J. & Bruns, T. D. (2003). Phylogeny and taxonomy of Macrolepiota (Agaricaceae). *Mycologia*, 95(3), 442-456.

Vellinga, E. C. (2004). Genera in the family Agaricaceae: Evidence from nrITS and nrLSU sequences. *Mycological Research*, 108(4), 354-377.
doi:10.1017/S0953756204009700

Vicente, M. A., Raymundo, A. K. & Quimio, T. H. (2006). Optimization of growth conditions of the wild-type and mutant strains of the Pleuromutilin-producing *Clitopilus passeckerianus* (PILAT) SING. NRRL 3100. *J Nat Res Council Philipp*, 8-9, 20-27.

Vilgalys, R. & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J Bacteriol*, 172 (8), 4238-4246.

Villares, A., Mateo-Vivaracho, L. & Guillamón, E. (2012). Structural features and healthy properties of polysaccharides occurring in mushrooms. *Agriculture*, 2(4), 452-471. doi:10.3390/agriculture2040452

Vizzini, A., Dähncke, R. M. & Contu, M. (2011). *Clitopilus rubroparvulus* (Basidiomycota, Agaricomycetes), a new species from the Canary Islands (Spain). *Mycosphere*, 2(4), 291-295.

Vizzini, A., Musumeci, E., Ercole, E. & Contu, M. (2011). *Clitopilus chrischonensis* sp. nov. (Agaricales, Entolomataceae), a striking new fungal species from Switzerland. *Nova Hedwigia*, 92(3-4), 425-434. doi:10.1127/0029-5035/2011/0092-0425

Vyas, D., Chaubey, A. & Dehariya, P. (2014). Biodiversity of mushrooms in Patharia forest of Sugar (M.P.)-III. *International Journal of Biodiversity and Conservation*, 6(8), 600-607. doi:10.5897/IJBC2014.0681

Wang, C. W. (1989). Cellulolytic enzymes of *Volvariella volvacea*. In S. T. Chang & T. H Quimio (Eds.), *Tropical mushrooms: Biological nature and cultivation methods* (pp. 167-186). Hong Kong: The Chinese University Press.

Wang, Q., Li, B. B., Li, H. & Han, J. R. (2010). Yield, dry matter and polysaccharides content of the mushroom *Agaricus blazei* produced on asparagus straw substrate. *Sci Hort*, 125(1), 16-18.

Wasser, S. P. & Weis, A. L. (1999). Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (Review). *International Journal of Medicinal Mushrooms*, 1(1), 31-62.
doi:10.1615/IntJMedMushrooms.v1.i1.30

Wasser, S. P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. *Applied Microbiology and Biotechnology*, 60(3), 258-274. doi:10.1007/s00253-002-1076-7

White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In M.A. Innis, D.H. Gelfand, J.J. Sninsky & T.J. White (Eds.), *PCR protocols* (pp. 315-322). London: Academic.

Wisitrassameewong, K., Karunaratna, S. C., Thongklang, N., Zhao, R., Callac, P., Chukeatirote, E., Bahkali, A. H. & Hyde K. D. (2012). *Agaricus subrufescens*: New to Thailand. *Chiang Mai J Sci*, 39(2), 281-291.

Wong, K.L., Chao, H.H., Chan, P., Chang, L.P. & Liu, C.F. (2004). Antioxidant activity of *Ganoderma lucidum* in acute ethanol-induced heart toxicity. *Phytotherapy Research*, 18(12), 1024-1026. doi:10.1002/ptr.1557

Xu, C. P. & Yun, J. W. (2003). Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by *Auricularia polytricha* (wood ears fungus) using the methods of uniform design and regression analysis. *Biotechnology and Applied Biochemistry*, 38(2), 193-199.
doi: 10.1042/BA20030020

Yang, Z.L. (2007). Notes on five common but little known higher basidiomycetes from tropical Yunan China. *Mycotaxon*, 76(1), 45-56.

Yang, B., Dai, Z., Ding, S. Y. & Wyman, C. E. (2011). Enzymatic hydrolysis of cellulosic biomass. *Biofuels*, 2(4), 421-449.

Yang, W., Guo, F., & Wan, Z. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. *Saudi Journal of Biological Sciences*, 20(4), 333-338.doi: 10.1016/j.sjbs.2013.02.006.

Yamaç, M. & Bilgili, F. (2006). Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. *Pharmaceutical Biology*, 44(9), 660-667. doi:10.1080/13880200601006897

Yu, C. H., Kan S. F., Shu C. H., Lu, T. J., Sun-Hwang, L. & Wang, P. S. (2009). Inhibitory mechanisms of *Agaricus blazei* Murill on the growth of prostate cancer in vitro and in vivo. *J Nutr Biochem*, 20(10), 753-764.

Zervakis, G., Philippoussis, A., Ioannidou, S. & Diamantopoulou, P. (2001). Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. *Folia Microbiol*, 46(3), 231-234.

Zhang, D. & Hamauzu, Y. (2003). Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. *Int J Food, Agric and Environ*, 1(2), 22-27.

Zhang, M., Cui, S. W., Cheung, P. C. K. & Wang, Q. (2007). Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. *Trends in Food Science & Technology*, 18(1), 4-19. doi:10.1016/j.tifs.2006.07.013

Zhang, Y., Geng, W., Shen, Y., Wang, Y. & Dai, Y. C. (2014). Edible mushroom cultivation for food security and rural development in China: bio-innovation, technological dissemination and marketing. *Sustainability*, 6(5), 2961-2973.
doi:10.3390/su6052961

Zhong, W., Liu, N., Xie, Y., Zhao, Y., Song, X. & Zhong, W. (2013). Antioxidant and anti-aging activities of mycelial polysaccharides from *Lepista sordida*. *Int J Biol Macromolec*, 60, 355-359.

