

ELECTRONIC DATA ACQUISITION
IN BANK OF THAILAND

PONCHAI SANGERAMRUANG

MASTER OF SCIENCE PROGRAMME
IN ADVANCED INFORMATION TECHNOLOGY

MAE FAH LUANG UNIVERSITY
2007

© COPYRIGHT BY MAE FAH LUANG UNIVERSITY

ELECTRONIC DATA ACQUISITION

IN BANK OF THAILAND

PONCHAI SANGERAMRUANG

A INDEPENDENT STUDY SUBMITTED TO
MAE FAH LUANG UNIVERSITY IN PARITIAL FULFILLMENT

OF
THE REQUIREMENTS FOR THE DEGREE OF

THE MASTER OF SCIENCE PROGRAMME
IN ADVANCED INFORMATION TECHNOLOGY

MAE FAH LUANG UNIVERSITY
2007

© COPYRIGHT BY MAE FAH LUANG UNIVERSITY

 ii

ELECTRONIC DATA ACQUISITION

IN BANK OF THAILAND

PONCHAI SANGERAMRUANG

A INDEPENDENT STUDY HAS BEEN APPROVED
TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF THE MASTER OF SCIENCE PROGRAMME IN ADVANCED

INFORMATION TECHNOLOGY
2007

© COPYRIGHT BY MAE FAH LUANG UNIVERSITY

 iii

ACKNOWLEDGEMENT

The Project could not be consummated without the valuable comments,
suggestions, assistance. I hereby would like this opportunity to acknowledge my
gratitude to all of them.

At the outset, I would like to express my deepest gratitude to Dr.
Thongchai Yooyativong the chairperson of my Project committee, for his valuable
suggestions and guidance throughout the process of completing this Project and
indebt to Khun Vittayasak Rujivorakul and Khun Yuthana Tra–Ngarn, members of
my Project committee, Khun Piyasak Jeatrakul for their helpful suggestions and
feedback that were vital in improving the final Project.

I wish to acknowledge my gratitude of Bank of Thailand for granting me
two-year throughout the course of The Master of Science Programme in Advanced
Information Technology.

I would like to thank the officials of Financial Institution for helping in
collecting data and giving very useful information and many other supports.

In addition, special thanks go to all of my friends and my colleagues and
Bank of Thailand library’s officers for their great support and everybody who helped
me to finish this work.

Most important, my profound gratitude is expressed to my beloved family
for their love, care, hospitality, kindness, understanding and great sacrifice throughout
my life.

Nevertheless, I solely take full responsibility for any deficiencies and
ambiguities which remain in this study. Any criticisms from the readers are
welcomed.

 Ponchai Sangeramruang

 IV

Independent Study Title Electronic Data Acquisition in Bank of Thailand

Author Mr. Ponchai Sangeramruang

Degree Master of Science

(Advanced Information Technology)

Supervisory Committee Gp. Capt. Dr. Thongchai Yooyativong Chairperson
 Assoc.Prof. Gp. Capt. Yuthana Tra – Ngarn Member

 Lecturer Vittayasak Rujivorakul Member

ABSTRACT

The objective of this study is to analyze the current XML Schema and the
process of data transferring from Financial Institutions to Bank of Thailand that is
called Electronic Data Acquisition, in the Data Acquisition System/Subsystem for
Bank of Thailand. The new XML generator for Data Acquisition System/Subsystem
will be developed for use as an data entry point for the Financial Institutions to
prepare and submit the electronic data required by the Bank of Thailand. The
developed XML generator can also handle different types of data exchange format.

The result of this study concluded that the new developed XML generator

could help Financial Institutions improving their data entry application for Bank of
Thailand by reducing the key-in process time and the risk of typing error. The new
XML Generator Tool generates all data that already prepare in worksheet prompt to
key-in to be data set under Bank of Thailand XML Schema in XML format.

In addition, this XML generator help most of Financial Institutions cut

down the spending budgets for hiring consultants or vendors to provide or to develop
some packages of software for this data exchange under Bank of Thailand XML
dataset format.

Keywords: Electronic Data Acquisition / Data Acquisition

 V

CONTENTS

 Page

ACKNOWLEDGEMENT III

ABSTRACT IV

LIST OF TABLES VII

LIST OF FIGURES VIII

LIST OF ABBREVIATIONS X

CHAPTER

1 INTRODUCTION 1

1.1 Background Information 1

1.2 Objectives 2

1.3 Scope 2

1.4 Expected Benefits 2

2 FEASIBILITY STUDY 3

2.1 Introduction 3

2.2 Problem Statement 3

2.3 Related projects 13

2.4 Requirement specifications for BOT Data Application after improvements 25

2.5 Implementation Techniques 26

2.6 Deliverables 26

2.7 Implementation plan 26

3 SYSTEM ANALYSIS AND DESIGN 27

3.1 Introduction 27

3.2 Analysis of the existing system 27

3.3 User requirement analysis 45

3.4. New Tools Design 52

 VI

CONTENTS (Cont.)

 Page
4 SYSTEM FUNCTIONALITY 58

4.1. Introduction 58

4.2. System Architecture 58

4.3. Test Plan 75

5 SUMMARY AND SUGGESTIONS 87

5.1. Introduction 87

5.2. Project Summary 87

5.3. Questionnaire for Financial Institution 88

5.4. Suggestions for further development 89

REFERENCES 91

APPENDIX 95

Appendix A – Example Source Codes Type 1 – 4 95

Appendix B – Sample Data Type 1 -4 109

Appendix C – Test Script & Test Data Details 141

Appendix D – Questionnaire 153

CURRICULUM VITAE 155

 VII

LIST OF TABLES

Table Page
2.1 Bank of Thailand Electronic Data Acquisition 7

 Function

4.1 TEST SCENARIO 77

4.2 TEST SCRIPT SCENARIO #1 78

4.3 TEST SCRIPT SCENARIO #2 79

4.4 TEST SCRIPT SCENARIO #3 80

4.5 TEST SCRIPT SCENARIO #4 81

4.6 TEST RESULTS SCENARIO #1 82

4.7 TEST RESULTS SCENARIO #2 83

4.8 TEST RESULTS SCENARIO #3 84

4.9 TEST RESULTS SCENARIO #4 85

5.1 New XML BOT Generator Tools Performance 88

 VIII

LIST OF FIGURES

Figure Page
1.1 Bank of Thailand Electronic Data Acquisition 1

2.1 Steps for using Bank of Thailand Data Entry Application 4

2.2 DMS Component Model 4

2.3 Relationship between BOT Electronic Data Acquisition 5

2.4 Process for receive data from Financial Institution 6

2.5 Electronic Data Acquisition Component 6

2.6 Diagram for Submitted Data Set 11

2.7 A tree diagram for XML Examples 13

2.8 Number of Financial Institution in Control of Bank of Thailand 25

2.9 New Electronic Data Acquisition Component 26

3.1 Data Set submission requirement TCB 45

3.2 Data Set submission requirement FCB 47

3.3 Data Set submission requirement IBF 49

3.4 Data Set submission requirement FCS 50

3.5 Data Set submission requirement CCS 51

3.6 The New tools further to generate BOT XML DataSet 52

3.7 User interface for the New Tools Design 52

3.8 Main Steps Design 54

3.9 Financial Institution export data source to CSV 55

3.10 Design Steps for TYPE 1 56

3.11 Design Steps for TYPE 2 56

3.12 Design Steps for TYPE 3 57

3.13 Design Steps for TYPE 4 57

4.1 Master Template TYPE 1_TBP 59

4.2 Data Template TYPE 1_TBP 60

4.3 Sample Data Template TYPE 1_TBP 60

 IX

LIST OF FIGURES (Cont.)

Figure Page
4.4 Master Template TYPE 2_IRR 61

4.5 Data Template TYPE 2_IRR 62

4.6 Sample Data Template TYPE 2_IRR 62

4.7 Master Template TYPE 3_LMS 63

4.8 Data Template TYPE 3_LMS 64

4.9 Sample Data Template TYPE 3_LMS 65

4.10 Master Template TYPE 4_ARS 66

4.11 Data Template for TYPE 4_ARS 67

4.12 Sample Data Template TYPE 4_ARS 68

4.13 Flow Chart show Modules in Main Process 69

4.14 Flow Chart show Modules in Sub Process 70

 (Generate XML Header)

4.15 Flow Chart show Modules in Sub Process 71

 (Generate XML Content)

4.16 FORM TYPE 1_TBP 72

4.17 FORM TYPE 2_IRR 72

4.18 FORM TYPE 3_LMS 73

4.19 FORM TYPE 4_ARS 73

4.20 Compare Steps for the New tools & BOT Data Entry Application 74

4.21 Sample Error Message show by BOT Data Entry Application 75

5.1 BOT Data Entry Application Export in CSV Format 96

5.2 Functions/Features can improve in XML TO XLS BOT 96

 Generator Tools

 X

LIST OF ABBREVIATIONS

BOT Bank of Thailand

DMS Data Management System

DA Data Acquisition

CCS Credir Foncier Companies

CRF Computer Readable Form

ERS Electronics Report Submission

FCB Foreign Commercial Bank -Full Branch

FCS Financial Companies

FI Financial Institution

IBF International Banking Facilities

TCB Thai Commercial Bank

CHAPTER 1

INTRODUCTION

1.1 Background information

DMS (Data Management System), one of the importances Project that
Bank of Thailand, the Central Bank in Thailand, develop by bring Electronic Data
Acquisition Technology and Data Warehousing to manage all data from Financial
Institution and Economic data in order to support users and make a new standard for
all Financial Institutions.

Before implement DMS, Bank of Thailand has many input external source
data with many based such as hardcopy, Computer Readable Form (CRF), Electronic
Readable System (ERS), Microsoft Excel etc.

The objective and goals for DMS are to have one system to manage all data
with high efficiency, quickly, accuracy and response all stakeholders need.

Data Acquisition component is mainly responsible to handle the
submission of external data, especially data in XML format, and provide a data entry
facility for the entry of unstructured data into the system

Figure 1.1 Bank of Thailand Electronic Data Acquisition

BOT Data
Entry

Application

Data
Warehouse

Staging
Area

Online
Submission

Service

XML
Data Set

FI
Application

OR

Preparation
XML Data Set

Submission

BOT

Key-in

BOT
NET Extranet Server/

WEB Portal

FFiinnaanncciiaall IInnssttiittuuttiioonnss BBaannkk ooff TThhaaiillaanndd

 2

1.2 Objectives

To study in the Data Acquisition System/Subsystem, XML, XML Schema
for Bank of Thailand.

To improve Bank of Thailand data entry application
Build prototype to demonstrate the improvement Bank of Thailand Data

Entry Application.

1.3 Scope

The study of this Project is not covered all Project under DMS in Bank of
Thailand. The scope of this Project is to:

1. Focus on the component of Data Acquisition System/Subsystem and
Functional Requirements: Describing some necessary functions the system needs to
support from users or external system.

2. Focus in Bank of Thailand XML Schema and
2.1. Generate Financial Institutions all data that already prepare in

worksheet prompt to key-in to be dataset under Bank of Thailand XML Schema easily
and test validation by Bank of Thailand Data Entry Application.

2.2 Reduce the key-in process in Bank of Thailand Data Entry
Application.

2.3 Try to use all resources or software which Financial Institutions had.
2.4 Test prototype result validate by select the examples from some

Financial Institutions or get data from external company that use Bank of Thailand
XML Schema to do in the real situation and compare with Bank of Thailand Data
Entry Application.

1.4 Expected Benefits

Everyone that works in Financial Institutions or the other companies, which
have a view to manage data in Electronic as Bank of Thailand, can be able to know
and understand Electronic Data Acquisition System/Subsystem. They can also use
prototype in this project to generate their all data to be XML DataSet under Bank of
Thailand XML Schema.

CHAPTER 2

FEASIBILITY STUDY

2.1 Introduction

DMS (Data Management System), one of the importances Project that
Bank of Thailand, the Central Bank in Thailand, develop by bring Electronic Data
Acquisition Technology and Data Warehousing to manage all data from Financial
Institution (FI) and Economic data in order to support users and make a new standard
for all Financial Institutions.

DMS has objective to be central for collecting economic and Financial
Institution data and efficacious improving the ways to transfer data between Bank of
Thailand and external organization, redundant and uncoordinated data and reduce
provider burden by bring Electronic Data Acquisition Technology and Data
Warehousing to manage all data from Financial Institution and Economic data in
order to support users and make a new standard for all Financial Institutions.

The process for bring data to DMS) is called Data Acquisition.

2.2 Problem Statement

The Data Acquisition subsystem will be developed for using as an entry
point for the Financial Institutions to prepare and submit the electronic data required
by the Bank of Thailand. The majority of the data exchange format for electronic data
will be in XML format.

The Main problem that Financial Institution found is the way to generate
their all data to be dataset under Bank of Thailand XML Schema. Most of Financial
Institution spends many budgets and expenses to get some consults or some vendor to
provide or to make some packages of software for this purpose.

Although Bank of Thailand distributes one data entry application for every
Financial Institutions to fill data that Bank of Thailand wants them to report and in the
end its can generate output files with XML format, but Most of Financial Institutions
don’t use this data entry application for data entry. Because users must key-in each
transaction that have many elements, many details, many classifications etc. and must
prepare data before key-in. It’s taken more time for each dataset to finish key-in.

 4

Figure 2.1 Steps for using Bank of Thailand Data Entry Application

 Data Acquisition is one part of DMS (Data Management System) that have
details component model as Figures below.

Figure 2.2 DMS Component Model

 5

 2.2.1 DMS Component Model
 DMS Component Model in 3 main process :

1. Data Acquisition process to receive data from external source
to system

2. Data Propagation process to bring data to BOT Central Data Warehouse
3. Data Dissemination process to generate data from BOT Central

Data Warehouse
In this project, focus on the component of Data Acquisition

System/Subsystem and Functional Requirements: Describing some necessary
functions the system needs to support from users or external system.

 For Data Acquisition, Financial Institution sent data in XML Data Set
Format with 2 Steps :

1. XML Data Set Preparation
2. XML Data Set Submission

Figure 2.3 Relationship between BOT Electronic Data Acquisition

 6

Figure 2.4 Process for receive data from Financial Institution

 2.2.2 The Component of BOT Electronic Data Acquisition Systems /
Subsystem

Figure 2.5 Electronic Data Acquisition Component

BOT Data
Entry

Application
Data

Warehouse

Staging
Area

Online
Submission

Service

XML
Data Set

FI
Application

OR

Preparation
XML Data Set

Submission

BOT

Key-in

Extranet Server/
WEB Portal

BOT
NET

 7

The Data Acquisition subsystem comprises of four major areas:
BOT Data Entry Application: Providing off-line facilities to allow

Financial Institution to prepare the XML DataSets for submission to BOT.
Online Submission Web Application: Providing facility to allow Financial

Institution to submit the XML data set(s) to BOT secured network channel.
Online Submission Web Service: Providing functionality to allow Financial

Institution to submit the XML data sets to BOT using computer-to-computer interface.
(For the future)

Data Acquisition Administration: Providing administration functionality to
support all data acquisition operations. Provided functions are such as: generate/deploy
data set schema, manage system access control, control data set submission, manage
data set submission requirements, broadcast message to external institutions, etc.

 2.2.3 BOT Electronic Data Acquisition Function

Table 2.1 Bank of Thailand Electronic Data Acquisition Function

Function Description
1. Create Data Set Data set file
2. Edit Working Data Set Updated data set file
3. Merge Data Set Merged data set file
4. Submit Data Set Submission result (success/fail)
5. View/Get Submission Status Submission status. If status is

failure, validation error log is also
provided.

6. View/Get Data Set Submission
Requirements

Data set submission requirements
information

7. Download/Get Validation Error Log Validation error log
8. View/Get Alert Message Alert/Broadcast Messages
9. Submit External Data Set Adjustment

Request
Submission result (success/fail)

10. Manage Access Control (for own
institution)

Result from managing access
control operations

11. Send Alert Message Alert messages for failed
validation.

12. Broadcast Message Broadcast messages
13. Deployed Data Set Schema New version of Data Set schemas
14. Deployed FI Data Entry Application New version of the BOT Data

Entry application
15. Create & Forward Internal Data Set Request for submission of the

newly created Data Set
16. Adjust & Forward Warehouse Data Request for submission of the

updated warehouse data
17. Browse Warehouse Data Content of warehouse data
18. Approve & Submit Data Set Submission status
19. Maintain Supporting Data Updated supporting data

 8

Table 2.1 Bank of Thailand Electronic Data Acquisition Function (cont.)

