

VERSION CONTROL SYSTEM IMPLEMENTED IN PHP

RATHAPOL KONKAEW

MASTER OF SCIENCE

IN COMPUTER SCIENCE

MAE FAH LUANG UNIVERSITY

2007

© COPYRIGHT BY MAE FAH LUANG UNIVERSITY

VERSION CONTROL SYSTEM IMPLEMENTED IN PHP

RATHAPOL KONKAEW

AN INDEPENDENT STUDY SUBMITTED TO

MAE FAH LUANG UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN COMPUTER SCIENCE

MAE FAH LUANG UNIVERSITY

2007

© COPYRIGHT BY MAE FAH LUANG UNIVERSITY

 iii

ACKNOWLEDGEMENT

I sincerely thank School of Information Technology, Mae Fah Luang University,

especially Ms. Somsamorn Srisangwan for advising me. I thank Technology team in Chanwanich

Co., Ltd. for testing system and giving comments. I thank Mr. Somphong Intana, a friend of mine

in the company, for sharing web hosting for use in the project. And last, I thank Chanwanich Co.,

Ltd. for allowing me work on the project at the office.

Rathapol Konkaew

 iv

Independent Study Title Version Control System Implemented in PHP

Author Mr. Rathapol Konkaew

Degree Master of Science (Computer Science)

Supervisory Committee Assoc. Dr. Wanchai Rivepiboon Chairperson

 Dr. Thongchai Yooyativong Member

 Lecturer Vittayasak Rujivorakul Member

 Lecturer Somsamorn Srisangwan Member

 Dr. Punnarumol Temdee Member

ABSTRACT

 This project is an attempt to implement a low cost version control system in PHP

which can run on low cost web server platforms like Linux. Subversion, the popular existing

system, is studied for its functionalities and techniques. The project implements basic version

control functionalities, such as versioning, and concurrency handling. It uses MySQL, the

database management system, to store and manage repository data. It provides a client

application to interface with the system.

 Delta compression is applied to reduce disk space of the storage. Content of a

newly committed revision is stored as full text while content of the previous revision is replaced

with a delta of the new content against the previous content. The size of the storage is O(N),

where N is a number of revisions. Time taken to reproduce content of a particular revision is O(N

2 M), where N is a number of revisions and M is the requested revision number. As a result,

content of the head revision takes O(1) to be reproduced. The system has been deployed and

tested on a Linux web server. For normal use, the system performs reasonably. The limitations of

the system are numbers of revisions, bandwidth, and database disk space in the server.

Keyword: Version Control System / PHP

CONTENTS

Page

ACKNOWLEDGEMENT iii

ABSTRACT iv

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER

I INTRODUCTION 1

 1.1 Background 1

 1.2 Objectives of the study 2

 1.3 Scope of the study 2

 1.4 Expected Benefits 2

II LITERATURE REVIEW 3

 2.1 ASVCS Project 3

 2.2 CVS 4

 2.3 Subversion (SVN) 5

 2.4 HTTP Protocol 6

 2.5 PHP 7

 2.6 MySQL 7

 2.7 Difference Algorithm 8

 2.8 Unified Format 8

 2.9 Versioning Models 9

 2.10 Libcurl 9

 2.11 GNU Diffutils 10

 vi

CONTENTS (Cont.)

Page

III FEASIBILITY STUDY 11

 3.1 Introduction 11

 3.2 Problem statement 12

 3.3 Related research and projects 12

 3.4 Requirement specifications for the new system 13

 3.5 Implementation techniques 14

 3.6 Deliverables 15

 3.7 Implementation plan 15

IV SYSTEM ANALYSIS AND DESIGN 17

 4.1 Introduction 17

 4.2 Analysis of the existing system 17

 4.3 User requirement analysis 19

 4.4 System Design 20

V SYSTEM FUNCTIONALITY 53

 5.1 Introduction 53

 5.2 System architecture 54

 5.3 Test plan 63

 5.4 Test results 70

VI SUMMARY AND SUGGESTIONS 77

 6.1 Introduction 77

 vii

 CONTENTS (Cont.)

Page

 6.2 Project Summary 77

 6.3 Problems encountered and solutions 78

 6.4 Suggestions for further development 79

REFERENCES 80

APPENDIX 82

 Appendix A - Technical Terms and Abbreviations 82

 Appendix B - Algorithm Test Inputs 84

 Appendix C - Preformance Test Detailed Result 88

 Appendix D - Interviewed Script 93

CURRICULUM VITAE 95

 viii

LIST OF TABLES

Table Page

3.1 Implementation Plan 11

4.1 HTTP Handler Design 31

4.2 Database Permission Design 38

4.3 Command Design 40

5.1 HTTP Handler Files 56

5.2 Test Set A, Test Check In / Check Out Operations 66

5.3 Test Set B, Test Functionality of Versioning Model 68

5.4 Test Set C, Test Functionality of Versioning Model

(Modifying the Same File) 69

5.5 Diff Algorithm Test Result 70

5.6 Content Reproduction Algorithm Test Result 71

5.7 Test Result A, Test Check In / Check Out Operations 73

5.8 Test Result B, Test Functionality of Versioning Model 75

5.9 Test Result C, Test Functionality of Versioning Model 76

(Modifying the Same File)

 ix

LIST OF FIGURES

Figure Page

 4.1 Use Case Diagram 21

 4.2 Network Diagram 22

 4.3 Tier Design 23

 4.4 Check In 24

 4.5 Check Out 25

 4.6 Update Sequence Diagram 26

 4.7 Check Out Sequence Diagram 27

 4.8 Commit Sequence Diagram 28

 4.9 Add Sequence Diagram 29

 4.10 Delete Sequence Diagram 29

 4.11 HTTP Interface Design 30

 4.12 Check In Sequence Diagram 32

 4.13 Send Content Algorithm (Server) 33

 4.14 Delete Content Algorithm (Server) 34

 4.15 Commit Algorithm (Server) 35

 4.16 Revisions Stored in Repository 35

 4.17 Reproducing / Rendering Content at Particular Revisions 36

 4.18 Database Design, ER Diagram 37

 4.19 Console Application 1 39

 4.20 Console Application 2 39

 4.21 Console Application 3 39

 4.22 Web page layout 42

 4.23 Log In Status Panel 42

 4.24 Page Navigation Panel 43

 x

 LIST OF FIGURES (Cont.)

Figure Page

4.25 Page Navigation Panel (for Administrator) 43

 4.26 Log In Page Design. 44

4.27 My Account Page Design 45

 4.28 Head Revision Log Panel Design 45

 4.29 Browse Page Design 46

 4.30 Revision Navigation Panel Design 47

 4.31 Revision Entry List Panel Design 47

 4.32 Revision Log Panel Design 47

 4.33 View Log Page Design 48

 4.34 Create User Page Design 49

 4.35 Account Management Page Design 50

 4.36 Create New Repository Page Design 51

 4.37 Repository Management Page Design 52

 5.1 System Architecture 54

 5.2 Server Architecture 55

 5.3 Log In Page 57

 5.4 User Account Page 58

 5.5 Browse Page 58

 5.6 Comparison Result 59

 5.7 View Log Pag 60

 5.8 Create User Page 60

 5.9 User Management Page 61

 5.10 Create Repository Page 61

 5.11 Repository Management Page 62

 xi

LIST OF FIGURES (Cont.)

Figure Page

 5.12 Client Architecture 62

 5.13 Test Set for Content Reproduction Algorithm 64

 5.14 Performance Test Graph 72

CHAPTER I

INTRODUCTION

1.1 Background

Version control systems support teamwork by collecting documents in a centralized

repository and controlling the document version [13]. Each team member checks out document

files from the system. He modifies the files in his system. Once he has checks in the files back to

the system, the controlling version is increased. Some systems also have a functionality to support

editing the same file by multiple users.

Most version control systems have their own server implementation [11]. Some of

them have a functionality to work with web HTTP protocol. This allows users to work on the

systems via the Internet [12]. Because they have their own server implementation, only specific

servers can run the systems. For example, SourceForge.net runs CVS (a version control system)

server for open source projects. To run proprietary/private projects with supporting a version

control system over the Internet, hiring a server supporting such systems is required. This kind of

system is usually expensive.

This project's target is to implement a version control system which runs on general

online web servers. It is planed to be written in PHP. MySQL is used for its database management

system. PHP code can run on multiple platforms [15]. Servers running PHP are usually cheaper

than those running a version control system. A client program will be written to manage working

copies on a personal computer.

 2

1.2 Objectives of the study

1.2.1 To support teamwork by centralizing documents on the Internet.

1.2.2 To implement a version control system running on low-cost web hosting

services.

1.3 Scope of the study

1.3.1 Provide a web page to view file structures in the file repository.

1.3.2 Provide a web page to view version-controlled text documents.

1.3.3 Provide a client program to manage working copies on user computers.

1.3.4 The software can manage user permission.

1.3.5 The software can compare a document between different versions.

1.3.6 The software can merge document files together.

1.3.7 Support text documents only.

1.4 Expected Benefits

1.4.1 Documents are centralized on a repository.

1.4.2 Documents are version controlled. All document versions exist in the system.

This encourages team members to modify/remove data, because they can be reverted.

1.4.3 The system can be deployed on low-cost servers.

1.4.4 Backing up the repository is done by backing up the database.

CHAPTER II

LITERATURE REVIEW

This project studies functionalities and versioning models of various popular version

control systems such as CVS and Subversion (SVN). ASVCS, the web-based version control

system project, is studied since the project shares some similar approaches. For instance, it

attempts to implement such system entirely in PHP.

The replacement system will be implemented in PHP with MySQL database

management system. Diff algorithm and its applications are studied for text compression

algorithm used in the system. Some third party libraries and tools are studied to help reducing

development time.

2.1 ASVCS Project

 A Simple Version Control System (or ASVCS) is a web-based version control system

written in PHP [2]. To install the system, a user downloads PHP source code from the vendor's

website then uploads to his server and initializes MySQL database.

The user's version-controlled files are stored in a server file system. Initially,

particular files are uploaded by using SSH or FTP protocols. Consequently, the user registers

those files to the system. Then, the files are version-controlled. Later on, when the controlled file

content is changed and uploaded, then the user tells the system to create a new revision.

The system creates a new revision by detecting changes of the version-controlled files

and recording the changes into the database. The system uses the changes stored in the database

and the current file content stored in the file system together to reproduce the content of the

 4

previous revision.