Zied, D. C., Pardo-Gimenez, A., Savoie, J. M., Pardo-Gonzalez, J. E. & Callac, P. (2011). Indoor method of composting and genetic breeding of the strains to improve yield and quality of the almond mushroom *Agaricus subrufescens*. In *Proceedings of the seventh International Conference on Mushroom Biology and Mushroom Products (ICMBMP7)* (pp. 419-427). France: Arcachon.

Zied, D. C., Pardo-Giménez, A., de Almeida Minhoni, M. T., Boas, R. V., Alvarez-Orti, M. & Pardo-González, J. E. (2012). Characterization, feasibility and optimization of *Agaricus subrufescens* growth based on chemical elements on casing layer. *Saudi Journal of Biological Sciences*, 19(3), 343-347.
doi:10.1016/j.sjbs.2012.04.002

APPENDICES

APPENDIX A

MEDIA AND CHEMICAL PREPARATION

1. Preparation of chemical reagent using for this study

Potassium Hydroxide (KOH): 3-5% aqueous solution (Lagent et al., (1977)

Potassium hydroxide	3 (-5)	g
Water	97 (-95)	ml

3-5% KOH was used to revive the hyphae of dried specimens.

Congo Red: 1% aqueous solution (Lagent et al., (1977)

Congo Red	1	g
Water; filter the excess dye	99	ml

1% Congo Red was used to observe walls hyphae and spores

Sodium hydroxide (NaOH): 1N solution

Sodium hydroxide	4	g
Water to male volume	100	ml

Hydrochloric acid (HCl): 1N solution

Hydrochloric acid	8.985	ml
Water to male volume	100	ml

2. Preparation of media

Potato dextrose agar (PDA), CRITERION

1 liter of media including	Potato infusion	4.0	g
	Dextrose	20.0	g
	Agar	15.0	g

Malt extract agar (MEA), CRITERION

1 liter of media including	Malt extract	20.0	g
	Dextrose	20.0	g
	Peptone	6.0	g
	Agar	16.0	g

Sabouraud dextrose agar (SDA), CRITERION

1 liter of media including	Dextrose	40.0	g
	Casein peptone	10.0	g
	Agar	15.0	g

Corn meal agar (CMA), CRITERION

1 liter of media including	Corn meal infusion from solids	2.0	g
	Agar	15.0	g

Yeast extract agar (YEA), CRITERION

1 liter of media including	Yeast extract		
	Agar	15.0	g

Preparation of carbon and nitrogen source

Malt extract	20.0	g
Dextrose	20.0	g
Peptone	6.0	g
Agar	15.0	g
Distilled water	1	litter

Above formula media was supplemented by fructose, sucrose, starch, yeast extract, beef extract, tryptone and KNO_3

Preparation of Composted

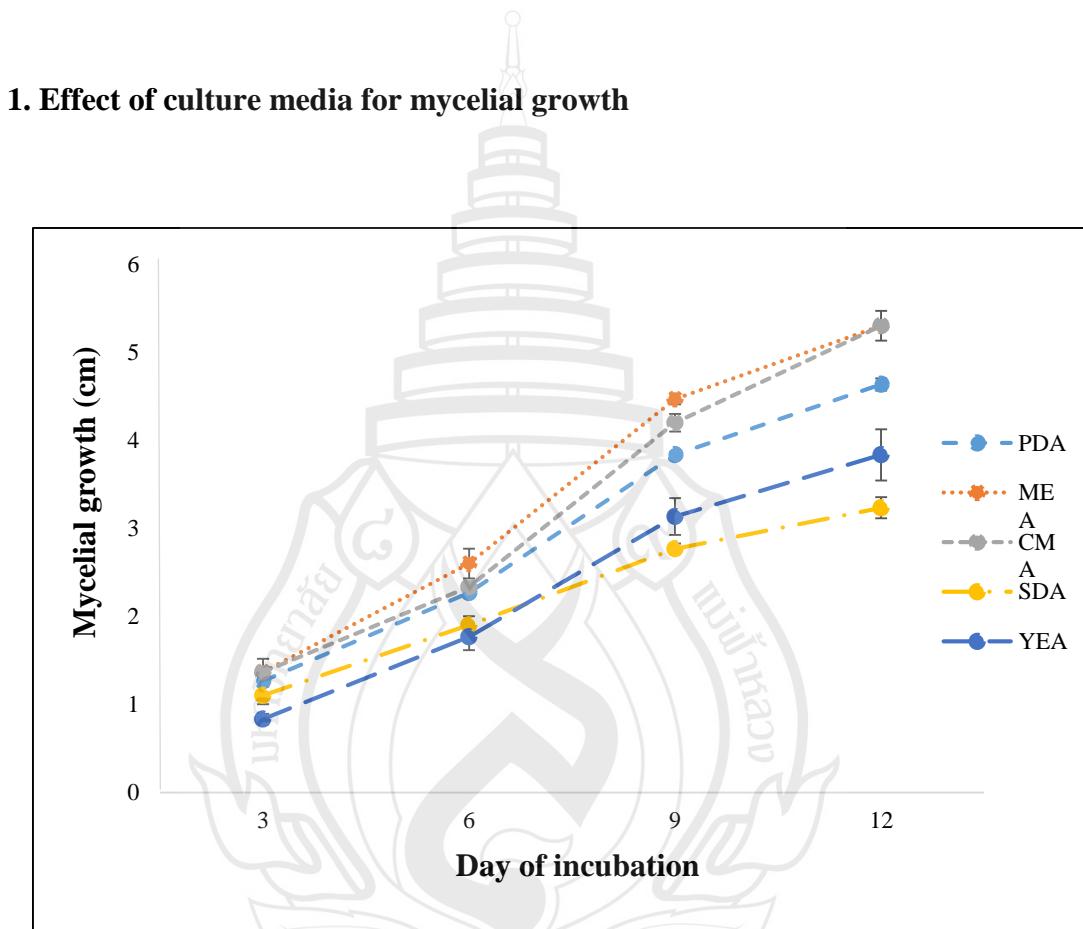
Rice straw	200	kg
Calcium carbonate	2	kg
Urea	2	kg
Rice bran	10	kg
Ammonium Sulfate	4	kg
Calcium sulfate	6	kg
Water		