Function Description
20. Upload External Data Sources Uploaded status
21. View External Data Set Adjustment

Request
Requests for external data set
adjustment

22. Submitted Data Set Data Set Content for ETL
processing.

23. Changed Classification Data New version of classification data
for ETL processing.

24. Changed Supporting Data Content of changed supporting data
for ETL processing.

25. Uploaded External Data Sources External data sources for ETL
processing

26. Validation / Transformation Status Response from ETL regarding the
validation/transformation status of
the submitted Data Set

27. Validation Error Log Validation Error Log (in case of
failed ETL validation)

28. Update Classification Data Submission status for new version
of classification data

29. Drop Updated Classification Data Status where the newly submitted
classification data is dropped.

30. Change Effective Date Status where the effective date of
the newly submitted classification
data is changed.

31. View/Print Classification Data Classification data
32. System Generated Alert Message System generated alert message

such as alert message for changed
classification data, and failed
validation, etc.

33. Generate Data Set Schemas Generated data set schemas
34. Manage Access Control

(Extranet/Intranet)
Result from manages access control
operations.

35. Maintain Operational State Operational state for the subsystem
is changed

36. Control Data Set Submission Time
Window

Result from changing data set
submission time window operation.

37. Maintain Data Set Submission
Requirements

Data set submission requirements is
updated

38. Query Submission Status Data Set submission status
39. View Activity Log Activity logs information
40. Broadcast Message Broadcast message response
41. Deploy BOT Data Applications Result from deployment operations

 9

2.2.4 BOT Data Entry Application
Provide generic data entry functions for creating data set file. As a result,

the application generates data set file in XML format ready for submission to BOT.
Support for both fixed record data entry and variable record data entry. For

the fixed record data entry, XML data set will be generated with fixed number of
records. This is the case when we have a main fixed classification structure in the data
set. The examples are such as: Balance Sheet data set, Profit & Loss data set, etc. The
data entry application will display the fixed number of records for the user to work on.
User will be allowed to edit data in each of the records but not to add or remove any
of the records.

For the variable record data entry, XML data set will be generated with
variable number of records depending on the input data. This is the case when there is
no main classification structure in the data set. The examples are Loan data set,
Deposit data set, etc. User will be allowed to add or remove records in the data set.
Saving the form will trigger the system to generate the XML data set file containing
all entered data set records.

The data set schema/XML Schema will be used to describe structure of the
data set as well as possible values for each of the attribute. The BOT Data Entry as
well as other components of the Data Acquisition subsystem will make use of this
data set schema for validating the correctness of the generated/submitted data set file.
The data set schema files will be delivered as part of the BOT Data Entry Application.

There can be multiple versions of data set schema associated with each data
set. Each version represents structure of data set at different time period as the data set
may be changed. This allows for the system to understand the content of the data set
files created from different version of the Data Set.

The data entry form will be rendered based on specific version of Data Set
schema. The version of Data Set schema is associated with the submission period
/submission effective date. The application will automatically choose appropriate
version of data set schema based on user’s selected data set, and submission period.

Allow for creating new data set file as well as updating existing data set
file.

Allow for merging multiple data set files of the same format to support
Data Set creation from multiple sources. This function is applicable only to the
variable record data entry type where the data set file contains multiple data records of
the same structure.

Allow for printing data set file.
The BOT Data Entry application will be used by the Data Entry User to

create the data set file, then pass-over the files to the Data Submission User for review
and submit to the BOT Online Submission Web Application.

Support for basic key validation based on Data Set schema such as data
type, data length, mandatory field, predefined values, and simple fields relationship
validation within the same data set file.

To allow any user to be able to create data set, no authorization or access
control will be required for the BOT Data Entry Application. If there is any need for
the access control, it is responsible for each Financial Institution to set-up access
control at the machine or operating system-level for each individual workstation.

 10

Support for automatic data set schema/application deployment. Once
published, the new data set schema(s) will be automatically sent to the gateway
computer located at the financial institutions. It is responsible for each Financial
Institution to distribute the data set schemas to their own workstations installing the
BOT Data Entry Application.

The data entry form should allow for quick navigation to jump to specific
record on the data set file.

The BOT Data Entry Application should provide the quick link button to
activate BOT Online Submission Web Application.

 2.2.5 Online Submission Web Application

Web-Based Application provide secured interface for the Data Submission
User to submit data set files created from BOT Data Entry Application or other
sources to Bank of Thailand.

Data submission process will be done through the BOT extranet network.
Support for immediate submission.
Submitted data set files will be automatically zipped and digitally signed

before sending to BOT using a client digital certificate stored on the data submission
user’s smartcard. Once received at the BOT the submitted data set file will be verified
to ensure confidentiality, integrity and non-repudiation of data.

The system will not allow for data set submission for data set file that is
still under processing by ETL subsystem or the data set file that has already been
processed by the ETL subsystem for each particular submission period. To adjust the
already processed data set file, FI user must send request to BOT describing data
adjustment.

The Figure 2.6 below illustrates state of submitted data set. Once
successfully, state will be set to “New”. After the system has performed key basic
validation on the received data set, state will be set to either “Received”, or
“Rejected” depending on result from key basic validation process. When the data set
is picked-up for processing by ETL, the state will be set to “Processing”. Once ETL
finishes processing the data set, state will be set to either “Validated”, or
“Invalidated” depending on result from processing.

 11

State in which the re-submission is allowed

State in which the re-submission is NOT allowed

State in which the re-submission is allowed

State in which the re-submission is NOT allowed

State in which the re-submission is allowed

State in which the re-submission is NOT allowed

Figure 2.6 Diagram for Submitted Data Set

The system should provide facility to allow Financial Institution user to
submit external data set adjustment request (message text + attached file) to BOT.
During submission, the message text and attached file will be digitally singed with the
user’s certificate stored on the smartcard before sending request to BOT to ensure the
message authenticity. The submitted message will be logged and archived by the
system. At the same time, the original message and attached file will be forwarded to
the BOT designated local email address for further follow-up.

The Online Submission Web Application should be implemented based on
the Electronics Report Submission (ERS) framework to utilize the security services on
the existing public key infrastructure.

Following access control & authorization checking will be performed
before allowing Data Submission User to submit the data set file:

Check to ensure that the specified data set type and submission period
match content of the details to be submitted data set file.

Check for valid user,
Check that the user is authorized to submit specified data set file,
Check that the data set type and submission period is valid for submission,
Access control can be assigned to the user at the Data Set level. All users

will have privilege to access any provided functions. However, different user may
have different privilege to submit different type of Data Set file.

Once the submitted file is received, the application will verify the file’s
digital signature and then perform basic key validation on the data before marking the
data set file as officially received. If validation is success, the data set file will be
forwarded to the ETL subsystem for further processing.

Provide functionality to allow the Data Submission User to view/print
status of the submitted Data Set:

 12

 1. View Submission Status by Data Set (all Data Set types or specific Data
Set Type)

 2. View Submission Status by Date
 3. Following information will be available for viewing:
 3.1 Data set type
 3.2 Type of submission period (e.g., daily, weekly, etc.)
 4. Submission period
 5. Submission status
 6. Sender
 7. Submission timestamp
 8. ETL validation timestamp
 9. Submitted filename and file size
10. Validation Error Log file for download (if invalidated)
In case of failed validation by both key basic validation and ETL

validation, the validation error log will be available for downloading.
Allow for the Data Submission User to view data set submission

requirements.
Provide message alert/broadcasting mechanism for data submission user to

view alert/broadcast messages.
The alert message will be automatically generated to notify data

submission user when the submitted data set failed validation process.
Provide facility to support message broadcasting by BOT Administrator.

Receiver of a broadcast message can be specified at the level of individual user,
institution, or group of institution.

 13

2.3 Related projects

 2.3.1. XML Documents and XML Files (Harold & Means, 2002)

An XML document contains text, never binary data. It can be opened with
any program that knows how to read a text file.

Figure 2.7 A tree diagram for XML Examples below

 2.3.2. Elements, Tags, and Character Data
The element is delimited by the start-tag <person> and the end-tag

</person>. Everything between the start-tag and the end-tag of the element
(exclusive) is called the element's content. The content of this element is the text
string:

The whitespace is part of the content, though many applications will
choose to ignore it. <person> and </person> are markup. The string "Alan Turing"
and its surrounding whitespace are character data. The tag is the most common form
of markup in an XML document, but there are other kinds we'll discuss later.
 1) Tag Syntax

 XML tags look superficially like HTML tags. Start-tags begin with
< and end-tags begin with </. Both of these are followed by the name of the element
and are closed by >. However, unlike HTML tags, you are allowed to make up new
XML tags as you go along. To describe a person, use <person> and </person> tags.
To describe a calendar, use <calendar> and </calendar> tags. The names of the tags
generally reflect the type of content inside the element, not how that content will be
formatted.
 2) Empty elements

 There's also a special syntax for empty elements, i.e., elements that
have no content. Such an element can be represented by a single empty-element tag
that begins with < but ends with />. For instance, in XHTML, an XMLized
reformulation of standard HTML, the line-break and horizontal-rule elements are
written as
 and <hr /> instead of
 and <hr>. These are exactly equivalent to

</br> and <hr></hr>, however. Which form you use for empty elements is

 14

completely up to you. However, what you cannot do in XML and XHTML (unlike
HTML) is use only the start-tag--for instance
 or <hr>--without using the
matching the end-tag. That would be a well-formedness error.
 3) Case sensitivity

 XML, unlike HTML, is case sensitive. <Person> is not the same as
<PERSON> is not the same as <person>. If you open an element with a <person> tag,
you can't close it with a </PERSON> tag. You're free to use upper- or lowercase or
both as you choose. You just have to be consistent within any one element.
 4) XML Trees

 Look at a slightly more complicated XML document. The element
contains more information suitably marked up to show its meaning.
 1. Parents and children

 This XML document is still composed of one person element.
However, now this element doesn't merely contain undifferentiated character data. It
contains four child elements: a name element and three profession elements. The
name element contains two child elements of its own, first_name and last_name.

The person element is called the parent of the name element and the three
profession elements. The name element is the parent of the first_name and last_name
elements. The name element and the three profession elements are sometimes called
each other's siblings. The first_name and last_name elements are also siblings.

XML gives each child exactly one parent, not two or more. Each element
has exactly one parent element. That is, it is completely enclosed by another element.
If an element's start-tag is inside some element, then its end-tag must also be inside
that element. Overlapping tags, as in this common example from
HTML, are prohibited in XML. Since the em element begins inside
the strong element, it must also finish inside the strong element.
 2. The root element

 Every XML document has one element that does not have a
parent. This is the first element in the document and the element that contains all other
elements. In the person element filled this role. It is called the root element of the
document. It is also sometimes called the document element. Every well-formed
XML document has exactly one root element. Since elements may not overlap, and
since all elements except the root have exactly one parent, XML documents form a
data structure programmers call a tree.
 5) Mixed Content

 The contents of the first_name, last_name, and profession elements
were character data, that is, text that does not contain any tags. The contents of the
person and name elements were child elements and some whitespace that most
applications will ignore. This dichotomy between elements that contain only character
data and elements that contain only child elements (and possibly a little whitespace) is
common in documents that are data oriented. However, XML can also be used for
more free-form, narrative documents such as business reports, magazine articles,
student essays, short stories, web pages, and so forth

 15

 2.3.3. Attributes
XML elements can have attributes. An attribute is a name-value pair

attached to the element's start-tag. Names are separated from values by an equals sign
and optional whitespace. Values are enclosed in single or double quotation marks. For
example, this person element has a born attribute with the value 1962-06-23 and a
died attribute with the value 2004-06-07:

 2.3.4. CDATA Sections

When an XML document includes samples of XML or HTML source code,
the < and & characters in those samples must be encoded as < and &. The
more sections of literal code a document includes and the longer they are, the more
tedious this encoding becomes. Instead you can enclose each sample of literal code in
a CDATA section. A CDATA section is set off by a <![CDATA[and]]>. Everything
between the <![CDATA[and the]]> is treated as raw character data. Less-than signs
don't begin. Ampersands don't start entity references. Everything is simply character
data, not markup.

The only thing that can not appear in a CDATA section is the CDATA
section end delimiter]]>.

CDATA sections exist for the convenience of human authors, not for
programs. Parsers are not required to tell you whether a particular block of text came
from a CDATA section, from normal character data, or from character data that
contained entity references such as < and &. By the time you get access to the
data, these differences will have been washed away.

 2.3.5. Comments

XML documents can be commented so that coauthors can leave notes for
each other and themselves, documenting why they've done what they've done or items
that remain to be done. XML comments are syntactically similar to HTML comments.
Just as in HTML, they begin with <!-- and end with the first occurrence of -->.

The double hyphen -- should not appear anywhere inside the comment until
the closing -->. In particular, a three hyphen close like ---> is specifically forbidden.

Comments may appear anywhere in the character data of a document. They
may also appear before or after the root element. However, comments may not appear
inside a tag or inside another comment.

Applications that read and process XML documents may or may not pass
along information included in comments. They are certainly free to drop them out if
they choose. Do not write documents or applications that depend on the contents of
comments being available. Comments are strictly for making the raw source code of
an XML document more legible to human readers. They are not intended for
computer programs. For this purpose you should use a processing instruction instead.

 2.3.6. Processing Instructions

In HTML, comments are sometimes abused to support nonstandard
extensions. For instance, the contents of the script element are sometimes enclosed in
a comment to protect it from display by a nonscript-aware browser.

XML provides the processing instruction as an alternative means of passing
information to particular applications that may read the document. A processing

 16

instruction begins with <? and ends with ?>. Immediately following the <? is an XML
name called the target, possibly the name of the application for which this processing
instruction is intended or possibly just an identifier for this particular processing
instruction. The rest of the processing instruction contains text in a format appropriate
for the applications for which the instruction is intended.

Processing instructions are markup, but they're not elements. Consequently,
like comments, processing instructions may appear anywhere in an XML document
outside of a tag, including before or after the root element. The most common
processing instruction, xml-stylesheet, is used to attach stylesheets to documents. It
always appears before the root element, as Example 2-6 demonstrates. In this
example, the xml-stylesheet processing instruction tells browsers to apply the CSS
stylesheet person.css to this document before showing it to the reader.

 2.3.7. The XML Declaration

XML documents should begin with an XML declaration. The XML
declaration looks like a processing instruction with the name xml and version,
standalone, and encoding attributes. Technically, it's not a processing instruction
though, just the XML declaration; nothing more, nothing less.

XML documents do not have to have an XML declaration. However, if an
XML document does have an XML declaration, then that declaration must be the first
thing in the document. It must not be preceded by any comments, whitespace,
processing instructions, and so forth. The reason is that an XML parser uses the first
five characters (<?xml) to make some reasonable guesses about the encoding, such as
whether the document uses a single byte or multibyte character set. The only thing
that may precede the XML declaration is an invisible Unicode byte-order mark.
 1) Encoding

 By default XML documents are assumed to be encoded in the
UTF-8 variable-length encoding of the Unicode character set. This is a strict superset
of ASCII, so pure ASCII text files are also UTF-8 documents. However, most XML
processors, especially those written in Java, can handle a much broader range of
character sets. All you have to do is tell the parser which character encoding the
document uses. Preferably this is done through Meta information, stored in the file
system or provided by the server. However, not all systems provide character-set
metadata so XML also allows documents to specify their own character set with an
encoding declaration inside the XML declaration.

 The encoding attribute is optional in an XML declaration. If it is
omitted and no metadata is available, then the Unicode character set is assumed. The
parser may use the first several bytes of the file to try to guess which encoding of
Unicode is in use. If metadata is available and it conflicts with the encoding
declaration, then the encoding specified by the metadata wins. For example, if an
HTTP header says a document is encoded in ASCII but the encoding declaration says
it's encoded in UTF-8, then the parser will pick ASCII.
 2) Standalone

 If the standalone attribute has the value no, then an application may
be required to read an external DTD (that is a DTD in a file other than the one it's
reading now) to determine the proper values for parts of the document. For instance, a

 17

DTD may provide default values for attributes that a parser is required to report even
though they aren't actually present in the document.

Documents that do not have DTDs, like all the documents in this chapter,
can have the value yes for the standalone attribute. Documents that do have DTDs can
also have the value yes for the standalone attribute if the DTD doesn't in any way
change the content of the document or if the DTD is purely internal.

