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ABSTRACT

Aquilaria, known as agenusin the Thymel aeaceae family, isthe primary source
of agarwood and serves as a valuable resource in medicine and the fragrance industry.
Asaprecious resin, agarwood has significant economic, cultural, and medicinal value.
Given its medicinal and economic importance, understanding the fungal community
associated with Aquilaria spp. iscrucial. Currently, there are limited reports on saprobic
fungi, whereasin the study of endophytic fungi, only some have been reported for their
inducing potential or biological activities, and there are few reports on the fungal
community of related fungi of Aquilaria spp.

In this study, we investigated the fungal communities associated with Aquilaria
sinensis by collecting samples from four plantations in Guangdong and Y unnan provinces
of China. Fungal isolation was conducted from different plant tissues, including agarwood
resin, hedthy branches, healthy leaves, and decaying branches, and separated into four
partsin this study. First, 960 fungal strains were isolated and identified at the genus leve,
bel onging to 64 generawithin the Ascomycota, Basidiomycota, and Mucoromycota phyla.
Those 64 genera are provided with detailed notes including information on their habitats,
life strategies (e.g., endophytic, saprobic, pathogenic), distribution ranges, and known host
associations. These comprehensive annotations serve as a reference for future taxonomic,
ecological, and functional studies. In addition, five novel species were described, viz,
Banksiophoma endophytica, Deniquelata aquilariae, Montagnula sinensis,
M. yunnanensis, and Fomitiporia aquilariae in this part. The second part, comprising 47
representative strains from part one, was tested for antagonistic activity against common

plant pathogens (Bacteria pathogens. Erwinia amylovora, Pseudomonas syringae, and



Salmonella enterica; and funga pathogens. Alternaria alternata, Botrytis cinerea, and
Penicillium digitatum), and the results showed that 40 of 47 strains have biocontrol
potentia, with the most significant being Lasiodiplodia sp. (YNA-D3). Thethird part, 12
selected strains from part one, were used in artificial agarwood induction experiments. In
this part, Fusarium solani (GDA-HCO01) exhibited outstanding performance by
successfully inducing the formation of key medicina compounds, including agarotetrol,
which met pharmacological standards as early as the sixth month. In the last part, we
introduced one genus, 17 novel saprobic fungal species, and five new records, belonging
to 14 generain nine families, four orders, and two classesin Ascomycota.

This research fills critical gaps in the diversity and ecologica roles of agarwood-
associated fungi and saprobic fungi, and enriches the taxonomic foundation of the
agarwood fungal ecosystem. Furthermore, severa funga strainswith potential antagonistic
activity against pathogens were identified. The study aso provides important theoretical
insghts and practica support for elucidating the biologica regulatory mechanisms
underlying agarwood formeation, developing effective biological induction techniques, and
understanding the interactions between medicina plants and fungi.

Keywords: 1 New Genus, 22 New Species, 6 New Records, Agarwood-saprobic
Fungi, Aquilaria, Ascomycota, Basidiomycota, Biologica Control,
Biotechnology, Endophyte, Fungal Communities, Fungal Induction,
Fusarium solani, Genera Notes, Lasiodiplodia, Mucoromycota
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CHAPTER 1

INTRODUCTION

1.1 Background and Rationale

111 Overview of Agarwood: High-Value Resource

Agarwood is a highly valuable, fragrant, and dark resinous heartwood, formed
after microorganismsinvade tree wounds (Chen et al., 2017; Chhipaet al., 2017; Wang
etal., 2018, 2019b; Tanet al., 2019). Agarwood is also known as ‘ ‘woods of the Gods’’,
and it has been widely used as incense, decorations, jewelry, perfume (essentia ails),
medicine and religious ceremonies (Wang et al., 2018; CITES, 2022). In terms of
economic status:. the best agarwood price ranges from $100,000-800,000 per kilogram
(https:/tmhagarwood.com/agarwood-price/), and agarwood oil had a global market
valueof USD 278.03 millionin 2021 (Niego et a., 2023a), with amarket analysis report
has predicted that the agarwood essential oil market will reach a value of USD 345.5
million by 2030 (Agarwood Essential Oil Market, 2021). In terms of medicina value:
agarwood plays important roles in traditional medicine in Arabia, China, and India, as
well asin modern pharmacology (Liu et a., 2013; Liao et al., 2018; Du et al., 20223,
Ngadiran et a., 2023; Wang et al., 2018). The natural formation of agarwood is very
sow and rare, and fungal induction has been reported as an effective method for
artificially inducing agarwood formation (Laurence, 2013; Azren et a., 2018;
Subasingheet al., 2019). However, currently only asmall number of fungal strainshave
been reported to be able to induce agarwood, and the characteristics of different fungal
strains are different (Du et al., 2022a). This means that more research needs to be
conducted to screen suitable stable fungal strains that can quickly induce agarwood.
Research in this area can promote economic benefits, reduce dependence on chemical

induction, and promote green and sustainabl e devel opment.



1.1.2 The Central Role of Aquilaria in Agarwood Production and the Need
for Mycological Insight

Aquilaria is the most important and common genera for the production of
agarwood in Thymelaeaceae, it as a genus of evergreen broad-leaved trees in tropical
and subtropical regions, mainly distributed in Southeast Asia (Borneo, Cambodia,
China, India, Indonesia, Laos, Malaysia, New Guinea, Philippines, Thailand, and
Vietnam) (Rasool & Mohamed, 2016; Wang et al. 2018, 2019). According to the latest
CITES (2022) report, Aquilaria contains 21 accepted species, of which 13 species are
reported to produce agarwood resin (Lee et al. 2016; POWO, 2021). In China, Aquilaria
sinensis is the species that mainly produces agarwood, primarily planted in southern
regions viz., Fujian, Guangdong, Guangxi, Hainan, Hong Kong, Taiwan, and Y unnan
provinces, while A. yunnanensisisonly distributed in Y unnan Province (Cui et al., 2013;
Tibpromma et a. 2021). The genus Aquilaria holds significant economic, medicinal,
and ecological value. Research on Aquilaria spp. not only supports the sustainable use
and conservation of agarwood resources but also provides a scientific foundation for
the development of artificial induction technologies and high-value products.

Fungi are widely distributed across various ecological niches in terrestrial,
freshwater, and marine ecosystems, where they exist in diverse forms such as pathogens,
endophytes, saprobes, epiphytes, and symbionts (Ritz & Young, 2004; Hyde et al.,
2020a, 2020b). They play vital ecological roles by decomposing organic matter,
promoting nutrient cycling, and maintaining soil health, thereby indirectly supporting
plant diversity and ecosystem stability (Hyde & Lee, 1995; Hyde et a., 2019a).
Through interactions with host plants, fungi can establish mutualistic relationships that
enhance plant resilience to environmental stresses such as drought and disease.

Research on pathogenic fungi associated with agarwood-producing trees has
garnered significant interest because of the high value of agarwood (Li & Chen, 2008;
Xu et a., 2012; Samsuddin et al. 2019; Syazwan et al., 2019). Several fungal species
have been reported to contribute significantly to agarwood formation by stimulating
resin production in Aquilaria spp. (e.g., Fusarium solani (Mart.) Sacc.) (Rasool &
Mohamed, 2016; Subasinghe et al., 2019; Faizal et a., 2020; Du et a., 2022a; Du et al.,



2024b). Moreover, endophytic fungi isolated from Aquilaria spp. have demonstrated
notable bioactivities, including antimicrobial and anti-inflammatory effects (e.g.,
Nemania aquilariae Tibpromma & Zhang Lu) (Azren et d., 2018; Tibpromma et &,
2021; Du et a., 20223, c). However, studies on fungi associated with Aquilaria spp.
remain limited and lack systematic investigation, and substantial variation often exists
among strains of the same fungal species. Therefore, it isessential to identify and screen
stable, effective, and highly bioactive fungal strains. In addition, research on saprobic
fungi of Aquilaria spp. is extremely scarce, prior to this research, there were only eight
records available—most lacking molecular data and comprehensive morphological
descriptions. Therefore, in-depth research on plant-associated fungi—especially those
associated with Aquilaria spp.—is crucial for advancing our understanding of plant—
fungi interactions, expanding funga biodiversity knowledge and for advancing our
understanding of agarwood formation mechanisms, enhancing the medicinal potential
of host plants, and promoting the sustainable devel opment of biological resources.

1.1.3 Current Knowledge Gapson the Functionality and Ecological Roles
of Agarwood-associated Fungi

Southern China and Southeast Asia, as major distribution regions for Aquilaria
spp., are known for their rich biodiversity and the extensive use of agarwood in
traditional medicine and cultural practices (Azren et a., 2018; Wang et a., 2018).
However, fungi inhabiting various tissues of Aquilaria spp.—particularly endophytes
and saprobes—are still poorly understood in terms of community structure, ecological
function, and specific rolesin resin induction.

Endophytic fungi from agarwood have play attention, due to most of the fungi
reported as inducers are endogenous, and some of the secondary metabolites isolated
from endophytic fungi are similar to those in agarwood resin. Although previous studies
have demonstrated that endophytic fungi play a key inductive role in agarwood resin
formation (Rasool & Mohamed, 2016; Subasingheet al., 2019; Du et a., 2022a, 2024b),
systematic research on fungal communities associated with the genus Aquilaria remains
limited, and strains with better induction effect, stronger biological activity, and more
stable characteristics still need to be screened.



On the other hand, research on saprobic fungi is especialy scarce, with only a
few species reported to date, most lacking comprehensive morphological descriptions
and molecular data. In-depth studies on the isolation, identification, and functional
characterization of Aquilaria-associated fungi will not only enhance our understanding
of fungal diversity and uncover potential new species, but also provide critical insights
into the biological regulation of agarwood formation. Such research will support the
development of efficient biological induction technologies and promote the sustainable
utilization and industrial advancement of agarwood resources.

1.2 Significance of the Study

As a traditionad medicina resource, agarwood has long been vaued for its
therapeuti c properties, including anti-inflammatory, analgesic, and sedative effects (Liao et
a., 2018; Wang et d., 2018). It isa so aprecious aromatic material widdly used inreligious,
cosmetic, and cultura practices across Asa and the Middle East (Du et d., 2022a). With
increasing global demand, agarwood has become a high-vaue commodity, contributing
significantly to internationd trade and rurd economies (Azren et d., 2018; Rasool &
Mohamed, 2016). Therefore, Aquilaria (the agarwood-producing genus) holds substantial
importance across medical, economic, ecologica, and cultura domains. In addition,
Aquilaria species play an essentia role in conserving subtropical and tropical biodiversity
andformanintegra part of sustainableforestry and agroforestry systems. Assuch, research
onAquilariaisclosdy linked to human hedlth, culturd heritage, biodiversity conservation,
and economic development.