Rice straw was used as the main substrate of compost ingredients. The compost was fermented for 20 days. Material were mixed and periodically turned following schedule

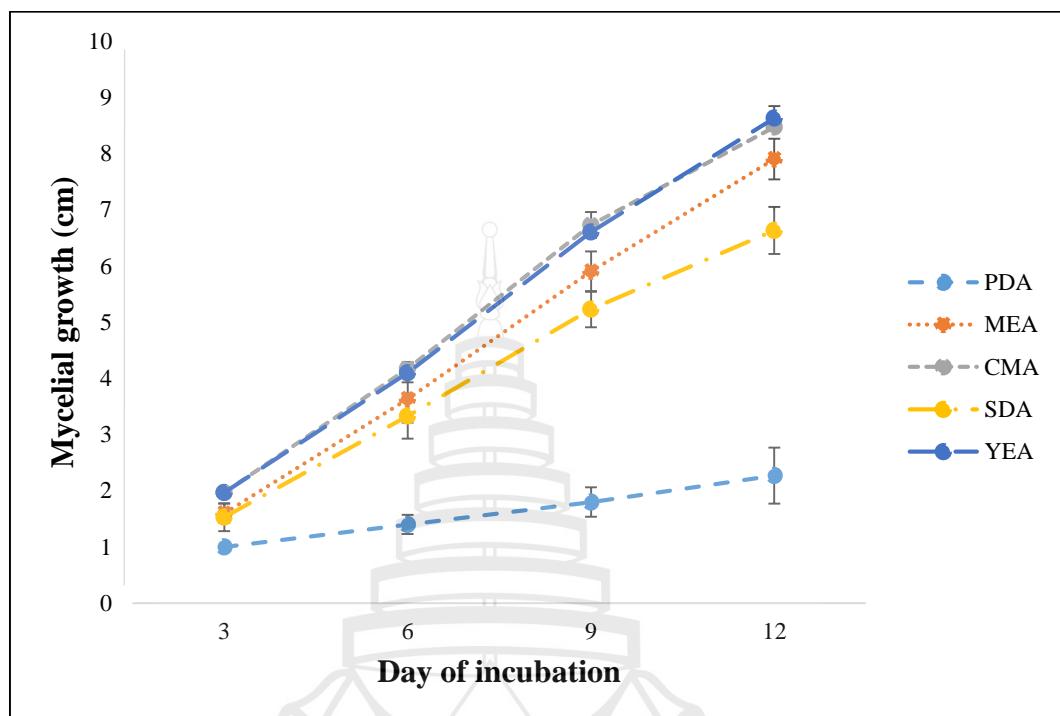
- Day 1:** Rice straw was mixed with calcium carbonate and water
- Day 3:** urea and rice bran were added to composting
- Day 5:** Ammonium phosphate was add to composting
- Day 7:** The stack was turn to keep an aerobic
- Day 10:** Calcium sulfate was added to composting
- Day 14:** The stack was turn and added calcium sulfate
- Day 15:** Second free turn
- Day 18:** Third free turn
- Day 20:** Fourth free turn

Compost extract media

Glucose	10	g
Agar	20	g
Water	200	ml


3. Preparation of bacterial

1. Each bacteria strain from stock was separately streak on Nutrient Agar (NA) plate
2. Incubated at 37 °C for 18-24 h
3. 3-5 single colonies were inoculated to 10 mL of sterile nutrient Broth (NB) to obtain 0.5 MaFarland



APPENDIX B

OPTIMAL CONDITION FOR MYCELIAL GROWTH

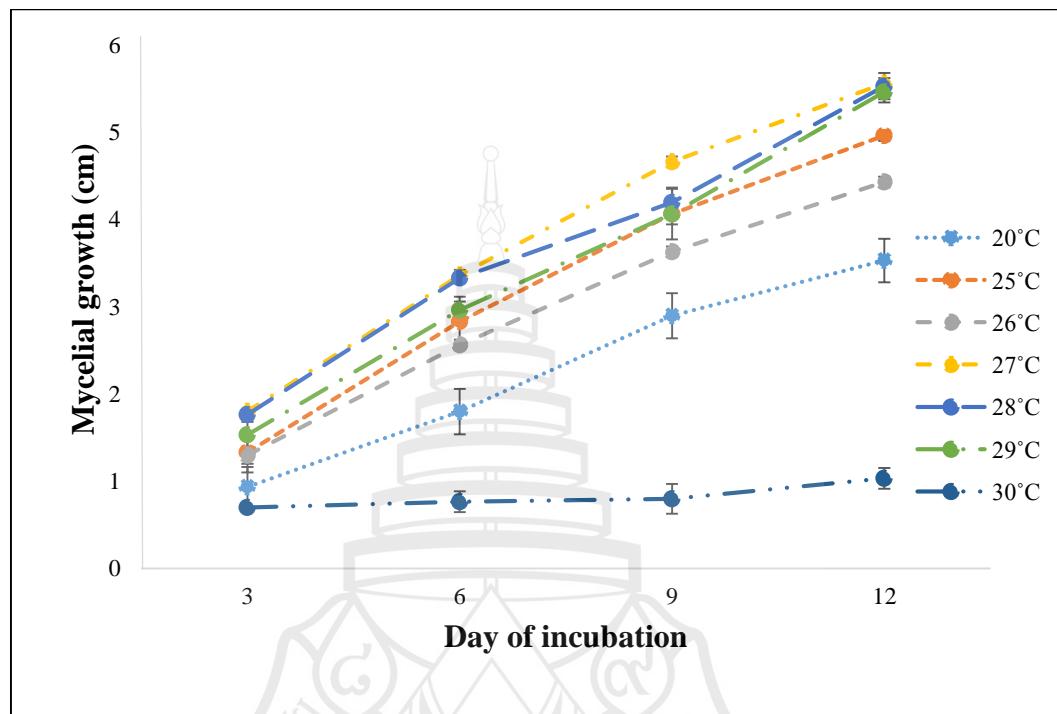


Figure B1 Effect of culture media for mycelial growth of
Clitopilus doimaesalongensis

