CHATBOT APPLICATION FOR INDUSTRIAL LAW

SUTTIDECH JITTAWISUTTIKUL

MASTER OF ENGINEERING
IN
COMPUTER ENGINEERING

SCHOOL OF APPLIED DIGITAL TECHNOLOGY
MAE FAH LUANG UNIVERSITY
2024
O©OCOPYRIGHT BY MAE FAH LUANG UNIVERSITY

CHATBOT APPLICATION FOR INDUSTRIAL LAW

SUTTIDECH JITTAWISUTTIKUL

THIS THESIS IS A PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING
IN
COMPUTER ENGINEERING

SCHOOL OF APPLIED DIGITAL TECHNOLOGY
MAE FAH LUANG UNIVERSITY
2024
O©OCOPYRIGHT BY MAE FAH LUANG UNIVERSITY

THESIS APPROVAL
MAE FAH LUANG UNIVERSITY
~ FOR
MASTER OF ENGINEERING IN COMPUTER ENGINEERING

Thesis Title: Chatbot Application for Industrial Law

Author: Suttidech Jittawisuttikul

Examination Committee:

Associate Professor Punnarumol Temdee, Ph. D. Chairperson

Associate Professor Roungsan Chaisricharoen, Ph. D. Member

Chayapol Kamyod, Ph. D. Member

Associate Professor Nattapol Aunsri, Ph. D. Member

Associate Professor Rawid Banchuin, Ph. D. Member
Advisors:

Advisor

(Associate Professor Roungsan Chaisricharoen, Ph. D.)

Dean:

(Assistant Professor Nacha Chondamrongkul, Ph.D.)

ACKNOWLEDGEMENTS

I am deeply grateful to my instructors and the Mae Fah Luang University faculty
for their guidance and support in my dissertation. I especially thank my supervisor,
Associate Professor Dr. Roungsan Chaisricharoen, whose insight and knowledge of the
subject matter guided me through this research. I also want to thank Associate Professor
Dr. Punnarumol Temdee, who inspired me with the idea of technology in my project.

I would also like to thank everyone for their advice and help. I am grateful to
our parents and friends for their continuous encouragement throughout this project.

This accomplishment would not have been possible without them.

Suttidech Jittawisuttikul

Thesis Title Chatbot Application for Industrial Law

Author Suttidech Jittawisuttikul

Degree Master of Engineering (Computer Engineering)

Advisor Associate Professor Roungsan Chaisricharoen, Ph. D.
ABSTRACT

Nowadays, Speech and textual information play a more critical role in human
communication than counting face-to-face exchanges. An article in “The New York
Times” published that adults today spend more than 8 hours daily on computer screens
or mobiles, which is done through web applications such as WhatsApp, Facebook, and
Twitter, among others, in speech and text conversations. However, in the study part,
there are few online teaching materials compared to other online media. In the present
paper, we built a chatbot in the education domain. The proposed chatbot assists in
answering questions provided by the users as an additional way to study for students
in modern times. The chatbot that we developed has focused on industrial law because
most students in Thailand have difficulty using English. Therefore, we have created a
chatbot in the Thai language, which currently does not have a chatbot based on the
Thai language.

The chatbot uses NLP to build a system that can understand and respond to
users’ questions. In developing the chatbot system, we created a chatbot using neural
network algorithms to provide services related to Thai industrial law. The main
objective is the development of a chatbot application designed to serve as an
information provider for industrial laws, with a primary focus on materials presented
in the Thai language, aiming to enhance accessibility and efficiency in legal
information dissemination. This system is intended to facilitate users in obtaining
relevant legal knowledge by leveraging advanced chatbot technology, ensuring that
industrial law resources are both easily accessible and comprehensible to Thai-
speaking users. By integrating legal content into an interactive and user-friendly

platform, the application seeks to bridge the gap between complex legal regulations

and practical understanding, ultimately improving compliance and awareness in

industrial sectors.

Keywords: Chatbots, NLP, Neural Network

TABLE OF CONTENTS

CHAPTER Page
1 INTRODUCTION 1
2 LITERATURE REVIEW 3
2.1 Background Theory 3
2.2 Literature Purpose 6
2.3 Related Technology 7
3 PROPOSED METHODS 10
3.1 Methodology 10
3.2 Our Developed Software 21
4 EXPERIMENTS AND RESULT 23
4.1 Experiment Condition 23
4.2 Experiment 41
4.3 Results 44
5 CONCLUSION 47
REFERENCES 48
APPENDIX 50

CURRICULUM VITAE 52

LIST OF TABLES

Table

3.1 The table representation of sample question and answer pairs

3.2 The table represents the sample of features table

3.3 The table representation of the training dataset table with one record
of sample data

3.4 The table representation of the training dataset table with multiple
records of sample data

3.5 The table representation of the completed training dataset table with
sample data

3.6 The table representation of the table with rows as individual samples
and columns as features

4.1 The table representation of software

Page
12
16
17
18
18

19

24

LIST OF FIGURES

Figure

2.1 The relation of five essential large language models

2.2 The neural network model

3.1 Extraction text from PDF file using PyPDF2

3.2 The sample result from the extracting process from the source file

3.3 Using the thaispellcheck to spell check

3.4 The sample raw training dataset in JSON format

3.5 Extract words from statements using word_tokennize

3.6 The prepared result will be used in the next step, the sorted words are
the final result of step 2

3.7 The result of the training for input of the Neural Network classification
algorithm

3.8 The question set of the training for input of the Neural Network
classification algorithm, defined as train_sequences

3.9 The answer set of the training for input of the Neural Network classification
algorithm, defined as train_labels

3.10 The feature words dataset of the training for the input of the Neural
Network classification algorithm, defined as feature words

4.1 The developing and testing hardware specification

4.2 The source documents of industrial laws from https://law.industry.go.th

4.3 A sample source of industrial law detail in the PDF file

4.4 A sample of question-answer pair in JSON form

4.5 Pypdf2 package installation in PyCharm CE

4.6 The sample source of the industrial laws (pdf file format)

4.7 The sample Python code for extracting text from the source file

4.8 The sample result from the extracting process from the source file

4.9 Thaispellcheck package installation in PyCharm

4.10 The sample Python code for spell-checking

Page

10
11
11
14
15
15

19

20

20

21

23
27
27
28
28
29
29
30
30
31

LIST OF FIGURES

Figure

4.11 The sample result from the spell-checking process

4.12 The sample Python code to get the text from all question statements
before extracting words from statements

4.13 The sample Python code to extract words from statements and how to
sort them

4.14 The result of the word-filtering and sorting process

4.15 The lines of code for training the model using the Neural Network
classification algorithm

4.16 The formula to calculate the output of a single neuron in a neural
network using the ReLLU activation function

4.17 The formula for calculating the loss of predicted probabilities in a
neural network

4.18 The output report for each epoch in the training process

4.19 The sample code to predict the answer to the new question by using
the trained model

4.20 Logging files by testing loop

4.21 The sample report of result logging file

4.22 The prediction time usage results of the Chatbots

4.23 Summary reporting table of training results logging file

4.24 The prediction accuracy result, the blue in the graph means the
prediction response is corrected, and the white is incorrect

4.25 The sample source file of Thai industrial laws

4.26 The training dataset collection workflow

4.27 The industrial laws chatbot application

Page
31
32

33

33
34

37

38

40
41

42
43
43
44
44

45
45
46

CHAPTER 1

INTRODUCTION

Chatbots, or chat robots, are software agents that simulate human conversations via
text or voice. Their main goal is to be like clever humans. They know the answers to most
questions and answer them like a human would. To this end, they have created many kinds
of machine learning and deep learning methods. These methods will be used to develop
software that can think like humans (Yan et al., 2016).

Currently, very little information is available about chatbots and industrial law.
Therefore, we want to develop a chatbot system to answer questions about industrial laws.
Legal books are time-consuming, and legal information may not be easily accessible to the
public. They are also costly, even those written for the public.

Current law, including industrial law, is often compartmentalized, meaning many
sections and sub-sections refer to the main title. That makes it very confusing for a user to
find relevant search information. A user would have to know what section their pertinent
information is in, which makes using knowledge obtained from typical searches
ineffective. For example, if we want to search for laws regarding “Industrial Steam Boilers
in factories,” We may have to gather various legal texts from the Constitution, Acts, Royal
Decrees, and Ministerial Regulations, including announcements, regulations, and
requirements could take extensive time and effort to obtain comprehensive information.

We want to develop a superb system to gather and put scattered industrial legal
knowledge in one place. This system will provide concise answers to those who want
answers about industrial law. Users can ask questions and be provided answers through an
Al chatbot system, which is an easily accessible online application. Chatbots are
convenient to use and replace the search functions in browsers (Huang, 2010), searching
by reading legal books, hiring an attorney, or studying from other online media.

In this project, we used the Neuron Network classifier methods to create a chatbot
to assist users in their quest for relevant answers to industrial law (Prayitno et al., 2021).

So, we are motivated to design an automated conversational system, namely a

chatbot, for industrial laws. To design the chatbot, we have observed the following step.

1. Data collection: We used information on industrial laws published by the
Department of Industrial Works (https://law.industry.go.th/) and the Ministry of
Industry (Thailand) in an unstructured form and created unique question-and-answer
pairs.

2. Data preprocessing

3. Training & Testing

4. Building a Chatbot System

Developing a chatbot for industrial law is challenging due to the time-
consuming process of gathering knowledge from books. As a result, the chatbot is
trained on limited content and can only answer predefined questions, though users can
expand its knowledge over time. Thai language processing presents difficulties due to
the lack of spaces between words, requiring advanced segmentation algorithms for
accuracy. Errors in word segmentation affect response precision, making English-
based chatbots potentially more reliable. Additionally, the chatbot’s performance
depends on device capability and internet speed, as it operates as a web-based

application within a server-client framework, limiting access to online users only.

CHAPTER 2

LITERATURE REVIEW

2.1 Background Theory

Chatbots are software programs that simulate intelligent conversations with
humans using rules or artificial intelligence. Users interact with the chatbot through a
conversational interface using written or spoken text.

There are two main types of chatbots: rules-based and self-learning. Rule-based
chatbots follow predefined rules to determine the correct response to user input. Self-
learning or Al-powered chatbots use machine-learning algorithms to understand and
respond to user input.

The most common type of self-learning chatbot is a fetch chatbot. This type
selects an answer from predefined responses based on the similarity between the user's

input and the predetermined answer.

Al

Artificial
intelligence

Machine
Learning

/ Deep
/ Learning

Language
Processing

‘/

Figure 2.1 The relation of five essential large language models

Natural Language Processing (NLP) is an essential science in Machine Learning.
It is a branch of knowledge from various fields, such as linguistics (Zhou et al., 2020).

Computers to “understand” textual or verbal data, just as humans can. This is
not only about understanding the direct meaning of the text but also about the
perception of its implications. Author's feelings Language Contextual Differences
Include being able to analyze in various ways as well.