Research on fungi associated with Aquilaria spp. isequaly important. Thesefungi
are believed to play a central role in inducing agarwood formation by activating the host’s
defense responses and promoting resin biosynthesis (Subasinghe et d., 2019; Du et d.,
20223, 2024b). Fungi isolated from Aquilaria spp. have demonstrated promising
bioactivities, including antimicrobia and anti-inflammatory effects, indicating their
potential for pharmaceutical and agricultural applications (Azren et d., 2018; Du et 4.,

2022¢). However, comprehensive studies on the taxonomy, ecology, and functions of



Aquilaria-associated fungi reman limited—especidly regarding saprobic fungi.
Investigating these fungal communities not only enhances our understanding of plant—fungi
interactions but may also lead to the discovery of novel fungal taxa and the identification
of effective resin-inducing or biocontrol strains. Such research supports sustainable
agarwood production, promotes biodiversity conservation, and provides new insights for

the development of natural products.

1.3 Objectives

1.3.1 To isolate and identify endophytic fungi of Aquilaria sinensis and
agarwood-associated fungi to the genus level, and analyze its community diversity.

1.3.2 To screen and test the ability of fungal strains to induce and promote
agarwood formation by Agar-Wit and PIT methods.

1.3.3 To screen and test the antagonistic abilities of fungal strains against
fungal and bacterial pathogens.

1.3.4 To identify and describe novel/known saprobic/endophytic/agarwood-
associated fungi taxa of Aquilaria spp. in China based on morphology and phylogeny

evidence.

1.4 Expected Outcomes

1.4.1 Endophytic fungi of Aquilaria sinensis and agarwood-associated fungi
will be identified and described to the genus level, community diversity will be
analyzed and discussed, and notesfor each genuswill be provided asliterature materials.

1.4.2 The ability of funga strains to induce and promote agarwood formation
will be screen and test.

1.4.3 The antagonistic ability of fungal strains against funga and bacterid
pathogens will be screen and test.



1.4.4 Thisstudy will provide the hogt, lifestyle, and perform the taxonomy and

phylogeny analyses of new taxa associated with Aquilaria spp.

1.5 Research Contents

This study focuses on the taxonomy, phylogeny, inducing ability, antagonistic
ability, and community analysis of fungi associated with agarwood and agarwood-
producing trees in southern China, comprising seven chapters.

In Chapter 1, a genera introduction is provided, introducing the background
and rational e for the study, discussing the importance of agarwood and Aquilaria spp.
and their associated fungi in these biodiverse regions. It outlines the significance of the
study, clearly stating the research objectives, expected outcomes and the outline of the
thesis.

In Chapter 2, an in-depth overview of agarwood and agarwood-producing trees,
along with a detailed review of fungi, and the relationships between them, is provided.

In Chapter 3, the research methodology of fungi in Aquilaria sinensis's inside
tissue is described. Including the isolation of endophytic and agarwood-associated
funga strains and preliminary identification, identification of new species based on
multi-gene phylogenetic analyses and culture morphology, comparative analyses of
community composition of 960 isolated strains based on circular phylogenetic treesand
related charts, and summary of basic characteristics of 64 genera, such as lifestyle,
habits, host and distribution range, and relationship with agarwood, as reference
materials for literature.

In Chapter 4, the isolation, identification, and screening methods of induced
fungal strains, as well as the detection and analysis methods of agarwood quality, are
provided. A total of two experiments were conducted, and the preliminary screening
experiment lasted for one year. Using 12 strains, a highly efficient strain was screened.
In the extended experiment, the selected strains were used to conduct a six-month
experiment using two common fungal induction methods. The results showed that the

strain Fusarium solani (GDA-HCO01) promoted the production of agarwood resin by



Agar-Wit method at the sixth month, which contained agarotetrol that could meet the
medicinal standards.

In Chapter 5, the isolation, identification, and screening methods (Dual culture
assay) of strains with antagonistic ability are provided. This study underwent pre
experiments and formal experiments, and ultimately 40 out of 47 strains were
considered to have inhibitory effects, with inhibition rates calculated and analyzed.
Lasiodiplodia sp. (YNA-D3) showed the best inhibition effect on pathogens, with a
more in-depth discussion and analysis were conducted.

In Chapter 6, research methodology of saprobic fungi are provided, including
samples collection and isol ation, observation and recording of morphological structures,
acquisition of multi gene sequences, and construction of phylogenetic trees. Dealing
with the taxonomic and phylogenetic study of saprobic fungi related to Aquilaria spp.
in Guangdong and Y unnan provinces of China. Brief notes for each genus and species
are given. The morphological structure of each species has been thoroughly examined
and made photo plates. The phylogenetic analyses for each taxa are separately carried
out based on the datasets of multi-gene sequences. The description and illustrations for
each taxon are provided.

In Chapter 7, providing an overal conclusion, the research advantages, and

future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Agarwood

2.1.1 The Importance and Value of Agarwood

Agarwood is a highly valuable, fragrant, and dark resinous heartwood (Liu et
al., 2017; Wang et al., 2018, 2019b; Tan et al., 2019). Agarwood is also known under
different names in different regions, including agar (Hindi), akil (Tamil), aloe wood
(Indonesian), chen xiang (Chinese), chim-hyuang (Korean), eaglewood (Papua New
Guinea), gaharu (Malaysian), jin-koh (Japanese), mai ketsana (Lao), mai kritsana
(Thai), oud (Arabic), oud or agar attar (Middle Eastern), sasi or sashi (Assamese), and
tramhuong (Vietnamese) (Chen et al., 2012; Rasool & Mohamed, 2016; Chhipa et al.,
2017). Agarwood has been referred to as the “woods of the Gods”, and it has been
widely used as incense, perfumes (essential oils), in medicine and religious ceremonies
(Persoon, 2007; Zhang et al., 2012; Liu et al.,, 2013; National Pharmacopoeia
Committee, 2015, 2020; Kalra & Kaushik, 2017; Wang et al., 2018).

Agarwood is well known as incense because it has a pleasant fragrance when it
is burned, and the essential oil of agarwood is the most important ingredient in high-
end perfume due to its unique fragrance (Zhang et al., 2012; Al-Hindi et al., 2018).
Agarwood has been widely used in Buddhist, Hindu, and Islamic ceremonies (Wang et
al., 2018). In the Middle East, agarwood is a famous incense, and the essential oil is
being used as high demanding perfumes (Barden et al., 2000; Hashim et al., 2016). In
addition, agarwood incense plays an important role in the Japanese ‘“koh-doh”
ceremony (Compton & Ishihara, 2006; Hashim et al., 2016).

Agarwood also plays an important role in both traditional and modern medicine
(Liu et al., 2013; National Pharmacopoeia Committee, 2015, 2020; Wang et al., 2018).

In traditional Chinese medicine, agarwood is used as a sedative, gi-regulating drug, and



carminative medicine, which can also alleviate stomach disease, cough, rheumatism,
and high fever (Liu et al., 2013; National Pharmacopoeia Committee, 2015, 2020;
Wang et al., 2018). In traditional Indian medicine, agarwood is used to treat diarrhea,
dysentery, vomiting, anorexia, oral and dental diseases, facial paralysis, tremor, sprain,
and fracture (Hashim et al., 2016). In traditional Arabian medicine, agarwood essential
oil is often used in aromatherapy (Wang et al., 2018). Modern pharmacological research
has shown that agarwood has the potential of inducing sedation, reducing nerve
excitability as well as being antibacterial and antifungal, anti-inflammatory, having
analgesic effects, gastrointestinal regulatory properties, antiasthma, anti-diabetes, and
antioxidation (Guo et al., 2002; Wang et al., 2018).

The unique fragrance, rare production, and wide range of uses of agarwood have
led to its very high market price, making it as the most expensive non construction
timber forest product in the world. The price of agarwood varies with the quality of its
resin, the best agarwood ranges from $100,000 to 800,000 per kilogram, and the
essential oil of agarwood in the global market is sold for $30,000 per liter
(https://tmhagarwood.com/agarwood-prices-updated-in-2021, accessed on 9 March
2022). The agarwood oil had a global market value of USD 278.03 million in 2021
(Niego et al., 2023a), with a market analysis report has predicted that the agarwood
essential oil market will reach a value of USD 345.5 million by 2030 (Agarwood
Essential Oil Market, 2021). Its preciousness and researchable value are self-evident.

2.1.2 Introduction of Agarwood-producing Trees

Woody plants that can produce agarwood are known as “agarwood-producing
trees” or “incense-producing trees” (Rasool & Mohamed, 2016). The trees of
Thymelaeaceae, are typical evergreen trees mainly distributed throughout Southeast
Asia (Xu et al., 2016). Thymelaeaceae consists of many important incense-producing
trees species, including those from the genera Aetoxylon (Airy Shaw) Airy Shaw,
Aquilaria, Gonystylus Teijsm. & Binn., Gyrinops, and Phaleria Jack, while Aquilaria
and Gyrinops are the two most important genera for the production of agarwood
(Rasool & Mohamed, 2016). According to the latest CITES (2022) report, Aquilaria
contains 21 accepted species (POWO, 2021), and in Aquilaria, 13 species are reported
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to produce agarwood resin: A. baillonii Pierre ex Lecomte, A. beccariana Tiegh.,
A. crassna Pierre ex Lecomte, 4. filaria (Oken) Merr., A. hirta Ridl., A. khasiana
Hallier f., A. malaccensis Lam., A. microcarpa Baill., A. rostrata Ridl., A. rugosa K.Le-
Cong & Kessler, A. sinensis, A. subintegra Ding Hou and 4. yunnanensis (Lee et al.,
2016). Excessive logging of agarwood is the biggest threat to agarwood-producing trees.
Twenty species of Aquilaria have been assessed for the IUCN Red List, including 4.
sinensis and A. yunnanensis (IUCN, 2022). The main morphological difference
between A. yunnanensis and A. sinensis is that the fruit of A. yunnanensis is oval, with
short seed appendages, and the seed surface is densely covered with yellow pubescence,
while A. sinensis has oblong fruit, seeds with long appendages, and smooth or covered
with white pubescence on the surface (Kang, 2021). In China, Aquilaria sinensis is
primarily planted in southern regions viz. Fujian, Guangdong, Guangxi, Hainan, Hong
Kong, Taiwan, and Yunnan Provinces, while A. yunnanensis is only distributed in

Yunnan Province (Cui et al., 2013; Tibpromma et al., 2021).

2.2 Overview of Fungi

Fungi are diverse and are the second largest group in the eukaryotes (Joshi &
Chettri, 2019). Both microfungi and macrofungi are important in the functioning of
ecosystems (Joshi & Chettri, 2019; Hyde et al., 2020), they are ubiquitous and play
different roles as pathogens, endophytes, saprotrophs/decomposers, epiphytes, and
symbionts in various diversified ecological niches in terrestrial, freshwater, and marine
environments (Ritz & Young, 2004; Joshi & Chettri, 2019).