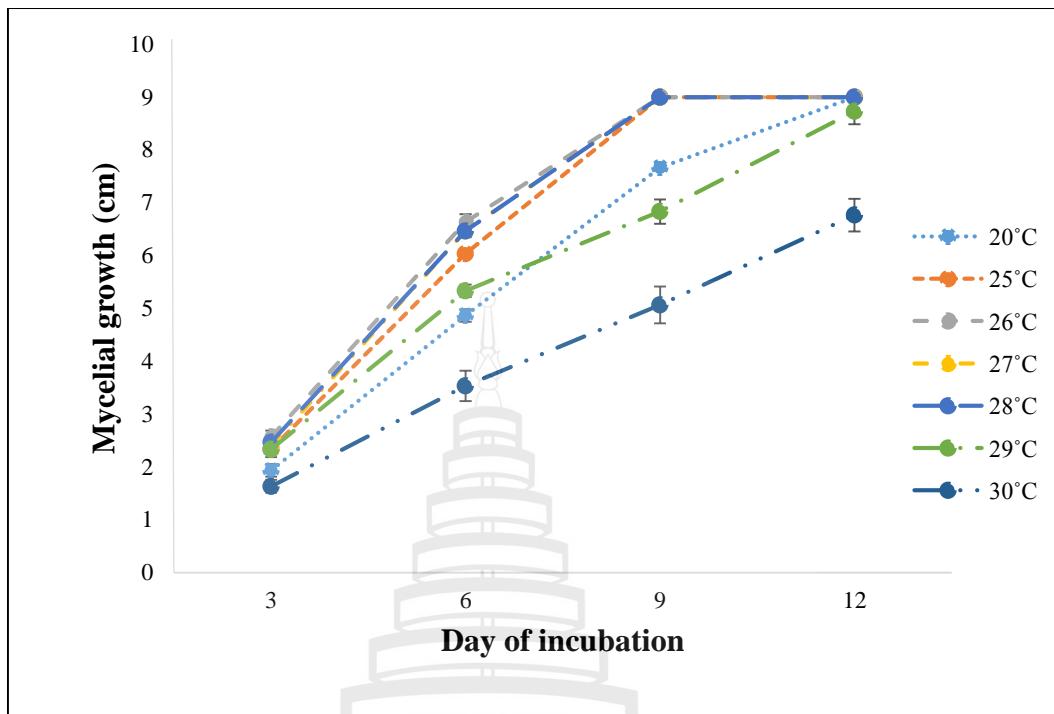


Figure B2 Effect of culture media for mycelial growth of *Clitopilus chalybescens*

2. Effect of temperature for mycelial growth

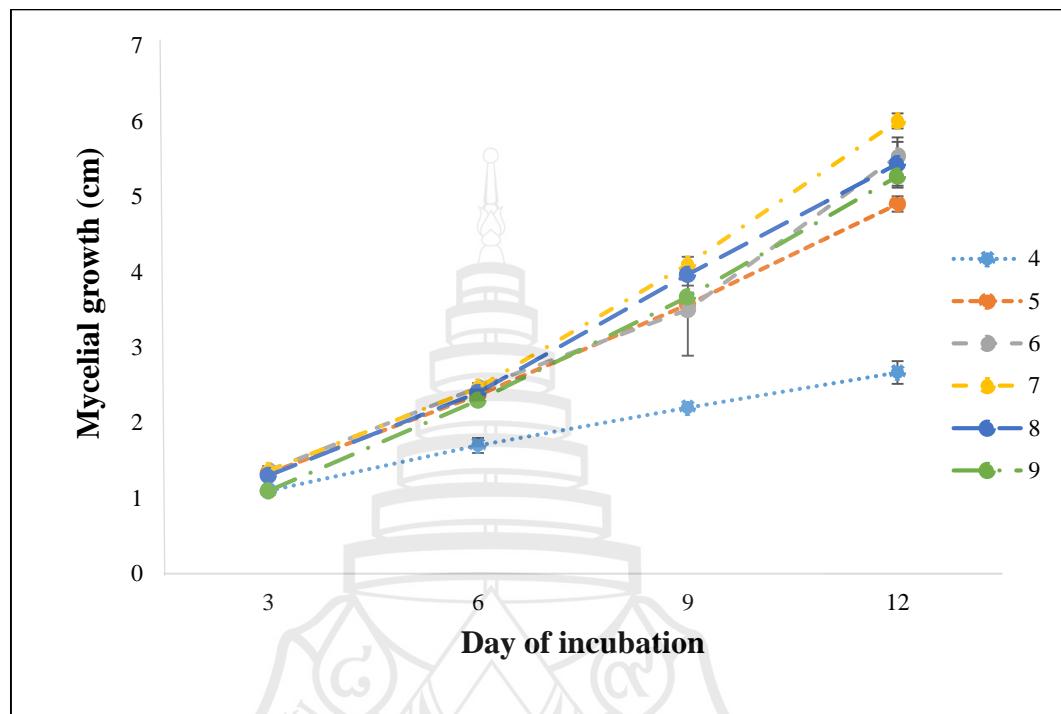


Figure B3 Effect of temperature for mycelial growth of *Clitopilus doimaesalongensis*