The standalone attribute is optional in an XML declaration. If it is omitted,
then the value no is assumed.

 2.3.8. Checking Documents for Well-Formedness

Every XML document, without exception, must be well-formed. This
means it must adhere to a number of rules, including the following:

1) Every start-tag must have a matching end-tag.
2) Elements may nest, but may not overlap.
3) There must be exactly one root element.
4) Attribute values must be quoted.
5) An element may not have two attributes with the same name.
6) Comments and processing instructions may not appear inside tags.
7) No unescaped < or & signs may occur in the character data of an

element or attribute.
This is not an exhaustive list. There are many, many ways a document can

be malformed. Some of these involve constructs that we have not yet discussed such
as DTDs. Others are extremely unlikely to occur if you follow the examples in this
chapter (for example, including whitespace between the opening < and the element
name in a tag).

Whether the error is small or large, likely or unlikely, an XML parser
reading a document is required to report it. It may or may not report multiple well-
formedness errors it detects in the document. However, the parser is not allowed to try
to fix the document and make a best-faith effort of providing what it thinks the author
really meant. It can't fill in missing quotes around attribute values, insert an omitted
end-tag, or ignore the comment that's inside a start-tag. The parser is required to
return an error. The objective here is to avoid the bug-for-bug compatibility wars that
plagued early web browsers and continue to this day. Consequently, before you
publish an XML document, whether that document is a web page, input to a database,
or something else, you'll want to check it for well-formedness.

You can use DTDs and schemas to validate documents. When the
document has been corrected to be well-formed, it can be passed to a web browser, a
database, or whatever other program is waiting to receive it.

 2.3.9 Document Type Definitions (DTDs)

While XML is extremely flexible, not all the programs that read particular
XML documents are so flexible. Many programs can work with only some XML
applications but not others. And within a particular XML application, it's often
important to ensure that a given document indeed adheres to the rules of that XML
application. For instance, in XHTML, li elements should only be children of ul or ol
elements. Browsers may not know what to do with them, or may act inconsistently, if
li elements appear in the middle of a blockquote or p element.

 18

A document type definition (DTD), DTDs are written in a formal syntax
that explains precisely which elements and entities may appear where in the document
and what the elements' contents and attributes are. A DTD can make statements such
as "A ul element only contains li elements" or "Every employee element must have a
social_security_number attribute." Different XML applications can use different
DTDs to specify what they do and do not allow.

A validating parser compares a document to its DTD and lists any places
where the document differs from the constraints specified in the DTD. The program
can then decide what it wants to do about any violations. Some programs may reject
the document. Others may try to fix the document or reject just the invalid element.
Validation is an optional step in processing XML. A validity error is not necessarily a
fatal error like a well-formedness error, though some applications may choose to treat
it as one.
 1) Validation

 A valid document includes a document type declaration that
identifies the DTD the document satisfies. The DTD lists all the elements, attributes,
and entities the document uses and the contexts in which it uses them. The DTD may
list items the document does not use as well. Validity operates on the principle that
everything not permitted is forbidden. Everything in the document must match a
declaration in the DTD. If a document has a document type declaration and the
document satisfies the DTD that the document type declaration indicates, then the
document is said to be valid. If it does not, it is said to be invalid.

 There are many things the DTD does not say. In particular, it does
not say the following:

1. What the root element of the document is
2. How many of instances of each kind of element appear in the

document
3. What the character data inside the elements looks like
4. The semantic meaning of an element; for instance, whether it

contains a date or a person's name
 DTDs allow you to place some constraints on the form an XML

document takes, but there can be quite a bit of flexibility within those limits. A DTD
never says anything about the length, structure, meaning, allowed values, or other
aspects of the text content of an element.

 Validity is optional. A parser reading an XML document may or
may not check for validity. If it does check for validity, the program receiving data
from the parser may or may not care about validity errors. In some cases, such as
feeding records into a database, a validity error may be quite serious, indicating that a
required field is missing, for example. In other cases, rendering a web page perhaps, a
validity error may not be so important, and you can work around it. Well-formedness
is required of all XML documents; validity is not. Your documents and your programs
can use it or not as you find needful.

 DTD would probably be stored in a separate file from the
documents it describes. This allows it to be easily referenced from multiple XML
documents. However, it can be included inside the XML document if that's
convenient, using the document type declaration we discuss later in this section. If it
is stored in a separate file, then that file would most likely be named person.dtd, or

 19

something similar. The .dtd extension is fairly standard though not specifically
required by the XML specification.

 A valid document includes a reference to the DTD to which it
should be compared. This is given in the document's single document type
declaration. The document type declaration is included in the prolog of the XML
document after the XML declaration but before the root element.

 When you use an external DTD subset, you should give the
standalone attribute of the XML declaration the value no.

 A validating processor is required to read the external DTD subset.
A non-validating processor may do so, but is not required to, even if standalone has
the value no. This means that if the external subset makes declarations that have
consequences for the content of a document (for instance, providing default values for
attributes) then the content of the document depends on which parser you're using and
how it's configured. This has led to no end of confusion. Although some of the earliest
XML parsers did not resolve external entities, most of the parsers still being used can
do so and generally will do so. You should read the external DTD subset unless
efficiency is a major concern or you're very familiar with the structure of the
documents you're parsing.
 2) Element Declarations

 Every element used in a valid document must be declared in the
document's DTD with an element declaration. Element declarations have this basic
form:

 <!ELEMENT element_name content_specification>
 The name of the element can be any legal XML name. The content

specification specifies what children the element may or must have in what order.
Content specifications can be quite complex. They can say, for example, that an
element must have three child elements of a given type, or two children of one type
followed by another element of a second type, or any elements chosen from seven
different types interspersed with text.
 1. #PCDATA

About the simplest content specification is one that says an element may
only contain parsed character data, but may not contain any child elements of any
type. In this case the content specification consists of the keyword #PCDATA inside
parentheses. For example, this declaration says that a phone_number element may
contain text, but may not contain elements:

<!ELEMENT phone_number (#PCDATA)>
 2. Child Elements

 Another simple content specification is one that says the element
must have exactly one child of a given type. In this case, the content specification
simply consists of the name of the child element inside parentheses
 3. Sequences

 A content specification that lists exactly one child element is
rare. Most elements contain either parsed character data or multiple child elements.
The simplest way to indicate multiple child elements is to separate them with
commas. This is called a sequence. It indicates that the named elements must appear
in the specified order.

 20

 4. The Number of Children
 As the previous examples indicate, not all instances of a given

element necessarily have exactly the same children. You can affix one of three
suffixes to an element name in a content specification to indicate how many of that
element are expected at that position. These suffixes are:

 ?
 Zero or one of the element is allowed.
 *
 Zero or more of the element is allowed.
 +
 One or more of the element is required.

 5. Choices
 Sometimes one instance of an element may contain one kind of

child, and another instance may contain a different child. This can be indicated with a
choice. A choice is a list of element names separated by vertical bars.

 Choices can be extended to an indefinite number of possible
elements.
 6. Parentheses

 Choices, sequences, and suffixes are fairly limited. However,
they can be combined in arbitrarily complex fashions to describe most reasonable
content models. Either a choice or a sequence can be enclosed in parentheses. When
so enclosed, the choice or sequence can be suffixed with a ?, *, or +. Furthermore, the
parenthesized item can be nested inside other choices or sequences.
 7. Mixed Content

 In narrative documents it's common for a single element to
contain both child elements and un-marked up, nonwhitespace character data.

 A definition element may contain parsed character data and term
children. It does not specify in which order they appear, nor how many instances of
each appear. This declaration allows a definition to have one term child, no term
children, or twenty-three term children.

 You can add any number of other child elements to the list of mixed
content, though #PCDATA must always be the first child in the list.
 8. Empty Elements

 Some elements do not have any content at all. These are called
empty elements and are sometimes written with a closing />.

 These elements are declared by using the keyword EMPTY for
the content specification.

 If an element is empty, then it can contain nothing, not even
whitespace.
 9. ANY

 DTDs occasionally want to say that an element exists without
making any assertions about what it may or may not contain. In this case you can
specify the keyword ANY as the content specification.

 ANY is sometimes useful when you're just beginning to design
the DTD and document structure and you don't yet have a clear picture of how
everything fits together. However, it's extremely bad form to use ANY in finished
DTDs. About the only time you'll see it used is when external DTD subsets and

 21

entities may change in uncontrollable ways. However, this is actually quite rare.
You'd really only need this if you were writing a DTD for an application like XSLT
or RDF that wraps content from arbitrary, unknown XML applications.
 2.3.10 Attribute Declarations

As well as declaring its elements, a valid document must declare all the
elements' attributes. This is done with ATTLIST declarations. A single ATTLIST can
declare multiple attributes for a single element type. However, if the same attribute is
repeated on multiple elements, then it must be declared separately for each element
where it appears.

It says that the image element has an attribute named source. The value of
the source attribute is character data, and instances of the image element in the
document are required to provide a value for the source attribute.

A single ATTLIST declaration can declare multiple attributes for the same
element.
 1) Attribute Types

 In merely well-formed XML, attribute values can be any string of
text. The only restrictions are that any occurrences of < or & must be escaped as <
and & and whichever kind of quotation mark, single or double, is used to delimit
the value must also be escaped. However, a DTD allows you to make somewhat
stronger statements about the content of an attribute value. Indeed, these are stronger
statements than can be made about the contents of an element. For instance, you can
say that an attribute value must be unique within the document, that it must be a legal
XML name token, or that it must be chosen from a fixed list of values.

 There are ten attribute types in XML. They are:
1. CDATA
2. NMTOKEN
3. NMTOKENS
4. Enumeration
5. ENTITY
6. ENTITIES
7. ID
8. IDREF
9. IDREFS
10. NOTATION

 2) Attribute Defaults
 As well as providing a data type, each ATTLIST declaration

includes a default declaration for that attribute. There are four possibilities for this
default:

 #IMPLIED
 The attribute is optional. Each instance of the element may or may

not provide a value for the attribute. No default value is provided.
 #REQUIRED
 The attribute is required. Each instance of the element must provide

a value for the attribute. No default value is provided.
 #FIXED

 22

 The attribute value is constant and immutable. This attribute has
the specified value regardless of whether the attribute is explicitly noted on an
individual instance of the element. If it is included, though, it must have the specified
value.

 Literal
 The actual default value is given as a quoted string.

 2.3.11 General Entity Declarations
XML predefines five entities for your convenience:
<
The less-than sign; a.k.a. the opening angle bracket (<)
&
The ampersand (&)
>
The greater-than sign; a.k.a. the closing angle bracket (>)
"
The straight, double quotation marks (")
'
The apostrophe; a.k.a. the straight single quote (')
The DTD can define many more. This is useful not just in valid documents,

but even in documents you don't plan to validate.
Entity references are defined with an ENTITY declaration in the DTD.

This gives the name of the entity, which must be an XML name, and the replacement
text of the entity. For example, this entity declaration defines &super; as an
abbreviation for supercalifragilisticexpialidocious:

 2.3.12 Namespaces

Namespaces have two purposes in XML:
1). To distinguish between elements and attributes from different

vocabularies with different meanings and that happen to share the same name.
2). To group all the related elements and attributes from a single XML

application together so that software can easily recognize them.
The first purpose is easier to explain and to grasp, but the second purpose is

more important in practice.
Namespaces are implemented by attaching a prefix to each element and

attribute. Each prefix is mapped to a URI by an xmlns:prefix attribute. Default URIs
can also be provided for elements that don't have a prefix by xmlns attributes.
Elements and attributes that are attached to the same URI are in the same namespace.
Elements from many XML applications are identified by standard URIs.
 1) The Need for Namespaces

 Some documents combine markup from multiple XML
applications. In some cases, these applications may use the same name to refer to
different things. Several elements have been overloaded with different meanings in
different parts of the document. The title element is used for both the title of the page
and the title of a painting. The date element is used for both the date the page was
written and the date the painting was painted. One description element describes
pages, while another describes paintings.

 23

 We could change the names of the elements from our vocabulary,
painting_title instead of title, date_painted instead of date, and so on. However, this is
inconvenient if you already have a lot of documents marked up in the old version of
the vocabulary. And it may not be possible to do this in all cases, especially if the
name collisions occur not because of conflicts between your vocabulary and a
standard vocabulary, but because of conflicts between two or more standard
vocabularies. For instance, RDF just barely avoids a collision with the Dublin Core
over the Description and description elements.

 In other cases, there may not be any name conflicts, but it may still
be important for software to determine quickly and decisively to which XML
application a given element or attribute belongs.
 2) Namespace Syntax

 Namespaces disambiguate elements with the same name from each
other by assigning elements and attributes to URIs. Generally, all the elements from
one XML application are assigned to one URI, and all the elements from a different
XML application are assigned to a different URI. These URIs are sometimes called
namespace names. The URIs partition the elements and attributes into disjoint sets.
Elements with the same name but different URIs are different elements. Elements
with the same name and the same URIs are the same. Most of the time there's a one-
to-one mapping between namespaces and XML applications, though a few
applications use multiple namespaces to subdivide different parts of the application.
 3) Namespaces and DTDs

 Namespaces are completely independent of DTDs and can be used
in both valid and invalid documents. A document can have a DTD but not use
namespaces or use namespaces but not have a DTD. It can use both namespaces and
DTDs or neither namespaces nor DTDs. Namespaces do not in any way change DTD
syntax nor do they change the definition of validity. For instance, the DTD of a valid
document that uses an element named dc:title must include an ELEMENT declaration
properly specifying the content of the dc:title element.

 The name of the element in the document must exactly match the
name of the element in the DTD including the prefix. The DTD cannot omit the prefix
and simply declare a title element. The same is true of prefixed attributes.

 2.3.13 W3C XML Schema (Vlist, 2002)

XML, the Extensible Markup Language, lets developers create their own
formats for storing and sharing information. Using that freedom, developers have
created documents representing an incredible range of information, and XML can
ease many different information-sharing problems. A key part of this process is
formal declaration and documentation of those formats, providing a foundation on
which software developers can build software.

 2.3.14 What Schemas Do for XML

An XML schema language is a formalization of the constraints, expressed
as rules or a model of structure, that apply to a class of XML documents. In many
ways, schemas serve as design tools, establishing a framework on which
implementations can be built. Since formalization is a necessary ground for software
designers, formalizing the constraints and structures of XML instance documents can

 24

lead to very diverse applications. Although new applications for schemas are being
invented every day, most of them can be classified as validation, documentation,
query, binding, or editing.

 2.3.15 Validation

Validation is the most common use for schemas in the XML world. There
are many reasons and opportunities to validate an XML document: when we receive
one, before importing data into a legacy system, when we have produced or hand-
edited one, to test the output of an application, etc. In all these cases, a schema helps
to accomplish a substantial part of the job. Different kinds of schemas perform
different kinds of validation, and some especially complex rules may be better
expressed in procedural code rather than in a descriptive schema, but validation is
generally the initial purpose of a schema, and often the primary purpose as well.

Validation can be considered a "firewall" against the diversity of XML. We
need such firewalls principally in two situations: to serve as actual firewalls when we
receive documents from the external world (as is commonly the case with Web
Services and other XML communications), and to provide check points when we
design processes as pipelines of transformations. By validating documents against
schemas, you can ensure that the documents' contents conform to your expected set of
rules, simplifying the code needed to process them.

Validation of documents can substantially reduce the risk of processing
XML documents received from sources beyond your control. It doesn't remove either
the need to follow the administration rules of your chosen communication protocol or
the need to write robust applications, but it's a useful additional layer of tests that fits
between the communications interface and your internal code.

Validation can take place at several levels. Structural validation makes
certain that XML element and attribute structures meet specified requirements, but
doesn't clarify much about the textual content of those structures. Data validation
looks more closely at the contents of those structures, ensuring that they conform to
rules about what type of information should be present. Other kinds of validation,
often called business rules, may check relationships between information and a higher
level of sanity-checking, but this is usually the domain of procedural code, not
schema-based validation.