Endophytic fungi typically present as internal, unseen, microscopic hyphae,
reside entirely within plant tissues, and may grow within roots, stems, or leaves (Stone
et al., 2004; Rodriguez et al., 2009). Endophytic fungi are defined by Liao et al. (2025)
as “asymptomatic microbial partners that are intimately associated and co-inhabit
within healthy internal plant tissues with the ability to confer benefits, co-evolve and
alter their lifestyle depending upon plant life stages and adverse conditions”. Most of

the endophytic fungi have been found to be non-sporulating, often remaining identified
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as mycelia sterilia (Zhou & Hyde, 2001; Rashmi et al., 2019). Endophytic fungi have
been reported to be capable of transforming into saprophytes or potential pathogens,
depending largely on different environmental factors (Promputtha et al., 2010; Rashmi
et al., 2019). Ecologically, endophytic fungi provide several benefits to plants; for
example, grass endophytes provide their hosts with a number of benefits, such as
resistance to herbivory and pathogens, thereby improving their fitness (Saikkonen et al.,
1998; Stone et al., 2004); nongrass endophytes produce antifungal or antibacterial
substances (Peldez et al., 2000; Du et al., 2022c¢), as well as insecticidal compounds
(Johnson & Whitney, 1994; Stone et al., 2004). Some endophytic fungi have been
reported to enhance economic benefits; for example, the endophytic fungi associated
with Aquilaria plant genus can induce the production of agarwood resin (Du et al.,
2022a, 2024b); on the other hand, natural products such as drugs are mainly produced
by microbes, and various active metabolites and compounds used as antimicrobials,
antivirals, cytotoxic and immunosuppressive drugs comprising about 23,000 active
compounds are from microbes of which about 42% are derived from fungi (Demain,
2014; Joshi & Chettri, 2019).

Saprobic fungi, the largest group of fungi, are also known as decomposers (Hartl
et al, 2012). Saprobic fungi represent essential organisms in soil microbial
communities due to their wide array of metabolic processes and biotransformations,
including the secretion of some enzymes to decompose dead organic matter, which
makes them central in carbon recycling and as a crucial link in the ecosystem (Hartl et
al., 2012; van der Wal et al, 2013; Eichlerova et al., 2015). Generally, saprobic fungi
are believed not to be host-specific, but host-recurrence is a preferable term to host-
preference for saprobic fungi (Zhou & Hyde, 2001). Saprobic fungi are generally
identified at the species level, and mainly rely on morphological characteristics and
phylogenetic analyses.

Pathogenic fungi are a significant group within the fungal kingdom that can
infect various plant, animal, and human hosts. They play a crucial role in regulating
population dynamics, community structure, and even ecosystem processes (Agrios,

2005; Hyde et al., 2020). In plants, fungal pathogens are major pathogens in agriculture
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and forestry, leading to reduced productivity and loss of biodiversity (Dean et al., 2012;
Fisher et al., 2012). These fungi invade their hosts through natural openings,
mechanical penetration or enzymatic degradation of plant cell walls (Van Kan, 2006)
and produce toxins, enzymes or effector proteins to suppress host defenses and promote
colonization (Stergiopoulos & de Wit, 2009). These taxa include obligate biotrophs,
necrotrophs and hemibiotrophs, and their interaction strategies with hosts are different
(Horbache et al., 2011). The top ten pathogens listed in the molecular plant pathology
list are Magnaporthe oryzae B.C. Couch, Botrytis cinerea Pers., Puccinia spp.,
Fusarium graminearum Schwabe, Fusarium oxysporum Schltdl., Blumeria graminis
(DC.) Speer, Mycosphaerella graminicola (Fuckel) J. Schrét., Colletotrichum spp.,
Ustilago maydis (DC.) Corda, and Melampsora lini (Ehrenb.) Thiim (Dean et al., 2012).
Pathogenic fungi are closely related to economic crops and human living environment,

so research on them has received a lot of attention.

2.3 Studies of Fungi Associated with Agarwood

2.3.1 Endophytic Fungi Associated with Agarwood-producing Trees

Under natural conditions, the formation of agarwood is rare and very slow
(Chen et al., 2017; Tibpromma et al., 2021). For the sustainable development of the
agarwood industry, many agarwood-producing countries (Cambodia, China, Indonesia,
Malaysia, Thailand, and Vietnam) are committed to developing artificial induction of
agarwood resin (Rasool & Mohamed, 2016; Azren et al., 2018). Biological induction
(fungal inoculation) is considered to be effective, especially in Aquilaria sinensis, and
most of the fungi used for inoculation are endophytes that have been isolated from
healthy or infected wood of agarwood-producing trees (Laurence, 2013; Azren et al.,
2018; Subasinghe et al., 2019).

Therefore, many researchers are committed to isolating various endophytic
fungi from different parts of agarwood-producing trees. Some endophytic fungi have
been reported to have the ability to induce agarwood, such as Aspergillus niger Tiegh.

(Subasinghe et al., 2019), Fusarium solani (Faizal et al., 2020; Du et al., 2024b), F.
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oxysporum Schltdl. (Zhang et al., 2022b), Lasiodiplodia theobromae (Pat.) Griffon &
Maubl. (Han et al., 2014), and Melanotus flavolivens (Sacc.) Singer (Qi et al., 1998).
The strain of genus Fusarium has the highest number and frequency among all strains
reported to have the inducing ability (Du et al., 2022a). However, the most widely used
method on the market is chemical induction, and due to the rapid economic growth, the
supply of agarwood is far less than the demand. Therefore, in order to balance supply
and demand and achieve sustainable development, it is still necessary to study the
ability of endophytic fungi to induce agarwood.

Besides, endophytic fungi have biological activity and are a source of many
natural products (drugs) (Joshi & Chettri, 2019), especially endophytic fungi associated
with agarwood, for examples, Diaporthe sp. - antioxidant capacity (Monggoot et al.,
2017); Nemania aquilariae - antibacterial and antimicrobial activities (Tibpromma et
al., 2021); and Xylaria mali Fromme - antimicrobial and antitumor activities (Tian et
al., 2013). Endophytic fungi are a huge resource and an important source of secondary
metabolites. The study of their biological activities is of great benefit to human life.

2.3.2 Saprobic Fungi Associated with Agarwood-producing Trees

The research on agarwood-producing trees associated fungi mainly focuses on
endophytic fungi and their inducing ability and biological activity (Du et al., 2022a).
A few studies have been carried out on saprobic fungi, only eight records were reported
from Aquilaria spp., viz. Cercosporella sp., Chaetomium spirale Zopf, Cladosporium
sp., Phomopsis aquilariae Punith. & 1. A. S. Gibson, Phialogeniculata sp., Pithomyces
sp., Rhizopus sp., and Trichoderma sp. (Punithalingam & Gibson, 1978; Subansenee et
al., 1985). This has created a huge gap regarding the saprobic fungi study of agarwood-
producing trees. Currently, the mechanism of agarwood formation is not clear (Sen et
al., 2017), and it can be determined that the wound is the first factor and the second is
microbial infection (Rasool & Mohamed, 2016). Therefore, it is of great significance
to fill the gap of saprobic fungi associated with agarwood-producing trees.

2.3.3 Pathogenic Fungi Associated with Agarwood-producing Trees

Given the high economic value of agarwood, extensive research has been

conducted on pathogenic fungi of agarwood-producing trees to identify their pathogens
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and develop control methods (Li & Chen, 2008; Xu et al., 2012; Samsuddin et al. 2019;
Syazwan et al., 2019). Unlike endophytic fungi in mutualistic symbiosis, pathogenic
fungi invade and damage host tissues. For example, Colletotrichum spp., Lasiodiplodia
spp., and Rhizoctonia spp., which known cause damage to the seedlings, branches, and
leaves of agarwood trees (Liao et al., 2018; Liu et al., 2020). These infections may not
only threaten the survival of the trees and decrease resin production, but they may also
trigger complex wound responses and resin deposition, blurring the line between

pathogenicity and induction under certain conditions.
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CHAPTER 3

FUNGAL COMMUNITY COMPOSITION ASSOCIATED WITH THE
AGARWOOD-PRODUCING TREE, AQUILARIA SINENSIS

3.1 Introduction

Agarwood, also known as “Chenxiang” in China, is a highly valuable and
fragrant resinous wood formed in certain species of trees within the family
Thymelaeaceae, primarily Aquilaria and Gyrinops (Faizal et al., 2020, 2022). In total,
14 Aquilaria species, viz. Aquilaria baillonii, A. beccariana, A. crassna, A. cumingiana,
A. filaria, A. hirta, A. khasiana, A. malaccensis, A. microcarpa, A. rostrata, A. rugosa,
A. sinensis, A. subintegra, and A. yunnanensis and eight Gyrinops species viz., Gyrinops
caudata, G. decipiens, G. ledermannii, G. moluccana, G. podocarpa, G. salicifolia, G.
versteegii, and G. walla have been reported to be able to produce agarwood (Li et al.,
2022b). In China, there are two species of agarwood-producing trees, viz., A. sinensis
and A. yunnanensis, of which A. sinensis is the primary source of agarwood (Chinese
Pharmacopoeia, 2015, 2020; Tibpromma et al., 2021; CITES, 2022).

Agarwood has a long history of use in religious activities, due to its unique
fragrance, with significant cultural and religious meaning (Chen et al., 2017a, b; Wang
et al., 2018; Adhikari et al., 2022). It can be processed into incense, jewelry, and
carvings; additionally, agarwood essential oil has become one of the raw materials for
high-end perfumes and cosmetics (Liu et al., 2013; Monggoot et al., 2017; Wang et al.,
2018; CITES, 2022; Ngadiran et al., 2023). It is worth noting that agarwood plays
essential roles in traditional medicine in Arabia, China, and India (Liu et al., 2013; Liao
et al., 2018; Wang et al., 2018). In modern pharmacology, the pharmacological effects
of agarwood include anti-diabetic, anti-inflammatory, anti-cancer, anti-depressant, and
antioxidant properties (Mei et al., 2008; Takemoto et al., 2008; Feng et al., 2011;
Kumphune et al., 2011; Dahham et al., 2014; Tay et al., 2014; Adhikari et al., 2022; Li
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et al., 2025). Moreover, agarwood has also been used to treat rheumatism, arthritis,
body pain, asthma, and gout (Borris et al., 1988; Li et al., 2024a).

The natural formation of agarwood in the wild is very rare, as it cannot occur in
healthy trees (Liu et al., 2013; Chhipa et al., 2017). Agarwood resin is produced as a
defense response to biotic or abiotic stressors, including animal grazing, insect gnawing,
strong winds, lightning, mechanical injury, or microbial invasion (Xu et al., 2013;
Wang et al., 2018). Its unique fragrance, the rarity of its natural production, and its wide
range of applications have all contributed to the increased economic value of agarwood.
Agarwood oil had a global market value of USD 278.03 million in 2021 (Niego et al.,
2023a), and a market analysis report has predicted that the agarwood essential oil
market will reach a value of USD 345.5 million by 2030 (Agarwood Essential Oil
Market, 2021). Agarwood has a long history of trade, with its main markets currently
including the United Arab Emirates, China, Japan, and Saudi Arabia (Nakashima et al.,
2005).