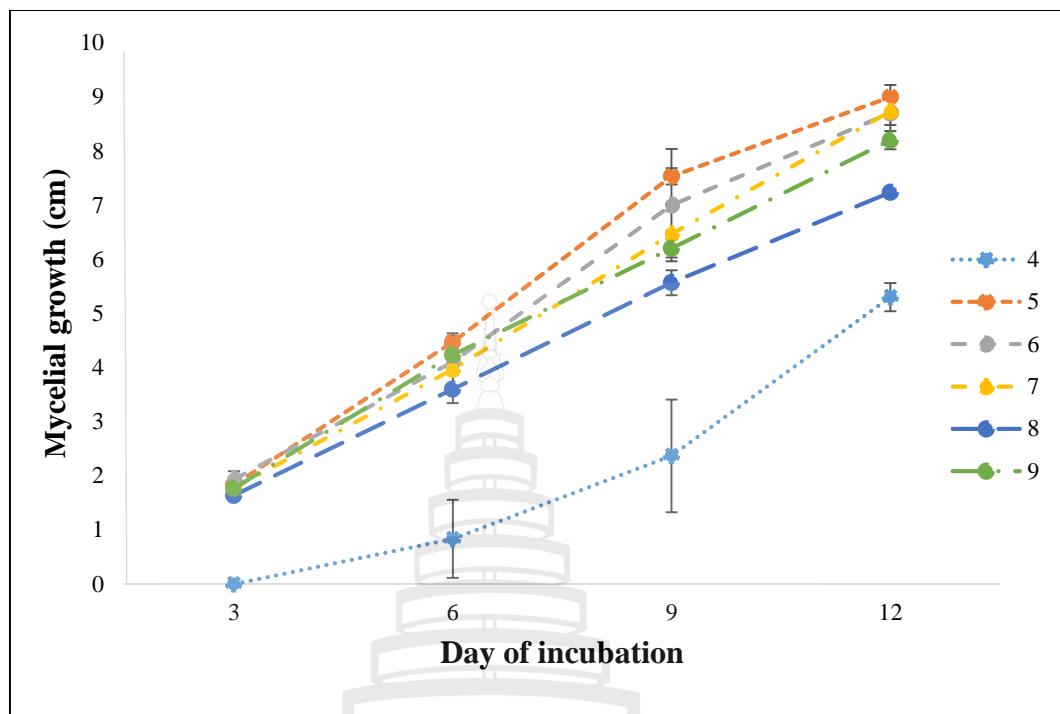


Figure B4 Effect of temperature for mycelial growth of *Clitopilus chalybescens*

3. Effect of initial pH for mycelial growth

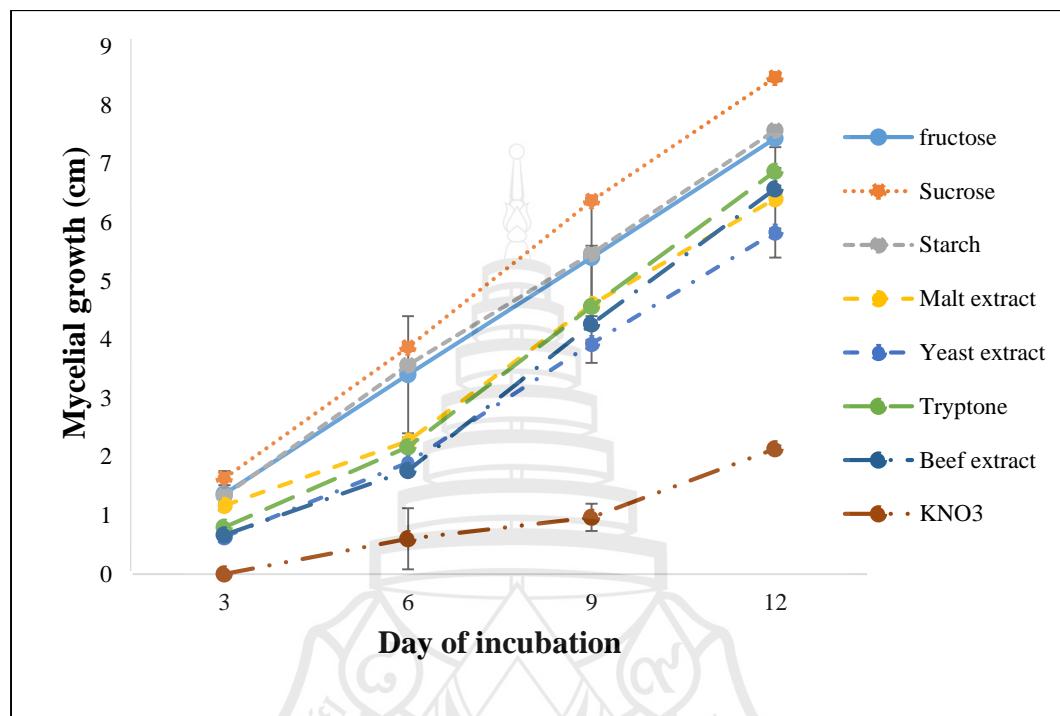


Figure B5 Effect of initial pH for mycelial growth of *Clitopilus doimaesalongensis*