 25

2.4 Requirement specifications for BOT Data Application after
improvements

FI Type Number
Commercial Banks registered in Thailand 17 Banks
 -IBF License 5 Banks
Foreign Banks 17 Banks
 -IBF License 9 Banks
Finance Companies 7 Companies
Credit Foncier Companies 4 Companies
Credit Card Companies 12 Companies
Remark : Not included Branches

Financial Institutions in Control of Bank of Thailand

Figure 2.8 Number of Financial Institution in Control of Bank of Thailand

Financial Institutions in Control of Bank of Thailand consist with

Commercial Banks (registered in Thailand), Foreign Banks, Finance Companies,
Credit Foncier Companies and Credit Card Companies. All of Financial Institutions
are necessary to follow by Bank of Thailand Policy to come in DMS Project and
make a new standard in XML format data.

Electronic Data Acquisition is new technology for Central Bank in
Thailand that has never done it before, like some Central Bank in other countries. The
problem that Financial Institution found is the way to generate their all data to be
dataset under Bank of Thailand XML Schema. Most of Financial Institution spends
many budgets and expenses to get some consults or some vendor to provide or to
make some packages of software for this purpose.

Bank of Thailand distributes one data entry application for every Financial
Institutions to fill data that Bank of Thailand wants them to report and in the end its
can generate output files with XML format, but Most of Financial Institutions don’t
use this data entry application for data entry. Because users must key-in each
transaction that has many elements, many details, many classifications etc. and must
prepare data before key-in. It’s taken more time for each dataset to finish key-in.

So, the specifications for BOT Data Application after improvements are :
1. To reduce Key-in process in BOT Data Application
2. To reduce times for making XML DataSet under BOT XML Schema
3. To help Financial Institution generate XML DataSet under BOT XML

Schema by making templates for DataSet in each Structure Data
4. Make Data Templates for DataSet in each Structure Data to support in

generator
5. Use Programming and coding the relations for Structure Data Template

and Data Template to make Prototype for implement
6. Testing Prototype result validate by select the examples for some

Financial Institutions or get data from external company that use Bank of Thailand
XML Schema to do in the real situation and compare with Bank of Thailand data
entry application.

 26

2.5 Implementation Techniques

2.5.1 Prototype for generating XML DataSet under BOT XML Schema
2.5.2 Programming and Coding by using Visual Basic for Application in

Microsoft Excel (Marco).
2.5.3 Study in the Data Acquisition System/Subsystem, XML, Bank of

Thailand XML Schema in order to improve Bank of Thailand Data Entry Application.

Figure 2.9 New Electronic Data Acquisition Component

2.6 Deliverables

CD containing source code, Documentation

2.7 Implementation plan

Implement Prototype that makes Master Template and Data Template by
Programming and coding the relations for Master Template and Data Template to
show the XML DataSet (Output) under Bank of Thailand XML Schema

CHAPTER 3

SYSTEM ANALYSIS AND DESIGN

3.1 Introduction

For generating Financial Institution data in XML format under BOT XML
Schema ready for submission to BOT must know about BOT XML Schema Structure,
Financial Institution Data Set and Financial Institution XML Schema Etc. For
Examples: DataSet Element , DataSet Type, Fixed record data entry and variable
record data entry.

The data set schema will be used to describe structure of the data set as
well as possible values for each of the attribute. Other components of the Data
Acquisition subsystem will make use of this data set schema for validating the
correctness of the generated/submitted data set file.

3.2 Analysis of the existing system

3.2.1. Bank of Thailand XML Structure
XML Data Set is the standard for XML for Financial Institution to make

XML Data in format XML (EXtensible Markup Language) and also to
communication between Bank to Bank for the same standard. XML can show the
details of the data and XML Structure that manage by XML Schema. In this part
XML Structure include XML Declaration, XML Element, Root Element and Attribute
with details below

 1) XML Declaration

 XML General starts with XML Declaration that used to show XML
Version and Character Set in the document. Example:

 2) XML Element
 XML use Markup Tag to explain the meaning for value of data. By

Tag are any massage that between the sign < and > and the value of data must fill
between Open Tag and Closing Tag (Closing Tag must have the sign / in front of that
massage) Example :

<?xml version="1.0" encoding="UTF-8"?>

<InterestRate>12.45</InterestRate>

 28

For Example : 1 XML Element contain with the value of data that contain
with Open Tag and Closing Tag for explain that InterestRate = 12.45

 3) Root Element

 First Element that below XML Declaration is called Root Element
by 1 XML Document has only 1 Root Element only Inside Root Element can have
Sub-Element in hierarchy

 For Example: email Root Element contain with Sub-Element to,
from, subject and body And in the same time body can have Sub-Element paragraph
and attachment etc.

 4) Attribute
 Inside Open Tag can explain data Attribute such as Tag attachment

attribute type = ”gif” and size = ”100KB” etc.

 3.2.2. Financial Institution Data Set

In each XML Data Set that Financial Institution to sent between Bank must
have 5 parts with details below
 1) XML Declaration

 Financial Institution XML Data Set must start with XML
Declaration the same standard for general XML such as version=”1.0” and encoding
=UTF-8

<?xml version="1.0" encoding="ISO-8859-1"?>
<email>

<to>Tove</to>
<from>Jani</from>
<subject>Reminder</subject>
<body>

<paragraph>This is a paragraph.</paragraph>
<attachment>computer.gif</attachment>

</body>
</email>

Root Element

<?xml version="1.0" encoding="UTF-8"?>

<attachment type=”gif” size=”100KB” >computer.gif</attachment>

 29

 2) Root Element
 Root Element for Data Set in the specification Tag start with DS_

and follow with abbreviation of Data Set and also have some Attribute to explain data
such as

 1. name : the full name for Data Set
 2. type : specific Data Set Structure such as Fixed Classification

No Sub-Repeating,Fixed Classification with Sub-Repeating, No Fixed Classification
No Sub-Repeating and No Fixed Classification with Sub-Repeating

 3. schemaVersion Version Schema

 Inside Root Element Financial Institution Data Set have 3 parts:

Common Header, Data Set Header and Content Records

<DS_ARS name="Arrangement Summary" type="No Fixed Classification with
Sub-Repeating"
" schemaVersion=”CBS 1.0”>

<?xml version="1.0" encoding="UTF-8"?>
<DS_ARS name="Arrangement Summary" type="No Fixed Classification with Sub-
Repeating" schemaVersion="FCS 1.0">

 <CommonHeader>
 ……

 </CommonHeader>

 <DS_ARS_Header>
 ……

 </DS_ARS_Header>

 <DS_ARS_Content>
 ……

 </DS_ARS_Content>
</DS_ARS>

 30

 3) Common Header
 Common Header to be defined for the first Sub-Element inside

Root Element for every Data Set by specific with Tag CommonHeader inside this
part there have 2 Sub-Element

 OrganizationId
 DataSetDate

 4) Data Set Header
 Data Set Header the second Sub-Element inside Root Element Tag

start with DS_ and follow with abbreviation of Data Set and close with _Header such
as DS_ARS_Header inside Data Set Header have some Sub-Element that have
specific data for that Data Set. For every Data Set can also have difference Element.

<?xml version="1.0" encoding="UTF-8"?>
<DS_ARS name="Arrangement Summary" type="No Fixed Classification with Sub-
Repeating" schemaVersion="FCS 1.0">
 <CommonHeader>
 <OrganizationId>002</OrganizationId>
 <DataSetDate>2005-09-30</DataSetDate>
 </CommonHeader>
 ……
</DS_ARS>

<?xml version="1.0" encoding="UTF-8"?>
<DS_ARS name="Arrangement Summary" type="No Fixed Classification with
Sub-Repeating” schemaVersion="FCS 1.0">

 <CommonHeader>
 <OrganiztionId>002</OrganizationId>
 <DataSetDate>2005-09-30</DataSetDate>
 </CommonHeader>
 <DS_ARS_Header>
 < FiReportingGroupId>238001</FiReportingGroupId>
 </DS_ARS_Header>
 ……
</DS_ARS>

 31

5) Content Records
 The last parts of Data Set Content Records are transaction for that

data. Tag start with DS_ follow with abbreviation of Data Set and close with _Content
Such as DS_ARS_Content For the structure of Sub-Element inside Content Record
depend on the type of Data Set

 3.2.3. Financial Institution XML Schema

Financial Institution XML Schema is the way to control data and structure
data for Data Set 1 Data Set (extension XML) must have 1 XML Schema (extension
XSD) together.

Example XML Data Set in these research show only some sample for some
important data but not complete details and conditions, so when Bank want to develop
program for generate XML Data Set must study document about Data Set,
Classification, XML Schema and Validation Rules.

XML Schema is written an XML. The first line set XML Declaration such
as general XML. For Root Element show Tag as schema. For Example:

<?xml version="1.0" encoding="UTF-8"?>
<DS_ARS name="Arrangement Summary" type="No Fixed Classification
with Sub-Repeating" schemaVersion="FCS 1.0">

 <CommonHeader>
 <OrganiztionId>002</OrganizationId>
 <DataSetDate>2005-09-30</DataSetDate>
 </CommonHeader>
 <DS_ARS_Header>
 < FiReportingGroupId>238001</FiReportingGroupId>
 </DS_ARS_Header>
 <DS_ARS_Content>
 ……
 </DS_ARS_Content>
</DS_ARS>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.bank.co.th"

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.bank.co.th” elementFormDefault="qualified"
version="FCS 1.0">

 ……

</xs:schema>

Root Element

 32

 1) Main Component Financial Institution XML Schema
Financial Institution XML Schema contain with 3 main parts

1. Key Basic Validation Rules
2. Structure Data Set
3. Based and Classification Data Type

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="http://www.bank.co.th"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.bank.co.th"

 elementFormDefault="qualified" version="FCS 1.0">
 <xsd:annotation>
 <xsd:appinfo>
 ……

 </xsd:appinfo>
 </xsd:annotation>
 <xs:element name="DS_CAP">
 <xs:complexType>

 ……
 </xs:complexType>
 </xs:element>
 <!-- Based Data Type -->

 <xs:simpleType name="M_Date">
 <xs:restriction base="xs:date" />
 </xs:simpleType>
 ……
</xs:schema>

 Key Basic Validation Rules

Structure Data Set

 Based and Classification

 33

2) Key Basic Validation Rules
 Key Basic Validation Rules first part of Root Element for Financial

Institution XML Schema. Validation Rules for development program to generate
XML Data Set can study from Data Set Manual that cover Key Basic Validation Rules

 3) Structure Data Set
 The next part after Key Basic Validation Rules is Structure Data Set
 For Example : Data Set Arrangement Summary set Root Element

Data Set name DS_ARS that is complexType contain with Sub-Element name
CommonHeader, DS_ARS_Header and DS_ARS_Content (Ref. follow with data 3
parts Data Set in 2.3, 2.4, 2.5) That Sub-Element all inside Element sequence in the
meaning that 3 Sub-Element must arrange in order sequence

 Next , Set Attribute for explain Element DS_ARS such as Attribute
: name, type and schema Version

 And the last is Sub-Element for CommonHeader that have the same
every Data Set and Bank such as OrganizationId and DataSetDate by Ref. from
Attribute Type=”DataSetCommonHeader”

 Remark Setting Structure Element can set inside its Element. For

Example: Element DS_ARS_Header and DS_ARS_Content or Setting after such as
Element CommonHeader

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="http://www.bank.co.th"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.bank.co.th"
 elementFormDefault="qualified" version="FCS 1.0">
 <xsd:annotation>
 <xsd:appinfo>
 <DataSetBusinessRule>
 ……
 </DataSetBusinessRule>
 <ElementBusinessRule>
 ……
 </ElementBusinessRule>
 ……
 </xsd:appinfo>
 </xsd:annotation>

 ……
</xs:schema>

Key Basic Validation Rules

 34

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="http://www.bank.co.th"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.bank.co.th" elementFormDefault="qualified"
version="FCS 1.0">

 <xs:element name="DS_ARS">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="CommonHeader"type="DataSetCommonHeader"/>
 <xs:element name="DS_ARS_Header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FiReportingGroupId"
 type="M_CLFIReportingGroupId"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="DS_ARS_Content">
 ……
 </xs:element>
 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"
 fixed="Arrangement Summary"/>

 <xs:attribute name="type" type="xs:string"
 use="required" fixed="No Fixed Classification with Sub-
Repeating"/>

 <xs:attribute name="schemaVersion" type="xs:string" use="required"
 fixed="FCS 1.0"/>

 </xs:complexType>
 </xs:element>

 <xs:complexType name="DataSetCommonHeader">
 <xs:sequence>
 <xs:element name="OrganizationId" type="M_FICode"/>
 <xs:element name="DataSetDate" type="M_Date"/>
 </xs:sequence>
 </xs:complexType>

 ……
</xs:schema>

Set Structure
 CommonHeader

 35

For Example: XML Schema below Set XML Data Set Structure such as

Structure Data Financial Institution XML Data Set can classify 4 types
 1. Fixed Content Records –Fixed Classification No Sub-
Repeating (Single Level Scheme)

 Data Set that has this structure below Root Element will have Sub-
Element in limited quality by Classification and under that Sub-Element will have
Predefined Sub-Element again

 Data Set that in these type Fixed Content Records – Fixed
Classification No Sub-Repeating such as Data Set

 1. Branch summary
 2.Capital Fund
 3. Foreign Currency Position

 4.Foreign Currency Transaction Summary
 5.Interim Data on Deposit and Balance Sheet Items
 6.Items Between Organization Units
 7.Liquidity Assessment
 8.Net Profit Distribution
 9.Profit and Loss
10.Provision Summary
11.Risk Weighted Assets

<?xml version="1.0" encoding="UTF-8"?>
<DS_ARS name="Arrangement Summary" type="No Fixed Classification with Sub-
Repeating" schemaVersion="FCS 1.0">

 <CommonHeader>
 <OrganizationId>002</OrganizationId>
 <DataSetDate>2005-09-30</DataSetDate>
 </CommonHeader>
 <DS_ARS_Header>
 <FiReportingGroupId>116002</FiReportingGroupId>
 </DS_ARS_Header>
 <DS_ARS_Content>
 ……

 </DS_ARS_Content>
</DS_ARS>

 36

For Example: is some parts of XML Schema specific only
Structure Data type Fixed

 Content Records – Single Level Scheme for Data Set Capital
Fund

<xs:element name="DS_CAP_Content">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="CapitalFundItem940004">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="OutstandingAmountperBook" type="M_Amount" />
 <xs:element name="ApplicableCapitalFundAmount" type="O_Amount" />
 <xs:element name="NetCapitalFundAmount" type="O_Amount" />
 <xs:element name="RegisteredCapitalFundValue" type="O_Amount" />
 <xs:element name="ApplicableCapitalFundValue" type="O_Amount" />

 </xs:sequence>
 <xs:attribute name="name" type="xs:string"
 default="Capital Fund
 …… />

 </xs:complexType>
 </xs:element>

 <xs:element name="CapitalFundItem940005">
 ……

 </xs:element>

 ……
 <xs:sequence>
 </xs:complexType>
</xs:element>

Element No. 1Set by
Classification

Predefined Sub-Element

Element No.2 Set by
Classification

 37

2. Fixed Content Records –Fixed Classification With Sub-
Repeating (Multi Level Scheme)

 Data Set that has this structure below Root Element will have
Sub-Element in limited quality by Classification and under that Sub-Element will also
have Predefined Sub-Element again

 Data Set that in these type Fixed Content Records – Fixed
Classification with Sub-Repeating such as Data Set

 Balance Sheet
 For Example: is some parts of XML Schema specific only

Structure Data type Fixed
 Content Records – With Sub-Repeating for Data Set Balance

Sheet

 38

 <xs:element name="DS_BLS_Content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="BalanceSheetItem950005">

 <xs:complexType>
 <xs:sequence>

 <xs:element name="BalanceSheetAmountType014028">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="M_Amount">
 <xs:attribute name="name" type="xs:string" default="Beginning
 Balance"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="BalanceSheetAmountType014029">

 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="M_Amount">
 <xs:attribute name="name" type="xs:string"
 default="Transaction Increase"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="BalanceSheetAmountType014030">

 ……
 </xs:element>

 ……

</xs:element>

Set by Classification

Set by Classification

 39

3. Variable Content Records –No Fixed Classification
No Sub-Repeating (Single Level)

 Data Set that have these structure below Root Element will have
only 1 Sub-Element ContentRecord that contain with Predefined Sub-Element
another1 Level and must have at least 1 Element ContentRecord , but not limited
number of ContentRecord its depend on Bank Transaction (Set by Attribute
minOccurs="1" maxOccurs="unbounded")

 Data Set that in these type Variable Content Records –No Fixed
Classification No Sub-Repeating such as