Under the temptation of high-value agarwood, people have engaged in
uncontrolled destruction and harvesting of wild agarwood, threatening its wild
populations (Gogoi et al., 2022). Many agarwood-producing tree species are now
classified as vulnerable or critically endangered by The International Union for
Conservation of Nature (http://www.iucnredlist.org), and all species of Aquilaria and
Gyrinops have been presented in Appendix II based on the data available in
“Convention on International Trade in Endangered Species (CITES) in 2005 (CITES,
2005, 2022). To meet market demand and increase economic benefits while protecting
wild resources, agarwood trees have been artificially cultivated in several countries,
and the technology for inducing agarwood formation has emerged. Induction
techniques have been continuously evolving, starting with basic physical damage to the
trees, followed by a combination, or independent use of physical injury, biological
induction, and chemical induction (Liu et al., 2013; Chen et al., 2017a, b; Chhipa et al.,
2017; Monggoot et al., 2017; Wang et al., 2018; Ngadiran et al., 2023).

These technologies have been extensively researched and utilized, but the

mechanism of producing agarwood resin is unclear. Currently, three main hypotheses
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have been proposed to explain the formation of agarwood (Zhang et al., 2010; Fu et al.,
2024). (1) The “pathological” hypothesis, which proposes that agarwood formation is
caused by disease, specifically resulting from fungal infection. (2) The
“trauma/pathological” hypothesis, which suggests that physical trauma is the primary
cause of agarwood formation, with fungal infections playing a secondary role. (3) The
“nonpathological” hypothesis, which argues that physical and chemical damage are the
main contributors to agarwood formation (Fu et al., 2024). Based on these assumptions,
while physical damage to the tree creates an opening, fungal infection has long been
regarded as a key factor in the formation of agarwood (Rasool & Mohamed, 2016).
Fungal induction has emerged as a promising technique for increasing
agarwood production, inoculating specific fungal strains has been shown to stimulate
resin biosynthesis (Faizal et al., 2017, 2022; Subasinghe et al., 2019; Zheng et al., 2019;
Liu et al., 2022a, b; Huang et al., 2023; Du et al., 2024b), and providing a controlled
and sustainable approach to agarwood formation. Various fungal species, including
those from the genera Colletotrichum, Fusarium, Lasiodiplodia, and Trichoderma,
have been extensively employed in these processes with demonstrated efficacy (Du et
al., 2022a; Li et al., 2022b; Ngadiran et al., 2023). However, the success of fungal
induction depends on several complicated factors, such as fungal strains, tree species,
environmental conditions, and inoculation methods. One key advantage of biological
induction is its ability to foster progressive and systematic growth of fungal agents,
leading to continuous agarwood formation (Novriyanti et al., 2010). Recent studies
have shown that artificially induced agarwood exhibits similar chemical and
pharmacological properties to wild agarwood, further confirming its potential as a
sustainable alternative (Huang et al., 2023). However, some endophytes display latent
pathogenicity in plants, which means they can act as pathogens under specific
conditions (Nisa et al., 2015); in Aquilaria, this latent pathogenicity is economically
beneficial, as it triggers agarwood resin production (Enshasy et al., 2019; Gogoi et al.,
2022). Further research to optimize these variables is necessary for maximizing both

the yield and quality of agarwood resin.
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Lietal. (2022b) documented 67 fungal genera belonging to 42 families isolated
and identified from eight agarwood-producing trees, and 82.8 % of fungal species
belonged to Ascomycota. So far, some fungal genera, viz., Acremonium, Arthrinium,
Aspergillus,  Botryodiplodia,  Botryosphaeria, — Chaetomium,  Cladosporium,
Colletotrichum, Cylindrocladium, Diaporthe, Diplodia, Epicoccum, Fomitopsis,
Fusarium, Hypocrea, Lasiodiplodia, Melanotus, Penicillium, Pestalotiopsis,
Phaeoacremonium, Rhizopus, Rigidoporus, Trichoderma, and Xylaria, have been
reported to have the ability to promote agarwood formation (Du et al., 2022a; Li et al.,
2022b; Gogoi et al., 2023). Additionally, the secondary metabolites from endophytic
fungi of agarwood lead the way as sources for various pharmacological properties (Li
et al., 2022b). More than 90 compounds were extracted from the endophytic fungi of
agarwood-producing trees (Li et al., 2022b). Some fungal genera are responsible for the
production of antimicrobial sesquiterpenes, e.g., Acremonium, Arthrinium,
Collectotrichum, Diaporthe, Fimetariella, Nemania, Nigrospora, and Nodulisporium
(Zhang et al., 2009; Wu et al., 2010; Tao et al., 2011; Li et al., 2014; Monggoot et al.,
2017; Tibpromma et al., 2021).

Fungi are one of the most important microbial groups on Earth, widely
distributed in various ecosystems, estimate of 1.5 to 3.8 million species (Niskanen et
al., 2023; Hyde et al., 2024c), it has been extensively studied in recent years (Dong et
al., 2024; Samarakoon et al., 2024). As decomposers (Sun et al., 2025), endophytes
(Liao et al., 2025), and pathogens (Jayawardena et al., 2025), fungi are widely involved
in carbon cycling, nutrient turnover, and biological interactions, profoundly affecting
the natural environment and human society (Niego et al., 2023b; Hyde et al., 2024a).
Fungi exist in both terrestrial ecosystems and freshwater and marine environments,
playing an irreplaceable role in maintaining ecological balance and promoting material
cycling (Hyde & Lee, 1998; Liu et al., 2024a; Ma et al., 2024; Ren et al., 2024; Shen et
al., 2024; Tian et al., 2024; Wang et al., 2024a). Studying the diversity, ecological
functions, and interaction mechanisms between fungi and their hosts can provide
theoretical basis for agricultural disease prevention and control, ecological restoration,

and biotechnology applications (Hyde et al., 2019a, b; Ren et al., 2024). In recent years,
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an increasing number of studies have shown that certain fungi play an important role in
the formation of agarwood and are key driving factors for its natural growth (Li et al.,
2022b; Du et al., 2024b). Analyzing the relationship between fungi and agarwood
formation can not only reveal the chemical mechanisms of plant microbe interactions,
but also provide biotechnological strategies for sustainable agarwood production.
Therefore, in-depth exploration of the diversity and ecological functions of fungi,
especially their involvement in the formation mechanism of agarwood, has important
scientific value and application potential.

Current studies have focused mainly on a limited number of fungal strains, the
diversity and ecological roles of fungi associated with agarwood formation remain
poorly understood, leaving substantial gaps in our knowledge of fungal communities
across different isolation parts of Aquilaria trees. The primary purpose of this study is
to explore the fungal diversity in different isolation parts of agarwood trees, identify
and analyze key fungal groups involved in resin production, and lay the foundation for
revealing their interaction with hosts. This work, by providing potential fungal
resources for agarwood induction strategies, is poised to optimize the way we approach
agarwood production and contribute to the sustainable development of the agarwood

industry.

3.2 Research Methodology

3.2.1 Sample Collection and Fungal Strain Isolation

1. Sample collection

Fresh samples of Aquilaria sinensis were collected from four sites across
two provinces in China: Guangdong (Maoming, 21°71'32" N, 111°24'01" E, in June
2022; Zhanjiang, 21°49'48" N, 111°40'12" E, in December 2020) and Yunnan
(Xishuangbanna, 22°21'09" N, 101°01'06" E, in September 2021; Yuanjiang, 23°60'14"
N, 102°02'11" E, from September 2022 to September 2023). Samples from Guangdong
Province are labeled as GDA, while those from Yunnan Province are labeled as YNA.

Healthy leaves, healthy branches, branches with agarwood resin, and decayed branches
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were collected by free hand or with a pruning or chopping knife, and all tools were
cleaned with 75% alcohol before and after use. After collection, decayed branch
samples were stored in dry envelopes; in contrast, fresh samples were placed in a
thermal-insulated ice box, taken to the mycology laboratory in Qujing Normal
University, and stored at 4°C until fungal strains could be isolated.

2. Fungal strain isolation

The isolation of endophytic fungi (fresh healthy leaves and healthy branches)
and agarwood-associated fungi (fresh branches with agarwood resin) followed the
method described by Du et al. (2022b) and Tibpromma et al. (2021), with some
modifications. First, dust from the surface of fresh leaves and the bark of fresh branches
was removed under running tap water. These clean samples were transferred to a
laminar flow hood and cut into small pieces (0.5 cm % 0.5 cm) using sterilized knives
or blades. The surface sterilization procedure was as follows: the samples were washed
with sterile water, then treated with 75% alcohol for 30 s, followed by immersion in
2.5% sodium hypochlorite (branches for 1 min, leaves for 30 s), and again rinsed with
75% alcohol for 30 s. Finally, the samples were washed three times with sterile water
and placed on sterilized filter paper to absorb excess moisture. Five sterilized pieces
were then placed on each 90 mm potato dextrose agar (PDA) plate (with ampicillin
added: 50 mg/L) and incubated at 28 °C for 7 to 14 days. The plates were checked daily,
and fresh mycelium was transferred to new 60 mm PDA plates to obtain pure cultures.
The isolation, surface disinfection, and cultivation methods for samples of dead
branches carrying saprobic fungi are the same as those of endophytic fungi. These pure
cultures were used for DNA extraction. To promote sporulation, active mycelium from
new species was inoculated onto water agar (WA) plates (with or without bamboo
sticks). Dried cultures of the new species were deposited at Guizhou Medical University
(GMB-W), China, while living cultures were stored in the Guizhou Medical University
Culture Collection (GMBCC), the Zhongkai University of Agriculture and Engineering
Culture Collection (ZHKUCC), and the Kunming Institute of Botany Culture
Collection (KUMCC), China. Facesoffungi (FoF) numbers were registered as described
in Jayasiri et al. (2015), and MycoBank numbers (MB) were registered as outlined in
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MycoBank (http://www.MycoBank.org). The data on taxa will be deposited in the
Greater Mekong Subregion fungal database (Chaiwan et al., 2021).
3.2.2 Fungal Classification and Identification

1. Morphological observation

Morphological structures of the cultures were examined using an OPTEC
SZ650 dissecting stereomicroscope (Chongqing, China). Microscopic fungal structures
were captured with an OLYMPUS DP74 digital camera (Tokyo, Japan) mounted on an
OLYMPUS optical microscope (Tokyo, Japan). Distilled water was used as the
mounting solution, and cotton blue was employed to stain transparent tissues. All fungal
micromorphological measurements were taken using the Tarosoft® Image Framework
v. 1.3, while photo plates were created with Adobe Photoshop CS3 Extended (Adobe
Systems, California, USA). Other details were followed as outlined in Senanayake et
al. (2020).