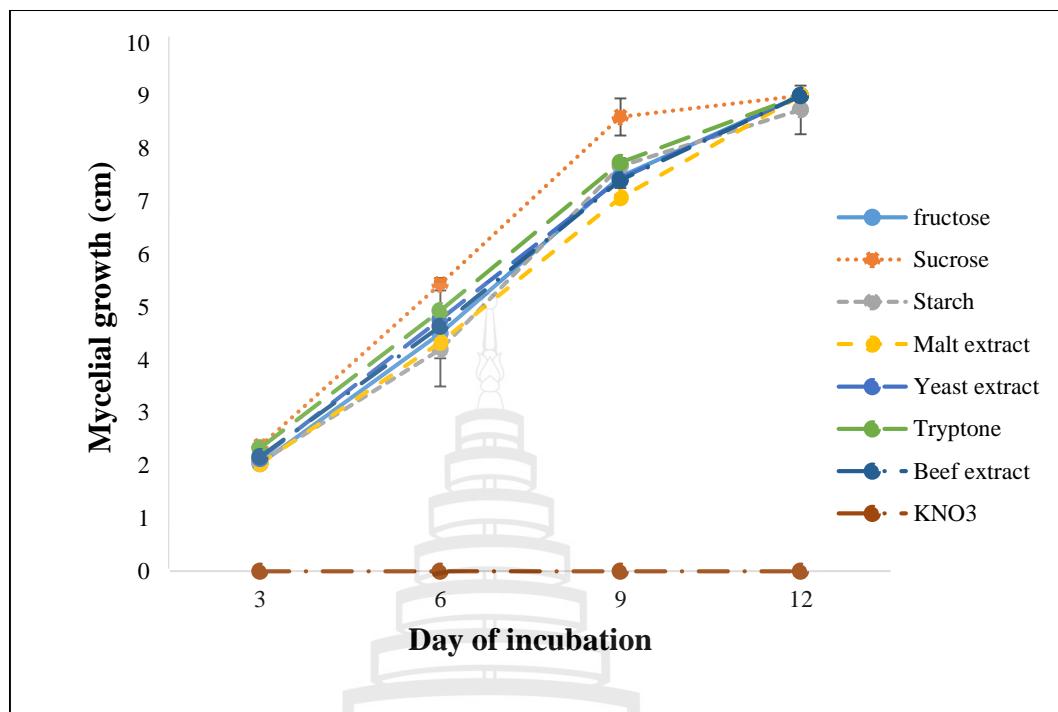


Figure B4 Effect of initial pH for mycelial growth of *Clitopilus chalybescens*

4. Supplement of carbon and nitrogen sources for mycelial growth

Figure B7 Supplement of carbon and nitrogen sources for mycelial growth of *Clitopilus doimaesalongensis*

Figure B8 Supplement of carbon and nitrogen sources for mycelial growth of *Clitopilus chalybeescens*

APPENDIX C

TLC CHARACTERIZATION OF *Clitopilus doimaesalongensis* AND*Clitopilus Chalybescens*

Figure C1 Identification of the *Clitopilus* extraction: a-b) Mycelium extraction of *C. doimaesalongensis* b-c) Mycelium extraction of *C. Chalybescens* e) Culture broth extraction of *C. doimaesalongensis* f) Culture broth extraction of *C. Chalybescens*

APPENDIX D

PROCEEDINGS AT CONFERENCES

Optimization condition for cultivation of *Agaricus subrufescens* hybrid strains

Kritsana Jaturwong^{1,2}, Pattana Kakumyan^{2,*}, Sunita Chamyuang², Ekachai Chukeatirote^{1,2}, Kevin D. Hyde^{1,2}

¹Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

²School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

*e-mail: pattana.kak@mfu.ac.th

Abstract

Agaricus subrufescens is edible mushroom, one of the most important medicinal mushroom with high potential to treat many diseases. Several strains of *A. subrufescens* have been cultivated throughout the world, especially in Brazil. *A. subrufescens* hybrid strain in this study has been bred by the INRA, France. This study investigated the optimum conditions for the cultivation of *A. subrufescens* hybrid strains in Northern Thailand. The suitable conditions for mycelium growth on compost extract agar were established in terms of temperature and pH. The results revealed that the optimum temperature and pH for mycelial growth were 25–30°C and pH 7–9, respectively. Two hybrid strains of *A. subrufescens* CA 918-076 x CA 454-4 and CA 918-076 x CA 487-35 were selected and cultivated on compost media. The ingredients of the compost were consisted of rice straw (200 kg), rice bran (10 kg), urea (2 kg), ammonium sulfate (4 kg), calcium carbonate (2 kg), calcium sulfate (6 kg) and water. The result showed that two hybrid strains, could be cultured using this rice straw compost. Fruiting bodies were produced after 2 months with a yield of 56.92 and 42.30 g /kg of compost, respectively.

Keywords: *Agaricus subrufescens*, compost, hybrid strains, mushroom cultivation

Introduction

Agaricus subrufescens Peck. (1893) (synonyms = *A. blazei*, *A. brasiliensis*), is a gilled mushroom belongs family Agaricaceae (Agaricales Basidiomycetes). It is also called almond mushroom due to its almond odor (Firenzuol et al., 2008; Zied et al., 2012). *A. subrufescens* was first cultivated in the late 1800s in Eastern North America and described by Peck C.H. in 1893 (Kerrigan, 2005). It was firstly isolated in the 1960s in Brazil (Farnet et al., 2013). This is recognized as the main character with chocolate brown basidiospores. This mushroom grows with a hemispherical to convex to plano-convex shape in mature stage. The surface is dry and covered by fibrillose squamulose. It is a saprobe and inhabit rooting leave, it often grows in clusters or scattered occasionally singly on soil. It was discovered in North America, South America and also has been found in Hawaii, Taiwan, Philippines and Thailand (Kerrigan, 2005; Wisitassameewong et al., 2012). In addition, *A. subrufescens* is popular as a medicinal food having a potential to treat many common diseases such as arteriosclerosis, cancer, diabetes, chronic hepatitis and hyperlipidaemia (Hobbs, 1991) Mizuno et al., 1990; Firenzuol et al., 2008; Liu et al., 2008; James et al., 2010). It is a popular mushroom market as extensively cultivated in Brazil and in oriental countries such as Japan or China (Farnet et al., 2013). Llarena-Hernandez et al. (2013) could obtain the hybrid strain between the Brazilian and European strains after investigated the hybridization. The hybrid strains were improved in term of yield and quality for developing new cultures under European growing conditions and also a new hybrid named H1X1 was patented in USA (Kerrigan and Wach, 2008). In this study *A. subrufescens* hybrid strains provided by N. Thongklang (Thongklang