An algorithm used for detecting changes is Diff, the algorithm for comparing between

two sequences of strings. The system utilizes Diff algorithm functionality of Text_Diff library. It

can render output in a number of formats including the unified format. The library depends on

Pearweb package, which may not be installed on some platforms.

 The limitation of the project is that it is suitable for only one user. Because files are

transferred to the repository via external protocols, it is possible that multiple users modify the

same file and may accidentally overwrite other's content.

 The cost of using this system is low. It can be deployed on a web server supporting

PHP and MySQL.

 This project will use the similar concept of file storing by storing changes between

revisions to reduce disk space, but this project will also store full content to the database for

maintenance reason. The system of this project needs to handle file transferring to handle

concurrency. The server application of this project is also implemented in PHP to deploy it on

low cost web servers.

2.2 CVS

 Concurrent Version System (CVS) is a free open source version control system

written in C developed by Dick Grune [3]. Its repository model is client-server. Supported

platforms include Windows, Unix-like, and Mac OS X. Supported protocols include pserver and

SSH.

 The architecture of CVS is client/server. The server side organizes repositories and

their revisions in a file system. The client side enables users to work with local revisions in their

local machines. Copy-Modify-Merge solution is used as versioning model. All users' modified

copies are merged together into the final reversion.

 The general usage of the system is the followings. Initially, a user creates a working

directory, and then invokes checkout command. A special hidden directory named =CVS> is then

 5

created. It contains the head revision's information and file content based on the revision. The file

content is also copied to his working directory. The user modifies file content in the working

directory and invokes commit command to submit his changes to the server to create a new

revision. He can invoke update command to receive the latest revision and merge file content in

the working directory with the revision.

 To run CVS server, the CVS server application must be installed as a service (on

Windows) or component (on Unix). There are free CVS hosting services, such as sourceforge.net,

for open source projects. However, CVS hosting service cost for closed-source / private-use

projects is high.

 The project will take the concept of client/server, copy-modify-merge model, and the

usage as initial ideas. We can adapt the idea of storing revision on users' machines in special

directories. We can reduce cost by implementing a PHP version control service that runs on web

server rather than running such special version control service.

2.3 Subversion (SVN)

 Subversion (SVN) is a free version control system written in C developed by

CollabNet Inc [9]. Its repository model is client-server. Supported platforms include Windows,

Unix-like, and Mac OS X. Supported protocols include SSH, HTTP and SSL, and svnserve (its

proprietary protocol). A database used in the system can be Berkeley DB or file system. Its

versioning model is copy-modify-merge.

 Subversion is designed as a replacement of CVS. It mimics and extends CVS's

functionalities and user interface. Its user interface for the client application is compatible with

CVS. For instance, it has the similar commands / subcommands to CVS.

 Subversion compressed data by using delification or delta compression. When a new

revision is committed, it compresses the previous revision as a delta against the new revision.

 With Subversion, a user can commit several changes of any files/directories as one

revision. This feature is useful for a project dealing with multiple programming source code,

 6

which changes of one file may affect others.

 Subversion system supports various Internet protocols. It can be used in a local

network with free-of-charge. There are free Subversion hosting services, such as sourceforge.net

and trigis.org, for open source projects. However, Subversion hosting service cost for closed-

source / private projects is high.

 Our project will take the idea of committing several files as one revision. Our client

application will have similar commands / subcommands for user experience reason.

2.4 HTTP Protocol

 HTTP Protocol is a communication protocol layered on top of the TCP protocol with

the default port of 80. Its applications include web contents transferring and web services.

 HTTP standard is developed by World Wide Web Consortium (W3C). The standard

defines request and response message formats. HTTP request message consists of a request line,

headers, an empty line, and an optional body. The request line contains a method to perform on

the identified resource. There are eight defined methods; such as HEAD, GET, POST, PUT,

DELETE, TRACE, OPTION, and CONNECT.

 HTTP protocol is usually not good for transferring huge binary data since its

encoding method (url-encoding) works well only for a small amount of text data.

 Our project will utilize HTTP protocol for communication between the server

application and the client application. It will use GET and POST methods for requesting and

transferring content to the server. The GET method is that arguments are passed by appending

pairs of argument=value to the requested URL. This method is good for transferring small amount

of data or requesting because the length of the URL is limited. The POST method is used for

transferring larger data. The data reside in the protocol's content section allowing larger data to

transfer.

 7

2.5 PHP

 PHP is a free-software script language which can run on popular web servers, such as

Apache and Microsoft IIS. PHP provides a range of functions for creating dynamic web pages,

manipulating files, connecting to databases, sending e-mail, etc.

 Most web hosting service providers offer Linux web hosting service as a low cost

solution. Usually PHP and MySQL are included in the package.

 PHP is a feature-rich language coming with ranges of libraries. With string

manipulation functions, built-in array/associative array, and database connection, it is possible to

create such system. The limitation of PHP is its processing speed to parse and process the scripts.

Writing less scripts and use its built-in functions can improve the processing speed. Usually, one

built-in function works on many operations in a lower level.

 Our project will implement the server in PHP because of its portability and cost as

well as its language features and libraries which are possible to develop the server side

application. Because of the limitation, the algorithm working with text data is per-line operation

which is less expensive than per-character operation. The project will use built-in PHP functions

as much as possible to improve its processing speed.

2.6 MySQL

 MySQL is a free open-source relational database management system written in

C/C++ licensed under GPL and proprietary license [7]. It can run on many platforms, such as

Linux, Mac, Windows, etc. MySQL supports pluggable multiple storage engines, which are

effective in different applications. It supports multi-threaded and multi-user.

 MySQL is free, fast, and reliable. It is continuously developed and is used in many

open-source and commercial projects and won many awards.

 Our project will use MySQL as database management system since many web

 8

hosting services bundle MySQL in many low cost packages. We will use SQL language to

communicate with the database system.

2.7 Difference Algorithm

 A paper, =An O(ND) Difference Algorithm and Its Variations> by Eugene W. Myers,

presents an algorithm for finding the longest common subsequence of two sequences A and B and

the shortest edit script for transforming based on an intuitive edit graph formalism [1].

 The algorithm is designed for comparing two text files. The project applies the

algorithm to find minimal changes between revisions and stores only the changes to keep the

storage size minimum.

 The algorithm is implemented for text comparison applications, such as diff in GNU's

diffutils package and other Wiki web applications.

 Our project will implement this algorithm for text comparison by porting it from Java

source code and apply the same test suite to ensure that both versions produce the same result.

2.8 Unified Format

 The Unified Format is a text format generated from the product of the difference

algorithm. Its content can be read and understandable by human [14].

 Unified Format content is produced based on a result of the difference algorithm.

Modification lines and some context lines are grouped in a chunk with starting line numbers of

both the old file and the new file and numbers of removed lines and inserted lines.

 Our project will store differences of two revisions in this format. The file size

produced in this format is not smallest possible, but it is maintainable.

 9

2.9 Versioning Models

 Versioning models are used to solve the concurrency problem which is that the

system shares data to two or more users and prevents them to overwrite other's changes in a

repository. There are two solutions which are usually used in most version control systems; lock-

modify-unlock and copy-modify-merge [10].

 With lock-modify-unlock solution, a user modifying a file requests for file locking to

prevent other to modify it at the same time. The lock is released when he finishes modifying the

file. This solution may cause an administrative problem when a user locks files and forgets to

release the locks.

 With copy-modify-merge solution, the system allows two or more users modify the

same file independently at the same time. Eventually all the changes are merged into a final

revision. The problem may cause when the user changes overlap other usersL changes but the

system can report the situation to the user to review the overlap and manually solve the problem.

 Our project will use copy-modify-merge solution to allow multiple users modify the

same file. When the user updates revision in his machine, the system merges the latest content in

the repository with his working copies.

2.10 Libcurl

 Libcurl is a cross-platform library for network communication [5]. The supported

protocols include FTP, FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, LDAP,

LDAPS, and FILE. Libcurl is written in C licensed under MTI/X derivate license. It supports

various platforms, such as Windows, OS/2, Solaris, Unix-like, Mac OS X, etc.

 The project will use this library in the client-side application to communicate with the

server-side application via HTTP protocol.

 10

2.11 GNU Diffutils

 GNU Diffutils is a collection of file comparing / merging tools [4]. The tools are

developed based on the difference algorithm. It can be used to compare files as well as directory

structures. It can produce a number of output formats including the unified format.

 The tools have been developed for a long time and have been tested by amount of

users over the world. The development has been frozen since 2002. Therefore, the tools can be

considered stable and reliable.

 Out project will utilize these tools in the client application. When a user invokes diff

subcommand, the system executes the tool to compare the user's working file and a file in the

repository. The tools will be also used when the user updates his revision in his machine.

CHAPTER III

FEASIBILITY STUDY

3.1 Introduction

Version control systems are systems that support team members working together in

software development field. The Internet is used to resolve a problem of distance collaboration.

There are many version control system product titles available. Some of them provide commercial

license. Some of them are free allowing people to download and use them. Examples of free

popular systems are CVS and Subversion (SVN).

CVS SVN and most other version control systems are designed as client/server

system. Typically the server application of the system has to be installed as a service or a

component of an operating system. Many version control system hosting services charge

expensive.

There are projects available on the Internet implementing web-based version control

systems. Example projects are ASVCS and Web-based Wikis. These web-based systems typically

do not handle concurrency.

The project's approach is to develop a client/server version control system. A server

application of the system is responsible for managing documents and handling concurrency of

document submission. A client application of the system is responsible for managing documents

on user machines and providing control to the users. HTTP protocol is used for client/server

communication.

The server application of the system is developed in PHP. MySQL is used as database

management system. Delta compression is used to reduce document spaces. The text comparison

 12

algorithm is ported from Java source code available on the Internet [6]. The same test set is

applied to ensure accuracy. The Unified format is used to represent result of the algorithm. The

PHP server application can be deployed on most low-cost web hosting services.

PHP is a popular programming script language. It is typically used to develop

dynamic web pages. It provides ranges of functions as well as interfaces to connect with several

database management systems including MySQL, the cross platform database management

system. Its scripts can run on many platforms, such as Windows, Mac, Linux and other Unix-like

systems. HTTP protocol is supported by the language.

The client application of the system is developed in C/C++ with additional libraries

and third party tools. It is a simple console application allowing users to interface with the

system. The additional libraries and the third party tools are libcurl and GNU diffutils. Libcurl is

used for HTTP handling. GNU diffutils provides tools for comparing and merging text

documents.