NLP makes it easier for humans to communicate and collaborate with machines
by allowing them to do so in the natural human language they use daily. NLP offers
benefits across many industries and applications (Garg et al., 2021).

1. Automation of repetitive tasks

2. Improved data analysis and insights
3. Enhanced search

4. Content generation

NLP originated in the middle of the 19th century and has been continuously
developed until today. In this case, we would like to divide its evolution into three eras.

2.1.1 Rule-based Method Era (1950-1990s)

In the early days, NLP was used as a rule-based method by linguists who
specialized in the language structure they were interested in. Write the rules the
computer can calculate to find the answer to your desired problem.

2.1.2 Machine Learning Era (1990-2010)

Machine learning (ML) is a branch of computer science that uses data and
algorithms to enable Al to imitate how humans learn, gradually improving its accuracy.

In the later era, it was found that writing rules by hand could only respond to
simple problems. PC performance Includes knowledge of statistics and machine
learning, which has been developed for use in NLP work by importing data so that
computers can learn by themselves instead of using language experts.

2.1.3 Machine Learning Has Three Main Algorithms

1. A Decision Process: Machine learning algorithms generally make
predictions or classifications. Based on some input data, which can be labeled or

unlabeled, your algorithm will estimate a pattern in the data.

2. An Error Function: An error function evaluates the prediction of the
model. If there are known examples, an error function can make a comparison to assess
the accuracy of the model.

3. A Model Optimization Process: If the model better fits the data points in
the training set, weights are adjusted to reduce the discrepancy between the known
example and the model estimate. The algorithm repeats this iterative “evaluate and
optimize” process, updating weights autonomously until a threshold of accuracy is met.

2.1.4 Deep Learning Era (2010-present)

The computing power of computers is constantly evolving, making technology
highly complex. Deep Learning is replacing Machine Learning, which uses traditional
statistical knowledge. It is also widely used in NLP work, such as language modeling
and parsing.

Deep learning is a subset of machine learning that uses multilayered neural
networks, called deep neural networks, to simulate the complex decision-making power
of the human brain.

2.1.5 How Does Deep Learning Work?

Neural networks, or artificial neural networks, attempt to mimic the human
brain by combining data inputs, weights, and bias—all acting as silicon neurons. These
elements work together to recognize, classify, and accurately describe objects within
the data.

Deep neural networks consist of multiple layers of interconnected nodes, each
building on the previous layer to refine and optimize the prediction or categorization. This
progression of computations through the network is called forward propagation (Yu et al.,
2002). A deep neural network’s input and output layers are called visible layers. The input
layer is where the deep learning model ingests the data for processing, and the output layer
is where the final prediction or classification is made.

Another process called backpropagation uses algorithms, such as gradient
descent, to calculate prediction errors. It then adjusts the function’s weights and biases
by moving backward through the layers to train the model. Forward propagation and
backpropagation enable a neural network to make predictions and correct errors. Over

time, the algorithm becomes gradually more accurate.

Deep learning requires a tremendous amount of computing power. High-
performance graphical processing units (GPUs) are ideal because they can handle
extensive calculations in multiple cores with copious memory available. Distributed
cloud computing might also assist. This level of computing power is necessary to train
deep algorithms through deep learning. However, managing multiple GPUs on-
premises can create a great demand on internal resources and be incredibly costly to
scale. For software requirements, most deep learning apps are coded with one of these

three learning frameworks: JAX, PyTorch, or TensorFlow.

2.2 Literature Review

By using machine learning algorithms to develop chatbots. You no longer need
to define and code new pattern-matching rules. This allows chatbots to be more flexible
and no longer dependent on domain-specific knowledge. As noted, AI models can be
divided into retrieval-based and general-purpose models. The fetch-based data
extraction model is designed to provide a text-based dataset. The algorithm will be able
to retrieve the necessary information based on user input. The algorithms used are
usually shallow learning algorithms (Holdsworth & Scapicchio, 2024). However, some
retrieval models use rules-based algorithms and deep learning models—a predefined
set of possible answers (Jothi et al., 2022). The chatbot processes the user's search query
based on this input. Will choose one of the answers contained in the set. The knowledge
base for this type of model is usually built from a database of question-and-answer
pairs. A conversation index is generated from this database. To predict all possible
answers according to the prompts and choose them based on the accuracy rate of the
prediction function. When a user provides input to a chatbot, the chatbot will treat the
input as a query (Hashana et al., 2023).

A fetching model similar to that used for web browsing matches user input to
similar data in the chat index. Therefore, the results returned to the user are answers
matched to the selected questions listed in the Discussion Index. The main advantage
of this model is that it ensures the quality of the answers. Because they are not

automatically generated, these models have gained immense popularity with the advent

of Web 2.0 and the rise of text-based information that can be retrieved on social media
platforms, forums, and chats. The approach to building the necessary knowledge base
is costly, time-consuming, and tedious. It also means that matching user input with
correct answers becomes more challenging. Training the system to choose the correct

answer takes time and resources.

2.3 Related Technology

We used the Neural Network classifier techniques to develop an industrial laws
Al chatbot system.

2.3.1 Neural Network (Multilayer Perceptron Classifier)

A neural network is a machine learning program or model that makes decisions
like the human brain. It uses processes that mimic how biological neurons work
together to identify phenomena, weigh options, and arrive at conclusions.

Neural networks, also called artificial neural networks or simulated neural
networks, are a subset of machine learning and are the backbone of deep learning
algorithms. They are called “neural” because they mimic how neurons in the brain
signal one another.

Neural networks comprise node layers—an input layer, one or more hidden
layers, and an output layer. Each node is an artificial neuron that connects to the next,
and each has a weight and threshold value. When one node’s output is above the
threshold value, that node is activated and sends its data to the network’s next layer. If

it’s below the threshold, no data passes along (Singh & Banerjee, 2019).

Deep neural network

Input layer Multiple hidden layer Output layer

Figure 2.2 The neural network model

2.3.2 Types of Neural Networks

Neural networks (IBM, 2024) can be classified into different types, each used
for various purposes. While this isn’t a comprehensive list, the below types represent
the most common.

The classification task in machine learning has been a significant focus of
research for decades, with neural networks (NN) playing a pivotal role in achieving
state-of-the-art performance across various domains. Neural networks, inspired by the
structure and functioning of biological neurons, are powerful tools for learning complex
patterns in data. Their ability to adapt to diverse datasets and uncover non-linear
relationships has made them an essential choice for classification problems.

The evolution of neural networks can be traced back to the development of the
perceptron in the late 1950s. However, their popularity surged with the advent of multi-
layer perceptron (MLPs) and the backpropagation algorithm in the 1980s. These
advancements enabled neural networks to address the limitations of single-layer
networks by learning hierarchical feature representations. Introducing non-linear
activation functions, such as the sigmoid and ReL.U (Rectified Linear Unit), enhanced
their performance by overcoming issues like vanishing gradients and improving
convergence rates.

1. Convolutional neural networks (CNNs) are similar to feedforward
networks but are usually utilized for image recognition, pattern recognition, and/or
computer vision. These networks harness principles from linear algebra, particularly
matrix multiplication, to identify patterns within an image.

2. Recurrent neural networks (RNNs) are identified by their feedback loops.
These learning algorithms use time series data to predict future outcomes, such as stock
market predictions or sales forecasting.

3. Generative Adversarial Networks (GANs): Composed of a generator and
a discriminator, GANs pit these two components against each other. The generator
creates data while the discriminator assesses its authenticity. This adversarial process
results in the generator producing increasingly realistic data, often used for generating

images, videos, and audio.

4. Feedforward Neural Networks: This basic type processes data linearly
from input to output, without loops. They're commonly used for straightforward tasks
like classification and regression.

Several training and optimization techniques have improved the performance of
the neural network classifier. Methods for standard adjustment, such as L2 standard
adjustment and disconnection from the system, prevent overfitting by adding noise
during training. Optimizers such as Adam and RMSprop dynamically adjust the
learning rate. Accelerate convergence Batch normalization and data augmentation also
significantly improve the stability and robustness of the neural network in classification
tasks.

Neural networks have been applied successfully in numerous classification
problems, including:

1. Healthcare: Diagnosis of diseases through medical imaging (e.g., X-rays,
MRIs) and genetic data classification (Reddy et al., 2023).

2. Finance: Fraud detection and risk assessment using transaction data
(Guolin, 2007).

3. Agriculture: Crop disease detection and yield prediction through image
and sensor data analysis (Abdullahi, 2014).

4. Natural Language Processing: Sentiment analysis, spam detection, and
language translation.

5. Despite its success, neural network classification still faces several
challenges. These include the need for large, labeled datasets, the computational cost
and interpretation of recent efforts in transfer learning, and integrated learning and
artificial intelligence that can explain. Aiming to overcome these limitations,
integrating neural networks with hybrid models and quantum computing also opens

new avenues for research and applications.

10

CHAPTER 3

PROPOSED METHODS

We use natural language processing in conjunction with Python to develop a
chatbot based on the Thai Language, focusing on industrial law.

We have gathered information, questions, answers, and knowledge about
industrial law to review and remove some redundant information. Then, we converted
the dataset from the text file to a programming language format, such as JSON. After
we had changed the format of the question-answer pair data set, we developed a system
to prepare the data in the form of an input dataset for the system, using the following

step to illustrate the method.

3.1 Methodology

We gathered knowledge about industrial laws and then converted the dataset from
the text file to the dataset in a programming language format, such as the JSON format.
After the question-answer pair dataset format had been changed, a system was developed
to prepare the data as an input dataset for the system using the following steps. Examples
of words are in English so that the examples may be widely understood.