Optimization conditions, antibacterial and antioxidant activities of *Clitopilus chalybescens*

Kritsana Jaturwong^{1,2}, Kevin D Hyde^{1,2}, Sunita Chamyuang^{1,2}, Kenji Matsui^{3,4} and Pattana Kakumyan^{1,2*}

¹ Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

² School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

³ Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan

⁴ Departments of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan

* Corresponding author: pattana.kak@mfu.ac.th

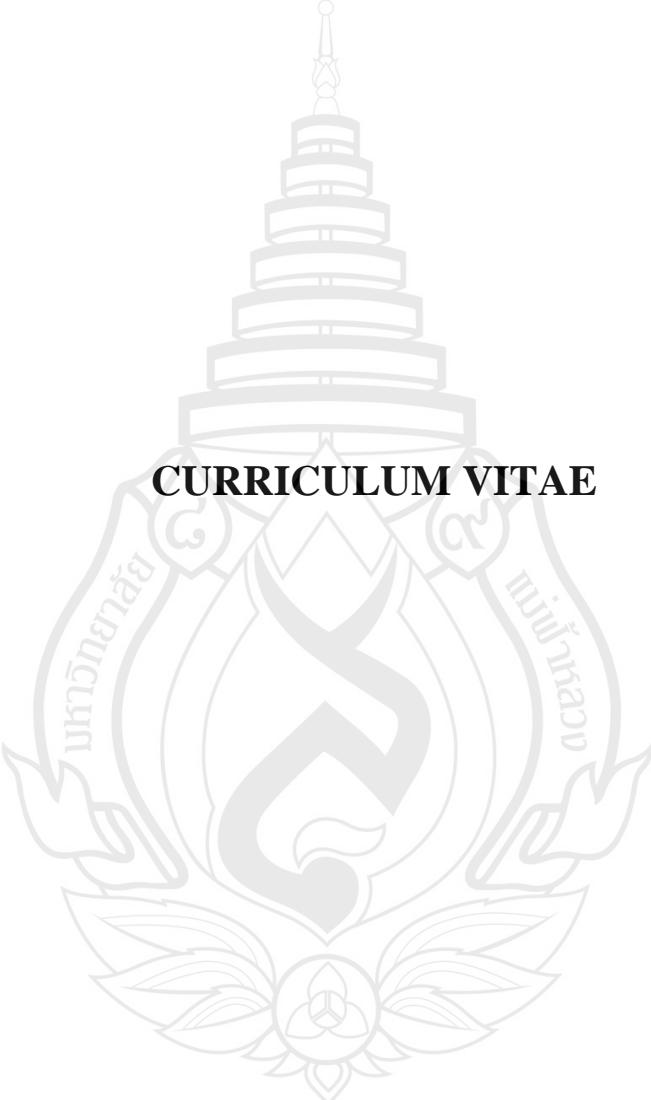
Abstract

The aim of this work was to study the effect of media, temperature and pH on the mycelial growth of *Clitopilus chalybescens* strain MFLUCC 13-0809 collected from Lampang, Thailand. The antioxidant and antibacterial activities from the crude mycelial extracts were evaluated. The study indicated that the optimal medium, pH and temperature were observed on yeast extract agar (YEA) pH 5 to 7, and 20–29°C, respectively. For antibacterial activities, crude extracts from mycelium slightly inhibited the growth of Gram positive bacteria (*Bacillus subtilis*, *Staphylococcus aureus* and *Micrococcus luteus*), but no activities were observed on Gram negative bacteria (*Pseudomonas aeruginosa* and *Escherichia coli*). Antioxidant assay indicated that the crude extract had noticeable scavenging activity on 2,2-diphenyl-1-picrylhydrazyle (DPPH) radical. The results suggest that the crude extract from this mushroom mycelium deem to have a potential for further development on antibacterial and antioxidant applications.

Keywords: *Clitopilus*, optimal condition, antibacterial activity, antioxidant activity.

1. Introduction

Many published data indicate that fruiting body of mushrooms has various biological functions such as antitumor, antioxidant, anti-


aging, and immunological properties (1). Few reports are so far available in the antioxidant properties of mycelial extracts.

Clitopilus is a small genus of fungi in the family Entolomataceae (Basidiomycota, Agaricales). The distinct characteristic which could be easily recognized for this genus is farinaceous odor, pink or brownish pink spores and peculiarly spores shaped with longitudinal ribs (2, 3, 4). The cap is whitish to grayish when dry and then slimy surface and sometime a wavy margin. The gill is decurrent attached with the stipe, spaced together rather than closely. The stipe is thick and white and ellipsoid in profile but rounded in polar view (5, 6, 7). This genus has a widespread distribution, especially in temperate areas or subtropics such as Spain (7), Taiwan (8), Thailand (9) and China (8, 10).

The basidiocarp of many *Clitopilus* sp. is reported to produce a biologically activity compound. This study aims to determine the culture condition for mycelium growth and evaluate the antibacterial and antioxidant activities of *C. chalybescens* strain MFLUCC 13-0809.