3.2 Problem statement

Most version control hosting services typically charge expensive. For the lower cost

services, they limit numbers of users or they permit only for open source projects.

3.3 Related research and projects

This project studies some basic functionality of existing popular systems. Such

systems are the followings.

 3.3.1 CVS - CVS is a cross platform version control system. It is widely used by

 13

many open-source projects. It supports pserver and ssh protocols.

3.3.2 Subversion (SVN) - SVN is a cross platform version control system.

There is an existing project implementing a version control system in PHP. The

project can do version control tasks and can be deployed on low cost web hosting services. It

lacks of multi-user and concurrency handling.

3.3.3 ASVCS ; A Simple Version Control System - The ASVCS project implements

a simple version control functionalities entirely in PHP.

This project attempts to implement a version control system to run on low cost

platforms while it has some basic functionality similar to the popular systems. Such

functionalities are auto-version-numbering, concurrency handling, multi-user support, and version

traceability.

3.4 Requirement specifications for the new system

The followings are requirements for the system:

3.4.1 Use the HTTP web protocol for client-server communication.

3.4.2 The server application can be installed into low-cost web hosting services,

such as Linux web hosting.

3.4.3 The system can be used for private/closed-source projects.

3.4.4 The system supports concurrency.

3.4.5 An operating system for the server application which can run PHP and

MySQL

3.4.6 WindowsXP for the client application

3.4.7 A web application service, such as IIS or Apache

 14

3.4.8 PHP version 4 or higher

3.4.9 MySQL version 4 or higher

3.4.10 GCC ; GNU Compiler Collection

3.4.11 Libcurl

3.4.12 GNU diffutils

3.4.13 A server computer

3.4.14 A client computer

3.4.15 Internet connection

3.5 Implementation techniques

The following implementation techniques will be applied:

3.5.1 The server application is written in PHP ; PHP scripts can run on most

Linux web hosting services. Moreover, Linux web hosting usually costs lower than Windows or

other web hosting.

3.5.2 All data are stored in a database ; this makes easy for maintenance.

The client application uses existing proven tools, such as GNU Diffutils and Libcurl,

to reduce development time.

3.5.3 The difference algorithm is ported from a Java source code published in the

Internet under GPL license. As a result, this project must derive the license. Provide the same test

inputs as the original source.

3.5.4 The product of the difference algorithm is stored in the unified format ; this

makes it small and readable by human.

 15

3.6 Deliverables

When the project is finished, the followings will be delivered:

3.6.1 The server web application

3.6.2 The client application

3.7 Implementation plan

The implementation plan starts with gathering information about version control

systems and requirements. Some version control systems are selected to study and analyze. After

that, the system will be designed and implemented. Finally, several tests will be applied. See

Table 3.1.

 16

Table 3.1 Implementation Plan

No Task Duration

1 Gathering Information / Requirements 2 days

2 Studying existing systems 2 days

3 Analysis / Design 5 days

System Analysis (1day)

System Design (1day)

Database Design (1day)

User Interface Design (1day)

Selecting Software / Tools (1day)

4 Implement 10 days

Server Application Implementation (4 days)

Web Pages (2 days)

Client Application Implementation (3 days)

Maintenance Tools Implementation (1 day)

5 Test 12 days

Algorithm Test (2 days)

Unit Test (5 days)

Integration Test (5 days)

 32 days

CHAPTER IV

SYSTEM ANALYSIS AND DESIGN

4.1 Introduction

This chapter covers analysis of an existing system and requirements for the new

system as well as a design of the new system.

An existing system analyzed is Subversion. The study covers its architecture, usage,

versioning model, and data storage and compression techniques. The study can be used as

knowledge base for developing the new system.

User requirements of the new system are that the version control system can be

deployed on low cost platforms like Linux while it does basic version control functionalities, and

works reasonably.

The design of the system covers use case, system architecture, network, system tier,

business logic, database, operation, algorithm, and user interface. Several diagrams are included.

4.2 Analysis of the existing system

This project mainly studies Subversion, which is an improvement of CVS, another

popular system. The study covers its architecture, usage, versioning model, and data storage and

compression techniques.

 18

4.2.1 Architecture

The system architecture of Subversion is client/server. It supports various application

protocols including SSH, HTTP and SSL, and svnserve (its proprietary protocol). Its server

application and client its application can be installed in the same machine or separate. The system

supports two types of storage managements: Berkeley DB and native file system. A client library

is available for developing enhancement of the client application.

4.2.2 Usage

The system provides client applications for interfacing with users and administrators.

The applications are command-line applications providing commands similar to CVS, another

popular system.

The basic usage of the system is checking in / checking out contents with repositories.

A user starts using repository with checkout command. Then, the head revision is copied to his

local machine. After modifications have been done, he can execute commit command to check in

the changes. Then, the system creates a new revision. At a particular time, he can execute update

to update his copy with the latest revision submitted by other users.

There are other third party tools for enhancement. TortoiseSVN is a tool integrated

with Windows shell to improve visualization and user experience. Subversion commands are

attached into context menu in Windows Explorer. Icons of files and folders in version control

directories show status of the objects. Other kind of tools is to make the server visualized by

developing a web portal to the system. Users do not need to have the client application. They can

browse and view repositories via a web browser.

4.2.3 Versioning Model

The versioning model used in the system is copy-modify-merge. When a user

commits modifications, the system creates a new revision. Consequently, another user can not

commit his modifications right after the previous commit. He needs to update his work with

content of the latest revision. Once the work has been updated, he can review the merged content,

modify it, and commit it.

 19

4.2.4 Storage

Subversion provides storage options to manage repositories: Berkeley DB or native

file system. Initially, the system was designed to use Berkeley DB for taking advantage of the

DBMS's functionalities, such as transaction support, support for cursors, hot backups, logging

facilities, etc. The DBMS is not available on all platforms and its database file is not compatible

across platforms. Later, the file system storage was developed.

Deltification is used for compressing data in repositories [8]. The system stores delta

chunks rather than full texts to keep the space size minimum. When a new revision is created, the

previous revisions are computed as a delta against the new revision. Therefore, the size of the

storage is O(N), where N is a number of revisions. Time taken to reproduce content of a particular

revision is O(N = M), where N is a number of revisions and M is the requested revision number.

As a result, content of the head revision takes O(1) to be reproduced.

4.3 User requirement analysis

This system is designed for developer teams who have limited budget requiring a

low-cost version control system for their closed projects.

4.3.1 Personal / private version control system

 A user can install his/her own system into his/her own server. The server side

implemented in PHP can be installed on most of personal / shared / rented servers if they can run

the PHP script and have MySQL database installed. Additional services or extensions are not

required.

4.3.2 Low cost

The server side is a PHP web application. It can run on Linux servers which are

usually lower cost than Windows servers or others.

 20

4.3.3 Accessible via HTTP protocol

The HTTP protocol is used for network communication for web sites / web services

on the Internet and the Intranet. The HTTP port is generally open while other ports are blocked by

firewalls or routers.

4.3.4 Minimum space

Delta compression is used to reduce data size stored in the database.

4.3.5 Backup / Restore system

Because all revisions are stored in the database, a user can backup entire data in the

database to backup all revisions.

4.4 System design

4.4.1 Use Case

There are two groups of users in the system: administrator and repository user. The

administrators are responsible for managing repositories and users as well as doing backing up

and restoring repository information. The repository users have rights to check out, modify, and

check in documents. They are able to browse documents in a repository, navigate through

different revisions, and track document changes. See Figure 4.1 for the use case diagram.

 21

Figure 4.1 Use Case Diagram

4.4.2 Architecture and Network Design

The system consists of two parts; server and client. The server part manages and

stores submitted contents into the database. The client part is used to connect to the server part

and manage working copies on local machines. The server and the client applications connect

each other via the HTTP protocol.

In the server part, the management code is written in PHP which can run on various

platforms. MySQL is used as a repository database.

The client part is a simple application written in C/C++. It provides an interface for

the user to interact with the server. It can be used to compare working copies and revisions

checked out from the server.

 22

The server runs on a web hosting service. It communicates multiple users via HTTP

protocol. The web server and the database server may or may not physically be in the same

machine (See Figure 4.2).

Figure 4.2 Network Diagram

4.4.3 Tier Design

The system is separated into four tiers; UI, Web Interface, Business Logic, and Data

(See Figure 4.3).

 23

Figure 4.3 Tier Design

1. UI Tier

UI Tier interacts with users directly. This tier consists of two applications; the

client application and a web browser to view web pages to manage/administrate repositories. UI

Tier communicates with Web Interface Tier via HTTP protocol.

2. Web Interface Tier

Web Interface Tier consists of two applications; a HTTP Interface to interface

with the client application and web application to interface with users via web browser. Web

Interface Tier communicates with Business Logic Tier via PHP function call.

3. Business Logic Tier

Business Logic Tier does version control system functions. It connects directly

to MySQL databases.

4. Data Tier

MySQL is used to store repository, user, and other data.

4.4.4 Business Logic

There are two major business logics in the system: Check In and Check Out.

 24

1. Check In

Once a user has created/modified documents, he commits them to a repository.

The system firstly checks whether the documents have modified from the latest revision. If so, all

documents are submitted to the server then a new revision is committed. Otherwise, he fails to

commit his contents and the system notifies him to update his copies.

For each document submission, the system find differences between the

document and the current head revision then add the differences in to a temporary database table.

Once all documents have been submitted, the server moves the data from the temporary table to

the working table.

Figure 4.4 Check In

 25

2. Check out

When check out, the client application requests / retrieves latest revision file list

from the server. Then, it iterates each file in the list. For each file, it requests/retrieves file content

from the server and updates the content with the local copy. Once all documents have been

updated, the revision number in the user's machine is changed to the latest revision number.

Figure 4.5 Check Out

4.4.5 Operation

 26

This section describes major operations by sequence diagrams showing interaction

between modules from the client application through the repository database. The operations

include update, check out, commit, add, and delete.

1. Update

The update operation is used for updating copies in a local machine. Files of the

requested revision are downloaded from the repository and merged with the local copies. See

Figure 4.6.

Figure 4.6 Update Sequence Diagram

2. Check Out

The check out operation is used when a user starts working with the system on

his local machine. The system creates special directories for storing local repository meta-data

and executes the update operation to download files. See Figure 4.7.

 27

Figure 4.7 Check Out Diagram

3. Commit

The commit operation is used to check in changes into the repository and create

a new revision. The system sends all changes to the repository server. Once they have been

successfully sent, the system creates a new revision. See Figure 4.8.