2. DNA extraction, PCR amplification, and sequencing

Molecular phylogenetic studies were conducted according to Dissanayake
et al. (2020). Fresh mycelia, grown for 2—4 weeks on PDA plates, were scraped and
transferred to a 1.5 ml centrifuge tube for DNA extraction using the Biospin Fungus
Genomic DNA Extraction Kit-BSC14S1 (BioFlux, Hangzhou, China), following the
manufacturer’s instructions. Polymerase chain reaction (PCR) was performed to
amplify the ITS gene (including internal transcribed spacer 1, 5.8S ribosomal RNA
gene, and internal transcribed spacer 2) using primers ITS5/ITS4 (White et al., 1990).
PCR amplification was carried out according to Du et al. (2022b). For the new species,
different multi-gene loci have been amplified, viz., 28S nrRNA gene (LSU) was
amplified by using the primers LROR and LRS5 (Vilgalys & Hester, 1990), 18S
ribosomal RNA (SSU) was amplified using the primers NS1 and NS4 (White et al.,
1990), and translation elongation factor 1-alpha (fefl-a) was amplified using the
primers EF1-983F and EF1-2218R (Rehner, 2001), p-tubulin (TUB) was amplified
using the primers T1 and 2b (Trouillas et al., 2011), and RNA polymerase 1I second
largest subunit (rpb2) was amplified using the primers fRPB2-5f and fRPB2-7¢cR (Liu
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etal., 1999). Finally, PCR products were purified and sequenced at the Tsingke Biotech
Co. and Sangon Biotech Co., Kunming, China.

3. Phylogenetic analyses

In the identification of endophytic fungi, the ITS locus is commonly
employed for genus-level identification (Guo et al., 2001, 2003). The forward and
reverse sequences obtained were checked in BioEdit 7.2.6 (Hall, 1999) and then merged
using Geneious 9.1.8 (https://www.geneious.com) (Kearse et al., 2012), and the merged
sequences were subjected to BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi’PAGE _TYPE=
BlastSearch, accessed on 02 February 2025) to identify the most similar taxa. Additional
sequences from different genera included in the analysis were gathered from recent
publications. The FASTA files were generated using OFPT (Zeng et al., 2023)
following the protocol for constructing Randomized Accelerated Maximum Likelihood
(RAXML) and Bayesian Inference (BI) analyses. The FASTA format was then
converted to PHYLIP (for RAXML) and NEXUS (for BI) formats using ALTER
(http://www.sing-group.org/ALTER/) (Glez-Pefia et al., 2010).

RAxML analysis was conducted based on the ITS gene for 960 strains, and
both RAXML and BI analyses were performed for multi-gene sequences of the new
species described in this study. The RAXML tree was generated using the PHYLIP file
in RAXML-HPC2 on XSEDE (8.2.12) (Stamatakis et al., 2008; Stamatakis, 2014) via
the CIPRES Science Gateway platform (https://www.phylo.org/portal2/home.action,
accessed on 02 February 2025) (Miller et al., 2010), with 1000 bootstrap replicates
under the GTR+I+G evolutionary model. The BI tree was generated with MrBayes on
XSEDE (3.2.7a) (Ronquist et al., 2012), and the optimal evolutionary models were
estimated using MrModeltest v. 2.3 (Nylander et al., 2008). Six simultaneous Markov
chains were run for 1,000,000 to 2,000,000 generations, with trees sampled every 100™"
generation. The resulting phylogenetic trees of new species were visualized in FigTree
v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut, 2012) and edited using
Microsoft PowerPoint 2021 and Adobe Photoshop CS3 Extended (version 22.0.0)
(Adobe Systems, California, USA). While the circular RAXML tree of 960 strains based

on the ITS gene was edited and visualized on Interactive Tree of Life (iTOL) v6
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(https://itol.embl.de/, accessed on 02 February 2025) (Letunic & Bork, 2024). All
newly generated sequences from this study have been deposited in GenBank
(https://www.ncbi.nlm.nih.gov/WebSub/?form=history&tool=genbank, accessed on
02 February 2025).
4. Phylogenetic species recognition by genealogical concordance analyses
Genealogical concordance phylogenetic species recognition (GCPSR)
analysis serves as a model-based test applied for the examination of significant
recombinant events within data sets. The combined data underwent analysis via the
pairwise homoplasy index test (PHI) (Bruen et al., 2006), which was executed in
SplitsTree v.4 (Huson & Bryant, 2006; Quaedvlieg et al., 2014). This was done to
ascertain the recombination level among closely related species. A PHI index lower
than 0.05 (Ow < 0.05) implies that there is significant recombination within the data
set. The relationships among closely related taxa were made visible by constructing
split graphs from the concatenated data sets. This construction was carried out by
utilizing the LogDet transformation and split decomposition options available in
SplitsTree v.4. New species are established as per recommendations outlined by Jeewon
& Hyde (2016) and Pem et al. (2021).
3.2.3 Fungal Community Analysis
Community analysis of fungal strains in this study was primarily performed
using an online microbial information platform (https://www.bioinformatics.com.cn/,
accessed on 2 February 2025) (Tang et al., 2023), with various charts constructed,
including the Column chart, Donut chart, Vertical stack bar, Link fill bar, and Venn
diagram. The Column chart with error lines visualizes the quantitative distribution of
different genera, incorporating error bars to indicate variability and uncertainty in their
relative frequencies. The Donut chart complements this by showing the proportional
distribution of each genus, providing a clear overview of community composition. The
Vertical stack bar and Link fill bar visually represent the distribution and abundance of
genera across different samples, enabling a straightforward comparison of genus
composition within each sample. The Venn diagram highlights the overlap and unique

genera present in the various sample groups, helping to identify shared and distinct
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genera. Text editing and chart visualization were done using Adobe Photoshop CS3
Extended (version 22.0.0) (Adobe Systems, California, USA).

3.3 Results

3.3.1 Fungal Phylogenetic Analysis and Community Study in Aquilaria sinensis

This study collected agarwood resin, healthy branches, healthy leaves, and dead
branch samples of Aquilaria sinensis from Guangdong (Maoming and Zhanjiang) and
Yunnan (Xishuangbanna and Yuanjiang) provinces and isolated 960 fungal strains.
These strains were identified at the genus level through ITS sequences and were
classified as belonging to 64 genera of 44 families in three phyla: Ascomycota (951
strains, 99.06%), Basidiomycota (six strains, 0.63%), and Mucoromycota (three strains,
0.31%). A phylogenetic tree showing genus-level placements of the fungal taxa is

shown in Figure 3.1.
Ascomycota is the dominant group in this study, comprising 951 sequences

from 59 genera of 39 families, demonstrating its significant ecological dominance in
the A. sinensis ecosystem. These 951 sequences were distributed across five classes
within Ascomycota: viz., Dothideomycetes (38.28%, 363 strains), Eurotiomycetes
(10.83%, 104 strains), Leotiomycetes (0.84%, eight strains), Saccharomycetes (0.21%,
two strains), and Sordariomycetes (49.84%, 474 strains). Sordariomycetes is the most
prominent class, followed by Dothideomycetes. The 59 genera identified within
Ascomycota include Acrocalymma (two strains), Allophoma (three strains), Alternaria
(23 strains), Annulohypoxylon (five strains), Aspergillus (42 strains), Aureobasidium
(one strain), Banksiophoma (four strains), Biscogniauxia (one strain), Botryosphaeria
(six strains), Chaetomium (five strains), Cladorrhinum (one strain), Cladosporium (four
strains), Colletotrichum (57 strains), Coniella (two strains), Corynespora (one strain),
Crassiparies (nine strains), Curvularia (six strains), Daldinia (16 strains), Deniquelata
(three strains), Diaporthe (78 strains), Didymella (one strain), Epicoccum (eight strains),

Exophiala (five strains), Fonsecaea (29 strains), Fusarium (172 strains),
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Hermatomyces (two strains), Hypoxylon (18 strains), Lasiodiplodia (170 strains),
Loculosulcatispora (one strain), Massaria (five strains), Medicopsis (three strains),
Meyerozyma (two strains), Montagnula (13 strains), Nemania (two strains),
Neodeightonia (one strain), Neofusicoccum (one strain), Neopestalotiopsis (15 strains),
Neoscytalidium (25 strains), Nigrograna (one strain), Nigrospora (41 strains),
Paracamarosporium (23 strains), Paraconiothyrium (11 strains),
Paradictyoarthrinium (one strain), Penicillium (23 strains), Periconia (five strains),
Pestalotiopsis (one strain), Phaeoacremonium (28 strains), Phyllosticta (18 strains),
Pithomyces (one strain), Pseudofusicoccum (two strains), Pseudopithomyces (three
strains), Pseudorobillarda (one strain), Rhytidhysteron (one strain), Scytalidium (eight
strains), Talaromyces (three strains), Trichoderma (18 strains), Veronaea (two strains),
Xenoroussoella (four strains), and Xylaria (14 strains). Among them, Fusarium and
Lasiodiplodia are the dominant genera, with 172 and 170 strains, respectively, followed
by Colletotrichum (57 strains), Diaporthe (56 strains), Aspergillus (42 strains), and
Nigrospora (41 strains). The remaining genera had fewer than 30 strains each.

Basidiomycota accounted for only 0.63% of all strains and formed well-
independent clades in the phylogenetic tree (Figure 3.1). Six strains from four genera
of four families isolated from agarwood resin were identified within Basidiomycota:
Fomitiporia (three strains), Phanerochaetella (one strain), Phlebiopsis (one strain), and
Trichosporon (one strain).

Mucoromycota is the least represented phylum, accounting for only 0.31% of
the sequences. Its independent clade in the phylogenetic tree demonstrated significant
evolutionary divergence (Figure 3.1). Three strains of Mucor were isolated from

agarwood resin or healthy branches.
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Note The tree was generated with maximum likelihood (RAXML) based on 1,031 ITS
sequences and viewed in ITOL (Letunic & Bork, 2007). Different colors indicate
independent genera, and the outgroups are Phlyctochytrium californicum (CBS
667.73) and P. africanum (CBS 454.65) (Chytridiomycota).

Figure 3.1 Circular phylogenetic tree showing the genus level

3.3.2 Analysis of Fungal Community Composition from Each Collection Site
1. Community composition analysis of Aquilaria sinensis-associated fungi

collected from Maoming, Guangdong Province
In total, 219 fungal strains were isolated from 4. sinensis samples collected
in June 2022 from Maoming. All isolated strains from the agarwood resinous parts were
categorized as agarwood-associated fungi. These strains were obtained and identified
as belonging to 18 genera, viz., Aspergillus (19 strains), Cladosporium (one strain),

Colletotrichum (one strain), Diaporthe (five strains), Exophiala (five strains),
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Fonsecaea (29 strains), Fusarium (92 strains), Hermatomyces (one strain), Hypoxylon
(five strains), Lasiodiplodia (16 strains), Neodeightonia (one strain), Nigrograna (one
strain),  Paradictyoarthrinium  (one  strain), Penicillium (eight strains),
Phaeoacremonium (22 strains), Scytalidium (eight strains), Trichoderma (two strains),
and Veronaea (two strains). As shown in Figure 3.2, the most dominant genus is
Fusarium (92 strains), followed by Fonsecaea (29 strains), Phaeoacremonium (22
strains), Aspergillus (19 strains), and Lasiodiplodia (16 strains); in contrast, other

genera contain fewer fungal strains.
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Figure 3.2 Column chart with error lines (A) and Donut chart (B) of the quantitative
relationships of community composition among different genera in

Agquilaria sinensis-associated fungi collected from Maoming

2. Community composition analysis of Aquilaria sinensis-associated fungi
collected from Zhanjiang, Guangdong Province

A total of 180 fungal strains were isolated from A. sinensis samples collected
in October 2020 from Zhanjiang, which were isolated from different parts: agarwood
resins, healthy branches, and dead branches (decaying). These strains were identified
as belonging to 29 genera: viz., agarwood resins (116 strains of 24 genera), healthy
branches (32 strains of 12 genera), and dead branches (32 strains of eight genera). In
agarwood resins, the most dominant genus is Fusarium (30 strains), followed by
Diaporthe (21 strains); in healthy branches, the most predominant genus is

Paracamarosporium (16 strains); and in dead branches, the most dominant genus is
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Fusarium (17 strains). As shown in Figure 3.3A, genus composition and strain
distribution are shown in agarwood resins, healthy branches, and dead branches,
displaying the number of shared strains and different genus compositions.