1. Card Usage Summary
2. Classified Lending Movement
3. Credit Card Summary
4. Cross Currency and Interest Rate Swap Arrangement
5. Export Payment Exemption
6. Foreign Currency Deposit and Investment Position
7. Fee Rate Summary
8. Forward Rate Agreement Arrangement
9. Future Arrangement
10. Foreign Exchange Arrangement
11. Foreign Currency Transaction Under 20,000 USD Summary
12. Income Expense Summary by Branch
13. Instrument Issue
14. Interest Rate Summary
15. Interest Rate Outstanding
16. Lending Operation Progress Summary
17. Lending Purpose Summary
18. Options Arrangement
19. Receive Payment Transaction

 For Example : is some parts of XML Schema specific only
Structure Data Type Variable Content Records – Single Level for Data Set
Arrangement Summary

 40

<xs:element name="DS_ARS_Content">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="ContentRecord" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="ArrangementType" type="M_CLArrangementType" />
 <xs:element name="InvolvedPartyResidenceFlag" type="M_Flag" />
 <xs:element name="InvolvedPartyType" type="M_CLInvolvedPartyType" />
 <xs:element name="InvolvedPartyBusinessType" type="M_BusinessType" />

 ……
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
</xs:element>

Variable Content Records

Predefined Element 1 Level

 41

4. Variable Content Records –No Fixed Classification
with Sub-Repeating (Multi Level)

 The same as Variable Content Records – Single Level Data Set
that have these structure below Root Element will have only 1 Sub-Element
ContentRecord that contain with Predefined Sub-Element another 1 Level and must
have at least 1 Element ContentRecord , but not limited number of ContentRecord its
depend on Bank Transaction (Set by Attribute minOccurs="1" maxOccurs=
"unbounded")

 Data Set that in these type Variable Content Records – No Fixed
Classification with Sub-Repeating such as

 The difference is Sub-Element below ContentRecord that
contain with Predefined Sub-Element not limited to have only 1 Level , but it can have
Sub-Element drill down many Level depend on Data Set Data

 Data Set that in these type Variable Content Records No Fixed
Classification with Sub-Repeating such as

1. Contingent Arrangement
2. Deposit Arrangement
3. Electronic Banking Service Summary
4. FX Trading Transaction
5. Investment Position
6. Involved Party
7. Loan Arrangement
8. Foreign Currency Loan Arrangement
9. Loan Deposit Transaction

 For Example : is some parts of XML Schema specific only
Structure Data type Variable Content Records – Multi Level for Data Set Foreign
Currency Loan Arrangements that have Sub-Element DS_FLA_Content 3 Level

 42

<xs:element name="DS_FLA_Content">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="ContentRecord" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="DataProviderBranchNumber" type="O_BranchCode"/>
 <xs:element name="FiArrangementNumber" type="M_IdentificationNumber"/>
 <xs:element name="PreviousArrangementNumber" type="O_IdentificationNumber"/>
 <xs:element name="LoanType" type="M_CLArrangementType"/>
 <xs:element name="SetUpReasonType" type="O_CLSetUpReasonType" />
 ……

 <xs:element name="RelatedInvolvedPartyRecord">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="RelatedInvolvedPartyInfo"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="RelatedInvolvedPartyName"
 type="M_LongName"/>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
</xs:element>

Variable Content Records

Sub-Element Level 2

Sub-Element Level 3

Sub-Element Level 1

 43

 4) Based and Classification Data Type
 Data Type in Specification of W3C XML Schema not enough for

validation data in Financial Institution Data Set, So in necessary to develop some
specific Data Type in the end of Financial Institution XML Schema to explain Data
Type which used inside that Data Set . They have 2 type : Based Data Type and
Classification Data Type and also set Mandatory/Optional separate by Data Type
(Data Type Mandatory Start with M_ and Optional Start with O_)
 1) Based Data Type

 For setting Based Data Type it stills Data Type follow W3C
XML Schema further in the part of size and type of data

 For Example : Setting O_Number and M_Number by reference
W3C XML Schema Type integer but specific number of Digit that have 9 numbers
and also for Mandatory (M_Number) must have at least 1 number (\d+) and for
Optional (O_Number) maybe have no data.

 2) Classification Data Type
 For Classification Data Type must set the value as Center Bank

Classification Database in the type of enumeration
 In that Data Type can set Mandatory/Optional by M_ and O_ the

same as Based Data Type and follow by CL (Classification) such as
M_CLUniqueIDType or O_CLIBFIndicator

 For Example : Setting Data Type Element PrimaryInvolvedParty
UniqueIdType to M_CLUniqueIDType and Setting Data Type Element
PrimaryInvolvedParty IBFIndicator to O_CLIBFIndicator

 For Example : Element must found in XML Data Set

<xs:simpleType name="O_Number">
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="9"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="M_Number">
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="9"/>
 <xs:pattern value="\d+"/>
 </xs:restriction>
</xs:simpleType>

Optional

Mandatory

<PrimaryInvolvedPartyUniqueIdType>324001</PrimaryInvolvedPartyUniqueIdType>
<PrimaryInvolvedPartyIBFIndicator></PrimaryInvolvedPartyIBFIndicator>

 44

……
<xs:element name="PrimaryInvolvedPartyUniqueIdType"
type="M_CLUniqueIDType" />
<xs:element name="PrimaryInvolvedPartyIBFIndicator"
type="O_CLIBFIndicator" />
……

<xs:simpleType name="M_CLUniqueIDType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="324001" id="Personal" />
 <xs:enumeration value="324002" id="Passport" />
 <xs:enumeration value="324003" id="Tax" />
 ……

 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="M_CLIBFIndicator">
 <xs:restriction base="xs:string">
 <xs:enumeration value="145001"
 id="BIBF
 Out-Out" />
 <xs:enumeration value="145002"
 id="BIBF
 Out-In" />
 <xs:enumeration value="145003"
 id="PIBF" />
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="O_CLIBFIndicator">
 <xs:union memberTypes="M_CLIBFIndicator">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="" />
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>
……

Classification Data Type

Specific Data Type Element

 45

3.3 User requirement analysis

Financial Institution , they have many Financial Institution Type :
 TCB = Thai Commercial Bank
 FCB = Foreign Commercial Bank -Full Branch
 IBF = International Banking Facilities
 FCS = Financial Companies
 CCS = Credir Foncier Companies

New standard for sending Electronic Data Acquisition to Bank of Thailand

is to submit data in XML format under Bank of Thailand XML Schema.

Financial Institution Data Set submission requirement can classify by

Financial Institution Type :-

 3.3.1 TCB = Thai Commercial Bank Total 49 DataSet

Figure 3.1 Data Set submission requirement TCB

 46

Figure 3.1 Data Set submission requirement TCB (cont.)

 47

3.3.2 FCB = Foreign Commercial Bank -Full Branch Total 47 DataSet

Figure 3.2 Data Set submission requirement FCB

 48

Figure 3.2 Data Set submission requirement FCB (cont.)

 49

3.3.3 IBF = International Banking Facilities Total 27 DataSet

Figure 3.3 Data Set submission requirement IBF

 50

3.3.4 FCS = Financial Companies Total 42 DataSet

Figure 3.4 Data Set submission requirement FCS

 51

3.3.5 CCS = Credir Foncier Companies Total 23 DataSet

Figure 3.5 Data Set submission requirement CCS

Financial Institution wants to generate their all data to be dataset under
Bank of Thailand XML Schema. Most of Financial Institution spends many budgets
and expenses to get some consults or some vendor to provide or to make some
packages of software for this purpose

BOT Data Entry Application can help Financial Institutions to fill data that

Bank of Thailand wants them to report and in the end its can generate output files
with XML format, but most of Financial Institutions don’t use this data entry
application for data entry. Because users must key-in each transaction that has many
elements, many details, many classifications etc. and must prepare data before key-in.
It’s taken more time for each dataset to finish key-in.

So, Financial Institution want BOT data entry application improve :
 1. To have a tools further to generate BOT XML DataSet
 2. To reduce key-in process in BOT Data Application
 3. To reduce times for making XML DataSet under BOT XML

Schema
 4. To compatible with BOT data entry application
 5. To use easy tools than BOT data entry application.

 52

Figure 3.6 The New tools further to generate BOT XML DataSet

This information about BOT data entry application require / inquire from
many users in Financial Institution that ever use its before.

3.4 New Tools Design

For the New Tools Design, we design User interface by using the XML
Massage Box for users to select Financial Institution Type and Data Set Type

Figure 3.7 User interface for the New Tools Design

 53

3.4.1 BOT XML Data Set Structure
 Type 1 = Fixed CL No Sub-repeating
 Type 2 = Fixed CL with Sub-repeating
 Type 3 = No Fixed CL No Sub-repeating
 Type 4 = No Fixed CL with Sub-repeating

 Type 1 Fixed CL No Sub-repeating

 Type 2 Fixed CL with Sub-repeating

 Type 3 No Fixed CL No Sub-repeating

 54

 Type 4 No Fixed CL with Sub-repeating

 3.4.2 Main Steps System Flow Design

Figure 3.8 Main Steps Design

In the process 1, we get all about information details to make Master
Template from

 DataSet Manual for the details of Key Basic Validation Rules
 DataSet Element for the details of each DataSet Element
 DataSet Classification for the details of each DataSet Element

Classification and possible Value
 DataSet Structure for the details of each DataSet Structure Type
In the process 2, we get DataSet Element to make Data Template from each

DataSet Structure Type. And after that we get Financial Institution data follow Data
Template format

 55

In the process 3, process to make the tools for generating XML DataSet
under BOT XML Schema by using Microsoft Excel with Visual Basic Application for
Excel (Marco) and relationship between Master Template and Data Template

In the process 3, we also use Based Data Type to assign Mandatory /
Optional data items before coding and attach all data for each DataSet to generate
XML DataSet under BOT XML Schema

3.4.3 How Financial Institution generates data to XML DataSet under

BOT XML Schema

 Financial Institution can export data from every source from internal or
external data in CSV Format before link or import into each Schema Type Data
Template

Figure 3.9 Financial Institution export data source to CSV

 56

3.4.4 Complicated Steps System Flow Design:

 1) Type 1 Fixed CL No Sub-repeating

DATASET
MANUAL

Process 1

DATASET
ELEMENT

DATASET
CLASSIFICATION

DATASET
STRUCTURE

TYPE 1

MASTER
TEMPLATE

TYPE 1

Process 3

Based Data
Type

DATA
TEMPLATE

TYPE 1

DATASET
ELEMENT

Process 2

FINANCIAL
INSTITUTION

DATA

FINANCIAL
INSTITUTION

XML
TYPE1

Figure 3.10 Design Steps for TYPE 1

 2) Type 2 Fixed CL with Sub-repeating

DATASET
MANUAL

Process 1

DATASET
ELEMENT

DATASET
CLASSIFICATION

DATASET
STRUCTURE

TYPE 2

MASTER
TEMPLATE

TYPE 2

Process 3

Based Data
Type

DATA
TEMPLATE

TYPE 2

DATASET
ELEMENT

Process 2

FINANCIAL
INSTITUTION

DATA

FINANCIAL
INSTITUTION

XML
TYPE 2

Figure 3.11 Design Steps for TYPE 2

 57

 3) Type 3 No Fixed CL No Sub-repeating

DATASET
MANUAL

Process 1

DATASET
ELEMENT

DATASET
CLASSIFICATION

DATASET
STRUCTURE

TYPE 3

MASTER
TEMPLATE

TYPE 3

Process 3

Based Data
Type

DATA
TEMPLATE

TYPE 3

DATASET
ELEMENT

Process 2

FINANCIAL
INSTITUTION

DATA

FINANCIAL
INSTITUTION

XML
TYPE 3

Figure 3.12 Design Steps for TYPE 3

 4) Type 4 No Fixed CL with Sub-repeating

DATASET
MANUAL

Process 1

DATASET
ELEMENT

DATASET
CLASSIFICATION

DATASET
STRUCTURE

TYPE 4

MASTER
TEMPLATE

TYPE 4

Process 3

Based Data
Type

DATA
TEMPLATE

TYPE 4

DATASET
ELEMENT

Process 2

FINANCIAL
INSTITUTION

DATA

FINANCIAL
INSTITUTION

XML
TYPE 4

Figure 3.13 Design Steps for TYPE 4

CHAPTER 4

SYSTEM FUNCTIONALITY

BOT Data Entry Application has component for checking BOT XML
Schema and generate Data Set file in XML format under BOT XML Schema. So, the
new tools design must support all the component for BOT XML Schema such as BOT
DataSet Elements, Classification Data Type in BOT DataSet Classification, Structure
Data Set, Key Basic Validation Rules in Data Set Manual, Based Data Type for
Mandatory & Optional etc.

4.1 System Architecture

 4.1.1 Groups of System Functions

For the new tools, we use Microsoft Excel to make Master Template to
keep some necessary details about BOT XML Schema and Data Template to get all
data in each DataSet by using Microsoft Visual Basic for Application (Marco) in
Microsoft Excel to code program and control procedure by using Command /
Function /Modules.

We make Master Template and Data Template in 4 Master Templates and
Data Templates.

For this Project Prototypes ; we use
 DateSet TBP = TYPE 1
 DateSet IRR = TYPE 2
 DateSet LMS = TYPE 3
 DateSet ARS = TYPE 4

 59

1) TYPE 1_TBP Master Template, we use each XML Common Header
(OrganizationId and DataSetDate), Data Set Header (FiReportingGroupId), Each Data
Set Header , Each Data Set Content , Each Data Set Content Record Group by using
Data Element and Data Classification in each Data Set Document to make details in
Master Template. Not only that, but also include XML File Location paths for XML
Output and Schema version number to adjust XML Schema version the same as Bank
of Thailand XML Schema version.

Figure 4.1 Master Template TYPE 1_TBP

 60

 TYPE 1_TBP Data Template, we use each Data Element and Data
Classification in each Data Set Document to make details in Data Template. And also
separate Data Template with number of FiReportingGroupId.

Figure 4.2 Data Template TYPE 1_TBP

Figure 4.3 Sample Data Template TYPE 1_TBP

 61

2) TYPE 2_IRR Master Template, we use each XML Common Header
(OrganizationId and DataSetDate), Data Set Header (FiReportingGroupId), Each Data
Set Header , Each Data Set Content , Each Data Set Content Record Group and details
in Sub-Repeating by using Data Element and Data Classification in each Data Set
Document to make details in Master Template. Not only that, but also include XML
File Location paths for XML Output and Schema version number to adjust XML
Schema version the same as Bank of Thailand XML Schema version.

Figure 4.4 Master Template TYPE 2_IRR

 62

 TYPE 2_IRR Data Template; we use each Data Element and Data
Classification in each Data Set Document to make details in Data Template. And also
separate Data Template with number of FiReportingGroupId.

Figure 4.5 Data Template TYPE 2_IRR

Figure 4.6 Sample Data Template TYPE 2_IRR

 63

 3) TYPE 3_LMS Master Template, we use each XML Common Header
(OrganizationId and DataSetDate), Data Set Header (FiReportingGroupId), Each Data
Set Header , Each Data Set Content , Each Data Set Content Record Group by using
Data Element and Data Classification in each Data Set Document to make details in
Master Template. Not only that, but also include XML File Location paths for XML
Output and Schema version number to adjust XML Schema version the same as Bank
of Thailand XML Schema version.

Figure 4.7 Master Template TYPE 3_LMS

 64

 TYPE 3_LMS Data Template; we use each Data Element and Data
Classification in each Data Set Document to make details in Data Template. And also
separate Data Template with number of FiReportingGroupId

Figure 4.8 Data Template TYPE 3_LMS

 65

Figure 4.9 Sample Data Template TYPE 3_LMS

 66

 4) TYPE 4_ARS Master Template, we use each XML Common Header
(OrganizationId and DataSetDate), Data Set Header (FiReportingGroupId), Each Data
Set Header , Each Data Set Content , Each Data Set Content Record Group and details
in Sub-Repeating by using Data Element and Data Classification in each Data Set
Document to make details in Master Template. Not only that, but also include XML
File Location paths for XML Output and Schema version number to adjust XML
Schema version the same as Bank of Thailand XML Schema version.