 28

Figure 4.8 Commit Sequence Diagram

4. Add

The add operation is used to add non-version-controlled files into the repository.

The files are not actually added until the commit operation is executed. See Figure 4.9.

 29

Figure 4.9 Add Sequence Diagram

5. Delete

The delete operation is used to remove version-controlled files from the

repository. The files are not actually removed until the commit operation is executed. See Figure

4.10.

Figure 4.10 Delete Sequence Diagram

4.4.6 HTTP Interface

HTTP interface contains PHP script files to interact with the client application. Each

file is responsible for a specific task. All HTTP interface files link to core logic with PHP

function calls (See Figure 4.11).

 30

Each HTTP Interface file handles different HTTP methods depending on an input

data size. To handle a small amount of data, the GET method is used. To handle a large amount of

data, the POST method is used. See Table 4.1.

Figure 4.11 HTTP Interface Diagram

 31

Table 4.1 HTTP Handler Design

PHP File Name Description Method Input Output

getheadrevision.php Get head revision

of the specified

repository

GET Repository ID Head revision

no

listfiles.php List all files in the

specified revision

GET Repository ID,

Revision

A list of file

entries

sendcontent.php Send content to

server

POST Repository ID,

Revision,

Path,

Content,

ContentType,

User ID

-

deletecontent.php Mark a file in the

specified

repository as

deleted

GET Repository ID,

Revision,

Path,

User ID

-

commit.php Commit as a new

revision

GET Repository ID,

User ID

-

filecontent.php Read file content

of the specified

path

GET Repository ID,

Revision,

Path

File content

 32

4.4.7 Algorithm

This section describes some algorithms used in two major operations: Check In and

Check out.

To check in a modification, the system invokes several commands of Send Content

and Send Delete Tag. The command's messages are sent to the server. Consequently, the server

generates a transaction for each command message stored in a temp database table (Temp

storage). When all messages have been successfully sent, the system executes Commit command

to actually update the actual revision database table (Permanent storage). See Figure 4.12.

Figure 4.12 Check In Sequence Diagram

1. Send Content

Send Content algorithm is used when the client application is about to send new

or modified content to the server application. The server application starts with accepting the new

content. It then checks whether the file is new or existing. If the file is a new file, the content is

stored in the temp storage as HaddI transaction. Otherwise, the content is compared to the existing

file's content generating deltified content. The deltified content is used for replacing the existing

 33

file's content when Commit command is executed. Both the new content and the deltified content

are stored in the temp storage as HmodI transaction. See Figure 4.13.

Figure 4.13 Send Content Algorithm (Server)

2. Delete Content

Send Content algorithm is used when the client application is about to delete file

in a repository. The algorithm generates a HdelI transaction and stores it in the temp storage. See

Figure 4.14.

 34

Figure 4.14 Delete Content Algorithm

3. Commit

Commit algorithm is used for actually modifying a repository and creating a

new revision. The algorithm starts with reading transactions in the temp storage. Consequently, it

processes each transaction depending on how it is marked: HaddI, HmodI, or HdelI. If it is marked

as HaddI or HdelI, the algorithm inserts the transaction with its content into the permanent storage

as a new revision. Otherwise, the HmodI transaction and its content are inserted into the

permanent storage as a new revision while its deltified content is replaced to its previous revision.

See Figure 4.15. As a result, the latest revision always stores full text while previous revisions

store deltified contents (See Figure 4.16).

 35

Figure 4.15 Commit Algorithm (server)

Figure 4.16 Revisions Stored in Repository

 36

4. Check out

Check out operation is requested when the client application needs content at a

particular revision. Once the operation has been requested, the server application reproduces (or

renders) content at the requested revision. See Figure 4.17.

Figure 4.17 Reproducing Content at Particular Revisions

As can be seen in Figure 4.17, contents at some revisions may be stored as full

text, deltified, or not stored at all.

In case of the requested transaction contains full text or deltified content as in

(1) and (2), the algorithm starts with reading the full text as its current content. It then repeatedly

steps back to the requested revision. While stepping back, it reads each delta and uses it to modify

the current content. When the looping is finished, the current content is the final result. In case

(1), the requested revision is 5 as well as the recently-added transaction. Thus, no looping and

modification occur. Only full text is read. In case (2), the requested revision is 4 and the recently

added transaction is 5. The algorithm reads full text from revision 5 and loops back through

revision 4 to reproduce the final content.

In case of the requested transaction does not contain full text or deltified content

as in (3) and (4), the algorithm performs similar to the previous algorithm, except that it loops

 37

from the transaction containing full text through the previously-modified transaction. In case (3),

it reads the full text from revision 4. In case (4), it starts looping from revision 3 though revision 1.

4.4.8 Database Design

This project is primarily designed to work with MySQL, the relational database

management system.

In the database design, there are five major entities: Repository, User, Revision,

Revision Detail, and Modification Session (See Figure 4.18 for ER diagram). Revision and

Revision Detail entities together support submitting multiple modifications as one commit.

Revision entity contains one record per one commit while Revision Detail entities contain

multiple modification data.

Figure 4.18 Database Design, ER Diagram

 38

User entity stores user information including user ID, password, email, and a date

when a user is created. One user can join multiple repositories or none. User records are managed

by system administrators.

Repository entity stores repository information including ID, head revision, lock

status, and a date when a repository is created. One repository can serve multiple users.

Repository records are managed by system administrators.

Revision entity stores master revision information including revision number, a date

when a revision is committed, and a comment. One revision contains multiple revision details.

Revision Detail entity stores detailed revision information including ID, path, content

and its type, and action.

Table 4.2 Database Permission Design

Administrator User Entity

Insert Update Delete Insert Update Delete

User � � �

Repository � � � �

Revision � �

Revision Detail � � �

Modification Session � �

4.4.9 User Interface Design

In this project, user interface consists of two applications; the client application and

the web application.

1. The client application

 39

The client application is a console application. The application prompts for a

user command (See Figure 4.19). The user types a name of command and press Enter button to

commit the command (See Figure 4.20). Then, the system processes and displays output on the

screen. When the processing is completed, the application prompts for the next command (See

Figure 4.21).

Figure 4.19 Console

Application 1

Figure 4.20 Console Application

2

Figure 4.21 Console

Application 3

 40

Table 4.3 Command Design

Command Description Input

parameters

Output

login Log in to the

system

User ID,

Password

Authentication result

Logout Log out of the

system

- -

List list all files in the

current directory

- List of file entries

Add add a file into the

repository

File name to

add

-

Delete delete file in the

repository

File name to

delete

-

Update update working

copies with the

latest revision

Revision to

update to

(Optional)

-

Commit commit changes

into the repository

- -

Checkout create a version

controlled

environment in the

client machine

Server

Address,

User ID,

Password,

Repository ID

-

2. Web Application

Web Application enables an administrator manages repositories including users

 41

in the system. The authorized user can view his repository information, such as revision files,

revisions comparison, revision log, etc.

Web pages include;

1) Log In Page = A user logs in to the system.

2) User's Account Page = This page displays user's information and

summarized repository information.

3) Browse Repository Page = This page displays files in repository. A

user can navigates each revision.

4) Revision Comparison Page = This page displays differences

between two revisions.

5) View Log Page = This page displays committed revision log.

6) Repository Management Page = An administrator can

create/remove repositories as well as add/remove users in the

repositories.

7) User Management Page = An administrator can

create/modify/delete users in the system.

3. Web Page Layout

All web pages have the same layout for consistent look (See Figure 4.22). At the

top of every page, there is a panel showing log in status denoted as (1). The panel displays a

welcome message to current user name logging in to the system. At the left of the page, there is a

panel used for page navigation denoted as (2). The panel contains links to other pages. Page

content denoted as (3) is displayed at the center of the page. Each web page has different page

content depending on the page subject.

 42

Figure 4.22 Web Page Layout

4. Log In Status Panel

Login status panel shows a welcome message and the name of user logging in.

The panel provides Logout button to allow the user to logout of the system. When the user

presses the button, the system clears the current user's session data and redirects to Log In page

(See Figure 4.23). Note, the [user_name] will be replaced with the user name who has logged in.

Figure 4.23 Log In Status Panel

 43

5. Page Navigation Panel

Page navigation panel contains links to My Account page, Browse page, and

View Log page (See Figure 4.24). In the administrator's application, page navigation panel

contains links to Create User page, Accounts page, Create Repository page and Repositories page

(See Figure 4.25).

Figure 4.241 Page Navigation Panel

Figure 4.25 Page Navigation Panel (for

Administrator)

6. Web Pages for Repository Users

 1) Log In Page

 Log In page is used for verifying users getting access to the system. The

page contains a login form composed of user (1), password (2), and repository (3) text boxes and

Log In (4) and Reset (5) buttons (See Figure 4.26). User text box enables the user to input his/her

user name. Password text box enables the user to input his/her password. The input characters in

the text box are masked, usually by a series of asterisks on most systems. Repository text box

enables the user to specify a repository to work with. Log In button is for submitting and

verifying the inputs. Reset button is used to clear data in the text boxes. When the inputs are

verified, the system redirects to My Account page. Otherwise, the system keeps displaying this

page showing an error message.

 44

Figure 4.26 Log In Page Design.

 2) My Account Page

 My Account page shows up once a user has logged in (See Figure 4.27).

This page displays User Profile panel (1), Head Revision Information panel (2), and Head

Revision Log panel (3).

 User Profile panel displays basic information of the registered user. This

project provides only basic information, such as user name and user e-mail. It can be expanded

later if required.

 Head Revision Information panel displays information of latest-submitted

revision. The information includes the active repository, the latest revision number, date/time

when the revision has been committed, a user name of who has committed, and an additional

comment from the committing user.

 Head Revision Log panel displays a change log of the latest revision (See

 45

Figure 4.28). The change log is displayed as a table of change items. The first column represents

change action: add, modify, or delete. The second column represents files affected. The last

column represents the content type of the affected file.

Figure 4.27 My Account Page Design

Figure 4.28 Head Revision Log Panel Design

 46

 3) Browse Page

 Browse page enables a user to view files in the specified repository. This

page is composed of revision navigation panel (1), revision information panel (2), revision entry

list panel (3), and revision log panel (4) (See Figure 4.29).