3.1.1 Step 1. Words collecting

This step is the word processing to read all the words from datasets. We need
to collect all the words to create a set of features that is a standard requirement of input
data for the deep learning methods we used

1. Get text from pdf using PyPDF2 on PyCharm CE

PDF

Figure 3.1 Extraction text from PDF file using PyPDF2

11

The sample result of the text extraction process:

Run: get_text_from_pdf

Sy
y data from docs/a1uqun11uuLﬁhu1uﬁuua:ﬁ11iﬁuﬂﬂu1uu%|1NT144ﬂu.pdf

result text:

naNTENTIN

awaun1svutfauluduua s laduntsTun alsey

W.A. bddo

avAuswnIa A luNIAsY v 19Tanile waznes @ (@) (&) (v) (@) wax (@) ums

[U | P ||

WIET IR 19498 W. A, beoe T3HUATIINNTNTENTINEAEMNTINDANN TN T Avnn Ul

» 40 Y8 Ve oo &4 Y. P - e e
18 o ngnIEns2il nlydedu L anunmuaniiessswladuiuivuatudsznndlusny

sy iuns i uauly

20 v lungnisneasi

"

- ¥ Yo N . ¥ Y - -
“nsvuiiauluduuazinladu “ wusariuan nasinuuazinlaauneluus canlseanui
- - N - 3 -~ - - - N Y - - N
HWiUuLﬁﬂuﬂ:ﬂuTuUﬁuﬁmw1ulﬂuﬁ:unnﬁinﬂidi1ﬂ Msﬂunﬁﬁutfudwnﬁqnﬂﬂulnﬂﬂuniﬂuﬁaﬂﬂnﬂw
auﬁﬁh nﬂ:ﬁ4u1ﬁaau

7 yuigAluaN ﬂﬂﬁlﬁuuﬂ:nﬁ?alﬁﬁﬂ:“ﬁaﬂﬂ1ﬂau

- ¥ Y
"n11n11ﬂaauqmn1wnuua:uﬂTqau
¥ o - - - - v v 3
uazin laaunisTuud iaal 599y uaznsiUivufisuaaau i susueasasduidauilasannisi fivuaznns
- -~ N - A - ¥ e
JiasrrndrnssAuuazii Taaunu L namnasuu L dauluauuaziq laau
. N oo . . v L
“nasinasUutdauTuduiazdaTasiu wuabea a0 s:AUAN L INTUAT 4B suD4a1S

v ioulufunazir TaaunteTuwd cnlseewila Jusunseaogunw sunis uazdawinasy #elawran
- E Y -

. . . - » o -
P Version Control » Run = TODO @ Problems # Debug M Terminal £ Python Packages # Python Conscle

Figure 3.2 The sample result from the extracting process from the source file

The result of the get text from pdf is the raw text that we have to cleanse.
Cleansing.

2. Create questions and answers paired to make the training dataset

We must clean text from PdfReader using the coding below. The reader
tools may have an error depending on the source files.

Text cleaning using the thaispellcheck library

A
= A=

—_— [thaispellcheck — | —=
T TXT

Figure 3.3 Using the thaispellcheck to spell check

12

In this step, we use Al to help detect the error of extracting text from a PDF

file. We then must rewrite the text manually and use it to create the question-and-

answer pairs table.

3. Create the question-and-answer pairs table (manually)

Table 3.1 The table representation of sample question and answer pairs

question_id question_text answer_id

answer_text

1 luaygausenau 1
Aan1slssuiieny

winls?

AnFaAsa9ile

AuAuezlsUe?

3 Asinnau 3
Tuaygaieuly

ozls?

Tueygnusznevianistsanulidinig
MruAD1ENTIENURUUTIIR wiazing
tasuldeidesnsuleaiifusznounisds
UfuRnudaivunveinguunelseny
ufanpnsmuudsnadeuiayay
Uaeadty mniimsdilungseideu enagn
Winoeulueygald
Aesuluoygnlssnudesindaeiasie
vienunsaidmiumunmaiiviionifiniu
1t iedonidathide FPUUNMARHULAY
Atu sfuedesdionndots visil Tueg
MuUsznnedl s uLaEMIAMUAYeY
wilnnudmihi weliiulaiinmsduiu
Aamslinenansenusedawindeuuay
UFGONRGIGHER
Tueygalssnuenagniinasuldlunsdlily
Usznaufanisliufuanunguunelsnu
Arilufdsvesniinamidimiing vielal
whlotlgymiineliinnansenusie
Awandouuazeuasnsty sl n1aidin
geuariinsnsvaeutelinnsuasudali
nsasi Welvguszneumsilenia

unlutleymn

Table 3.1 (continued)

13

question_id question_text answer_id answer_text
4 Tssulszianla 4 Tssruiifdnvaznisdiiunuiidma
AoadninTeu NIEMUTLUTITeAIIndoN 1y Tsdluiih
HANSENU Tsanuitlidngdunste videlssnuruin
Aauanden? TngjifinsUdosnaiiuluuinngs axdos
YNTIEUNITIATISANANTENY
dandeu WelrmhenuiiAeides
ATvAsULaraRnouEuAIduNNS
5 Tufuudeveslssanu 5 Tufuudsdmsulsanusmand 2 19w
Fandi 2 fua lonansiuansiUsznoufanislduds
KNNUDEels? galdgAn AL lunuioniiney
uihiSeutesudn dddusuudeidlalle
Jumseuga widunissunsuuas
guduinfanisaenananansaaduanule
auiteuledirun
6 weinyud v 6 winNud W ATansEnsaeulse
andozlsvlunig Tnglifosudsanoni iensinaeudn
ATIALTINU? lssnuuiinudemimuaiiuaiy
Uaendy Msmuauuaiy wagngmaneay
q fdeades manueruRaunindenis
audang o1veenmaduiluviossfuns
ALIUNAINg
7 msveasunuas 7 mnmsasunlanaiesnsonadanaste
\30ednIdaauds AMUUanABUIl I UNTONANTZYIURD
wiinudmeng Aundeu Wy Meiinuaiddarie
w3elil? msliiedosdnsiiadraaiiv fuszneu
Aamsfosudaniinaudminfiuazye
sygnnousLiumaUAsuLlas
8 nseeluagyInvi 8 Tueygnuszneufanisissnulideswe
Isnileln? 919 wigUsznounsfesUfiRmuioula

seylulueaugnegewoilios vindniseh
HungranevieldufiRnudds enagn
Winoeulusugavsedsssiumsniiiuay

I

Table 3.1 (continued)

14

question_id question_text answer_id answer_text
9 Tssauitidluiiug 9 Tssnuitmsoglufufiguauses fiFa
YYUAD] WINTNTMIVANNATIEEEIUATIATA LYY AR
Jorvunogls Hessuniu puaumsUaseuaiemng
G 01n#l waztrdiaiude uenani easinag
doastuuwilndifsaieaiunrundila
wazanANTALES
10 nsvudeing 10 N3UEINGTUATIEAINLTIUADIUIS
BUATILAINLTNY wiinnudmihivdemhenuiiieades
Aoudalas? WU NIULTINURAEIVINTIH ViSENUIBIY
muALN LA IngSunTe ieliulai
nsvudefinaUasnfukasU Ry
NV
n

4. Transform the question-and-answer to the training set (JSON format)

¢} training_dataset_3.json

q

¥ 164

"intents": [

{

"tag": "wszsmnge 1599w w.A. 2535",

"question_id":"1",

"patterns”: ["lusuyiausznavianislsesuianginils?"],

"answer_id":"1",

"responses": ["1uagmwaﬂixnauﬁqnwsT$q¢wu1dﬁnwsﬁwnuwaquWiTﬁqwuuuuiﬂﬁh uAs
A

"tag": "wszsmigge 1seew w.A. 2535",

"question_id":"2",

"patterns": ["éTﬁ%bTanmwﬂéaqﬁﬂﬁ\|ﬂ?aqﬁaﬂ1uqua:1iﬁw4?"],

"answer_id":"2",

"responses": ["glasulusuyinlsviuns@nas tadnsiianiagunsndmsualuauuaiisian
A

"tag": "wszsnwminga Tsweu w.d. 2535",

"question_id":"3",

"patterns": [“nﬂﬁLﬁnnauTuaqmﬂmﬂLﬁauTﬂa:Tﬁ?"],

"answer_id":"3",

"responses”: ["luauyiaTsseusiagniinaaulalunsiiigusznauiants luufiaaiunguy
A

"tag": "wszsminga 1599w w.A. 2535",

P

Figure 3.4 The sample raw training dataset in JSON format

15

3.1.2 Step 2. Word Filters and Sorting

This step is the first optimization technique after we have the question-and-
answer paired dataset as JSON from Step 1. We must collect all words from the dataset.
Then, we sort and filter the duplicate words from the input dataset.

1. Get all words from the question-and-answer paired dataset will look like
this:

All words from all questions = “lusugnisznouianisissnudengmiils?
glésulueygndesindaaiofiomunuerlsthenadfinooulueygnideulverlslssy
Uszunvladeadarinsenunansenuawinden lusuudwedssnudinani 2 nan I
agndlyrmiTnaudmindidanseslsddunisasalsnurnsveUasuslanaissdndes
udsinaudmdnineliznnsdelueugerinldd elalssuiidslufiufguudesd
Formuneslsifirmsvuioingdunsennlsanudonddlag?..”

2. Extract words from the result of the question-and-answer paired, then
sort all and filter out duplicate words.

"3

—| — [oo | — {words }

Figure 3.5 Extract words from statements using word tokennize

Run: extract_words_from_text o S

» /Volumes/Data/PythonProjects/TestCoding/venv/bin/python /Volumes/Data/PythonProjects/Tes

y? ALl Words = ['Twaymna', 'ds=znau', 'Aanns', 'Tssew', ‘'feny', s, 'zj', lasu', "luay
_ Sort all words = [',', '1,2', '1', '2', '2', '2', '2', '3', '3', '7'_ '8', '8', '9', 'n
= Unique words = ['wauiza', ‘vass', 'UHddeaa’, ‘gugy', 'as', "guay', 'w3n', 'sj', VNS R

= e Sorted words = [',', '1,2', '1', '2', '3', '7', '8', '9', 'agnszvsix', 'nguwung', 'asd’',
r—

Figure 3.6 The prepared result will be used in the next step, the sorted words are the

final result of step 2

3.1.3 Step 3. Stemming Words

This step is the second optimization technique. We must group words with the

29 ¢ 99 ¢¢

exact meaning and convert them to one of the forms, such as “get,” “got,” “gotten,” or

“getting. “This 1s a group of words that represent the same meaning. We must convert

16

all words in this group to “get.” This technique is robust and reduces the size of the
dataset well, but it doesn't have adverse effects. However, the stemming words will be
affected only in the English language.

3.1.4 Step 4. Transforms the Stemmed Words to the Features Table

This step depends on the dataset with more unique words. We have more
features for processing deep learning methods. We must sort all the words and create a
features table containing all the word indexes by sorting the words in ascending.

Table 3.2 The table represents the sample of features table

NYNTZNT QhHRE! nsad Tuauna 91g

3.1.5 Step 5. Transform the question sentence to a features table
This step is essential and takes time. It depends on the hardware used because
we must do all the steps above for every question sentence. After getting the feature
table, we need to put each question into the feature table by following these steps
1. Words tokenization: We must split all words from a sentence in this step.