Figure 4.10 Master Template TYPE 4_ARS

 67

 TYPE 4_ARS Data Template; we use each Data Element and Data
Classification in each Data Set Document to make details in Data Template. And also
separate Data Template with number of FiReportingGroupId

Figure 4.11 Data Template TYPE 4_ARS

 68

Figure 4.12 Sample Data Template TYPE 4_ARS

 4.1.2 Modules and their functionality
 New Tools Modules and their functionality, we make the tools for
generating XML DataSet under BOT XML Schema by using Microsoft Excel with
Visual Basic Application for Excel (Marco) and relationship between Master
Template and Data Template

 (Example Source Codes Type 1 – 4 See in Appendix A)

 69

Figure 4.13 Flow Chart show Modules in Main Process

 70

Figure 4.14 Flow Chart show Modules in Sub Process
(Generate XML Header)

 71

Figure 4.15 Flow Chart show Modules in Sub Process
(Generate XML Content)

 72

 1) TYPE 1_TBP
 1. Module Form_TBP

Figure 4.16 FORM TYPE 1_TBP

 2. Module PublicVar_TBP

 3. Module GenXML_TBP

 2) TYPE 2_IRR
 1. Module Form_IRR

Figure 4.17 FORM TYPE 2_IRR

 2. Module PublicVar_IRR

 3 Module GenXML_IRR

 73

 3) TYPE 3_LMS
 1. Module Form_LMS

Figure 4.18 FORM TYPE 3_LMS

 2. Module PublicVar _LMS

 3. Module GenXML _LMS

 4) TYPE 4_ARS
 1. Module Form_ARS

Figure 4.19 FORM TYPE 4_ARS

 2. Module PublicVar _ARS

 3. Module GenXML _ARS

 74

 4.1.3 Validation with BOT Data Entry Application

Figure 4.20 Compare Steps for the New Tools & BOT Data Entry Application

 For all XML DataSet (TYPE 1-4) output that Financial Institution make
from FI Application or key-in with BOT Data Entry Application or generate by the
new tools XML BOT Generator can check basic validation before submit to BOT
online submission service by using BOT Data Entry Application that Bank of
Thailand distributes for every Financial Institutions to key-in or check basic
validation in order to make sure that every one use the same standard before submit
XML to Bank of Thailand.

 75

Figure 4.21 Sample Error Message show by BOT Data Entry Application

4.2 Test Plan

 4.2.1 Introduction

For improve Bank of Thailand Data Entry Application by making
prototype to demonstrate the improvement Bank of Thailand Data Entry Application

4.2.2 Scope
Test prototype result valid with XML DataSet under Bank of Thailand

XML Schema
4.2.3 Role and Responsibility
Tester as Status Users from each Financial Institutions use BOT XML

Generator tool prototype to generate XML DataSet under Bank of Thailand XML
Schema by using BOT Data Entry Application.

4.2.4 Test Methodology
1) Testing Approach

SIT & UAT
2) Reference Material

BOT Data Set Document &
BOT Classification &
BOT Data Set Manual (Key Basic Validation Etc..)

3) Control Procedure
Visual Basic Application for Excel (Marco)

 76

4.2.5 Environment Requirements
1) Technical Configuration

1. Hardware Requirement
 Computer 1 Set (Spec. Pentium up or more,
 Memory 512 or more)

2. Software Requirement
Microsoft Office - : Microsoft Excel
Bank of Thailand Data Entry Application
Microsoft .Net Framework

2) How to Setup Test Environment
Real Financial Institution Situation

3) Security
Normal

4) Tools
Marco

4.2.6 Test Phase
1) Participants

Users
2) Sources of Data

Financial Institution Data Source with CSV Format
 3) Entry and Exit Criteria

Entry - Generate XML from Master Template & Data Template
Exit - XML DataSet under Bank of Thailand XML Schema

 77

4.2.7 Test Scenario

TABLE 4.1 TEST SCENARIO

Test Scenario Ref# Prerequisite
Scenario Scenario Description Test Data Requirement

Scenario_1 Type1
 Data Set TBP XML Data
 TCB
 FCB
 FCS

Scenario_2 Type2
 Data Set IRR XML Data
 TCB
 FCB
 FCS
 CCS

Scenario_3 Type3
 Data Set LMS XML Data
 TCB
 FCB
 FCS
 CCS

Scenario_4 Type4
 Data Set ARS XML Data
 TCB
 FCB
 IBF
 FCS
 CCS

 78

4.2.8 Test Script (Test Script & Test Data Details See in Appendix C)
1) TYPE 1 – TBP

Test Scenario Ref #Scenario_1
Test Level : SIT & UAT
Test Date :

TABLE 4.2 TEST SCRIPT SCENARIO #1

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document
2.2 TCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document

 79

2) TYPE 2 – IRR
Test Scenario Ref #Scenario_2
Test Level : SIT & UAT
Test Date :

TABLE 4.3 TEST SCRIPT SCENARIO #2

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document
1.4 CCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document
2.4 CCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document

 80

3) TYPE 3– LMS
Test Scenario Ref #Scenario_3
Test Level : SIT & UAT
Test Date :

TABLE 4.4 TEST SCRIPT SCENARIO #3

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document
1.4 CCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document
2.4 CCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document

 81

4) TYPE 4 – ARS
Test Scenario Ref #Scenario_4
Test Level : SIT & UAT
Test Date :

TABLE 4.5 TEST SCRIPT SCENARIO #4

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document
1.3 IBF
1.3.1 FI_400_Period-2006-06-30 XML is valid Document
1.4 FCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document
1.5 CCS
1.5.1 FI_400_Period-2006-06-30 XML is valid Document
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document
2.3 IBF
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document
2.4 FCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document
2.5 CCS
2.5.1 FI_400_Period-2006-06-30 XML is Invalid Document

 82

4.2.9 Test Results
1) TYPE 1 – TBP

Test Scenario Ref #Scenario_1
Test Level : SIT & UAT
Test Date : 2007-02-11

TABLE 4.6 TEST RESULTS SCENARIO #1

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document Pass
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document Pass
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document Pass
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document Fail
2.2 TCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document Fail
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail

 83

2) TYPE 2 – IRR
Test Scenario Ref #Scenario_2
Test Level : SIT & UAT
Test Date : 2007-02-11

TABLE 4.7 TEST RESULTS SCENARIO #2

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document Pass
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document Pass
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document Pass
1.4 CCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document Pass
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document Fail
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document Fail
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail
2.4 CCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail

 84

3) TYPE 3 – LMS
Test Scenario Ref #Scenario_3
Test Level : SIT & UAT
Test Date : 2007-02-11

TABLE 4.8 TEST RESULTS SCENARIO #3

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document Pass
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document Pass
1.3 FCS
1.3.1 FI_400_Period-2006-06-30 XML is valid Document Pass
1.4 CCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document Pass
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document Fail
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document Fail
2.3 FCS
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail
2.4 CCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail

 85

4) TYPE 4 – ARS
Test Scenario Ref #Scenario_4
Test Level : SIT & UAT
Test Date : 2007-02-11

TABLE 4.9 TEST RESULTS SCENARIO #4

Ref. # Description Expected Results
Tested

By
Pass
/ Fail

1. XML Valid Test Case
1.1 TCB
1.1.1 FI_100_Period-2006-06-30 XML is valid Document Pass
1.2 FCB
1.2.1 FI_200_Period-2006-06-30 XML is valid Document Pass
1.3 IBF
1.3.1 FI_400_Period-2006-06-30 XML is valid Document Pass
1.4 FCS
1.4.1 FI 400 Period-2006-06-30 XML is valid Document Pass
1.5 CCS
1.5.1 FI_400_Period-2006-06-30 XML is valid Document Pass
2. XML Invalid Test Case
2.1 TCB
2.1.1 FI_100_Period-2006-06-30 XML is Invalid Document Fail
2.2 FCB
2.2.1 FI_200_Period-2006-06-30 XML is Invalid Document Fail
2.3 IBF
2.3.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail
2.4 FCS
2.4.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail
2.5 CCS
2.5.1 FI_400_Period-2006-06-30 XML is Invalid Document Fail

 86

4.2.10 Conclusion :
1) TYPE 1 – TBP

Test Scenario Ref #Scenario_1
Test Level : SIT & UAT
Test Date : 2007-02-11
 XML Valid Test Case Pass
 XML Invalid Test Case Fail

2) TYPE 2 – IRR
 Test Scenario Ref #Scenario_2
 Test Level : SIT & UAT
 Test Date : 2007-02-11
 XML Valid Test Case Pass
 XML Invalid Test Case Fail
3) TYPE 3 – LMS
 Test Scenario Ref #Scenario_3
 Test Level : SIT & UAT
 Test Date : 2007-02-11
 XML Valid Test Case Pass
 XML Invalid Test Case Fail
4) TYPE 4 – ARS
 Test Scenario Ref #Scenario_4
 Test Level : SIT & UAT
 Test Date : 2007-02-11
 XML Valid Test Case Pass
 XML Invalid Test Case Fail

CHAPTER 5

SUMMARY AND SUGGESTIONS

 Bank of Thailand Electronic Data Acquisition; this Project improve Bank
of Thailand Data Entry Application by making prototype to generate XML BOT
DataSet prompt for Financial Institution to submit in Bank of Thailand Electronic
Data Acquisition.

5.1 Project Summary

 5.1.1 In the Chapter 3, we design the system flow for develop the new
prototype XML BOT Generator Tools in each BOT XML Schema Type. Details of
system flow are making Master Templates and Data Templates to keep all data details
in BOT XML Schema, BOT Data Element, BOT Classification, Structure DataSet ,
Based Data Type for Mandatory and Optional, Key Basic Validation Rules in BOT
Data Set Manual etc. For Data Templates, we use Financial Institution Data in CSV
Formats.

In the Chapter 4, we show about system architecture in groups of system
functions for the new tools, we use Microsoft Excel to make Master Template to keep
some necessary details about BOT XML Schema and Data Template to get all data in
each DataSet by using Microsoft Visual Basic for Application (Marco) in Microsoft
Excel to code program and control procedure by using Command / Function
/Modules.

We make Master Template and Data Template in 4 Master Templates and
Data Templates and then show you about details for each Modules and Coding for
each steps in process and function and the way to validate all XML before submit to
Bank of Thailand.

In the end of the Chapter 4 , we show about testing results of my new XML
BOT Generator Tools . We make XML Test Valid Case and XML Test Invalid Case
for each type of DataSet and each type of Financial Institutions that related .

The Final Results show that
 XML Test Valid Case Pass
 XML Test Invalid Case Fail

 In the end of Project ; we build prototype for the new prototype XML BOT
Generator Tools that all features/functions are complete in my objectives and scopes
all of my Project.
 5.1.2 The performance goals that I achieve this Project can show in the
table below

 88

TABLE 5.1 New XML BOT Generator Tools Performance

Dataset Transac
tions

Items/
Transactio

ns/
Group

Data
Element

Key-in BOT
Data Entry

Check Step
1

Key-in BOT
Data Entry

New XML
BOT Generator

Tools

Check Step 2
Duplicacate

& Sum up etc.

DS_BLS TYPE 2 40 2 268 35 Minutes 2 - 5 Minutes 15 Minutes
DS_CAP TYPE 1 15 3 57 10 Minutes 2 - 5 Minutes 10 Minutes
DS_IVP TYPE 4 100 15 393 45 Minutes 2 - 5 Minutes 25 Minutes
DS_RWA TYPE 1 8 2 198 10 Minutes 2 - 5 Minutes 10 Minutes
DS_IPI TYPE 4 22 27 461 40 Minutes (5 Days) 2 - 5 Minutes 10 Minutes
DS_ARS TYPE 4 138 11 326 5 Hours 2 - 5 Minutes 1 Hours 30 Minutes
DS_LPS TYPE 4 12 4 167 40 Minutes 2 - 5 Minutes 25 Minutes
DS_TCS TYPE 3 101 7 409 3 Hours 2 - 5 Minutes 1 Hours
DS_LAR TYPE 4 90 23 849 5 Hours 2 - 5 Minutes 1 Hours
DS_IDB TYPE 1 6 1 75 10 Minutes 2 - 5 Minutes 10 Minutes
DS_LOS TYPE 4 42 7 36 30 Minutes 2 - 5 Minutes 25 Minutes
DS_LSB TYPE 3 41 5 203 45 Minutes 2 - 5 Minutes 30 Minutes
DS_LMS TYPE 3 152 6 412 2 Hours 2 - 5 Minutes 1 Hours45 Minutes
DS_TDR TYPE 3 0 6 202 0 2 - 5 Minutes 0
DS_DCD TYPE 4 36 4 234 45 Minutes (3 Days) 2 - 5 Minutes 35 Minutes
DS_PNL TYPE 1 27 1 152 15 Minutes 2 - 5 Minutes 10 Minutes
DS_IRR TYPE 2 28 3 35 15 Minutes 2 - 5 Minutes 15 Minutes
DS_PVS TYPE 2 26 2 17 15 Minutes 2 - 5 Minutes 15 Minutes

Schema
Type

 In TABLE 5.1 ; show that we can improve Bank of Thailand data entry
application :

1. Generate Financial Institutions all data that already prepare in worksheet
prompt to key-in to be DataSet under Bank of Thailand XML Schema easily by using
the new XML BOT Generator Tools

2. Reduce the key-in process in Bank of Thailand data entry application by
using the new XML BOT Generator Tools

3. Try to use all resources or software which Financial Institutions had by
using Microsoft Visual Basic for Application (Marco) in Microsoft Excel to code
program and control procedure by using Command / Function /Modules.
 4. We can reduce many times such as : time to key-in process in Bank of
Thailand data entry application, time to check all the data that key-in process in Bank
of Thailand data entry application.

5.2 Questionnaire for Financial Institution

 In this project , we create questionnaire for Financial Institution to survey
users value realization for using prototype in XML BOT Generator Tools .
 Questionnaire has 4 parts about:

Part 1 : Details about users
Part 2 : Benefit
Part 3 : Satisfaction
Part 4 : Support Financial Institution

 89

In the end of questionnaire, users can evaluate over all in percentage for
value realization. (Questionnaire Details See in Appendix D)

We give questionnaires for 10 users in Financial Institution. We found that
 Part 1 : Users work in BOT report data division and use DMS more than 30
times per month
 Part 2 : Users all accept to get benefit for using XML BOT Generator Tools
in all cases :
 1 Reduce time to key-in
 2 Work efficiency
 3 Easily to make BOT XML
 4 Facility
 5 Reduce routine tasks
 6 Save budgets
 Part 3 : Users all accept to satisfy
 1 Easily to use
 2 Easily to convert
 3 Easily to understand/Learn
 4 Pattern not confusion
 5 Compactable with MS Widows/ MS Excel
 Part 4 : Users all accept that this project can support Financial Institution
work process and increase work efficiency in the part of prepare data and report.

Evaluate over all in percentage for value realization average in 85 % and
we get some comment in the case of only 4 DataSet prototypes in this project.

5.3 Suggestions for further development

 In my Project ; for the future or the next steps , we can use this Project to
be the guide line to be improved about output process in BOT Data Entry Application
that now export in CSV Format . It’s difficult for users in all Financial Institution to
print for reading or checking all the input Data that theirs key-in into BOT Data Entry
Application

 90

Figure 5.1 BOT Data Entry Application Export in CSV Format

 The functions/features that can be improved may be
 XML TO XLS BOT Generator Tools with :
 XLS in the Format easily for users to read or check
 XLS Classify by Schema Type Like my Project in the part of
Data Template
 XLS can sum up the Data in the case of Parent/Child

Figure 5.2 Functions/Features can improve in XML TO XLS BOT Generator Tools

REFERENCES

Bank of Thailand. (2006). Authentication & Authorization Service.

www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(1 August 2006)

_____________.. (2006). Classification Document.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(20 September 2006)

_____________. (2006). Computer to Computer Specifications.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(6 September 2006)

_____________. (2005). Data Acquisition for FI.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(16 September 2006)

_____________. (2005). Data Entry Application.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(16 September 2006)

_____________. (2006). Data Set Document.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(20 September 2006)

_____________. (2006). Data Set Manual.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(20 September 2006)

_____________. (2004). DMS Activity Q1/(2004).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(2 August 2006)

_____________. (2004). DMS Activity Q2/(2004).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(2 August 2006)

_____________. (2004). DMS Activity Q3/(2004).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(2 August 2006)

_____________. (2004). DMS Activity Q4/(2004).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(2 August 2006)

 92

_____________. (2005). DMS Activity 2005
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(3 August 2006)

_____________. (2006). DMS Activity 2006.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 August 2006)

_____________. (2007). DMS Activity 2007.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 August 2006)

_____________. (2006). DMS Online Q & A.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(5 August 2006)

_____________. (2006). DMS Error Message (FI & FM).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(9 August 2006)

_____________. (2006). Financial Institution Code.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(10 August 2006)

_____________. (2006). Government Agency Code.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(11 August 2006)

_____________. (2006). Involved Party Document.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(11 August 2006)

_____________. (2006). ISIC – BOT.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(12 August 2006)

_____________. (2005). News Letters for Data Management Division.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(12 August 2006)

_____________. (2006). Notification & Rules for DMS (about Electronic
Financial Services). www.bot.or.th/bothomepage/databank/Financial_
Institutions/DMS (12 August 2006)

_____________. (2006). Objective & DMS Project Plan.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(12 August 2006)

_____________. (2006). Online Submission Web Application.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(15 August 2006)

 93

_____________. (2006). XML Data Set (Sample).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(1 October 2006)

_____________. (2006). XML Schema.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema for CCS.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema for FCB.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema for FCS.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema for IBF.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema for TCB.
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(4 October 2006)

_____________. (2006). XML Schema & XML Example).
www.bot.or.th/bothomepage/databank/Financial_Institutions/DMS
(6 October 2006)

Eric van der Vlist. (2002). XML Schema The W3C's Object-Oriented
Descriptions for XML, Sebastopol, CA: O'Reilly.