Figure 4.292 Browse Page Design

Revision navigation panel is located at the top of the page content area. It

enables the user to navigate through each revision (See Figure 4.30). The user can navigate to the

first revision, the previous revision, the next revision and the latest revision by pressing First

Revision button (1), Previous Revision button (2), Next Revision button (3), and Latest Revision

button (4), respectively. Go button (6) enables the user to switch to a revision specified in the

nearby text box (5).

 47

Figure 4.30 Revision Navigation Panel Design

The revision entry list panel is used to display file entries of the selected

revision. It shows file names and content types. It provides a compare button enabling a user to

compare the selected file against the same file of different revision. See Figure 4.31.

Figure 4.313 Revision Entry List Panel Design

The revision log panel is used to display modification list affecting to the

selected revision. For each log entry, the first column shows an action type. The next column

shows an affected file name. The last column shows the content type of the file. See Figure 4.32.

Figure 4.32 Revision Log Panel Design

 48

 4) View Log Page

 The view log page lists all revision log in one page ordered by revision

number (See Figure 4.33). Each revision log contains master revision data (1) and detailed data

(2). The master data includes repository ID, revision number, commit date, committing user, and

a comment by the user. The detailed data is displayed similar to the revision log panel.

Figure 4.33 View Log Page Design

 5) Create User Page

 49

 The administrator's Create User page is use to create a new user in the

system. The required fields are user ID, password, password confirmation, and e-mail. Create

button is used to submit data in the form. See Figure 4.34.

Figure 4.34 Create User Page Design

 6) Account List Page Design

 The Account Management page is used for displaying all users created.

An administrator can select user names and delete them with in this page. See Figure 4.35.

 50

Figure 4.35 Account Management Page Design

 7) Create New Repository Page

 The Create New Repository page is used to create a new repository in the

system. An administrator creates a repository by inputting a repository ID and an optional

comment. See Figure 4.36.

 51

Figure 4.36 Create New Repository Page Design

 8) Repository Management Page

 The repository management page is used to manage repositories and

users in the repositories. All repositories are listed. Each repository entry provides buttons to add

users, remove users, and delete the repository. See Figure 4.37.

 52

Figure 4.37 Repository Management Page Design

CHAPTER V

SYSTEM FUNCTIONALITY

5.1 Introduction

This chapter covers a description of architecture of the system implemented and its

functionalities. It also covers test plans and test results of the system.

System architecture of the system is client/server. Server and client machines

communicate together via the HTTP protocol. The server application manages central repositories

and does version control tasks, such as versioning and supporting concurrency. It is implemented

as PHP scripts running on web server applications like apache or IIS. Repository data are stored

in MySQL database. Delta compression is used to reduce content size. The client application

provides user interface to work with the repository server as well as manages local copies.

This project applies several tests on the system. The tests include algorithm test,

performance test, functional test, and user satisfaction test. Servers used for the tests are both

local server and public web hosting server.

After applying all tests, one test case for Diff algorithm fails. The algorithm is ported

from Java source code. Both ports generate the same results including the result from the failing

test. The performance test result shows that the system can work reasonably in normal use. The

system will be slow down if content of the earlier revision is requested when there are amounts of

revisions committed. This may cause timeout on the client.

 54

5.2 System architecture

System architecture of the system is client/server. The server application manages

central repositories and does version control tasks, such as versioning and supporting

concurrency. MySQL is used to store repository information and content. The client application

provides user interface to work with the repository server as well as manages local copies. The

server and client applications communicate together via the HTTP protocol. See Figure 5.1.

Figure 5.1 System Architecture

 55

5.2.1 Server Architecture

The server application manages central repositories and does version control tasks,

such as versioning and supporting concurrency. It is implemented as PHP scripts running on web

server applications like apache or IIS. It provides web pages for monitoring and administrating.

Repository data are stored in MySQL database. Delta compression is used to reduce content size.

See Figure 5.2.

Figure 5.2 Server Architecture

The server application is composed of three modules: Core Module (business logic),

HTTP Handler, and Web Portal.

1. Core Module

Core Module does all version control tasks including managing repositories and

handling concurrency. It is composed of three submodules: Repository Manager, Database

Manager, and Diff Algorithm.

 56

Repository Manager is a central control of the core module. It contains all

version control logics. It links directly to the other two submodules to utilize their functionalities.

Database Manager provides interfaces to work with MySQL. This submodule is

designed as a single point of control for accessing the database.

Diff Algorithm provides functions for comparing text files as well as merging a

text file with a patch. It is used to generate a delta (result of the comparing algorithm) rendered in

unified format.

2. HTTP Handler

HTTP handler is used as an interface with the client application. It is composed

of eight PHP files. Each file handles a different request. The request is passed to Core Module via

PHP function to be processed. See Table 5.1.

Table 5.1 HTTP Handler Files

No File name Description

1 getheadrevision.php Returns head revision number of the requested repository

2 login.php A user logs in for working with the repository

3 permission.php Returns a permission of the logged in user

4 listfiles.php Lists all file entires of the requested revision

5 filecontent.php Returns content of a file of the requested revision

6 sendcontent.php Accepts content from the client application

7 deletecontent.php Deletes file content in the requested repository

8 commit.php Commits changes and creates a new revision

5.2.2 Web Portal

Web Portal contains several PHP web pages for monitoring and administrating the

 57

system via web browsers. There are two sets of web portals: Repository User Web Portal and

Administrator Web Portal.

1. Repository User Web Portal

Web portal provided for repository users is composed of four main web pages:

Log In Page, User Account Page, Browse Page, and View Log Page.

Log In Page is used for verifying users. The page provides a form containing

text boxes for inputting user name and password and a combo box for inputting repository to

work with. See Figure 5.3.

Figure 5.3 Log In Page

User Account Page is used for viewing current information of the user and

summarized information of the repository such as head revision information and latest

modifications. See Figure 5.4.

 58

Figure 5.4 User Account Page

Browse Page is used for browsing files of every revision and modification log

related to the revision (See Figure 5.5). It contains a navigation panel for switching to any

revision. File content can be displayed by clicking at a file name. Once the file name has been

click, a new window is populated displaying the full text content of the file of the current

revision. Each entry has a content link used for viewing actual content in the database. This is

useful for technical analysis and maintenance.

Figure 5.5 Browse Page

 59

Two different revisions of a file can be compared by checking a radio button of

associated with a desired file, inputting a desired revision nearby the Compare button and clicking

the button. Consequently, a new window is populated displaying a comparison result. Added lines

are highlighted in green. Deleted lines are highlighted in read. See Figure 5.6.

Figure 5.6 Comparison Result Page

View Log Page is used to view modifications of every revision. Revisions

displayed are sorted by revision number. The latest revision is in the first order. See Figure 5.7.

 60

Figure 5.7 view Log Page

2. Administrator Web Portal

Web portal provided for repository administrators is composed of four main

web pages: Create User Page, User Management Page, Create Repository Page, and Repository

Management Page.

Create User Page is used for creating a new user in the system (See Figure 5.8).

Figure 5.8 Create User Page

User Management Page is used to view and delete users in the system (See

Figure 5.9).

 61

Figure 5.9 User Management Page

Create Repository Page is used to create a new repository in the system (See

Figure 5.10).

Figure 5.10 Create Repository Page

Repository Management Page is used to view and delete all repositories. It is

also used to assign users to repositories or remove them from repositories (See Figure 5.11).

 62

Figure 5.11 Repository Management Page

5.2.3 Client Architecture

The client application provides user interface to work with the repository server as

well as manages local copies. The application is composed of two modules: User Interface and

Local Repository Manager. It uses third party libraries and tools. The major library is libcurl. The

major tool is Diffutils. See Figure 5.12.

Figure 5.12 Client Architecture

1. User Interface

 User Interface module accepts commands from users and calls Local Repository

Manager to process the commands.

 63

2. Local Repository Manager

Local Repository Manager is responsible for creating and updating local

repositories in a local machine. It uploads content to and downloads content from a repository by

using libcurl, the library for the HTTP protocol.

GNU Diffutils is a third party tool. It is used for comparing text files and

merging a patch with a text file. Comparison results of the tool can be rendered in various

formats. This system uses the unified format.

5.3 Test plan

This project plans to apply four major tests: algorithm test, performance test,

functional test, and user satisfaction test.

5.3.1 Algorithm Test

The algorithm test is a test for individual algorithms or units. There are tests for two

major algorithms: diff algorithm and content reproduction algorithm.

1. Diff Algorithm

Diff algorithm is a major algorithm used for the delta compression. The

implemented algorithm is ported from Java source code. Thus, the same test set will be applied to

make sure that both ports work identically.

The test set contains eight test cases. The Java port does not pass the test case

number 8. The author stated that he was not sure whether it was an algorithm artifact or the case

was incorrect.

2. Content Reproduction Algorithm

A test set for the content reproduction algorithm is designed as a File/Revision

matrix. There are three files in a test repository. Contents are modified and committed multiple

 64

times. The final revision is revision 5. Therefore, all contents at every revision are read back and

compared to expected results (See Figure 5.13).

Figure 5.13 Test Set for Content Reproduction Algorithm

5.3.2 Performance Test

This performance test will be applied to the revision rendering function which is most

frequently used in the system.

This project selects source code of TinyXML project for the test. A selected file is

tinyxml.cpp, which contains about 1700 lines of code. The file is size about 32 KB. The file has

been in development since December 2000. Until August 2007, there are more than one hundred

committed revisions. One hundred revisions are downloaded and inputted into the project's

system. Each time taken in reproducing a revision is recorded. Note, the time is a processing time

in the server. Network communication time is not included.

5.3.3 Functional Test

This functional test will be used to check whether the system works correctly or not.

Various test cases will be applied. They are grouped into test sets simulating different /

independent situations.

Test set A contains various test cases which will be used for testing various check-in

and check-out operations. An observer needs to look inside the database tables. This test requires

 65

one user. See Table 5.2.

 66

Table 5.2 Test Set A, Test Check In / Check Out Operations

No Description Prerequisite Expected Result

1 Commit after adding

one new file, known

as File A.

- An FaddG transaction with full text content of

File A is inserted into the permanent storage as

revision 1.

2 Commit a

modification of File

A.

Case 1 A FmodG transaction with full text content of

File A is inserted into the permanent storage as

revision 2. The content of the transaction of

revision 1 is replaced with deltified content.

3 Commit after adding

another new file,

known as File B.

Case 2 An FaddG transaction with full text content of

File B is inserted into the permanent storage as

revision 3.

4 Commit a

modification of File

A.