For example:

The question is: “lusyginusznevianislssnuiionewils?”
The result is: [‘luaysw’, “Usenev’, ‘Aams’, Issnw’, ‘Toy’, ‘wils’]

2. Sorting words: we must sort the tokenized words before sending them to
the next step.
For example:
The tokenized words is: [‘iuaigapm’, ‘Usenav’, “Aams’, Tsenw’, ‘:ﬁmq '
Winls’]
Then, we sort them by using the collate function:

sorted words = collate(words_of sentence)

The result is: [“Aany’, ‘wily, lueygyw’, “Usenew’, ‘deng’, Tssaw’]

17

3. Bag of word vectors: After sorting words, we have to define the vector
of each word by using the feature table from Table 3.2. In this step, we do a sub-step
by following:

1) Create the temp vector record with dimensions equal to the number
of all words in the feature table by coding like this.
For example: bag_of word = np.zeros(len(all_words), dtype=np.int32)
The result is: bag_of word=[0000000000000000000000...0]
2) Define vector value by comparing the words of Step 5.2 to all the
words in the feature table by the following pseudocode:
Function do_bag of words()
For inx = 0 To len(all_words):
If found all words[inx] in the result of step 5.2
bag of word[inx] =1
Else
bag of word[inx] =0
End If
End For
From the pseudocode above, we will get a result that looks like
bag of word=[0001000000000000010000 ... 0];
The result will differ depending on the question sentence.
3) Input the result of 5.3.2 to the training dataset table in Table 3.3. It
will look like the following table:
Table 3.3 The table representation of the training dataset table with one record of

sample data

The feature word index
Question ID

YNNI NQUINEY .. fanng 21g
1 0 0 0 1 1

4) Repeat steps 1 to 5 until all questions are completed. The result of

this step will look like the following table:

18

Table 3.4 The table representation of the training dataset table with multiple records

of sample data

The feature word index

Question ID —
NHNISNIN nHNUY NINI 918
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 0 0 1
n

5) Modify the training dataset table by adding the answer column to
the latest column and defining the answer ID of each question. The result will look like
the following table:

Table 3.5 The table representation of the completed training dataset table with sample

data
The feature word index
Question ID Answer ID
ﬂ{]ﬂi%‘l/lﬁ’)\i ngmnﬂ ﬁﬂﬂ'ﬁ 'él’]?.ql
1 0 0 0 1 1 1
2 0 0 1 0 0 2
3 0 0 0 0 1 3

3.1.6 Step 6. Training the Chatbots

In this step, we train the chatbot we created using the “Neural Network
(Multilayer Perceptron classifier)” using the training dataset from the completed
training dataset table of Step 5.

After the training dataset, we must create the chatbot model by following the
steps and sample Python code.

Step 6.1: Create the input data from the completed training dataset table in
Table 3.5

19

The input_training dataset list will look like the following figure:

input_traning_dataset_1list : Unnamed: @ o] 1 2 3 4 ... 217 218 219 220 221 target
¢} p 0.0 0.8 0.0 0.0 0.0 ... 0.0 0.0 0.0 b.ﬂ 0.0]
1 1 0.6 0.0 0.0 0.8 0.0 . 0.0 1.0 0.0 0.0 0.0 [¢]
2 2 0.8 0.8 0.8 0.8 0.8 . 0.8 0.0 0.0 0.0 0.0 0
3 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
4 4 0.8 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
95 95 1.0 6.0 0.6 0.6 0.8 0.6 0.0 0.0 0.0 0.0]
96 9 0.8 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [¢]
97 97 6.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0
98 98 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0
99 99 0.0 0.0 0.8 0.0 0.0 0.0 6.0 0.0 0.0 0.0 [c]

Figure 3.7 The result of the training for input of the Neural Network classification

algorithm

The training process’s input will consist solely of a number as we convert the
raw data into the input format for the Neural Network classification algorithm.
For a better understanding, the input and target of the Neural Network
classification algorithm are needed. Tabular Data (Structured Data)
1. Example Application: Predicting customer churn, stock prices, or
agricultural yield.
2. Format: A table with rows as individual samples and columns as features.
Table 3.6 The table representation of the table with rows as individual samples and

columns as features

Featurel Feature2 Feature3 Feature4 FeatureS
23 1.5 0.7 8.0 1
1.8 2.2 0.9 7.5 0
2.5 1.3 0.8 8.1 1

3. Input to Neural Network: A matrix of features (e.g., X = [[2.3, 1.5, 0.7,
8.0],[1.8,2.2,0.9,7.5], ...])
4. Target/Label: The last column (e.g., y=1[1, 0, 1, ...]).
We need to prepare three datasets in the training process:
1. Question set: the list of questions we transformed into an input format of
the Neural Network classification algorithm. The sample of the question set will look

like the following figure.

20

train_sequences:[[8 © © © 0 15]
[8 06 06 B8 0 6]
[o 0 Q 0] 0 16]
[o 0 Q 0] 0 17]
[8 0 0 7 1 s8]
[8 0 0 © 0 9]

Figure 3.8 The question set of the training for input of the Neural Network

classification algorithm, defined as train_sequences

2. Answer set: The answer set is the list of answers from the raw questions
and answers paired with the dataset from Table 3.1. The sample of the answers set will

look like the following figure.

train_labels:[‘1uagm1ﬁﬂﬁ:nauﬁqﬂﬂiTiqqﬂu1ﬁﬂnﬂﬁﬁﬂwumaﬁqnﬂiTJqﬂunuuﬁﬁﬁh uaaziiuatiaduloan
"gladuTuaygiaTseiuassindeLadosiandogunsudmiuatuauuaiuionatindy 1oy 1adavindadnids
"TuayyriaTssewanagniiinnaulalunsiiigusznaufiani s luufjidewnguuisTsseu driudrdaza swiinan
'Teeeuitiiansuen9a7 L fuauigsuansenuquusanaiswanaay 1oy Tselwdn Tsaaunleingsunsie wi
"usuuasdmivTsavwsmani 2 uianarsiuaasnglsznouianislanassnoas Bean e fiueuney
"wiineu L s mundiiang tanasaagauT e Tas luaasussatomn ifieasaadauan s uiinauenimug
'wannas lﬂsﬂ\“lﬂaQ lﬁ%ﬂ \T':‘nﬁﬂ"IQﬁ.\l Hﬂl?;ﬂﬂ'}"lullﬂﬂﬂﬁﬂ'ﬂﬂit‘iwl \I'Tu“%ﬂ:lﬂﬂ ni:ﬂﬂf;ﬂﬁl\lll']ﬁﬁ“ﬂu l1l:u ﬂﬁilﬁ'!
"luaygralsznaufianisTseswlunssansny uagusenaunisaasfifau dauleiissyTulusyyinstisas
'Teaewitnag Tuluigurua s FiAnms1aT115AIUANNAREDEII L ATIATA 17U an i HENTUNIY AIUANNITY
'N1TLULIWTAgEUATIEIINT TIWUADAUT N L TN oM Aaga Lau nsuTTeaTugaRn
' TsaauABNARRSRUNTUAA L /BN tau mieiuifue wistadevifivide uazdn Buanasnisansedu
"iadpdnsiiliiidndngens«lasun1sasaadsutaztngesnensneaaans LikeYs 1iuntR inauazaanszuy

o PIRCVIN S T 4 : i ‘e > > ¥
"l'ﬂnuﬁams:uuu‘mﬁuﬂLsmn'l,ﬂmmi‘mﬂauUaﬂuaangmumaau ll‘nl:ﬂﬂ\mﬂ‘ﬁﬂ‘i‘)‘lﬂﬂuﬂ.mﬂﬂﬂuﬁtSIHllj

'Tavenuiiisazasivingduasie 19w arsudndnsiail nstivinenansla i w3aTsveunananausiinguy

Figure 3.9 The answer set of the training for input of the Neural Network classification

algorithm, defined as train_labels

3. Feature words: The feature words are all the words from all question
statements in the training dataset we prepared in Step 2. The sample of the feature

words will look like the following figure.

21

feature_words:

['(EIA)', '1', '12', '2', '2535', '3', '7', '8', '9']

['nguuae', 'nsd', 'nezuiuniswda’, 'ﬁﬂu', ‘nu', ‘s’ ‘nisAluAu’, "nsuualTzLan |
['anﬁ', 'Lﬁﬂﬁu', '1n§', 'ﬂuﬁﬁu', 'auam', 'ewz', 'asnw', 'ﬁaﬁﬁwun', ‘Ja‘, 'up',
['AdwAu', 'A29', 'erwdasady’, 'ednwvune', Andieda’, ‘Anda', 'Ap', "Amunn', ' A
['4min', 'aan’, 'swan’, 'uae’, ‘wda’, ‘®iw’, ‘428510, Tquru’, lat, tanut, e
['asqadau’, 'ﬁaa', 'gnqﬁﬁu', 'ﬁa', 'énawq', '5@', ‘anunguune ', ‘e’ 'ﬁﬁﬁh', !
["dnds’, Tugsza’, 'Tu’, 'vie’, 'yARasIINAN’', ‘wuet, uwnnt, tlusu’, “lusyyna
['ua', 'whu', 'Hanguune ', 'ynvu', 'éﬂﬁﬁqﬂﬂul, 'é', 'é%ﬂﬁﬂﬂau', 'éﬁu', wiinanu LA
['Lﬁuﬂﬁ:ﬁwﬁn'\w', ‘lﬁﬂ', 'uafismagpanad', 'ualie', 'waesnas', 'waasgou', 'wiesa',
[Vlusae’, "lu', 'snidn', 'Hudnwa’, 'fu', 'Seaitdsu’, 'szuy', 'szunsennnd', '<usa
["i&nfianns', ‘uaz', 'dagdAu’, "Tﬂqﬂﬁ:ﬂqn", ‘e, ‘Supau', 'Awasaznt, ‘38, taad
['gman', 'deada, e, twuamenu', ‘wunit', ‘vupany', ‘wuasiic', vyuideu', 'Y
len feature_words:245

Figure 3.10 The feature words dataset of the training for the input of the Neural

Network classification algorithm, defined as feature words

After we had already prepared the input dataset of the training process, we had
to create the model by using the Neural Network classification algorithm to build the
chatbot software. For more details and understanding, we will explain how to build the
chatbot in Chapter 4.

After training, the model’s weights are updated based on the data. We can use
the model to predict or evaluate its performance on new data.

3.1.7 Step 7. Testing Prediction

In this step, we created a simulated system for automatic testing because we
had to test the Chatbots for a long time, such as 100, 200, and 500 runtimes, to collect
the prediction results and save them to log files.

3.1.8 Step 8. Building Chatbot Software

Finally, we created a chatbot system based on the Neuron Network to provide
the chatbot application designed to serve as an information provider for industrial laws

on the web browser.

3.2 Our Developed Software

3.2.1 The Industrial Laws AI Chatbot
We developed a chatbot based on a Neural Network (Multilayer Perceptron

classifier) for compassion finding that is appropriate for our input datasets.

22

3.2.2 Data Preparation System

Preprocessing is applied to the input text to standardize it according to the
system’s requirements. It is based on programming syntax and Input optimization.

3.2.3 Prediction and Simulation Results Collection and Reporting

We have developed a simulator system to keep the results from a prediction by
the chatbot prediction and generate the results reports, such as log files for re-checking
the response manually

We check the accuracy by randomly selecting the questions from the question
dataset list in Step 1. We create questions and answers paired. Before we send the
question to predict the answer from the model, we define the actual answer to the
question and compare it with the expected answer; if the actual answer equals the
predicted answer, we make the correct flag for that prediction round and repeat until
end of 100 rounds, to proofing the prediction of the model is acceptable.