The distribution of genera in three different collection sites is shown in
Figure 3.3B; the common genera in all three parts (dead branches, healthy branches,
and agarwood resins) are Diaporthe and Paraconiothyrium, the common genus in dead
branches and healthy branches is Xenoroussoella, the common genera in dead branches
and agarwood resins are Cladosporium, Fusarium, Lasiodiplodia, and
Neopestalotiopsis, and the common genera in healthy branches and agarwood resins
are Chaetomium, Colletotrichum, Hypoxylon, Nigrospora, Paracamarosporium, and

Pseudopithomyces.
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q

Figure 3.3 Link fill bar (A) and Venn diagram (B) of the genus composition in three

isolation parts of Aquilaria sinensis collected from Zhanjiang

3. Community composition analysis of Aquilaria sinensis-associated fungi
collected from Xishuangbanna, Yunnan Province

A total of 165 fungal strains were isolated from A. sinensis samples collected
in September 2021 from Xishuangbanna, which were isolated from different parts:

agarwood resins, healthy branches, and healthy leaves. These strains were identified as
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belonging to 29 genera: agarwood resins (64 strains of 19 genera), healthy branches (21
strains of 11 genera), and healthy leaves (80 strains of 14 genera). In agarwood resins,
the most dominant genus is Daldinia (10 strains); in healthy branches, the most
dominant genus is Lasiodiplodia (four strains); and in healthy leaves, the most
dominant genus is Colletotrichum (24 strains). As shown in Figure 3.4A, genus
composition and strain distribution are shown in agarwood resins, healthy branches,
and healthy leaves, displaying the number of shared strains and different genus
compositions.

The distribution of genera in three different collection sites is shown in
Figure 3.4B; the common genera in all three parts (healthy leaves, healthy branches,
and agarwood resins) are Diaporthe, Lasiodiplodia, Neopestalotiopsis, and Nigrospora,
the common genera in healthy leaves and agarwood resins are Aspergillus, Daldinia,
and Xylaria; and the common genera in healthy branches and agarwood resins are

Fusarium, Mucor, Penicillium, and Phaeoacremonium.
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Figure 3.4 Link fill bar (A) and Venn diagram (B) of the genus composition in three

isolation parts of Aquilaria sinensis collected from Xishuangbanna
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4. Community composition analysis of Aquilaria sinensis-associated fungi
collected from Yuanjiang, Yunnan Province

In total, 396 fungal strains were isolated from A. sinensis samples collected
between December 2022 and September 2023 in Yuanjiang, which were isolated from
different parts: agarwood resins, healthy branches, healthy leaves, and dead branches
(decaying). These strains were identified as belonging to 32 genera: agarwood resins
(246 strains of 23 genera), healthy branches (59 strains of 16 genera), healthy leaves
(74 strains of 12 genera), and dead branches (17 strains of three genera). In agarwood
resins, the most dominant genus is Lasiodiplodia (133 strains); in healthy branches, the
most dominant genera are Alternaria and Nigrospora (eight strains); in healthy leaves,
the most dominant genus is Colletotrichum (21 strains); and in dead branches, the most
dominant genus is Neoscytalidium (eight strains). As shown in Figure 3.5A, genus
composition and strain distribution are shown in agarwood resins, healthy branches,
healthy leaves, and dead branches, displaying the number of shared strains and different
genus compositions.

The distribution of genera in four different collection sites is shown in
Figure 3.5B; the common genus in dead branches, healthy branches, and agarwood
resins is Aspergillus; the common genus in dead branches, healthy leaves, and
agarwood resins is Lasiodiplodia; the common genera in healthy branches, healthy
leaves, and agarwood resins are Alternaria, Colletotrichum, Diaporthe, Hypoxylon,
Penicillium, and Xylaria; the common genus in healthy branches and agarwood resins
is Trichoderma; the common genus in dead branches and agarwood resins is
Neoscytalidium, the common genus in healthy leaves and agarwood resins is
Annulohypoxylon, and the common genera in healthy branches and healthy leaves are

Allophoma, Epicoccum, and Nigrospora.
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Figure 3.5 Vertical stack bar (A) and Venn diagram (B) of the genus composition in

four isolation parts of Aquilaria sinensis collected from Yuanjiang

5. Community composition analysis of Aquilaria sinensis-associated fungi
from four isolation parts

The 960 strains isolated in this study were isolated from four different parts
(agarwood resins, dead branches, healthy branches, and healthy leaves) and subjected
to data analysis. These strains were identified as belonging to 64 genera: agarwood
resins (645 strains of 48 genera), healthy branches (112 strains of 30 genera), healthy
leaves (154 strains of 19 genera), and dead branches (49 strains of 10 genera) (Figure
3.6A). In agarwood resins, the most dominant genera are Lasiodiplodia (156 strains)
and Fusarium (153 strains), followed by Diaporthe (42 strains), Aspergillus (29 strains),
Fonsecaea (29 strains), and Phaeoacremonium (27 strains); in healthy branches, the
most dominant genus is Paracamarosporium (17 strains), followed by Nigrospora (11
strains) and Diaporthe (nine strains); in healthy leaves, the most dominant genus is
Colletotrichum (45 strains), followed by Diaporthe (24 strains) and Nigrospora (21
strains); and in dead branches, the most dominant genus is Fusarium (17 strains),

followed by Neoscytalidium (eight strains) and Aspergillus (six strains).
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Figure 3.6B shows that the common genera in all four isolation parts are
Aspergillus, Diaporthe, Lasiodiplodia, and Neopestalotiopsis; the common genera in
agarwood resins, healthy branches, and healthy leaves are Alternaria, Colletotrichum,
Hypoxylon, Nigrospora, Penicillium, and Xylaria; the common genera in agarwood
resins, healthy branches, and dead branches are Fusarium and Paraconiothyrium; the
common genus in agarwood resins, healthy leaves, and dead branches is Cladosporium;
the common genera in agarwood resins and healthy branches are Acrocalymma,
Chaetomium, Mucor, Paracamarosporium, Phaeoacremonium, Pseudopithomyces,
and Trichoderma; the common genus in dead branches and healthy branches is
Xenoroussoella; the common genera in healthy leaves and healthy branches are
Allophoma and Epicoccum; the common genera in agarwood resins and healthy leaves
are Annulohypoxylon and Daldinia; and the common genus in agarwood resins and

dead branches is Neoscytalidium.

Figure 3.6 The Donut chart (A) and Venn diagram (B) of the genus composition of all
Agquilaria sinensis strains in four isolation parts (agarwood resins, dead

branches, healthy branches, and healthy leaves)
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6. Community composition analysis of agarwood-associated fungi from
four collection sites

Agarwood resin samples were collected, and fungal strains were isolated
from all four collection sites (Maoming, Zhanjiang, Xishuangbanna, and Yuanjiang)
(Figure 3.7A). Therefore, the composition of agarwood-associated fungi from four
different collection sites was analyzed. According to the Venn diagram in Figure 3.7B,
the result is shown as the common genera in all four sites are Diaporthe, Fusarium, and
Lasiodiplodia. While, Daldinia and Xylaria are presented in Zhanjiang, Xishuangbanna,
and Yuanjiang; Aspergillus, Penicillium, Phaeoacremonium, and Trichoderma can be
found in Maoming, Xishuangbanna, and Yuanjiang; Colletotrichum and Hypoxylon can
be found in Maoming, Zhanjiang, and Yuanjiang; Annulohypoxylon and Crassiparies
can be found in Zhanjiang and Yuanjiang; Botryosphaeria and Mucor can be found in
Xishuangbanna and Yuanjiang; Cladosporium and Hermatomyces can be found in
Maoming and Zhanjiang; Chaetomium, Massaria, Neopestalotiopsis, Nigrospora, and

Talaromyces can be found in Zhanjiang and Xishuangbanna.

Figure 3.7 The Donut chart (A) and Venn diagram (B) of the genus composition of all
agarwood-associated fungal strains in four collection sites (Maoming,

Zhanjiang, Xishuangbanna, and Yuanjiang)
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In summarys, strains isolated in this study mainly belong to Dothideomycetes
(38.28%) and Sordariomycetes (49.84%) of Ascomycota, few in Eurotiomycetes
(10.83%), Leotiomycetes (0.84%), and Saccharomycetes (0.21%), and some strains
with small quantities were isolated from Basidiomycota (0.63%) and Mucoromycota
(0.31%). The genera of strains isolated in different collection sites show an overlap.
Diaporthe, Fusarium, and Lasiodiplodia were isolated from all four collection sites
(Maoming, Zhanjiang, Xishuangbanna, and Yuanjiang). Regarding different isolation
parts, strains of Aspergillus, Diaporthe, Lasiodiplodia, and Neopestalotiopsis were
isolated from all four parts (agarwood resins, dead branches, healthy branches, and
healthy leaves). In addition, the genera commonly found in agarwood resins are
Aspergillus, Daldinia, Diaporthe, Fonsecaea, Fusarium, Lasiodiplodia, and
Phaeoacremonium; the genera commonly found in healthy branches are Alternaria,
Diaporthe, Lasiodiplodia, Nigrospora, and Paracamarosporium; the genera commonly
found in healthy leaves are Colletotrichum, Diaporthe, and Nigrospora; and the genera
commonly found in decaying tree branches are Aspergillus, Fusarium, Lasiodiplodia,
and Neoscytalidium.
3.3.3 Taxonomy of Five New Species
In this study, five new species (Banksiophoma endophytica, Deniquelata
aquilariae, Montagnula sinensis, M. yunnanensis, and Fomitiporia aquilariae) are
introduced and described based on morphology and phylogenetics. They isolated from
the agarwood resin parts and healthy branches of Aquilaria sinensis, mainly belonging
to Ascomycota, with only Fomitiporia aquilariae from Basidiomycota.

Banksiophoma endophytica T. Y. Du, Tibpromma, K.D. Hyde & Karun. sp.

nov.
MycoBank number: MB XXXX; Facesoffungi number: FoF XXXX; Figure 3.8
Etymology: The species epithet “endophytica” refers to the strains isolated as
endophytes.