Case 3 A FmodG transaction with full text content of

File A is inserted into the permanent storage as

revision 4. The content of the transaction of

revision 2 is replaced with deltified content.

5 Commit a deletion of

File B.

Case 4 A FdelG transaction with empty content is

inserted into the permanent storage as revision

5.

 67

Table 5.2 Test Set A, Test Check In / Check Out Operations (cont.)

No Description Prerequisite Expected Result

6 Review a file list of revision 1 Case 5 A file list contains the following

entries: File A

7 Review a file list of revision 2 Case 5 A file list contains the following

entries: File A

8 Review a file list of revision 3 Case 5 A file list contains the following

entries: File A, File B

9 Review a file list of revision 4 Case 5 A file list contains the following

entries: File A, File B

10 Review a file list of revision 5 Case 5 A file list contains the following

entries: File A

11 Review file contents of revision 1

though revision 5

Case 5 Every file contains correct content.

12 Update to revision 1 through

revision 5 and review every

revision.

Case 5 A file list of each revision is correct.

Every version controlled file

contains correct content.

Test set B contains various test cases which will be used for testing versioning model

when multiple users are working on the same repository. See Table 5.3.

 68

Table 5.3 Test Set B, Test Functionality of Versioning Model

No Description Prerequisite Expected Result

13 User A commits a new file,

known as File C.

- A new revision is successfully created

as revision 1.

14 User B commits a new file,

known as File D.

Case 13 Fails to commit.

15 User B updates local

repository.

Case 14 Local repository is now revision 1.

16 User B commits File D. Case 15 A new revision is successfully created

as revision 2.

17 User A commits a new file,

known as File E.

Case 16 Fails to commit.

18 User A updates local

repository.

Case 17 Local repository is now revision 2.

19 User A commits File E. Case 18 A new revision is successfully created

as revision 3.

20 Review revision 1 Case 18 A file list contains the following entries:

File C

Committing user is User A.

21 Review revision 2 Case 18 A file list contains the following entries:

File C, File D

Committing user is User B.

22 Review revision 3 Case 18 A file list contains the following entries:

File C, File D, File E

Committing user is User A.

 69

Test set C contains various test cases which will be used for testing versioning model

when multiple users are working on the same repository trying to modify content in the same file.

See Table 5.4.

Table 5.4 Test Set C, Test Functionality of Versioning Model (Modifying the Same File)

No Description Prerequisite Expected Result

23 User A commits a new file,

known as File F.

- Revision 1 is created.

24 User B updates local

repository.

Case 23 Local repository is updated to revision 1.

25 User B modifies File F and

commits the change.

Case 24 Revision 2 is created.

26 User A modifies File F and

commits the change.

Case 25 Fails to commit.

27 User A updates local

repository.

Case 26 Local repository is updated to revision 2.

File F is merged with with the change.

28 User A commits File F. Case 27 Revision 3 is created.

5.3.4 User Satisfaction Test

The user satisfaction test will be applied to some users who have experience with

existing version control systems like Subversion. A survey method used is interview. The server

application will be installed in a web hosting service. Each user will have a chance to work as a

repository user and an administrator.

 70

5.4 Test results

5.4.1 Algorithm Test

1. Diff Algorithm

As can be seen in Table 5.5, both the Java port and the PHP port produce the

same results. The first seven cases pass. The last case fails. See Appendix B for test inputs.

Table 5.5 Diff Algorithm Test Result

Test Case Java PHP

Case 1 Passed Passed

Case 2 Passed Passed

Case 3 Passed Passed

Case 4 Passed Passed

Case 5 Passed Passed

Case 6 Passed Passed

Case 7 Passed Passed

Case 8 Failed Failed

2. Content Reproduction Algorithm

 71

Table 5.6 Content Reproduction Algorithm Test Result

 Revision 1 Revision 2 Revision 3 Revision 4 Revision 5

File A Passed Passed Passed Passed Passed

File B Passed Passed Passed Passed Passed

File C Passed Passed Passed Passed Passed

5.4.2 Performance Test

One hundred revisions of tinyxml.cpp are inputted into the project's system. Each

time taken in reproducing a revision is recorded (See Appendix C for detailed result). A graph is

plotted from the result set (See Figure 5.14). The x-axis represents revision number. The y-axis

represents time to reproduce content of each revision in seconds.

A platform used to test was ASUS A6000KM Notebook, Turion MT32 CPU,

512MB RAM. The server application ran on WindowsXP OS. The web application server was

Apache 2.2. The PHP version was 5.0. MySQL server version was 4.1. The database engine used

was InnoDB.

 72

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

Figure 5.14 Performance Test Graph

As can be seen in the graph, the content of the latest revision takes least time to

reproduce. The older revisions take longer time to reproduce. The content of the first revision

takes almost 3 seconds to reproduce. The graph looks linear.

The limitation of the system can be predicted by reading the graph. If the requested

revision is old enough, the processing time will take more time than a web browser's connection

time out value. As a result, the content can not be displayed on the browser.

5.4.3 User Satisfaction Test Result

The testers of the system were software developers at Chanwanich Company. They

had been experienced in the software development field at least three years. Subversion was used

regularly in the company.

Most testers agreed that the system has basic version control functionalities and its

speed was acceptable. The system was not considered a replacement but it could be an alternative

if the system would support binary files and provide friendly interface like TortoiseSVN.

The system may be used for projects which team members join together remotely.

 73

Examples are a project working with out source or an off-site project.

5.4.4 Functional Test Result

The test result of Test Set A is shown in Table 5.7.

Table 5.7 Test Result A, Test Check In / Check Out Operations

No Description Prerequisite Expected Result

1 Commit after adding

one new file, known

as File A.

- An FaddG transaction with full text content of

File A is inserted into the permanent storage as

revision 1.

Passed

2 Commit a

modification of File

A.

Case 1 A FmodG transaction with full text content of

File A is inserted into the permanent storage as

revision 2. The content of the transaction of

revision 1 is replaced with deltified content.

Passed

3 Commit after adding

another new file,

known as File B.

Case 2 An FaddG transaction with full text content of

File B is inserted into the permanent storage as

revision 3.

Passed

4 Commit a

modification of File

A.

Case 3 A FmodG transaction with full text content of

File A is inserted into the permanent storage as

revision 4. The content of the transaction of

revision 2 is replaced with deltified content.

Passed

5 Commit a deletion of

File B.

Case 4 A FdelG transaction with empty content is

inserted into the permanent storage as revision

5.

Passed

 74

Table 5.7 Test Result A, Test Check In / Check Out Operations (cont.)

No Description Prerequisite Expected Result

6 Review a file list of revision 1 Case 5 A file list contains the following

entries: File A

Passed

7 Review a file list of revision 2 Case 5 A file list contains the following

entries: File A

Passed

8 Review a file list of revision 3 Case 5 A file list contains the following

entries: File A, File B

Passed

9 Review a file list of revision 4 Case 5 A file list contains the following

entries: File , File B

Passed

10 Review a file list of revision 5 Case 5 A file list contains the following

entries: File A

Passed

11 Review file contents of

revision 1 though revision 5

Case 5 Every file contains correct content. Passed

12 Update to revision 1 through

revision 5 and review every

revision.

Case 5 A file list of each revision is correct.

Every version controlled file contains

correct content.

Passed

The test result of Test Set B is shown in Table 5.8.

 75

Table 5.8 Test Result B, Test Functionality of Versioning Model

No Description Prerequisite Expected Result

13 User A commits a new file,

known as File C.

- A new revision is successfully created

as revision 1.

Passed

14 User B commits a new file,

known as File D.

Case 13 Fails to commit. Passed

15 User B updates local

repository.

Case 14 Local repository is now revision 1. Passed

16 User B commits File D. Case 15 A new revision is successfully created

as revision 2.

Passed

17 User A commits a new file,

known as File E.

Case 16 Fails to commit. Passed

18 User A updates local

repository.

Case 17 Local repository is now revision 2. Passed

19 User A commits File E. Case 18 A new revision is successfully created

as revision 3.

Passed

20 Review revision 1 Case 18 A file list contains the following

entries: File C

Committing user is User A.

Passed

21 Review revision 2 Case 18 A file list contains the following

entries: File C, File D

Committing user is User B.

Passed

22 Review revision 3 Case 18 A file list contains the following

entries: File C, File D, File E

Committing user is User A.

Passed

The test result of Test Set C is shown in Table 5.9.

 76

Table 5.9 Test Result C, Test Functionality of Versioning Model (Modifying the Same File)

No Description Prerequisite Expected Result

23 User A commits a new file,

known as File F.

- Revision 1 is created. Passed

24 User B updates local

repository.

Case 23 Local repository is updated to revision 1. Passed

25 User B modifies File F and

commits the change.

Case 24 Revision 2 is created. Passed

26 User A modifies File F and

commits the change.

Case 25 Fails to commit. Passed

27 User A updates local

repository.

Case 26 Local repository is updated to revision 2.

File F is merged with with the change.

Passed

28 User A commits File F. Case 27 Revision 3 is created. Passed

In conclusions, most of the applied tests pass. There is a failing test case in the

algorithm test. The test case is a rare case. After applying one hundred revisions in the

performance test, contents of committed revisions were examined and found that they were

correct. Therefore, the probability to reproduce the failing test case in practical work is less than

1%. Most features requested were support for binary files and directories and a shell- integrated

interface like TortoiseSVN.

CHAPTER VI

SUMMARY AND SUGGESSTIONS

6.1 Introduction

 This chapter covers project summary of the system attempting to implement a version

control system for low cost servers. During development and testing, there were some problems

encountered. Most of the problems encountered are limitations of the software used and technical

problems. Most of the time, a search engine web site was used as a primary tool.

6.2 Project Summary

 This project builds a version control system for low cost servers. The server

application is implemented in PHP. It uses MySQL to store repository data. The data stored are

compressed by using delta compression. The compression result is rendered in the unified format.

The client application is implemented in C/C++. Third party libraries and tools are used to reduce

development time.

 The system works well with text files. It lacks of handling binary files and folders. It

supports only ASCII encoding. Unsupported files do not crash the system but the system will

produce incorrect results when they are checked out.

 In normal use, the system performs well both speed and disk space consuming. The

system will be slow down in case of checking out older revisions. The content size will be larger

78

if two revisions of a file are completely different.

 In practical, a modern software project does not contain only text files. It may also

contain binary files, like icon and image, and many levels of directories. The system needs to be

improved in order to work with this kind of software project.