3.2.4 Artificial Intelligence Chatbots

The Al model is based on a machine-learning algorithm that allows it to learn
from the existing database of human conversations. To do so, they must be trained
through machine learning algorithms that can be trained. Model using training datasets
by using machine learning algorithms. There is no longer any need to define and code.
It just needs an input dataset in the required form so we can provide more knowledge

by giving them more input, such as more questions and answers.

23

CHAPTER 4

EXPERIMENTS AND RESULT

4.1 Experiment Condition

4.1.1 Experiment Environment
1. Hardware

We use the MacBook Pro 2019 with hardware specifications, as shown in

the figure below.
MacBook Pro
y it
Name A\Y) WA W
Processor 2.4 GHz Quad-Core Intel Core i5
Graphics Intel Iris Plus Graphics 6551536 MB
Memory 8 GB 2133 MHz LPDDR3
Serial number al\ \ IV DD
Coverage Expired Details...
mac0S
@ macOS Sonoma Version 14.6.1
Displays
I8 Built-in Retina Display 13.3-inch (2560 x 1600)

Figure 4.1 The developing and testing hardware specification

2. Software

Table 4.1 The table representation of software

24

Tool Name Description

Version

License

MacOS

PyCharm

Python

SQLite

macOS is the operating system designed and
developed by Apple Inc. for their Mac
computers. It’s known for its user-friendly
interface, stability, and seamless integration
with Apple’s hardware and ecosystem of
devices.

PyCharm is a powerful Integrated
Development Environment (IDE) for Python,
developed by JetBrains. It is one of the most
popular IDEs for Python development,
offering code completion, debugging, testing,
and integration with frameworks like
Django, Flask, TensorFlow, and PyTorch.
Python is a high-level, interpreted
programming language known for its
simplicity, readability, and versatility. It is
widely used in various fields, including web
development, data science, artificial
intelligence, machine learning, automation,
and more.

SQLite is a lightweight, embedded,
serverless database management system that
is widely used in applications that need a
simple, fast, and reliable database. Unlike
other databases like MySQL or PostgreSQL,
SQLite does not require a separate server—it

stores data in a single file on disk.

14.6.1

2021.3.3

3.8

3.0

Included in

MacBook

Opensource

Opensource

Opensource

Table 4.1 (continued)

25

Tool Name

Description

Version

License

Scikit-Learn

Tensorflow

PyTorch

Keras

Pandas

PyTesseract

Scikit-Learn is a machine learning library for
Python, built on NumPy, SciPy, and
Matplotlib. It provides simple and efficient
tools for data mining, machine learning, and
statistical modeling, making it one of the
most popular ML libraries.

Open-source machine learning (ML)
framework for training and deploying models
efficiently using GPUs and TPUs.
Open-source deep learning framework
developed by Facebook (Meta). It is widely
used in machine learning (ML) and artificial
intelligence (Al) research because of its
flexibility and ease of use.

A High-Level API for Deep Learning built
on top of TensorFlow. It is designed to be
simple, user-friendly, and modular, making it
easy to build and train neural networks.
Pandas is a powerful and flexible data
analysis library for Python. It provides data
structures and functions to manipulate,
analyze, and visualize structured data
efficiently. It is widely used in data science,
machine learning, and financial analysis.
PyTesseract is a Python wrapper for
Tesseract-OCR, an open-source Optical
Character Recognition (OCR) engine. It is
used to extract text from images, making it
useful for document scanning, CAPTCHA

solving, and image-based text processing.

1.3

2.16.2

23.0

3.8.0

1.4.2

0.1.6

Opensource

Opensource

Opensource

Opensource

Opensource

Opensource

26

Table 4.1 (continued)

Tool Name Description Version License

Matplotlib Matplotlib is a comprehensive plotting 3.1.1 Opensource
library for Python, widely used for creating
static, animated, and interactive
visualizations in a variety of formats. It is
highly customizable and provides a wide
range of tools for visualizing data in 2D and
3D.

4.1.2 Experiment Condition

To test the best technique, we decided to create a chatbot in Python for deep
learning classification algorithm:

Neural Network (Multilayer Perceptron Classification)

This experiment requires writing a program to test the prediction of the answer
to the same question. We create 156 question-answer pairs and use these pairs to create
a test dataset to train the created Al chatbot. Then, we run the test by running the
program by randomly selecting questions from the 156 questions for 1,000 iterations.
We run the test to get the best results by randomly selecting a question once. We will
simultaneously send the question to all four bots to collect data, the time it takes to
predict the answer, and the answer obtained to analyze. Therefore, after the bots get the
answer from the prediction, we also need to check whether the answer is correct or not
to explore the accuracy of the prediction of the answer because we want to choose bots
that take the time to predict the answer and the accuracy of the answer that is obtained
as criteria for consideration.

4.1.3 Prepare a Question-Answer Dataset

We used information on industrial laws published by the Department of
Industrial Works (https://law.industry.go.th/) and the Ministry of Industry (Thailand)

to create 156 questions and answers for a training dataset.

27

= Industry Laws

ws=s1sundogalsooiu w.A. 2535

UAUS:MATS w.A. 2535

WSU.AlNE2T2Y (4) _

ws:swsUunyrgalsvoiu w.A. 2535

m

ws:swUYrdATsoIu W.A. 2535 (Bwian!! auui 2 ua: aUul 3 w.A. 2562)

L}

11l

ws:s1wsUtyrdalsoviu (Quun 2) w.A. 2562

ws:swsUeyrdalsooiu (QUUA 3) w.A. 2562

ws:swsnquim (0)

NNNS:NSOL (22) +
uUs:mANs:Nsov (94) +
Us:mAua:kuodaidou (35) +
AMwwinuua:M3aode (1) o

o 4 .~
nansauntnedvaL (0)

Figure 4.2 The source documents of industrial laws from https://law.industry.go.th

WIENYyela

T

WA, b&a&

Qinaoauiay ..
W o0 Tl U WAL b
Tl o lusymatlogiu

wizumamdnszlsiunsumgiwasaaniay Iwizusunvleamallsandia W
Uszmed ‘

Iﬂuﬁ:ﬂummnmnh"m];ang]nmm'w“nalmm

famsawizngoaldsendr 4 Mannssrwiygasulilaomuuninuasiusonves
amAATygRuiand imihiigam ol

wan o wsnlygRilitunh « WIENTTYAR T WA, & ”

5 _uad o 4 .. - o 0
nan b wisnwiydan WS hidualeviumuabauiniuediulszmaunes

Figure 4.3 A sample source of industrial law detail in the PDF file

{

"tag":"wszsIwUygR 19991u w.d. 2535",

"question_id":1,

"question_text":"'Iuaqru'm\h:nauﬁan'lﬂﬂnuﬂa"\qLvﬁ\ls?",

"answer_id":1,

"answer_text" : "Tusyyiausznauianislssemluiinisimunsignaslesuuuyinge uasziinaisdulen
},
{

"tag":"wsrsvuyga 1599w w.A. 2535",

"question_id":2,

"question_text": "glasulusygnanasannsiaiavisnruauns 15u142",

"answer_id":2,

“answer_text":”éTé%ﬂTuaqmﬁﬁTsquuﬁaqﬁﬂfqLﬁ%a4ﬁan§aqﬂnsdé1n€uﬂ1uquuaﬁaﬁaﬁqnﬁﬁﬂu oy
Yi
{

"tag":"wsrsvugga T999u w.A. 2535",

"question_id":3,

"question_text“:"nﬂsAWnnauTuaqmwnﬁLiau1mn:11?“,

"answer_id":3,

"answer_text" : " TusyyiaT3v9uanagniinnaulalunsiiigysznaviants luufiaamnguunsTseeu dn
¥
{

"tag":"wszsvunga Ts9eu w.A. 2535",

"question_id":4,

"question_text”:"Tﬁquuﬂsxlnw1ﬂﬁaqihﬁwswquuuans:wuﬁqu1ﬂ§au?“,

"answer_id":4,

"answer‘_tex‘t":"T$~:ﬂuﬁﬁ§num:m7ﬁ'1Lﬁquuﬁéquani:vmjuuﬁ\:ﬁ'aﬁxlu'ms;au tru Taelwin Tsesnu
+

Figure 4.4 A sample of question-answer pair in JSON form

4.1.4 How Do We Do the Word-collecting Process?

1. Get text from pdf using PyCharm

1) Installation of PyPDF2 in the PyCharm
In the terminal window command: pip install pypdf2

Termini

al: Local + v

—_—— e e —————

Figure 4.5 Pypdf2 package installation in PyCharm CE

2) Example Python code for extracting text from PDF file
Preparing the source file (PDF file)

28

We extract the text from the pdf file by coding in Python by following the steps

@~ ::gtl:ﬂu‘;?ﬂmﬁnu'luiuuazﬁﬂ... ®© a a M 2l 0 0 =& Q

AONTENTN

P o) :-’m"iun

PR)

AIVANN

WA odde

epsnemumlugm b 293l Lz & (© @ (o) (@) was (<) wis

o PE— PRACRY {
W‘!Z"]Wl\mjﬁlﬂi’m WA odod qmunfnn1snszvn'mqnu’mnuuaunngmzwm'l’: sasiolUil

v oo & v PO

o nguswvsaiiitivedue Melusy

Avenyunwuiuiuly

ot lungnswnsasil
“msvudouluiusasiliiue wnsamid nsiimuesnhliumeluonlsed

asud il fivmnzuinsds®n wiellmwdvsiorsreliiadunsusioquam

ouly uazdwandey

“mInmsasuguAmANKennlFALT wnemi . madusarnisiinssiiiedisiu

¥ qva Py a, s o v
uazulddunel Tssamy uazn1suss (o) uvesa Fouitldmnnmit it}
Asinetiuasilituiunasimsuudeuluiuuasiliau

“nasimstudoulupusesniiliin: wnemmd1 ssiuaudiusitivesans

Judaul: N 2iand R

ildiun wrequa aunle uavdawondex dildinan
msfmnummmdnnasiiayismsisguuniimuslasuszmatuseisamygunn

R) - . - -
Noilgviout el lsauvie

“anstudiou” mnuenu &

rava u o) "
Puveadumel a1y Faprerial frialuil

0ADAUAN BUTY Uasi

Figure 4.6 The sample source of the industrial laws (pdf file format)

The sample Python code function to extract text from pdf file:

from PyPDF2 import PdfReader

--the extracting text function using PdfReader single file
def get_single_pdf_text(pdf):
text = ""
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text

--the sample pdf file
pdf_path = 'docs/ﬂnuqunjﬁﬂutﬂauﬂuﬁuua:ﬁwTﬁﬁun1q1uu%L1mT7441u.pdf'

calling extracting function
print(f'data from ', pdf_path)
read_text = get_single_pdf_text(pdf_path)

display result (raw text)
print('result text:')
print(read_text)

Figure 4.7 The sample Python code for extracting text from the source file

The result:

Run: get_text_from_pdf

-T @
y data from docs/a1uqun11uuLﬁhu1u€uua:ﬁﬂ1iﬁuﬂﬂu1uu%|1NT1441u.pdf

result text:

AANTENS N

awaun1svutfauluduua s laduntsTun alsey

W.A. bddo

avAuswnIa A luNIAsY v 19Tanile waznes @ (@) (&) (v) (@) wax (@) ums

[U | P ||

WIET IR 19498 W. A, beoe T3HUATIINNTNTENTINEAEMNTINDANN TN T Avnn Ul

» 40 Y8 Ve oo &4 Y. P - e e
18 o ngnIEns2il nlydedu L anunmuaniiessswladuiuivuatudsznndlusny

sy iuns i uauly

- F
10 b 1unan7=w714u

"

" § . ¥ oava . dn Yoo e - .
nsvuidauTuduuazunladu ” wurgarman nsidvuazunladunieTuus iaTseaeud

- - N - 3 -~ - - - N Y - - N
d19du Lﬁﬂuﬂ:iu‘luﬂﬁuﬁmw\lu I.“H'"I:llnn"\'iﬂ"l'fia"lﬂ waauAUL #Hw’“ﬂ"l"ﬂ'lﬂ‘l“) HVIBHVIT"I!J“ES."]TI']“
E“«l"“:"!l lt‘a:ﬁqtnﬁaau

7 yupA?7171 MTLivuaznisdtATIEvaaBENNAY

- ¥ Y
“niIaTaaspuRmAWANKA U TAdy
¥ o - - - - v d’ dq 3
uazur Tadun1eTund 1anlseeu uaznrsidiouifisuarar i susueass1sdu L daunlasnnsi fivuaznns
- -~ N - A - ¥ e
JiasrrndrnssAuuazii Taaunu L namnasuu L dauluauuaziq laau
- N oo m . .o e L
"LnmﬁnﬂﬁﬂulﬂauTununn:uw1nau " ANIEAINT TEAUAIIN L BUIUDINENANET

v ioulufunazir TaaunteTuwd cnlseewila Jusunseaogunw sunis uazdawinasy #elawran

- = - e -

. . e o -
P Version Control b Run = TODO @ Problems # Debug Terminal £ Python Packages # Python Conscle

Figure 4.8 The sample result from the extracting process from the source file

2. Clean text from the result of the extracting process.

30

1) Install the thaispellcheck library and use it to clean text from the

result of the extracting process:

In the terminal window command: pip install thaispellcheck

Terminal: Local + v o —

P Version Control » Run =TODO @ Problems 3 Debug Terminal < Python Packages @ Python Console () Even|

Figure 4.9 Thaispellcheck package installation in PyCharm

2) Coding Python to detect missing spelling words:

The sample Python code to detect missing spelling word

31

import thaispellcheck

the sample input text that's we want spelling check
text = "Tsverwitladagaunsta wiaTssvwauralny Aldntsuassuaiululsuags "\

"EABNIANITIBNIUNITILATISAMAN TENLAIUIAREN LD TN 416 BT 9ATIAFBMAE BYANDUL 3N

print('input: ', text)
execute thaispellcheck to check
checked_sentence = thaispellcheck.check(text)

print('output:',checked_sentence)

Figure 4.10 The sample Python code for spell-checking

The result from the thaispellcheck function

Run: test_code o —

» /Vulumes/Data/PythonProjects/TestCoding!vsnv/bin/python /Volumes/Data/PythonProjects/T

y’ input: Tseawitledngdunsne n?aTNﬁwuﬂﬂing]ﬁﬁmsﬂéauuav‘m’tuﬂ%mwgq azapdAiIs BN Le
® output: Tsewitladagsunse \ﬁaTsuwwﬂnf;"l_z‘m:'l;n;/;'ﬂ_ﬁm:Iﬁﬁmﬁdéanuaﬂu'luﬂ’smmg\a 39099

1] 2 ________

- & Process finished with exit code 0

A el

Figure 4.11 The sample result from the spell-checking process

After we did this step, we used the cleaned data to create the question-and-
answer pairs table (manually) in Table 3.1
3. Word-filtering and sorting process.
We fill the duplicated words out and sort the text from the pdf file by
coding in Python by following steps:
1) Install the thaispellcheck library and use it to clean text from the

result of the extracting process:

In the terminal window command: pip install thaispellcheck

32

import pandas as pd

The sample training dataset file in JSON format

jsonFilePath = 'docs/training_dataset_3.json’

Real data from file

data_in_text = pd.read_json(jsonFilePath)

Transform to Dataframd

df = pd.DataFrame(data_in_text)

collection text from training dataset

all_text = ""

for index, row in df.iterrows():
question_text = row[B®]['question_text']
all_text += question_text

show result

print('Al1l words from all guestions = ', all_text)

Figure 4.12 The sample Python code to get the text from all question statements before

extracting words from statements

The result of Figure 4.11 will look like this:

All words from all questions = “luaygmusenauianistssnudongwinls?
flasuluounedesinsuniosdiomugueglsthemadinosuluoygyniideulveylslsany
Uszianladesdnviisenunanssyudanadoulufuudsveslssnudwmind 2 dnaynsiu
sgalsrminaudmihiianseylsdslunmsamalsanuzasvedsunlanaiesdinsdes
wismdnaudmiifivieliznrsdelueugyevinldidelalssouiidsluilufgurudesd

Ponmunsylsiiuinznsvuingingdunsiganlsunudenddlas?..”
2) Extract words from the result of Figure 4.11, then sort all and filter

out duplicate words.

We use word _tokenize from pythainlp to extract words from

statements.

33

from pythainlp import word_tokenize M 363 ~ v
from pythainlp.util import collate
text = "TusygnadsznavfianisTseuiianyginils?2glasulusuyianadndsia3asiianiuauas Tsune?n3 innau
"T5a9nutsz Lanladadninsieeunanssnuiswanaan? TusunssaaeTseudwani 2 dusgniuabnels?!
"winauL A muadiiangaz 15019 Tun 9059375997207 508 LUADUL AL LAT BN SAD IUA SN UL i;"mﬁ"lﬁw'g
"ﬂWiaiﬂ'luagn_nmﬁﬁlmylﬂa'ﬂn?quﬁuﬁb‘fﬂuﬁuﬁi‘mﬂué’n aflvprmuans s iy Lﬁu?nﬁiﬂuxjﬂﬂu"ﬁq sumsizan]
"Ty99runnsiininanisan L fueiaasels20an mundmsunas e aTasdnsianiauingsAans 192015390013
“Tﬁaqﬂuﬂs:an1ﬂﬁﬁnq1€%ﬂaqm1ﬂﬁxﬁu?Tsaqﬂuﬁaqﬁhnﬂﬁﬂnqtﬁuﬁ1d51u11n§111ﬁﬂﬂﬁndﬂqlﬁ?wﬂnqui
“HWTtﬂﬁuuudﬂqﬁuﬁquqwuéaquiaa:1$ﬁwq?Tiaqﬂuﬁaqﬂuuuﬂaqﬁuﬁhﬁﬁhaﬂﬂqiﬁ?Tﬁq41uﬁ1iwﬁ§41unqu
"n13a773dauT TeauTaswineu L 3 mininaniniiala? TieauAasian1suaien11an1Aas 152013391
Remove unneeded wo

rds or characters

text = text.replace('?','').replace(' ','')
words = word_tokenize(text)
print('All Words = ', words)

words = collate(words)
print('Sort all werds = ', words)
Remove Duplicaote words |
unique_words = list(set(words))

print('Unigue words = ', unique_words)

Sort the word for create the feature Datatable
sorted_words = collate(unique_words)
print('Sorted words = ',sorted_words)

Figure 4.13 The sample Python code to extract words from statements and how to sort

them
Run: extract_words_from_text Q -
> /Volumes/DéEa];;th;nProjects/TestCoding/venv/bin/python /Volumes/Data/PythonProjects/Tes
y? ALl Words = ['Tuswgna', 'dsznau', 'Aanns', 'Tawew', ‘'dsngy’, inls, 'é', asy', "luny
_ sort all words = [',', '1,2', 'l', '2', '2', '2', '2', '3', '3', '7', '8', '8', '9', 'n
® Unique words = ['wauiwa’, 'Ussn’, "URtRenu', eusnw', 'e9a', 'guww', 'win', 'g', 'ihwdsed
= = Sorted words = [',', '1,2', '1*, '2', '3', '7', '8', '9', 'agnszvIax', 'nguune', 'asd@’,
F—

Figure 4.14 The result of the word-filtering and sorting process

4.1.5 Training the Chatbot
After we have prepared the training dataset, we train the model by using the
Neural Network classification algorithm to provide more details and understanding of

how to build and code the model, and we will explain each line of code as follows:

34

import pandas as pd
import keras
import utils.sentence_utils as util

define available

model = keras.models.Sequential()

model.add(keras.layers.Enbedding(len(feature_words) + 1, 100, input_length=train_sequences.shape[1]))
model.add(keras.layers.Flatten())

model.add(keras.layers.Dense(64, activation='relu'))

model.add(keras.layers.Dense(len(train_labels), activation='softmax'))
model.compile(optimizer="'adan', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_sequences, encoded_labels, epochs=50)

Figure 4.15 The lines of code for training the model using the Neural Network

classification algorithm

To understand, we explain the code line by line. For example, the “Line of:
model = keras.models.Sequential():” means we will explain what the line of code is
doing and also explain each parameter in the line of code.

The expansion of code from Figure 4.13:
Line of: model = keras.models.Sequential():

We define a valuable model as a keras.models.Sequential(). The
keras.models.Sequential() is a class in Keras used to build a Sequential model, one of the
simplest types of Neural Network Models. It is a linear stack of layers where each layer
has exactly one input tensor and one output tensor, meaning the layers are added one after
the other in a sequence.

Key Features of Sequential:

1. Layer-by-Layer Construction:

We build the model by adding layers sequentially using model.add().
The data flows from the first layer to the last layer in a forward direction.

2. Ease of Use:

It’s simple to set up and works well for models with a straightforward
architecture, where the data flows linearly from one layer to the next.

3. Limitations:

It does not support models with multiple inputs, multiple outputs, or layers
with complex connections, such as shared layers or skip connections. We would use

the Functional API or the Model subclassing approach for such models.

35

Line of: model.add(keras.layers. Embedding(len(feature_words) + 1, 100,
input_length=train_sequences.shape(1))):

In the above line of code, we want to add embedding the feature words to the
layers of the model
The embedding layer represents words (feature words, or we can call the
tokens) as dense vectors in a continuous space. Instead of treating words as discrete
entities, embeddings map them to a high-dimensional vector space where semantically
similar words are closer together.
In this line of code, the input is Integer-encoded words (sequences of token
indices).
The output is dense vector representations (embeddings) of those words.
This layer is advantageous in Natural Language Processing (NLP) tasks, such
as text classification, sentiment analysis, machine translation, etc.
The parameters in the code:
1. len(feature words) + 1
This is the vocabulary size, i.e., the number of unique tokens (words) in our
dataset.
feature words likely contains the set of unique words/tokens, and +1
accounts for an extra padding token or unknown token.