Holotype: GMB-W1511
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Endophytic on a healthy branch of Aquilaria sinensis (Thymelaeaceae).
Asexual morph: on PDA media. Mycelium superficial. Hyphae 1.5-3 pm wide, brown,
smooth- and thin-walled, septate, branched, partial mycelial have many partitions, some
4-6.5 um wide, with guttulate. Conidiomata pycnidial, 200-350 um diam. (X = 268
um), brown to dark brown, aggregated, superficial (on PDA), globose to subglobose,
ostiolate. Pycnidial wall composed of hyaline to pale brown cells of textura angularis,
flattened polygonal cells of 4-11 pm diam. (X = 7 pum). Conidiophores reduced to
conidiogenous cells. Conidiogenous cells 11-17 x 3-5.5 pym (X = 13.7 x 4 um),
phialidic, hyaline, smooth-walled, proliferating percurrently at apex. Conidia 3.5-6 %
1.5-3 um (X = 4.5 x 2 um), oblong or subglobose or oval, aseptate, hyaline, smooth-
and thin-walled, guttulate. Sexual morph: undetermined.

Culture characteristics: Colonies on PDA at room temperature (23-28°C)
reaching 5 cm in one month; irregular, grey-white, with a dark grey-brown outer ring,
irregular raised, lobate edge; grey to dark brown from below, irregular dark sediment.
Sporulation in PDA after one month, and without pigmentation produced in PDA.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County,
on a healthy branch of Aquilaria sinensis (Thymelaeaceae), 18 September 2023, T. Y.
Du, YNA-YJA-BH-B04 (GMB-WI1511, dried culture, holotype), preserved in a
metabolically inactive state at Guizhou Medical University (GMB-W); ex-type
GMBCCI1187; ibid., YNA-YJA-BH-B06, living culture GMBCC1188.

Notes: In the phylogenetic analyses, Banksiophoma endophytica clustered with
B. australiensis (CBS 142163, ex-type) and B. dissensa (MUM24.07: ex-type,
MUM24.08) with 100% in ML and 1.00 in BYPP statistical support (Figure 3.9).
Morphologically, B. endophytica is consistent with the basic characteristics of
Banksiophoma in having pycnidial conidiomata, brown, globose, and conidia solitary,
hyaline, smooth, guttulate, aseptate (Crous et al., 2017). However, B. endophytica
differs from B. australiensis (CBS 142163, ex-type) in having phialidic conidiogenous
cells, oblong or subglobose or oval conidia, while B. australiensis (CBS 142163,  ex-
type) has subcylindrical to ampulliform conidiogenous cells and ellipsoid to globose or

subglobose conidia (Crous et al., 2017). Banksiophoma endophytica differs from B.
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dissensa (MUM?24.07, ex-type) in having conidiomata, conidiogenous cells, and
solitary conidia, not in chains, while B. dissensa (MUM?24.07, ex-type) has
microsclerotia and conidia, mostly arthric, forming acropetal conidial chains (Paiva et
al., 2025). The nucleotide base pair differences (without gaps) between our new strain
and B. australiensis (CBS 142163, ex-type) were compared, and the results revealed
9.62% (ITS), 1.08% (LSU), and 17.17% (rph2) base pair differences; in contrast, SSU
and fef1-a genes sequence of B. australiensis (CBS 142163, ex-type) are unavailable.
The results of nucleotide base pair differences (without gaps) between our new strain
and B. dissensa (MUM24.07, ex-type) revealed 9.15% (ITS), 1.08% (LSU), 0.13%
(SSU), and 5.26% (tef1-0) base pair differences, while the rpb2 sequence of B. dissensa
(MUM24.07, ex-type) are unavailable. Based on morphological and molecular
evidence and following the guidelines of Pem et al. (2021), B. endophytica is introduced

herein as a new species from Yunnan Province, China.
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Note a, b, Colony on PDA at room temperature after one month from above and below. c,
Gathered conidiomata grow on PDA. d, Squash mount of conidiomata. e, Peridium
stained with cotton blue. f. Mycelia masses. g, Mycelia stained with cotton blue. h, i,
Conidiogenous cells. j, k, Conidia. Scale bars: d =300 um, e-i=10 um, j, k=5 um.

Figure 3.8 Banksiophoma endophytica (GMB-W 1511, holotype)
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Figure 3.9 Bootstrap support values for ML greater than 50% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Stemphylium vesicarium (MFLUCC 13-0344). The new isolates are indicated
in red, and the ex-type strains are in bold.

Deniquelata aquilariae T. Y. Du, Tibpromma, K.D. Hyde & Karun. sp. nov.

MycoBank number: MB XXXX; Facesoffungi number: FoF XXXX; Figure 3. 10.

Etymology: Named after its host genus, Aquilaria.

Holotype: GMB-W1513

Diagnosis. Colonies on PDA at room temperature (23-28 °C) reaching 4-5 cm
in one week; circular, white, flossy, velvety, raised, entire edge; from below: white to
light yellow from the outer ring to the middle. Generative hyphae simple-septate,
branched, septate, thin-walled, subhyaline, 1.5-2.5 pum wide. Not sporulating in WA
and PDA media during the six-month observation period.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County,
on agarwood resin part of Aquilaria sinensis (Thymelaeaceae), 18 September 2023,
T.Y. Du, YNA-YJA-CA-C06 (GMB-W1513, dried culture, holotype), preserved in a
metabolically inactive state at Guizhou Medical University (GMB-W); ex-type,
GMBCC1063; ibid., YNA-YJA-CA-C04, living culture GMBCC1064.

Notes: Based on BLASTn searches of ITS, LSU, rpb2, SSU, and tefl-a
sequence data, our new strain Deniquelata aquilariae showed a high similarityto  D.
barringtoniae (Y79, MN268538, 99.84%) in ITS, D. barringtoniae (MFLUCC 16-
0271, MH260291, 99.29%) in LSU, Deniquelata sp. (20SA, MH316155, 99.70%) in
SSU, D. hypolithi (CPC 38968, MZ078250, 96.89%) in tefl-a, D. hypolithi (CPC
38968, MZ078201, 93.85%) in rpb2. In the phylogenetic analyses, D. aquilariae is
sister to seven strains of D. barringtoniae with 99% in ML and 1.00 in BYPP statistical
support (Figure 3.11). The PHI test results (Figure 3.12) indicated no significant
recombination events between D. aquilariae and its phylogenetically related taxa. The
newly described strains did not sporulate in culture, so the morphological
characteristics could not be compared with D. barringtoniae. The ITS, LSU, and SSU

loci of nucleotide base pair differences (without gaps) between our new strainand  D.
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barringtoniae (MFLUCC 11-0422, ex-type) were compared; the results revealed 0.15%
in ITS, and no differences in LSU and SSU, while the rpb2 and tef1-a sequences of D.
barringtoniae (MFLUCC 11-0422, ex-type) are unavailable. Therefore, the rpb2 and
tefl-o. genes of another strain, D. barringtoniae (MFLUCC 16-0271), were used to
compare with our strain, and the results revealed base pair differences of 10.8% in zef1-
a and 1.58% in rpb2. Based on molecular evidence, D. aquilariae is introduced herein

as a new species from the agarwood resin part of Aquilaria sinensis from Yunnan

Province, China.

Note a, b, Colony on PDA at room temperature after one week from above and below.
¢, d, Mycelia masses. Scale bars: ¢, d = 10 um.

Figure 3.10 Deniquelata aquilariae (GMB-W1513, holotype)
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Note Bootstrap support values for ML greater than 50% and Bayesian posterior
probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Stemphylium vesicarium (MFLUCC 13-0344). The new isolates are
indicated in red, and the ex-type strains are in bold.

Figure 3.11 Phylogenetic tree of Deniquelata
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Note The PHI test result ®w < 0.05 indicates that there is a significant recombination
within the dataset. The new isolates are indicated in red.
Figure 3.12 Split graphs showing the results of the PHI test of Deniquelata aquilariae and

closely related taxa using LogDet transformation and splits decomposition

Montagnula cylindrospora Valenz.-Lopez, Cano, Guarro & Stchigel (2020)

MycoBank number: MB 834472. Figure 3.13

Endophytic on agarwood resin part of Aquilaria sinensis (Thymelaeaceae).
Asexual morph: on WA media. Mycelium superficial. Hyphae 4—7 um wide, hyaline
to pale brown, smooth- and thin-walled, septate, branched, partial mycelial ends swell
into spherical shapes. Conidiomata pycnidial, 100—150 pm diam. (X = 125 pm), brown
to dark brown, solitary, individual or aggregated, superficial (on water agar, WA),
globose to subglobose, ostiolate. Pycnidial wall composed of brown to dark brown cells
of textura angularis, flattened polygonal cells of 4.5-11 pm diam. (X = 7.1 pum).
Conidiophores reduced to conidiogenous cells. Conidiogenous cells 6-14 x 1.5-3 um
(X =10 x 2.2 pm), phialidic to ampulliform, hyaline, smooth-walled. Conidia 3—-5(—6)
x 1.8—4 um (X = 3.9 x 2.8 um), cylindrical or globose to subglobose, solitary, aseptate,
hyaline, smooth- and thin-walled, guttulate. Sexual morph: undetermined.

Culture characteristics: Colonies on PDA at room temperature (23-28°C)
reaching 3 cm in one month; circular, white, flossy, raised, irregular edge, part of the

mycelia grow irregularly in the peripheral culture medium; peripheral white, inner part



43

yellow from below. Sporulation in WA after one month, and without pigments
produced in WA.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County,
on agarwood resin part of Aquilaria sinensis (Thymelaeaceae), 22 June 2023, T. Y. Du,
YNA-YJA-TJ06-04 (GMB-W1516), preserved in a metabolically inactive state at
Guizhou Medical University (GMB-W); living culture, GMBCC1189.

Notes: In the phylogenetic analyses, our strain clustered with M. cylindrospora
(UTHSC DI16-208, ex-type) with 100% in ML and 1.00 in BYPP statistical support
(Figure 3.16). Morphologically, our isolate resembles M. cylindrospora (UTHSC DI16-
208, ex-type) in having pycnidial conidiomata, brown to dark brown, solitary,
superficial, globose to subglobose, hyaline conidiogenous cells, phialidic, ampulliform
to doliiform, smooth-walled, and hyaline conidia, aseptate (Crous et al., 2020).
Montagnula cylindrospora was introduced by Crous et al. (2020) from a human skin
sample in the USA and described its conidia as cylindrical; however, in this study, we
also observed conidia ranging from globose to subglobose. Based on morphological
and molecular evidence, our isolate is introduced herein as a new geographical and host

record on the agarwood resin part of Aquilaria sinensis from Yunnan Province, China.
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Figure 3.13 Montagnula cylindrospora (GMB-W1516)
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Figure 3.13 a, b, Colony on PDA at room temperature after one month from
above and below. c, d, Conidiomata grow on WA with exuding conidia in hyaline
masses. e, f, Squash mount of conidiomata. g, h, Mycelia masses. i, Peridium. j—I,
Conidiogenous cells. m, n, Conidia. Scale bars: e, f= 100 um, g, h = 20 pm, i-k, m =
10 pum, , n =15 pm.

Montagnula sinensis T. Y. Du, Tibpromma, K.D. Hyde & Karun. sp. nov.