Harold, E. R. & Means, W. S. (2002). XML in a Nutshell, 2nd ed. Sebastopol,
CA: O'Reilly.

Jacobson, R. (1994). Microsoft Excel Visual Basic for applications step by step :
version 5 for Windows. Redmond, Washington.: Microsoft Press.

Microsoft Corporation. (1994). Microsoft Excel Visual Basic for applications
reference. Redmond, Washington.: Microsoft.

Microsoft Corporation. (1995). Microsoft Excel/Visual Basic programmer’s guide
: advanced guide to program design. Redmond, Washington.: Microsoft.

Microsoft Corporation. (1996). Microsoft Project/Visual Basic reference.
Redmond, Washington.: Microsoft.

Microsoft Corporation. (1998). Microsoft Visual Basic 6.0 : programmer’s guide.
Redmond, Washington.: Microsoft.

 94

Young, Michael J. (2543). XML Step by Step แปลโดย ชวลิต จิรทีปติสุนทร. กรุงเทพฯ:

สามยาน.คอม

Travis, Brian E. (2000). XML and SOAP programming for BizTalk servers.
Redmond, Washington.: Microsoft Press.

กาจ จารุหงส. (2539). คูมือการใชงาน Microsoft Excel/Visual Basic สําหรับโปรแกรมเมอร.
กรุงเทพฯ: ซีเอ็ดยูเคชั่น.

ขยัน จันทรสถาพร และพงษระพี เตชพาหพงษ. (2544). เรียนลัด XML ฉบับรูเตม็รอย !.
กรุงเทพฯ: 2bepro.com.

ณรงคชัย ปญญานนทชัย. (2539). Microsoft Excel/Visual Basic สําหรับ Windows 95

step by step. กรุงเทพฯ: ซีเอ็ดยูเคชั่น.
ณัฐศิระ เยาวสุต. (2549). ระบบมือใหมเร่ิมเรียน หัดเขียน Macro และ VBA บน

Microsoft Excel. กรุงเทพฯ: ซีเอ็ดยูเคชั่น.
เวลล, อีริค.(2538). การพัฒนาระบบงานโดยใช Visual basic for application ใน Excel 5.

แปลโดย วาสนา ไตรพฤฒิธัญญา และปยะ นิมิตยงสกุล. กรุงเทพฯ: ซีเอ็ดยูเคชั่น.

APPENDIX A

EXAMPLE SOURCE CODES TYPE 1 – 4

 96

1. Example Source Codes Type 1_TBP

 1.1 Module Form_TBP
Option Explicit
Private Sub mCancel_Click()
mExitProg = True
Unload Me
End Sub
Private Sub mOK_Click()
Dim x
mExitProg = False
mSelect1 = False: mSelect2 = False: mSelect3 = False
For Each x In Frame2.Controls
 If x.Value = True And x.Name = "TCB" Then mSelect1 = True
 If x.Value = True And x.Name = "FCB1" Then mSelect2 = True
 If x.Value = True And x.Name = "FCS" Then mSelect3 = True
Next
If mSelect1 = False And mSelect2 = False And mSelect3 = False Then
 MsgBox "Please select data set type.", vbQuestion, "TBP-" & mType
Else
 Unload Me
End If
End Sub

 1.2 Module PublicVar_TBP
Option Explicit
Public mFilesystem, mFile
Public mFileName As String, mFileLocation As String
Public mBank As String, mDate As String, mType As String
Public mHead1 As String, mHead2 As String, mHead3 As String
Public mSelect1 As Boolean, mSelect2 As Boolean, mSelect3 As Boolean
Public mExitProg As Boolean
Public mdSheet As Worksheet, msSheet As Worksheet

 1.3 Module GenXML_TBP
Option Explicit
Sub Gen_TBP_XML()
Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE")
Set msSheet = ThisWorkbook.Worksheets("TBP_TEMPLATE)
mType = ""
TBP.VersionName = "schema Version " & Trim(msSheet.Cells(25, 3))
TBP.Show
If mExitProg = False Then
 If mSelect1 = True Then mType = "TCB"
 If mSelect2 = True Then mType = "FCB1"
 If mSelect3 = True Then mType = "FCS"
On Error GoTo ErrorMsg

 97

 mFileLocation = IIf(Right(Trim(msSheet.Cells(24, 3)), 1) = "\", _
 Trim(msSheet.Cells(24, 3)), Trim(msSheet.Cells(24, 3)) & "\")
 mBank = IIf(Trim(mdSheet.Cells(2, 3)) = "", "000", Trim(mdSheet.Cells(2, 3)))
 mDate = IIf(Trim(mdSheet.Cells(4, 3)) = "", "000", Trim(mdSheet.Cells(4, 3)))
 mFileName = mBank & "_" & Application.Substitute(mDate, "-", "") &
"_DS_TCB_" & mType & ".xml"
 Set mFilesystem = CreateObject("Scripting.FileSystemObject")
 Set mFile = mFilesystem.CreateTextFile(mFileLocation & mFileName, True, True)
' overwrite , unicode
 GenHead mType
 GenContentTBP
 mFile.Close
 MsgBox "Generate xml file from xls TBP-" & mType & " successful.",
vbInformation, "TBP-" & mType
Else
ErrorMsg:
 Select Case True
 Case Err = 71: MsgBox Error(Err), vbCritical, "Convert xls to xml- TBP"
 Case Err = 76: MsgBox Error(Err), vbCritical, "Convert xls to xml- TBP"
 End Select
 MsgBox "Cancel generate xml file from xls TBP.", vbExclamation, "TBP"
End If
End Sub
Private Sub GenHead(mType)
Dim mRow As Byte, mFiType As String
mRow = 2
mHead1 = Mid(Trim(msSheet.Cells(mRow, 3)), 1, 7) & ">"
mFiType = mType & " " & Trim(msSheet.Cells(25, 3))
If Trim(msSheet.Cells(18, 3)) <> "" Then mFile.WriteLine Trim(msSheet.Cells
(18, 3))
mFile.WriteLine Trim(msSheet.Cells(mRow, 3)) & """" & mFiType & """" & ">"
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 1, 3))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 2, 3)) &
mBank & AddCloseTag(Trim(msSheet.Cells(mRow + 2, 3)))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 3, 3)) &
mDate & AddCloseTag(Trim(msSheet.Cells(mRow + 3, 3)))
 mFile.WriteLine vbTab & AddCloseTag(Trim(msSheet.Cells(mRow + 1, 3)))
' FiReportingGroup
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 4, 3))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(2, 4)) &
Mid(mdSheet.Cells(3, 3), 1, 6) & _
 AddCloseTag(Trim(msSheet.Cells(2, 4)))
 mFile.WriteLine vbTab & AddCloseTag(Trim(msSheet.Cells(mRow + 4, 3)))
mHead2 = Trim(msSheet.Cells(mRow + 5, 3))
mHead3 = Trim(msSheet.Cells(mRow + 6, 3))
 mFile.WriteLine vbTab & mHead2
End Sub

 98

Private Sub GenContentTBP()
Dim mCol, mRow As Integer
mCol = 4
Do Until mdSheet.Cells(5, mCol) = ""
 mRow = 4
 mFile.WriteLine vbTab & mHead3
' Month
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow - 1, 4)) & _
 mdSheet.Cells(5, mCol) & _
 AddCloseTag(Trim(msSheet.Cells(mRow - 1, 4)))
' TradingBookPosition and OutstandingAmount
 Do Until Trim(msSheet.Cells(mRow, 4)) = ""
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow, 4))
 mFile.WriteLine vbTab & vbTab & vbTab & msSheet.Cells(4, 5) & _
 FindTBPAmt(Mid(Trim(msSheet.Cells(mRow, 4)), 21, 6), mCol) & _
 AddCloseTag(msSheet.Cells(4, 5))
 mFile.WriteLine vbTab & vbTab & AddCloseTag(Trim(msSheet.Cells
(mRow, 4)))
 mRow = mRow + 1
 Loop
 mFile.WriteLine vbTab & AddCloseTag(mHead3)
 mCol = mCol + 1
Loop
mFile.WriteLine vbTab & AddCloseTag(mHead2)
mFile.WriteLine AddCloseTag(mHead1)
End Sub
Private Function AddCloseTag(mCode)
AddCloseTag = "</" & Mid(mCode, 2, Len(mCode) - 1)
End Function
Private Function FindTBPAmt(mCode, mCol) As Double
Dim mRow As Integer, mChk As Boolean
mChk = False
For mRow = 6 To 17
 If Mid(Trim(mdSheet.Cells(mRow, 3)), 1, 6) = mCode Then
 FindTBPAmt = IIf(Val(mdSheet.Cells(mRow, mCol)) = 0, 0,
Format(mdSheet.Cells(mRow, mCol), "####.##"))
 mChk = True
 Exit For
 End If
Next mRow
If mChk = False Then
 mFile.Close
 Kill mFileLocation & mFileName
 MsgBox "Can not find TradingBookPosition " & mCode & "." & vbCrLf &
"Exit Program", vbCritical, "TBP-" & mType
 End
End If

 99

End Function

2. Example Source Codes Type 2_IRR

 2.1 Module Form_IRR
Option Explicit
Private Sub mCancel_Click()
mExitProg = True
Unload Me
End Sub
Private Sub mOK_Click()
Dim x
mExitProg = False
mSelect1 = False: mSelect2 = False: mSelect3 = False: mSelect4 = False
For Each x In Frame2.Controls
 If x.Value = True And x.Name = "TCB" Then mSelect1 = True
 If x.Value = True And x.Name = "FCB1" Then mSelect2 = True
 If x.Value = True And x.Name = "FCS" Then mSelect3 = True
 If x.Value = True And x.Name = "CCS" Then mSelect4 = True
Next
If mSelect1 = False And mSelect2 = False And mSelect3 = False And
mSelect4 = False Then
 MsgBox "Please select data set type.", vbQuestion, "IRR-" & mType
Else
 Unload Me
End If
End Sub

 2.2 Module PublicVar_IRR
Option Explicit
Public mFilesystem, mFile
Public mFileName As String, mFileLocation As String
Public mBank As String, mDate As String, mType As String
Public mHead1 As String, mHead2 As String, mHead3 As String
Public mSelect1 As Boolean, mSelect2 As Boolean, mSelect3 As Boolean,
mSelect4 As Boolean
Public mExitProg As Boolean
Public mdSheet As Worksheet, msSheet As Worksheet

 2.3 Module GenXML_IRR
Option Explicit
Sub Gen_IRR_XML()
Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE")
Set msSheet = ThisWorkbook.Worksheets("IRR_TEMPLATE")
mType = ""
IRR.VersionName = "schema Version " & Trim(msSheet.Cells(25, 3))
IRR.Show

 100

If mExitProg = False Then
 If mSelect1 = True Then mType = "TCB"
 If mSelect2 = True Then mType = "FCB1"
 If mSelect3 = True Then mType = "FCS"
 If mSelect4 = True Then mType = "CCS"
 On Error GoTo ErrorMsg
 mFileLocation = IIf(Right(Trim(msSheet.Cells(24, 3)), 1) = "\", _
 Trim(msSheet.Cells(24, 3)), Trim(msSheet.Cells(24, 3)) & "\")
 mBank = IIf(Trim(mdSheet.Cells(2, 3)) = "", "000", Trim(mdSheet.Cells(2, 3)))
 mDate = IIf(Trim(mdSheet.Cells(4, 3)) = "", "000", Trim(mdSheet.Cells(4, 3)))
 mFileName = mBank & "_" & Application.Substitute(mDate, "-", "") &
"_DS_IRR_" & mType & ".xml"
 Set mFilesystem = CreateObject("Scripting.FileSystemObject")
 Set mFile = mFilesystem.CreateTextFile(mFileLocation & mFileName, True,
False) ' overwrite , ASCII
 mFile.WriteLine "<?xml version=""" & "1.0""" & " encoding=""" & "UTF-8"""
& "?>"
 GenHead mType
 GenContentIRR
 mFile.Close
 MsgBox "Generate xml file from xls IRR-" & mType & " successful.",
vbInformation, "IRR-" & mType
Else
ErrorMsg:
 Select Case True
 Case Err = 71: MsgBox Error(Err), vbCritical, "Convert xls to xml- IRR"
 Case Err = 76: MsgBox Error(Err), vbCritical, "Convert xls to xml- IRR"
 End Select
 MsgBox "Cancel generate xml file from xls IRR.", vbExclamation, "IRR"
End If
End Sub
Private Sub GenHead(mType)
Dim mRow As Byte, mFiType As String
mRow = 2
mHead1 = Mid(Trim(msSheet.Cells(mRow, 3)), 1, 7) & ">"
mFiType = mType & " " & Trim(msSheet.Cells(25, 3))
If Trim(msSheet.Cells(18, 3)) <> "" Then mFile.WriteLine Trim(msSheet.Cells
(18, 3))
mFile.WriteLine Trim(msSheet.Cells(mRow, 3)) & """" & mFiType & """" & ">"
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 1, 3))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 2, 3)) &
mBank & AddCloseTag(Trim(msSheet.Cells(mRow + 2, 3)))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 3, 3)) &
mDate & AddCloseTag(Trim(msSheet.Cells(mRow + 3, 3)))
 mFile.WriteLine vbTab & AddCloseTag(Trim(msSheet.Cells(mRow + 1, 3)))
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 4, 3))
mHead2 = Trim(msSheet.Cells(mRow + 5, 3))

 101

mHead3 = Trim(msSheet.Cells(mRow + 6, 3))
 mFile.WriteLine vbTab & mHead2
End Sub
Private Sub GenContentIRR()
Dim mCol As Byte, mRow As Byte, I As Byte, mAmount As Double, mCheck As
Byte
mFile.WriteLine vbTab & mHead3
' FiReportingGroupId
mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(2, 4)) &
Mid(mdSheet.Cells(3, 3), 1, 6) & AddCloseTag(Trim(msSheet.Cells(2, 4)))
mCol = FindEndCol(6, 5)
mRow = 3
' BankingBookPositionItem
Do Until Trim(msSheet.Cells(mRow, 4)) = ""
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow, 4))
' BankingBookPositionItemInfo
mCheck = 0
 For I = 4 To mCol
 mAmount = FindIRRAmt(Mid(Trim(msSheet.Cells(mRow, 4)), 25, 6), I)
 If mAmount <> 0 Then
 mFile.WriteLine vbTab & vbTab & vbTab & msSheet.Cells(3, 5)
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(4, 5) & _
 Mid(Trim(mdSheet.Cells(6, I)), 1, 6) &
AddCloseTag(msSheet.Cells(4, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(5, 5) & _
 Trim(mdSheet.Cells(5, I)) & AddCloseTag(msSheet.Cells(5, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(6, 5) & _
 mAmount & AddCloseTag(msSheet.Cells(6, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & msSheet.Cells(7, 5)
 mCheck = mCheck + 1
 End If
 Next I
 If mCheck = 0 Then
 mFile.WriteLine vbTab & vbTab & vbTab & msSheet.Cells(3, 5)
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(4, 5) & AddCloseTag(msSheet.Cells(4, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(5, 5) & AddCloseTag(msSheet.Cells(5, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & msSheet.Cells
(6, 5) & "0" & AddCloseTag(msSheet.Cells(6, 5))
 mFile.WriteLine vbTab & vbTab & vbTab & msSheet.Cells(7, 5)
 End If
 mFile.WriteLine vbTab & vbTab & AddCloseTag(Trim(msSheet.Cells(mRow, 4)))
 mRow = mRow + 1