2. Materials and Methods

2.1 The sample collection and fungal isolation

CURRICULUM VITAE

CURRICULUM VITAE

NAME

Miss Kritsana Jatuwong

DATE OF BIRTH

6 March 1987

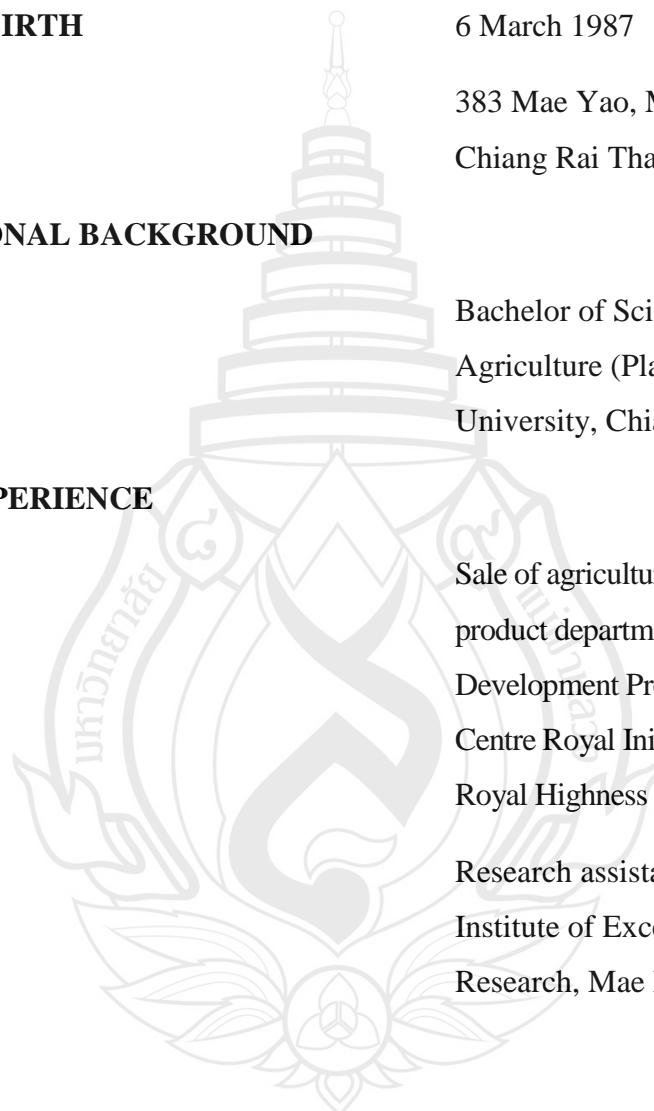
ADDRESS

383 Mae Yao, Muang district,
Chiang Rai Thailand 57100

EDUCATIONAL BACKGROUND

2006 - 2009

Bachelor of Science Program in
Agriculture (Plant Pathology), Maejo
University, Chiang Mai, Thailand

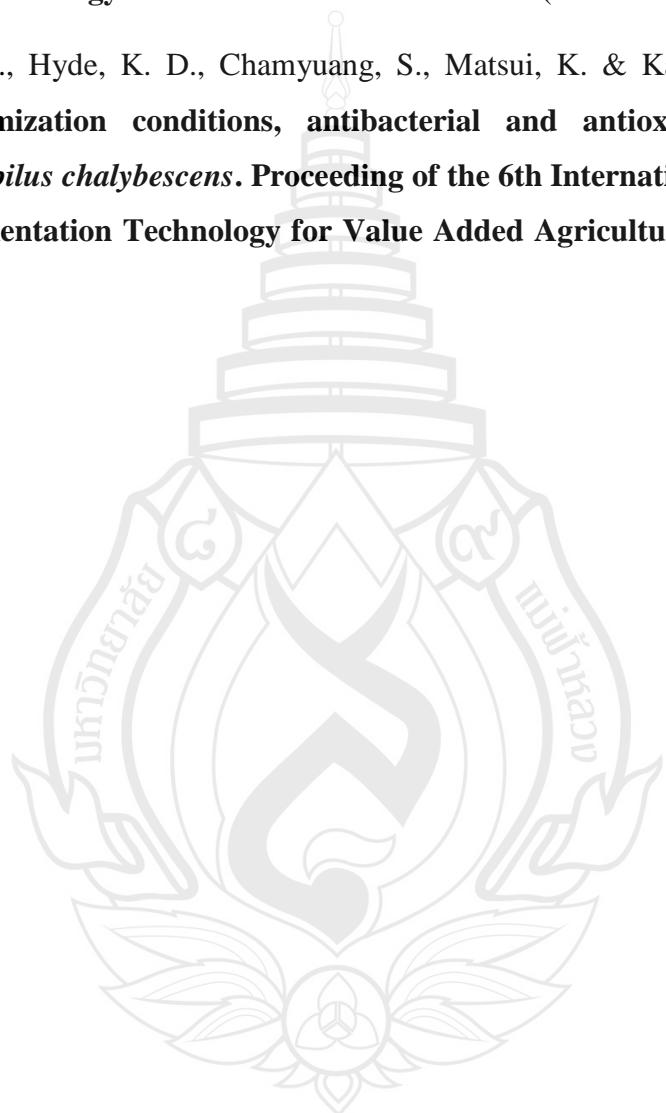

WORK EXPERIENCE

2010 - 2011

Sale of agricultural product, Agriculture
product department Doi Tung
Development Project Co-ordination
Centre Royal Initialive Project of Her
Royal Highness the Princess Mother

2012-2014

Research assistance
Institute of Excellence in Fungal
Research, Mae Fah Luang University


PUBLICATION

Jatuwong, K., Kakumyan, P., Chamyuang, S., Chukeatirote, E. & Hyde, K. D. (2014)

Optimization condition for cultivation of *Agaricus subrufescens* hybrid strains. Proceeding of the 26th Annual Meeting of the Thai Society for Biotechnology and International Conference (P. 244-251).

Jatuwong, K., Hyde, K. D., Chamyuang, S., Matsui, K. & Kakumyan, P. (2015).

Optimization conditions, antibacterial and antioxidant activities of *Clitopilus chalybescens*. Proceeding of the 6th International Conference on Fermentation Technology for Value Added Agricultural Products (P. 50-56)