6.3 Problems encountered and solutions

 The followings are problems encountered during development:

6.3.1 Standard C/C++ does not support directories. It also lacks of file querying.

This problem is solved by using Win32 API. But, this makes the client application platform

dependent. There are other cross-platform libraries for dealing with file system such as Boost, the

collection of free peer-reviewed portable C++ libraries.

6.3.2 The system supports only ASCII text files. It was not initially designed to

support other encodings at the design state. It can be solved by modifying all functions regarding

text manipulating. This issue was not solved because it was realized after the implementation

phase had finished.

6.3.3 The web application was initially written in PHP version 5 but most web

hosting services provide PHP version 4. Major difference of the two versions is encapsulation

used in class. Version 5 supports modifiers like public, private, and protected while version 4

does not. This problem is solved by removing all the modifiers and losing encapsulation. To

prevent this problem, the development environment should be as close as to the production

environment.

6.3.4 This project had been initially for a proof-of-concept but user satisfaction test

was required at the later time. The project could not be used in production because it lacks of

binary file and directory supports. To solve the problem, the system must be implemented to

support those files but this is beyond the scope.

79

6.4 Suggestions for further development

 The system is just a beginning of developing a version control system. There is still

room for improvement. The following suggestions may be used for further development.

6.4.1 The project functionalities can be improved by adding support for binary files,

directories and other encoding than ASCII.

6.4.2 The system should decide whether a delta or full text is stored in the database.

This can reduce disk space in case of contents of two revisions are completely different : the

delta produced is larger than full text.

6.4.3 A result of reproducing content of a particular revision can be cached and

saved in the file system. If the system finds the associated cache file then it uses the file. If it does

not then it reproduces content and saves a new cache file. This can improve speed when the same

result is required.

6.4.4 The client application can be improved by providing better user interface.

Graphical user interface may be used to improve user experience.

The web applications can be improved by providing better information and control. AJAX may

be applied to make the web pages more friendly and responsive.

REFERENCES

1. Myers EW. An O(ND) Difference Algorithm and Its Variation. [Online] 1986 [cited 2008

Apr 30]; Available from: URL: http://xmailserverg/diff2.pdf

2. ASVCS. A Simple Version Control System. [Online] 2008 [cite 2008 Apr 30]; Available

from: URL: http://asvcs.com/

3. CVS. CVS - Concurrent Versions System. [Online] 2008 [cite 2008 Apr 30]; Available from:

URL:http://www.nongnu.org/cvs/

4. GNU. Diffutils. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://www.gnu.org/software/diffutils/diffutils.html

5. Haxx. libcurl. [Online] 2008 [cite 2008 Apr 30]; Available from: URL: http://curl.haxx.se/

6. Incava. Difference algorithm for Java. [Online] 2008 [cite 2008 Apr 30]; Available from:

URL: http://www.incava.org/projects/java/java-diff/index.html

7. MySQL AB. MySQL. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://www.mysql.com/

8. Subversion. Deltification. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://svnbook.red-bean.com/

9. Subversion. Version Control with Subversion. [Online] 2008 [cite 2008 Apr 30]; Available

from: URL: http://svnbook.red-bean.com/

10. Subversion. Versioning Model. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://svnbook.red-bean.com/

11. Wikipedia. Comparison of revision control software. [Online] 2008 [cite 2008 Apr 30];

Available from: URL:

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

12. Wikipedia. Hypertext Transfer Protocol. [Online] 2008 [cite 2008 Apr 30]; Available from:

URL: http://en.wikipedia.org/wiki/HTTP

 81

13. Wikipedia. Revision Control. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://en.wikipedia.org/wiki/Version_control

14. Wikipedia. Unified Format. [Online] 2008 [cite 2008 Apr 30]; Available from: URL:

http://en.wikipedia.org/wiki/Diff

15. Zend. PHP Hypertext Preprocessor. . [Online] 2008 [cite 2008 Apr 30]; Available from:

URL: http://www.php.net/

APPENDIX A

TECHNICAL TERMS AND ABBREVIATIONS

 83

Commit

An operation to apply several changes at once

Diff

 An algorithm to compare two text files outputting a change set

Deltify / Deltification

 An algorithm to store data defined and used by Subversion

Head Revision

 The latest revision

HTTP

 Hypertext Transfer Protocol, a protocol for transferring files on the World Wide Web

Repository

 A centralized database for storing documents

Revision

 A version of a file representing a number of changes committed

 84

APPENDIX B

ALGORITHM TEST INPUTS

 85

Table A.1 Algorithm Test Inputs

No A B Expected

1 "a", "b", "c", "e", "h", "j",

"l", "m", "n", "p"

"b", "c", "d","e","f","j","k",

"l", "m", "r", "s", "t"

Difference(0, 0, 0, -

1),

Difference(3, -1, 2,

2),

Difference(4, 4, 4,

4),

Difference(6, -1, 6,

6),

Difference(8, 9, 9,

11)

2 "a", "b", "c", "d" "c", "d" Difference(0, 1, 0, -

1)

3 "a", "b", "c", "d", "x", "y",

"z"

"c", "d" Difference(0, 1, 0, -

1),

Difference(4, 6, 2, -

1)

4 "a", "b", "c", "d", "e" "a", "x", "y", "b", "c", "j",

"e"

Difference(1, -1, 1,

2),

Difference(3, 3, 5,

5)

5 "a", "b", "c", "d", "e", "f",

"g", "h", "i", "j", "k", "l"

"a", "b", "p", "q", "r", "s",

"t", "c", "d", "e", "f", "g",

"h", "i", "j", "u", "l"

Difference(2, -1, 2,

6),

Difference(10, 10,

15, 15)

6 "a", "a", "a", "a", "b", "b",

"b", "a", "a", "a", "a", "b",

"b", "b", "a", "a", "a", "a",

"b", "b", "b", "a", "a", "a",

"a", "b", "b", "b"

"a", "a", "a", "a", "b", "b",

"b", "a", "b", "b", "b", "a",

"a", "a", "a"

Difference(8, 10, 8,

-1),

Difference(18, 27,

15, -1)

7 "A", "B", "C", "D", "E", "F",

"G", "A", "H", "I", "J", "D",

"K", "L", "C", "G", "M",

"H", "N", "J", "I", "K", "O",

"C", "G", "M", "P", "Q", "J",

"R", "K", "S", "C", "C", "F",

"G", "D", "T", "N", "G",

"M", "U", "V", "J", "Q", "K",

"W", "C", "G", "M", "X",

"C", "V", "K", "Y", "C",

"G", "G", "A", "Z", "AA",

"J", "C", "Z", "G", "V", "K",

"A", "B", "C", "JJ", "G",

"A", "II", "KK", "A", "B",

"C", "D", "E", "F", "G",

"A", "H", "I", "J", "D", "K",

"L", "C", "G", "M", "H",

"N", "J", "I", "K", "O", "C",

"G", "M", "P", "Q", "J",

"R", "K", "S", "C", "C", "F",

"G", "D", "T", "N", "G",

"M", "U", "V", "J", "Q",

"K", "W", "C", "G", "M",

"X", "C", "V", "K", "Y",

Difference(3, -1, 3,

10),

Difference(88, -1,

96, 96)

 86

"BB", "C", "G", "M", "CC",

"DD", "J", "EE", "K", "FF",

"C", "AA", "G", "M", "GG",

"K", "HH", "C", "DD", "G",

"M", "II", "II", "II"

"C", "G", "G", "A", "Z",

"AA", "J", "C", "Z", "G",

"V", "K", "BB", "C", "G",

"M", "CC", "DD", "J",

"EE", "K", "FF", "C", "AA",

"G", "M", "GG", "K", "HH",

"C", "DD", "G", "M", "II",

"II", "II", "II"

8 "{", "ZipEntry", "e", "=",

"entry", ";", "if", "(", "e",

"!=", "null", ")", "{",

"switch", "(", "e", ".",

"method", ")", "{", "case",

"DEFLATED", ":", "if", "(",

"(", "e", ".", "flag", "&", "8",

")", "==", "0", ")", "{", "if",

"(", "e", ".", "size", "!=",

"def", ".", "getTotalIn", "(",

")", ")", "{", "throw", "new",

"ZipException", "(",

"\"invalid entry size

(expected \"", "+", "e", ".",

"size", "+", "\" but got \"",

"+", "def", ".", "getTotalIn",

"(", ")", "+", "\" bytes)\"",

")", ";", "}", "if", "(", "e", ".",

"csize", "!=", "def", ".",

"getTotalOut", "(", ")", ")",

"{", "throw", "new",

"ZipException", "(",

"\"invalid entry compressed

size (expected \"", "+", "e",

".", "csize", "+", "\" but got

\"", "+", "def", ".",

"getTotalOut", "(", ")", "+",

"\" bytes)\"", ")", ";", "}",

"if", "(", "e", ".", "crc", "!=",

"crc", ".", "getValue", "(",

")", ")", "{", "throw", "new",

"ZipException", "(",

"\"invalid entry CRC-32

(expected 0x\"", "+", "Long",

".", "toHexString", "(", "e",

".", "crc", ")", "+", "\" but got

0x\"", "+", "Long", ".",

"toHexString", "(", "crc", ".",

"getValue", "(", ")", ")", "+",

"{", "ZipEntry", "e", "=",

"entry", ";", "if", "(", "e",

"!=", "null", ")", "{",

"switch", "(", "e", ".",

"method", ")", "{", "case",

"DEFLATED", ":", "if", "(",

"(", "e", ".", "flag", "&",

"8", ")", "==", "0", ")", "{",

"if", "(", "e", ".", "size",

"!=", "def", ".",

"getBytesRead", "(", ")",

")", "{", "throw", "new",

"ZipException", "(",

"\"invalid entry size

(expected \"", "+", "e", ".",

"size", "+", "\" but got \"",

"+", "def", ".",

"getBytesRead", "(", ")",

"+", "\" bytes)\"", ")", ";",

"}", "if", "(", "e", ".",

"csize", "!=", "def", ".",

"getBytesWritten", "(", ")",

")", "{", "throw", "new",

"ZipException", "(",

"\"invalid entry compressed

size (expected \"", "+", "e",

".", "csize", "+", "\" but got

\"", "+", "def", ".",

"getBytesWritten", "(", ")",

"+", "\" bytes)\"", ")", ";",

"}", "if", "(", "e", ".", "crc",

"!=", "crc", ".", "getValue",

"(", ")", ")", "{", "throw",

"new", "ZipException", "(",

"\"invalid entry CRC-32

(expected 0x\"", "+",

"Long", ".", "toHexString",

"(", "e", ".", "crc", ")", "+",

"\" but got 0x\"", "+",

Difference(3, -1, 3,

10),

Difference(88, -1,

96, 96)