Example: If there are 10,000 unique words, the vocabulary size will be

10,001.

2. 100

This is the embedding dimension or the size of the dense vector representation
for each word.

Each word will be mapped to a vector of length 100. For example:

The word “apple” — [0.12, -0.34, ..., 0.56] (100 values).

We can tune this value based on our dataset and computational resources.
Typical choices are 50, 100, 300, etc.

3. input_length=train_sequences.shape(1)

This specifies the length of the input sequences, i.e., the number of tokens

in each sequence (fixed padding/truncation).

36

The train_sequences is likely a 2D array, with each row containing a
sequence of token indices. train_sequences.shape[1] gives the number of tokens in each

sequence.
Line of: model.add(keras.layers. Flatten()):

The line model.add(keras.layers.Flatten()) adds a Flatten layer to our model in
Keras. This layer transforms a multidimensional input (such as a 2D or 3D tensor) into
a 1D vector. It is typically used when transitioning from convolutional or other feature
extraction layers to fully connected (dense) layers.

The input of this line of code is A multi-dimensional tensor (e.g., from a
convolutional or pooling layer). The output is a 1D vector, which preserves the batch
size while collapsing all other dimensions into a single one. In neural networks,
convolutional and pooling layers often output multi-dimensional arrays (e.g., feature
maps). However, fully connected (Dense) layers expect inputs from 1D vectors. The
Flatten layer bridges this gap by reshaping the data.

For example:

We can flatten the 3D feature maps (14, 14, 32) into a 1D vector of shape by
using a multiplier (14 * 14 * 32 = 6272), which means we have new data in a 1D vector

as [6727]
Line of: model.add(keras.layers.Dense(64, activation="relu’)):

In this line of code, we want to add the dense layers into model layers. The
dense layer is a fully connected layer, meaning:

Every neuron in the current layer is connected to every neuron in the previous layer.
It’s one of the most commonly used layers in feedforward neural networks.
The parameters in the code:

1. 64:

This specifies the number of neurons in the dense layer.

In this case, the layer has 64 neurons.

2. activation="relu'":

1) Specifies the activation function applied to the neurons' output.

37

2) ReLU (Rectified Linear Unit) is short for f(x) = max(0,x).
3) ReLU introduces nonlinearity to the model, allowing it to learn more
complex patterns. It is widely used because it helps prevent the vanishing gradient

problem and improves training efficiency.

How It Works in the Model
When data is passed through this layer:

Input Dimension:

If the previous layer (or input data) has n features, each input is multiplied by
the corresponding weight for each neuron. This means there are nx64 weights in this
layer (plus biases for each neuron).

For example:

If the input has 10 features, there will be 10x64=640 weights + 64 biases.

Output Dimension:

The layer outputs a vector with 64 elements (one for each neuron).

Each output value is computed as:

Yi = ReLU (Z(wj . I‘j) + bl)
J
where w; are the weights, x; is the input, and b; is the bias.

Figure 4.16 The formula to calculate the output of a single neuron in a neural network

using the ReL.U activation function

The ReLU (Rectified Linear Unit) is one of the most commonly used activation
functions in neural networks, especially in deep learning models. Its purpose is to
introduce non-linearity into the model, allowing the network to learn complex patterns

in the data.

Line of: model.add(keras.layers.Dense(len(train_labels), activation='softmax’)):
model.compile(optimizer="adam’, loss='sparse_categorical crossentropy’,

metrics=["accuracy']):

38

In this line is the step configures how the model will be trained, including the
optimization algorithm, loss function, and evaluation metrics.
Key Components:
1. optimizer="adam":
Adam (Adaptive Moment Estimation) is a widely used optimization algorithm.
It combines the benefits of momentum-based gradient descent and adaptive
learning rates to optimize the model efficiently.
Adam is robust and works well in most cases without much hyperparameter
tuning.
2. loss='sparse_categorical crossentropy":
1) This loss function evaluates the difference between the predicted
probabilities and the actual labels during training.
2) sparse_categorical crossentropy is used when:
The labels are provided as integers (e.g., [0, 1, 2]) instead of one-hot
encoded vectors (like [1, 0, 0] for class 0).

3) The function calculates the cross-entropy loss:

| N
loss = AN Zl log(p;y,)

Where:

o N is the number of samples.

* piy is the predicted probability for the true class y;.

Figure 4.17 The formula for calculating the loss of predicted probabilities in a neural

network

3. metrics=['accuracy']:
4. Accuracy is used to evaluate the performance of the model.
5. Keras calculates how often the model's predictions match the true labels

during training and validation.

39

Purpose of this line of code:

The dense layer with a softmax activation ensures the output is a probability
distribution over all possible classes.

The sparse categorical cross-entropy loss function evaluates how well the
predicted probabilities align with the actual labels.

The Adam optimizer efficiently updates the model’s weights and accurately

gives feedback on how well the model performs during training.
Line of: model.fit(train_sequences, encoded _labels, epochs=50):

In this line, the model.fit() is the function that trains the model using the given
input data (train_sequences) and corresponding target labels (encoded labels). It
adjusts the model's weights to minimize the loss function defined during the
model.compile(). The parameters encoded labels is

Components of the Code:

1. train_sequences:
1) This is the input data to the model.
2) It represents the features used for training the neural network.
3) Example:
a. If we train a text classification model, train_sequences might be
tokenized and padded text sequences.
b. For image classification, it could be arrays of pixel values.
2. encoded_labels:
1) These are the target labels corresponding to the input data.
2) The labels should match the type of loss function used:
a. If we use sparse categorical crossentropy, the labels should be
integers (e.g., [0, 1, 2] for three classes).
b. If we use categorical crossentropy, the labels should be one-hot
encoded (e.g., [1, 0, 0] for class 0).
3) Example:
For a classification task with three classes, encoded labels might look
like [0, 1,2, 0,2, 1].

40

3. epochs=50:
1) Epochs represent the number of complete passes through the training
data.
2) During each epoch, the model processes the entire training dataset
once.

3) Example:
If train_sequences has 1000 samples and epochs=50, the model will
process the dataset 50 times.

4) Increasing the number of epochs allows the model to learn better but

risks overfitting if too many epochs are used.

Key Outputs of model.fit()

Training Process:
The following figure shows the loss and metrics (like accuracy) printed in the

training process for each epoch.

Epoch 1/50

4f4 1s 8ms/step - accuracy: 0.814% - Lloss: 4.7562

Epoch 2/50

454 Bs 10ms/step - accuracy: 0.0273 - loss: 4.7437
Epoch 3/50

4f4 8s 8ms/step - accuracy: 0.0440 - loss: 4.7349

Epoch 4/50

4f4 Bs 9ms/step - accuracy: B.8644 - loss: 4.7228

Epoch 45/50

a/a Bs 9ms/step - accuracy: 08.9262 - loss: 1.6255
Epoch 46/56
&/ 4 Os 8ms/step - accuracy: 0.9533 - loss: 1.5657
Epoch 47/56
4/4 Bs 8ms/step - accuracy: 0.9356 - loss: 1.4608
Epoch 48/58@
4/4 @s 7ms/step - accuracy: 0.9387 - loss: 1.4177
Epoch 49/560
4/4 s 7ns/step - accuracy: 0.9481 - loss: 1.2008
Epoch 50/58
4f4 Bs 7ms/step - accuracy: 0.9345 - loss: 1.1631

Figure 4.18 The output report for each epoch in the training process

41

Trained Model:
After training, the model’s weights are updated based on the data. We can use
the model to predict or evaluate its performance on new data. We can code as shown

in the following figure.

def predict_response(text):
sequence = tokenizer.texts_to_sequences([text])
sequence = keras.preprocessing.sequence.\

pad_sequences(sequence, maxlen=train_sequences.shape[1])

prediction = model.predict(sequence)
predicted_label = np.argmax(prediction)
response = label_encoder.inverse_transform([predicted_label])[0]
return response

Figure 4.19 The sample code to predict the answer to the new question by using the

trained model

4.2 Experiment

In running the program test, since system testing takes quite a long time because
it uses heavy computer processing, we use the maximum test rounds at 10,000
prediction rounds that depend on our hardware, each round sending the same question
to each bot one by one (to fix them to predict the answer with same question nearest
time and same environment) store the result in a log file) and keep the results of the

running time and accuracy answer rate in log files, as shown in the figure below.

42

results
overall_predict_result_4.csv
overall_predict_result_5.csv
overall_predict_result_6.csv
overall_predict_result_7.csv
overall_predict_result_10.csv
overall_predict_result_15.csv
overall_predict_result_20.csv
overall_predict_result_50.csv
overall_predict_result_100.csv
predict_result_1.csv
predict_result_2.csv
predict_result_3.csv
predict_result_4.csv
predict_result_5.csv
predict_result_6.csv
predict_result_7.csv
predict_result_10.csv
predict_result_15.csv
predict_result_20.csv
predict_result_50.csv
predict_result_100.csv

simulation_4.log

simulation_5.log

Figure 4.20 Logging files by testing loop

After running the test, we write a program to analyze the results of the chatbot
run and display them in an easy-to-understand format, such as a summary table and

several graphs, to see the results and make them easily understood.

R e e e e e e e e e e e e e e e e e e e S e e e e e e e e e e e et e e e e e e
Simulate Date: 2025-01-23 11:12:18.966310
runtimes: 10000

samples: 156
features: 257

NN:Neural Network Classifier 297.024 100

No. of testing samples: 156 with 257 features

Method | prediction time(Avg. in ms) | Accuracy(Avg)

Rk R e e 2 e e e S e e S e S S e R S R R S R S T R S S L S

Figure 4.21 The sample report of result logging file

0.5 1

0.4

0.3 1

Time in milliseconds(ms)

0.2

0.1 A

Prediction time usage by 10000 runtimes
with 156 samples and 224 features

— NN

0 2000 4000 6000 8000 10000
Testing rounds(times)

Figure 4.22 The prediction time usage results of the Chatbots

44

Simples Features(Tokens) Training Time Usage(ms) Accuracy Rate(%) Loss Rate(%)

156 257 2688.519 91.42 1.56

Figure 4.23 Summary reporting table of training results logging file

Prediction accuracy by 10000 runtimes
with 156 samples and 257 features
1.0 A ‘
|
g 1
g \
S 0.8 A \
£ ‘
Il \
o |
oy
\
§ 0.6 1 ‘
S \
Y |
[
~ |
E— 04 T |
3
[0}
3 |
c |
)
S 0.2 | \
o ‘ |
£ |
o |
| |
0.0 A
0 2000 4000 6000 8000 10000
Testing rounds(times)

Figure 4.24 The prediction accuracy result, the blue in the graph means the prediction

response is corrected, and the white is incorrect

4.3 Results

We use the selection of Thai Industrial Laws from the Office of the Council of
State by downloading documents such as various acts in pdf file format, as shown in

the picture below.