 102

Loop
mFile.WriteLine vbTab & AddCloseTag(mHead3)
mFile.WriteLine vbTab & AddCloseTag(mHead2)
mFile.WriteLine AddCloseTag(mHead1)
End Sub
Private Function AddCloseTag(mCode)
AddCloseTag = "</" & Mid(mCode, 2, Len(mCode) - 1)
End Function
Private Function FindIRRAmt(mCode, mCol) As Double
Dim mRow As Integer, mChk As Boolean
mChk = False
For mRow = 7 To 41
 If Mid(Trim(mdSheet.Cells(mRow, 3)), 1, 6) = mCode Then
 FindIRRAmt = IIf(Val(mdSheet.Cells(mRow, mCol)) = 0, 0,
Format(mdSheet.Cells(mRow, mCol), "####.##"))
 mChk = True
 Exit For
 End If
Next mRow
If mChk = False Then
 mFile.Close
 Kill mFileLocation & mFileName
 MsgBox "Can not find TradingBookPosition " & mCode & "." & vbCrLf &
"Exit Program", vbCritical, "IRR-" & mType
 End
End If
End Function
Private Function FindEndCol(sRow As Byte, sCol As Byte) As Byte
Do Until mdSheet.Cells(sRow, sCol) = ""
 sCol = sCol + 1
Loop
FindEndCol = sCol
End Function

3. Example Source Codes Type 3_LMS

 3.1 Module Form_LMS
Option Explicit
Private Sub mCancel_Click()
mExitProg = True
Unload Me
End Sub
Private Sub mOK_Click()
Dim x
mExitProg = False
mSelect1 = False: mSelect2 = False: mSelect3 = False: mSelect4 = False
For Each x In Frame2.Controls

 103

 If x.Value = True And x.Name = "TCB" Then mSelect1 = True
 If x.Value = True And x.Name = "FCB1" Then mSelect2 = True
 If x.Value = True And x.Name = "FCS" Then mSelect3 = True
 If x.Value = True And x.Name = "CCS" Then mSelect4 = True
Next
If mSelect1 = False And mSelect2 = False And mSelect3 = False And
mSelect4 = False Then
 MsgBox "Please select data set type.", vbQuestion, "LMS"
Else
 Unload Me
End If
End Sub

 3.2 Module PublicVar _LMS
Option Explicit
Public mFilesystem, mFile
Public mFileName As String, mFileLocation As String
Public mBank As String, mDate As String, mType As String
Public mHead1 As String, mHead2 As String, mHead3 As String
Public mExitProg As Boolean
Public mSelect1 As Boolean, mSelect2 As Boolean, mSelect3 As Boolean,
mSelect4 As Boolean
Public msSheet As Worksheet, mdSheet As Worksheet

 3.3 Module GenXML _LMS
Option Explicit
Sub Gen_LMS_XML()
Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE1")
Set msSheet = ThisWorkbook.Worksheets("LMS_TEMPLATE")
LMS.VersionName = "schema Version " & Trim(msSheet.Cells(25, 3))
LMS.Show
If mExitProg = False Then
 If mSelect1 = True Then mType = "TCB"
 If mSelect2 = True Then mType = "FCB1"
 If mSelect3 = True Then mType = "FCS"
 If mSelect4 = True Then mType = "CCS"
On Error GoTo ErrorMsg
 mFileLocation = IIf(Right(Trim(msSheet.Cells(24, 3)), 1) = "\", _
 Trim(msSheet.Cells(24, 3)), Trim(msSheet.Cells(24, 3)) & "\")
 mBank = IIf(Trim(mdSheet.Cells(2, 3)) = "", "000", Trim(mdSheet.Cells(2, 3)))
 mDate = IIf(Trim(mdSheet.Cells(4, 3)) = "", "000", Trim(mdSheet.Cells(4, 3)))
 mFileName = mBank & "_" & Application.Substitute(mDate, "-", "") &
"_DS_LMS_" & mType & ".xml"
 Set mFilesystem = CreateObject("Scripting.FileSystemObject")
 Set mFile = mFilesystem.CreateTextFile(mFileLocation & mFileName, True,
False) ' overwrite , ANSI
 GenHead mType

 104

 GenContentLMS
 If mType = "TCB" Then
 Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE2")
 GenContentLMS
 End If
 mFile.WriteLine vbTab & AddCloseTag(mHead2)
 mFile.WriteLine AddCloseTag(mHead1)
 mFile.Close
 MsgBox "Generate xml file from xls LMS-" & mType & " successful.",
vbInformation, "LMS-" & mType
Else
ErrorMsg:
 Select Case True
 Case Err = 71: MsgBox Error(Err), vbCritical, "Convert xls to xml- LMS"
 Case Err = 76: MsgBox Error(Err), vbCritical, "Convert xls to xml- LMS"
 End Select
 MsgBox "Cancel generate xml file from xls LMS.", vbExclamation, "Convert
xls to xml- LMS"
End If
End Sub
Private Sub GenHead(mType)
Dim mRow As Byte, mFiType As String
mRow = 2: mHead1 = Mid(Trim(msSheet.Cells(mRow, 3)), 1, 7) & ">"
mFiType = mType & " " & Trim(msSheet.Cells(25, 3))
If Trim(msSheet.Cells(18, 3)) <> "" Then mFile.WriteLine Trim(msSheet.Cells
(18, 3))
mFile.WriteLine Trim(msSheet.Cells(mRow, 3)) & """" & mFiType & """" & ">"
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 1, 3))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 2, 3)) &
mBank & AddCloseTag(Trim(msSheet.Cells(mRow + 2, 3)))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 3, 3)) &
mDate & AddCloseTag(Trim(msSheet.Cells(mRow + 3, 3)))
 mFile.WriteLine vbTab & AddCloseTag(Trim(msSheet.Cells(mRow + 1, 3)))
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 4, 3))
mHead2 = Trim(msSheet.Cells(mRow + 5, 3))
mHead3 = Trim(msSheet.Cells(mRow + 6, 3))
 mFile.WriteLine vbTab & mHead2
End Sub
Private Sub GenContentLMS()
Dim mdRow As Integer, I As Integer, maxRow As Long
mdRow = 6
mdSheet.Activate
maxRow = Cells.Find(what:="*", after:=[a1], searchorder:=xlByRows,
searchdirection:=xlPrevious).Row
Do Until mdRow > maxRow
 mFile.WriteLine vbTab & mHead3
' Fi Reporting Group Id

 105

 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(2, 4)) & _
 Trim(mdSheet.Cells(3, 3)) & AddCloseTag(Trim(msSheet.Cells(2, 4)))
 For I = 3 To 7
 FindLMSAmt mdRow, I ' row data, col data and row schema
 Next I
 mFile.WriteLine vbTab & AddCloseTag(mHead3)
 mdRow = mdRow + 1
Loop
End Sub
Private Sub FindLMSAmt(mRow As Integer, mCol As Integer)
If mCol = 7 Then
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mCol, 4)) & _
 Application.Text(Trim(mdSheet.Cells(mRow, mCol - 1)), "####.##") &
AddCloseTag(Trim(msSheet.Cells(mCol, 4)))
Else
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mCol, 4)) & _
 Trim(mdSheet.Cells(mRow, mCol - 1)) &
AddCloseTag(Trim(msSheet.Cells(mCol, 4)))
End If
End Sub
Private Function AddCloseTag(mCode)
AddCloseTag = "</" & Mid(mCode, 2, Len(mCode) - 1)
End Function

4. Example Source Codes Type 4_ARS

 4.1 Module Form_ARS
Option Explicit
Private Sub Bank_Click()
IBF1.Enabled = False: IBF1.Value = False
TCB.Enabled = True: FCB1.Enabled = True
FCS.Enabled = True: CCS.Enabled = True
End Sub
Private Sub IBF_Click()
IBF1.Enabled = True: IBF1.Value = True
TCB.Enabled = False: FCB1.Enabled = False
FCS.Enabled = False: CCS.Enabled = False
End Sub
Private Sub mCancel_Click()
mExitProg = True
Unload Me
End Sub
Private Sub mOK_Click()
Dim x
mExitProg = False
mSelect1 = False: mSelect2 = False: mSelect3 = False: mSelect4 = False:
mSelect5 = False

 106

For Each x In Frame2.Controls
 If x.Value = True And x.Name = "TCB" Then mSelect1 = True
 If x.Value = True And x.Name = "FCB1" Then mSelect2 = True
 If x.Value = True And x.Name = "FCS" Then mSelect4 = True
 If x.Value = True And x.Name = "CCS" Then mSelect5 = True
Next
If mSelect1 = False And mSelect2 = False And mSelect4 = False And
mSelect5 = False Then
 MsgBox "Please select data set type.", vbQuestion, "ARS-" & mType
Else
 Unload Me
End If
End Sub

 4.2 Module PublicVar _ARS
Option Explicit
Public mFilesystem, mFile
Public mFileName As String, mFileLocation As String
Public mBank As String, mDate As String, mType As String
Public mHead1 As String, mHead2 As String, mHead3 As String
Public mFiSelect1 As Boolean, mFiSelect2 As Boolean, mExitProg As Boolean
Public mSelect1 As Boolean, mSelect2 As Boolean, mSelect3 As Boolean,
mSelect4 As Boolean, mSelect5 As Boolean
Public msSheet As Worksheet, mdSheet As Worksheet

 4.3 Module GenXML _ARS
Option Explicit
Sub Gen_ARS_XML()
Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE1")
Set msSheet = ThisWorkbook.Worksheets("ARS_TEMPLATE")
ARS.VersionName = "schema Version " & Trim(msSheet.Cells(25, 3))
ARS.Show
If mExitProg = False Then
 If mSelect1 = True Then mType = "TCB"
 If mSelect2 = True Then mType = "FCB1"
 If mSelect3 = True Then mType = "IBF1"
 If mSelect4 = True Then mType = "FCS"
 If mSelect5 = True Then mType = "CCS"
On Error GoTo ErrorMsg
 mFileLocation = IIf(Right(Trim(msSheet.Cells(24, 3)), 1) = "\", _
 Trim(msSheet.Cells(24, 3)), Trim(msSheet.Cells(24, 3)) & "\")
 mBank = IIf(Trim(mdSheet.Cells(2, 3)) = "", "000", Trim(mdSheet.Cells(2, 3)))
 mDate = IIf(Trim(mdSheet.Cells(4, 3)) = "", "000", Trim(mdSheet.Cells(4, 3)))
 mFileName = mBank & "_" & Application.Substitute(mDate, "-", "") &
"_DS_ARS_" & mType & ".xml"
 Set mFilesystem = CreateObject("Scripting.FileSystemObject")

 107

 Set mFile = mFilesystem.CreateTextFile(mFileLocation & mFileName, True,
False) ' overwrite , ANSI
 GenHead mType
 If mdSheet.Cells(6, 2).Value <> "" Then GenContentARS
 Set mdSheet = ThisWorkbook.Worksheets("DATA_TEMPLATE2")
 If mdSheet.Cells(6, 2).Value <> "" Then GenContentARS
 mFile.WriteLine vbTab & AddCloseTag(mHead2)
 mFile.WriteLine AddCloseTag(mHead1)
 mFile.Close
 MsgBox "Generate xml file from xls ARS-" & mType & " successful.",
vbInformation, "ARS-" & mType
Else
ErrorMsg:
 Select Case True
 Case Err = 71: MsgBox Error(Err), vbCritical, "Convert xls to xml- ARS"
 Case Err = 76: MsgBox Error(Err), vbCritical, "Convert xls to xml- ARS"
 End Select
 MsgBox "Cancel generate xml file from xls ARS.", vbExclamation, "Convert
xls to xml- ARS"
End If
End Sub
Private Sub GenHead(mType)
Dim mRow As Byte, mFiType As String
If mType <> "IBF1" Then
 mRow = 2: mHead1 = Mid(Trim(msSheet.Cells(mRow, 3)), 1, 7) & ">"
Else
 mRow = 10: mHead1 = Mid(Trim(msSheet.Cells(mRow, 3)), 1, 11) & ">"
End If
mFiType = mType & " " & Trim(msSheet.Cells(25, 3))
If Trim(msSheet.Cells(18, 3)) <> "" Then mFile.WriteLine Trim(msSheet.Cells
(18, 3)) ' First line
mFile.WriteLine Trim(msSheet.Cells(mRow, 3)) & """" & mFiType & """" & ">"
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 1, 3))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 2, 3)) &
mBank & AddCloseTag(Trim(msSheet.Cells(mRow + 2, 3)))
 mFile.WriteLine vbTab & vbTab & Trim(msSheet.Cells(mRow + 3, 3)) &
mDate & AddCloseTag(Trim(msSheet.Cells(mRow + 3, 3)))
 mFile.WriteLine vbTab & AddCloseTag(Trim(msSheet.Cells(mRow + 1, 3)))
 mFile.WriteLine vbTab & Trim(msSheet.Cells(mRow + 4, 3))
mHead2 = Trim(msSheet.Cells(mRow + 5, 3))
mHead3 = Trim(msSheet.Cells(mRow + 6, 3))
 mFile.WriteLine vbTab & mHead2
End Sub
Private Sub GenContentARS()
Dim mdRow As Integer, I As Integer, mInfo As String, mDetail As String
mdRow = 6
mInfo = msSheet.Cells(3, 4)

 108

mDetail = msSheet.Cells(4, 4)
mdSheet.Activate
mFile.WriteLine vbTab & mHead3
mFile.WriteLine vbTab & vbTab & msSheet.Cells(2, 4) & Mid(mdSheet.Cells(3, 3),
1, 6) & _
 AddCloseTag(msSheet.Cells(2, 4))
mFile.WriteLine vbTab & vbTab & mInfo
Do While mdSheet.Cells(mdRow, 2).Value <> ""
 mFile.WriteLine vbTab & vbTab & vbTab & mDetail
 For I = 5 To 13
 Select Case I
 Case 12
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & _
 Trim(msSheet.Cells(I, 4)) &
Application.Text(Trim(mdSheet.Cells(mdRow, I - 3)), "###0") & _
 AddCloseTag(Trim(msSheet.Cells(I, 4)))
 Case 13
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & _
 Trim(msSheet.Cells(I, 4)) &
Application.Text(Trim(mdSheet.Cells(mdRow, I - 3)), "###0.00") & _
 AddCloseTag(Trim(msSheet.Cells(I, 4)))
 Case Else
 mFile.WriteLine vbTab & vbTab & vbTab & vbTab & _
 Trim(msSheet.Cells(I, 4)) & Trim(mdSheet.Cells(mdRow, I - 3)) & _
 AddCloseTag(Trim(msSheet.Cells(I, 4)))
 Next I
 mdRow = mdRow + 1
 mFile.WriteLine vbTab & vbTab & vbTab & AddCloseTag(mDetail)
Loop
mFile.WriteLine vbTab & vbTab & AddCloseTag(mInfo)
mFile.WriteLine vbTab & AddCloseTag(mHead3)
End Sub
Private Function AddCloseTag(mCode)
AddCloseTag = "</" & Mid(mCode, 2, Len(mCode) - 1)
End Function

 109

APPENDIX B

SAMPLE DATA TYPE 1 - 4

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

APPENDIX C

TEST SCRIPT & TEST DATA DETAILS

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

APPENDIX D

QUESTIONNAIRE

 154

CURRICULUM VITAE

NAME Ponchai Sangeramruang

DATE OF BIRTH June 10, 1956

EDUCATION

Bachelor Degree B.B.A. (Money and Banking)

 Ramkhamhaeng University 1981

 B.B.A. (Accounting)

 Ramkhamhaeng University 1983

 LL.B. (Laws)

 Thammasat University 1984

WORK EXPERIENCE 1980 – Present Senior Analyst

 Bank of Thailand

	Cov
	Intro
	Abs
	Cont
	Ch1
	Ch2
	Ch3
	Ch4
	Ch5
	Bib
	App.A
	App.B
	App.C
	App.D
	Bio