 87

"\")\"", ")", ";", "}", "}",

"else", "{", "e", ".", "size",

"=", "def", ".", "getTotalIn",

"(", ")", ";", "e", ".", "csize",

"=", "def", ".",

"getTotalOut", "(", ")", ";",

"e", ".", "crc", "=", "crc", ".",

"getValue", "(", ")", ";",

"writeEXT", "(", "e", ")", ";",

"}", "def", ".", "reset", "(",

")", ";", "written", "+=", "e",

".", "csiz e",";", "break", ";",

"}", "}", "}"

"Long", ".", "toHexString",

"(", "crc", ".", "getValue",

"(", ")", ")", "+", "\")\"", ")",

";", "}", "}", "else", "{", "e",

".", "size", "=", "def", ".",

"getBytesRead", "(", ")", ";",

"e", ".", "csize", "=", "def",

".", "getBytesWritten", "(",

")", ";", "e", ".", "crc" , "=",

"crc", ".", "getValue", "(",

")", ";", "writeEXT", "(",

"e", ")", ";", "}", "def", ".",

"reset", "(", ")", ";",

"written", "+=", "e", ".",

"csize", ";", "break", ";",

"}", "}", "}"

 88

APPENDIX C

PERFORMANCE TEST DETAILED RESULT

 89

Time (Sec)

Revision 1 2 3 Min Max Average

1 2.9018 2.9175 2.9191 2.9018 2.9191 2.9128

2 2.8599 2.8521 2.8515 2.8515 2.8599 2.8545

3 2.8008 2.8119 2.8023 2.8008 2.8119 2.8050

4 2.7648 2.7651 2.7484 2.7484 2.7651 2.7595

5 2.7334 2.6999 2.7012 2.6999 2.7334 2.7115

6 2.6563 2.6474 2.6780 2.6474 2.6780 2.6606

7 2.5902 2.5999 2.6022 2.5902 2.6022 2.5975

8 2.5925 2.5395 2.5463 2.5395 2.5925 2.5595

9 2.4783 2.4974 2.4958 2.4783 2.4974 2.4905

10 2.4503 2.4410 2.4368 2.4368 2.4503 2.4427

11 2.3828 2.3899 2.4272 2.3828 2.4272 2.3999

12 2.3449 2.3255 2.3205 2.3205 2.3449 2.3303

13 2.2621 2.2580 2.2691 2.2580 2.2691 2.2631

14 2.2371 2.2334 2.2024 2.2024 2.2371 2.2243

15 2.1467 2.1720 2.1494 2.1467 2.1720 2.1560

16 2.1044 2.0971 2.1010 2.0971 2.1044 2.1008

17 2.0575 2.0513 2.0525 2.0513 2.0575 2.0538

18 2.0001 1.9974 2.0039 1.9974 2.0039 2.0005

19 1.9474 1.9491 1.9513 1.9474 1.9513 1.9493

20 1.9063 1.9002 1.9173 1.9002 1.9173 1.9079

21 1.8858 1.8823 1.9046 1.8823 1.9046 1.8909

22 1.8126 1.8069 1.8190 1.8069 1.8190 1.8128

23 1.7672 1.7685 1.7629 1.7629 1.7685 1.7662

24 1.7155 1.7168 1.7209 1.7155 1.7209 1.7177

25 1.6721 1.6693 1.6995 1.6693 1.6995 1.6803

 90

Time (Sec)

Revision 1 2 3 Min Max Average

26 1.6569 1.6317 1.6979 1.6317 1.6979 1.6622

27 1.6221 1.6352 1.6467 1.6221 1.6467 1.6347

28 1.5487 1.5599 1.5414 1.5414 1.5599 1.5500

29 1.5061 1.5116 1.5297 1.5061 1.5297 1.5158

30 1.4907 1.4645 1.4707 1.4645 1.4907 1.4753

31 1.4297 1.4355 1.4323 1.4297 1.4355 1.4325

32 1.4078 1.3930 1.3986 1.3930 1.4078 1.3998

33 1.3930 1.3599 1.3602 1.3599 1.3930 1.3711

34 1.3231 1.3230 1.3255 1.3230 1.3255 1.3239

35 1.2879 1.2948 1.3012 1.2879 1.3012 1.2947

36 1.2565 1.2534 1.2562 1.2534 1.2565 1.2553

37 1.2367 1.2234 1.2528 1.2234 1.2528 1.2376

38 1.1822 1.1879 1.1801 1.1801 1.1879 1.1834

39 1.1537 1.1498 1.1562 1.1498 1.1562 1.1532

40 1.1315 1.1213 1.1203 1.1203 1.1315 1.1244

41 1.1009 1.0923 1.0949 1.0923 1.1009 1.0960

42 1.0662 1.0654 1.0585 1.0585 1.0662 1.0633

43 1.0329 1.0287 1.0318 1.0287 1.0329 1.0311

44 1.0057 1.0050 1.0055 1.0050 1.0057 1.0054

45 0.9880 0.9888 0.9881 0.9880 0.9888 0.9883

46 0.9784 0.9540 0.9605 0.9540 0.9784 0.9643

47 0.9431 0.9425 0.9575 0.9425 0.9575 0.9477

48 0.9107 0.9166 0.9118 0.9107 0.9166 0.9131

49 0.8988 0.8931 0.8896 0.8896 0.8988 0.8939

50 0.8687 0.8648 0.8698 0.8648 0.8698 0.8678

 91

Time (Sec)

Revision 1 2 3 Min Max Average

51 0.8442 0.8452 0.8503 0.8442 0.8503 0.8466

52 0.8191 0.8345 0.8212 0.8191 0.8345 0.8249

53 0.7973 0.8013 0.8012 0.7973 0.8013 0.7999

54 0.8001 0.7662 0.7759 0.7662 0.8001 0.7807

55 0.7417 0.7400 0.7421 0.7400 0.7421 0.7412

56 0.7234 0.7116 0.7194 0.7116 0.7234 0.7181

57 0.7009 0.6939 0.6895 0.6895 0.7009 0.6947

58 0.6648 0.6675 0.6632 0.6632 0.6675 0.6652

59 0.6389 0.6427 0.6428 0.6389 0.6428 0.6415

60 0.6178 0.6213 0.6221 0.6178 0.6221 0.6204

61 0.6035 0.5977 0.6114 0.5977 0.6114 0.6042

62 0.5841 0.5881 0.5821 0.5821 0.5881 0.5848

63 0.5710 0.5700 0.5671 0.5671 0.5710 0.5694

64 0.5542 0.5493 0.5494 0.5493 0.5542 0.5510

65 0.5301 0.5362 0.5292 0.5292 0.5362 0.5318

66 0.5152 0.5095 0.5150 0.5095 0.5152 0.5133

67 0.4973 0.4945 0.4974 0.4945 0.4974 0.4964

68 0.4859 0.4811 0.4818 0.4811 0.4859 0.4830

69 0.4615 0.4689 0.4662 0.4615 0.4689 0.4655

70 0.4446 0.4551 0.4533 0.4446 0.4551 0.4510

71 0.4374 0.4367 0.4365 0.4365 0.4374 0.4368

72 0.4225 0.4235 0.4199 0.4199 0.4235 0.4220

73 0.4065 0.4015 0.4067 0.4015 0.4067 0.4049

74 0.4257 0.3838 0.3913 0.3838 0.4257 0.4003

75 0.3780 0.3988 0.3722 0.3722 0.3988 0.3830

 92

Time (Sec)

Revision 1 2 3 4 5 6

76 0.3492 0.3519 0.3540 0.3492 0.3540 0.3517

77 0.3274 0.3284 0.3232 0.3232 0.3284 0.3263

78 0.3006 0.2936 0.2980 0.2936 0.3006 0.2974

79 0.2760 0.2693 0.2760 0.2693 0.2760 0.2738

80 0.2595 0.2559 0.2556 0.2556 0.2595 0.2570

81 0.2419 0.2401 0.2403 0.2401 0.2419 0.2408

82 0.2250 0.2299 0.2239 0.2239 0.2299 0.2263

83 0.2147 0.2045 0.2126 0.2045 0.2147 0.2106

84 0.2000 0.1987 0.1995 0.1987 0.2000 0.1994

85 0.1856 0.1805 0.1849 0.1805 0.1856 0.1837

86 0.1736 0.1772 0.1701 0.1701 0.1772 0.1736

87 0.1554 0.1616 0.1563 0.1554 0.1616 0.1577

88 0.1462 0.1491 0.1459 0.1459 0.1491 0.1471

89 0.1356 0.1297 0.1297 0.1297 0.1356 0.1317

90 0.1206 0.1187 0.1176 0.1176 0.1206 0.1190

91 0.1042 0.1076 0.1051 0.1042 0.1076 0.1056

92 0.0899 0.0965 0.0949 0.0899 0.0965 0.0938

93 0.0873 0.0860 0.0861 0.0860 0.0873 0.0865

94 0.0780 0.0811 0.0731 0.0731 0.0811 0.0774

95 0.0689 0.0706 0.0670 0.0670 0.0706 0.0688

96 0.0617 0.0642 0.0548 0.0548 0.0642 0.0602

97 0.0500 0.0456 0.0525 0.0456 0.0525 0.0494

98 0.0335 0.0332 0.0340 0.0332 0.0340 0.0336

99 0.0248 0.0245 0.0295 0.0245 0.0295 0.0263

100 0.0422 0.0122 0.0118 0.0118 0.0422 0.0221

 93

APPENDIX D

INTERVIEW SCRIPT

 94

The following questions were used for interview.

Personal Questions:

� Gender

� Experience working with computers

� Experience in software development

� Experience working with existing version control systems

Questions relating to the project:

� Does the system work reasonably?

� Is the speed acceptable?

� Can the system be a replacement to existing systems?

� What features are missing and required?

� Do you plan to use the system?

CURRICULUM VITAE

NAME Mr. Rathapol Konkaew

DATE OF BIRTH April 18, 1983

EDUCATION

Bachelor Degree Computer Engineering

 Mahidol University 2005

WORK EXPERIENCE 2005-Present Software Engineer

 Chanwanich Co., Ltd.

	Cover
	Intro
	Abstract
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	References
	Appendix
	Vitae