45

wizswURydR
Tseu
WA odad

finaenauiey Us.
v v -
W o Yt o wwou wa. oeme
Wi o Tuseniatiaqiu

wezumanhanseUsiunngiinaenauiny fnsrususitlasnstusand1a Widsvneri
a ~. v

Tneffuntsaumsuiuugangwneinelsanu

" T G T o

Fmsmsenganlusaingrn Wasmsysedygavullasfhuuniuazdusonvesanii

g w5 g Wil oo n
UrygiRwiard viniiisgan dwisluil
— I

Figure 4.25 The sample source file of Thai industrial laws

The initial data we need to use to teach the chatbot is a PDF file. Some additional
steps in preparing the data are to make it convenient for users, so we have developed a

system to support direct file import according to the steps in the figure.

"
Laws’s Documents Y :
‘} j Indexing question
Pl % sentences & ‘ Transforms word ‘ Filter Stemmed
Pl create a train to features table words
PDF dataset
Laws Knowledge
Model

Figure 4.26 The training dataset collection workflow

For user-friendly usability, we have designed a chatbot via a web application
form to provide a quick and easy-to-use solution for answering questions and insights

into Thai industrial laws that can be easily set up and used anywhere, anytime.

46

Chat with Al industrial lawyer &

CRCULE
sadayanguineitsaiuwioimiosady

. - - v v -
NONTNTRNHNTINTN fimuasnasnIsanalasadeiisaiumiah wiadui ldvsananiiu
dovinanudou uazneusFunseau Tu Tseam w.a. weee

20 10 lungnsmeail “waiorn (boiler)” vaunpaadn

v o . - - -~ - .
(o) wiiadnf Idzaamaniludninanuiou nianaussuusiau wisdui ldvoamaniiudarin
ANTau wisnousTuuseau doadiuluauniasgidguuainmun Tasdsenaa lusiieny
wnw

30 & winvh wiadui Ideesmaniivdminaudou nionmusSunssduiidadaia 19w wis
#uit 1gmpamanindovinanudou wianuriuusaau wiadui 1doaavaniudatinanusou
wianmaurFuusaau wiadui ldesamaniiuderinaudou nianmusFunsedu ssuuvisuay
gUn30iA 4 Aefuauiuiuanuiou

‘ Four question = J

Figure 4.27 The industrial laws chatbot application

47

CHAPTER 5

CONCLUSION

Chatbots are an effective, efficient, quick, and accurate way for users to seek
answers to their questions and access data concerning complex Industrial Laws. The
purpose of a chatbot system is to simulate human conversations. Natural language
processing is used in conjunction with Python to develop a chatbot. Simple but
automated, this can be easily trained and applied in any field, depending on the dataset
used to teach the chatbot. It is also possible to teach chatbots to learn new knowledge
or modify existing knowledge to keep it accurate and current. The trainer or
administrator can train and update the chatbot's knowledge base anytime, enabling the

chatbot to have the most pertinent data.

48

REFERENCES

Abdullahi, H. S., Sheriff, R. E., & Mahieddine, F. (2017). Convolution neural
network in precision agriculture for plant image recognition and classification.
In 2017 Seventh International Conference on Innovative Computing
Technology (INTECH) (pp. 1-3). IEEE.
http://doi.org/10.1109/INTECH.2017.8102436

Garg, R., Riya, R., Thakur, S., Tyagi, N., Basha, K. N., Vij, D., ... Sodhi, G. S.
(2021). NLP based chatbot for multiple restaurants. In 2021 10th International
Conference on System Modeling & Advancement in Research Trends
(SMART) (pp. 439-443). IEEE.
http://doi.org/10.1109/smart52563.2021.9676218

Guolin, D. (2007). Research on risk evaluation model of project financing based on
neural network. In 2007 IEEE International Conference on Grey Systems and
Intelligent Services (pp. 1072-1076). IEEE.
http://doi.org/10.1109/GSIS.2007.4443437

Hashana, A. M. J., Brundha, P., Ayoobkhan, M. U. A., & Fazila, S. (2023). Deep
learning in CHATGPT - A survey. In 2023 7th International Conference on
Trends in Electronics and Informatics (ICOEI) (pp. 1001-1005). IEEE.
http://doi.org/10.1109/icoei56765.2023.10125852

Holdsworth, J., & Scapicchio, M. (2024). What is deep learning? .
https://www.ibm.com/se-en/topics/deep-learning

Huang, Y. (2010). Study of the college network aided teaching platform. In 2010 3rd
International Conference on Advanced Computer Theory and Engineering
(ICACTE). IEEE. https://doi.org/10.1109/icacte.2010.5579856

IBM. (2024). What is a neural network?. https://www.ibm.com/topics/neural-

networks

49

Jothi, J. N., Poongodi, S., Chinnammal, V., Kannagi, L., Panneerselvam, M., . . .
Prabu, R. T. (2022). Al based humanoid chatbot for medical application. In
2022 3rd International Conference on Smart Electronics and Communication
(ICOSEC) (pp. 1135-1140). IEEE.
https://doi.org/10.1109/icosec54921.2022.9951910

Prayitno, P. 1., Leksono, R. P. P., Chai, F., Aldy, R., & Budiharto, W. (2021).
Health chatbot using natural language processing for disease prediction and
treatment. In 2021 Ist International Conference on Computer Science and
Artificial Intelligence (ICCSAI) (pp. 62—67). IEEE.
https://doi.org/10.1109/iccsai53272.2021.9609784

Reddy, V. V., Pavan Kumar, P. V., & Suvarna Vani, K. (2023). Lung cancer stage
classification utilizing k-Nearest Neighbors (k-NN) and Convolutional Neural
Networks (CNN). In 2023 2nd International Conference on Futuristic
Technologies (INCOFT) (pp. 1-7). IEEE.
https://doi.org/10.1109/INCOFT60753.2023.10425683

Singh, J., & Banerjee, R. (2019). A study on single and multi-layer perceptron neural
network. In 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC) (pp. 35-40). IEEE.
http://doi.org/10.1109/ICCMC.2019.8819775

Yan, R., Song, Y., & Wu, H. (2016). Learning to respond with deep neural networks
for retrieval-based human-computer conversation system. In Proceedings of
the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval (pp. 55-64). Association for Computing Machinery.
https://doi.org/10.1145/2911451.2911542

Yu, X., Efe, M. O., & Kaynak, O. (2002). A general backpropagation algorithm for
feedforward neural networks learning. /[EEE Transactions on Neural
Networks, 13(1), 251-254. https://doi.org/10.1109/72.977323

Zhou, L., Gao, J., Li, D., & Shum, H.-Y. (2020). The design and implementa
Xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1),

53-93. https://doi.org/10.1162/coli_a 00368

APPENDIX

THE SOURCE DOCUMENT OF INDUSTRIAL LAWS

4 WWW.0Cs.go.th

driineruamgnssumsnaegni
Better Regulation for Better Life

Translation of Law

wizsrlRi/wizswimua Us/da/ada/ Aay

uameuEdnes v € 0 m s uw|lu oUW H W W g u] -

. e WansAuM : "5
BTG 1- 20 970 23 578075

Tsasnu B wszsruiinycialsosu (@il 3) w.a. 2562

Tsaew Ton ngaunlusang

wssdyailsenuninan)sraaantu wa.
> 5 !

2550 (2 576019) y1Eantinfisgant 6 HIRST @ MATHIEING

> [wsesdyofilsesnu wa. 2535 (6 s1uns)

o o |
atu: atuufly sfofl 2 aowe: deflwalideru «

ARATMNTTH

B wssswlygilsosm (atiuil 2) w.A. 2562

UNSINWEITT

atu: atvudly sfofl 1 Anwe: doilualivedu

0

& ngnsswsroudsdussnisdnineulAansEnsie NI NgRaMnTH

W.H. 2560

rnu wsgs iy

NNHULILUNITU

Uszuanguuig

Taoomu X

30 ww1su 2562 (AD. 2019)

auupaAn R vy G

BY=)

30 wwneu 2562 (AD. 2019)

BY=)

2 ganAu 2560 (A.D. 2017)

Figure A1 The Office of The Council of State (www.osc.go.th)

\&nsul’somuqnamnssu

DEPARTMENT OF INDUSTRIAL WORNS.

wiman Redfiunsu ¥ gw/fonssu ¥ noxueRiAeaton

ws:s1wsUrunda Isvviu

| ws.u.Tseviu .
+ ws=sWUnIadAls0Iu (@UUR 3) wa. 2562

usmisBiannsoiing v

usmsdoya ITA~ Gado v

wsu. + wssstwUndadtilsooiu (@Uufl 2) wa. 2562

md"m" Reony * WS.U. MS3IU8ANLEAINTUMSHDISINDYIAUDIN10SIUATS W.A. 2558

Homsaiien + ws.u. [soou wa. 2535

o + ws.u. [soonu wa. 2535 adunguiim

isssunton + Us:mAnsulsooiugaaIHAssU 1320 SEMsuaavtuayruinloe3Emsmosiannsadna w.a. 2567
"I‘.mﬁlm

dua

m

Figure A2 Department of Industrial Works (https://www.diw.go.th/)

50

[] e M~ Not Secure — law.industry.go.th & N fl'l +

ws=s1isUndndalsooiu w.A. 2535

UAUs:MATS w.A. 2535

wsu.Alfeadow (4) —

ws:sIUINIAIsoou w.A. 2535

ws:s1sUnyndalsooiu w.A. 2535 (dwian! aduf 2 ua: avui 3 w.A. 2562)

m [

ws:s sUnycdAlsooiu (aUui 2) w.a. 2562

ws:ssUryedalsoou (aUud 3) w.a. 2562

wssswnouim (0)

nNNSs:Nsoo (22) e
uUs:mFns:nsovo (94) L
UszmAua:Kaodat3au (35) 4
MwwInuLa:FA3aode (1) 5

IANAGANAIASNTIAN (0

Figure A3 The Source file (http://law.industry.go.th)

51

52

CURRICULUM VITAE
NAME Suttidech Jittawisuttikul
EDUCATIONAL BACKGROUND
2004 Bachelor’s Degree of Engineering and
Technology

Computer Science

Mae Fah Luang University

WORK EXPERIENCE
2013 — Currently Senior Programmer
Relation Soft Company Limited
2012 -2013 Senior Programmer
Kiatnakin Phatra Bank Public Company
Limited
2011 -2012 Programmer
Home Product Center Public Company
Limited
2008 — 2011 Programmer
Crystal Software Group Public Company
Limited
2005 - 2008 Programmer
Abstract Computer Company Limited
2004 — 2005 Programmer

Western University

	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	REFERENCES