MycoBank number: MB XXXX; Facesoffungi number: FoF XXXX; Figure 3. 14.

Etymology: The epithet “sinensis” refers to the type locality “China”.

Holotype: GMB-W1510

Endophytic on agarwood resin part of Aquilaria sinensis (Thymelaeaceae).
Asexual morph: on WA media. Mycelium superficial. Hyphae 3.5-5.5 um wide,
hyaline, smooth- and thin-walled, septate, branched, partial mycelial ends swell into
spherical shapes. Conidiomata pycnidial, 150400 um diam. (X = 285 um), brown to
dark brown, solitary, individual or aggregated, superficial, globose to subglobose,
ostiolate. Pycnidial wall composed of hyaline to pale brown cells of textura angularis,
flattened polygonal cells of 2.8-7.5 um diam. (X = 4.4 um). Conidiophores 17-35 %
2.5-4 pm (X = 23.5 x 3.2 um), subcylindrical, septate, hyaline. Conidiogenous cells
6—12 pm long (X = 8.5 pm), phialidic, ampulliform with conical apex, hyaline, smooth-
walled. Conidia 3.5-5 x 1.5-2 um (X = 4.1 x 1.7 um), solitary, cylindrical, aseptate,
hyaline, smooth- and thin-walled, guttulate. Sexual morph: undetermined.

Culture characteristics: Colonies on PDA at room temperature (23-28°C)
reaching 3 cm in one week; circular, white, flossy, flat, entire edge; outer ring white to
cream, inner ring yellow in reverse. Sporulation in WA after one month, and without
pigments produced in WA.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County, on
agarwood resin part of Aquilaria sinensis (Thymelaeaceae), 22 June 2023, T. Y. Du, YNA-
YJA-TH09-04 (GMB-W1510, dried culture, holotype), preserved in a metabolically
inactive state at Guizhou Medical University (GMB-W); ex-type, GMBCC1185; other
living cultures, GMBCC1829, GMBCC1832, GMBCC1696, GMBCC1713, GMBCC1714,
GMBCC1715, GMBCC1716, GMBCC1717, GMBCC1718, GMBCC1719.
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Notes: Montagnula sinensis clustered sister to M. cylindrospora (UTHSC DI16-
208, ex-type) and M. yunnanensis (GMBCC1174, ex-type) in the phylogenetic analyses
(Figure 3.16). Morphologically, M. sinensis differs from M. cylindrospora (UTHSC
DI16-208, ex-type) in conidiogenous cells phialidic, ampulliform with conical at the
apex and cylindrical conidia, while M. cylindrospora (UTHSC DI16-208, ex-type) has
phialidic, ampulliform to doliiform conidiogenous cells, and M. cylindrospora has
cylindrical, globose to subglobose conidia. Additionally, M. sinensis has longer
conidiogenous cells (8.5 um vs. 4 um) than M. cylindrospora (UTHSC DI16-208, ex-
type) (Crous et al., 2020). The nucleotide base pair differences (without gaps) between
our new strain and M. cylindrospora (UTHSC DI16-208, ex-type) were compared; the
results revealed 0.38% (ITS), 0.56% (LSU), 2.22% (rpb2), and 1.85% (tef1-a) base pair
differences, while the SSU sequence of M. cylindrospora (UTHSC DI16-208, ex-type)
is unavailable. The results between our new strain and M. sinensis (GMBCC1185, ex-
type) (without gaps) revealed 0.95% (ITS), 0.89% (LSU), 3.04% (rpb2), and 1.77%
(tef1-a) base pair differences, while no difference in the SSU locus. The PHI test results
(Figure 3.17) indicated no significant recombination events between M. sinensis and its
phylogenetically related taxa. Based on morphological and molecular evidence, M.
sinensis is introduced as a new species on the agarwood resin part of Aquilaria sinensis

from Yunnan Province, China.
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Figure 3.14 Montagnula sinensis (GMB-W1510, holotype)
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Figure 3.14 a, b, Colony on PDA at room temperature after one week from
above and below. ¢, Conidiomata grow on bamboo toothpicks on WA. d, Squash mount
of conidiomata. e, Mycelia masses. f, Peridium. g—i, Conidiogenous cells. j, Conidia.
Scale bars: d =200 um, e-h =10 um, i, j = 5 pm.

Montagnula yunnanensis T. Y. Du, Tibpromma, K.D. Hyde & Karun. sp. nov.

MycoBank number: MB XXXX; Facesoffungi number: FoF XXXX; Figure 3. 15.

Etymology: Named after the type location, “Yunnan Province of China”.

Holotype: GMB-W1512

Culture characteristics: Colonies on PDA at room temperature (23-28°C)
reaching 5 cm in one week; circular, white, flossy, velvety, raised, filamentous edge;
white to cream from below. Generative hyphae simple-septate, branched, subhyaline,
cells with guttules, thick-walled with 1.3-2 um wide and some 4-5.5 um wide. Not
sporulating in WA and PDA media during the six-month observation period.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County,
on agarwood resin part of Aquilaria sinensis (Thymelaeaceae), 18 September 2023,
T.Y. Du, YNA-YJA-CE-C02 (GMB-W1512, dried culture, holotype), preserved in a
metabolically inactive state at Guizhou Medical University (GMB-W); ex-type living
cultures, GMBCC1174=GMBCC184S8.

Notes: Based on BLASTn searches of ITS, LSU, rpb2, SSU, and tef1-a sequence
data, our strain Montagnula yunnanensis showed a high similarity to M. cylindrospora
(UTHSC DI16-208) (ITS = 98.73% (LT796834), LSU = 99.67% (LN907351), rpb2 =
97.42% (LT796994), and tefl-a = 98.54% (LT797074)), while SSU showed high
similarity to M. camporesii (MFLUCC 16-1369, NG _068418) with 99.71%. In the
phylogenetic analyses, M. yunnanensis clustered sister to M. sinensis (11 strains) and
M. cylindrospora (UTHSC DI16-208, ex-type) (Figure 3.16). The newly described
strains did not sporulate in WA and PDA media during the six-month observation
period, so the morphological characteristics could not be compared with M. cylindrospora
and M. sinensis. The nucleotide base pair differences (without gaps) between our new
strain and M. cylindrospora (UTHSC DI16-208, ex-type) were compared; the results
revealed 0.57% (ITS), 0.33% (LSU), 2.59% (rpb2), and 1.38% (tefl-0) base pair
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differences, while the SSU sequence of M. cylindrospora (UTHSC DI16-208, ex-type)
is unavailable. The results of nucleotide base pair differences (without gaps) between
our new strain and M. sinensis (GMBCC1185, ex-type) revealed 0.95% (ITS), 0.89%
(LSU), 3.04% (rpb2), and 1.77% (tef1-a)) base pair differences, while no difference in
the SSU gene. The PHI test results (Figure 3.17) indicated no significant recombination
events between M. yunnanensis and its phylogenetically related taxa. Based on
significant statistical support in molecular phylogenetic studies, M. yunnanensis is

introduced herein as a new species on agarwood resin part of Aquilaria sinensis from

Yunnan Province, China.

Note a, b, Colony on PDA at room temperature after one week from above and below.
c—h, Mycelia masses. Scale bars: c—h = 10 pm.

Figure 3.15 Montagnula yunnanensis (GMB-W1512, holotype)
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Note Bootstrap support values for ML greater than 50% and Bayesian posterior

probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Stemphylium vesicarium (MFLUCC 13-0344). The new isolates are
indicated in red, and the ex-type strains are in bold.

Figure 3.16 Phylogenetic tree of Montagnula
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Note The PHI test result ®w < 0.05 indicates a significant recombination within the
dataset. The new species are indicated in red, and the new record is indicated in
blue.

Figure 3.17 Split graphs showing the results of the PHI test of Montagnula

cylindrospora and closely related taxa using LogDet transformation and

splits decomposition

Fomitiporia aquilariae T. Y. Du, Tibpromma, K.D. Hyde & Karun. sp. nov.

MycoBank number: MB XXXX; Facesoffungi number: FoF XXXX; Figure 3. 18.

Etymology: Named after its host genus, Aquilaria.

Holotype: GMB-W1514

Culture characteristics: Colonies on PDA at room temperature (23-28°C)
reaching 6 cm in one month; circular, light yellow to yellow, dense, raised, entire edge;
yellow from below. Skeleton hyphae with few branches, few septa, thick-walled,
yellow, 1.5-2.5 um wide; generative hyphae simple-septate, branched, septate, thin-
walled, subhyaline, 1.5-3.5 um wide. Clamp connection: absent. Not sporulating in
WA and PDA media during the six-month observation period.

Material examined: CHINA, Yunnan Province, Yuxi City, Yuanjiang County,

on agarwood resin part of Aquilaria sinensis (Thymelaeaceae), 18 September 2023,
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T. Y. Du, YNA-YJA-CE-C03 (GMB-W1514, dried culture, holotype), preserved in a
metabolically inactive state at Guizhou Medical University (GMB-W); ex-type,
GMBCCI1181; ibid.,, YNA-YJA-CE-C04, living culture GMBCC1182; ibid., YNA-
YJA-CE-CO05, living culture GMBCC1183.

Notes: Based on BLASTn searches of ITS and LSU sequence data, our strain
Fomitiporia aquilariae showed a similarity to F. tasmanica (Dai 18799, MH971174,
86.45%) in ITS and F. punctata (MUCL 47629, GU461982, 97.71%) in LSU. In the
phylogenetic analyses, F. aquilariae has formed a distinct branch in Fomitiporia
(Figure 3.19). The newly described strains belong to Basidiomycota and did not

sporulate in culture, so morphological characteristics could not be compared with other
Fomitiporia species. While our strains are similar to other Fomitiporia species with the

mycelial morphology (dense, raised) and color (yellow) on PDA media, which were
isolated from wood and grapevines affected by rot disease (Rajaiyan et al., 2014;
Mirsoleymani & Mostowfizadeh-Ghalamfarsa, 2018). Based on phylogenetic analysis
(Figure 3.19), F. aquilariae 1s introduced herein as a new species from the agarwood

resin part of Aquilaria sinensis from Yunnan Province, China.
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Note a, b, Colony on PDA at room temperature after one month from above and below.

c—f, Mycelia masses (The arrows indicate generative hyphae). Scale bars: c—f =
20 pm.
Figure 3.18 Fomitiporia aquilariae (GMB-W1514, holotype)



Figure 3.19 Phylogenetic tree of Banksiophoma
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Note Bootstrap support Values' for I\"E greater than lr50% and Bayesian posterior
probabilities grea'ter than 0 90 are gl'x{en near the nodes respectively. The tree is
rooted with Neophellmus unczqetus QMU CL 4623 1). The new isolates are indicated
in red, and the ex-type strains are in bold.

Figure 3.19 (continued)
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3.3.4 Notes for 64 Genera

In this study, we report a total of 960 strains from 64 genera, a significant and
impactful contribution to the field. Among these, 142 strains from six genera were
reported in our team's previous articles, and 818 strains from 58 genera are newly
reported in this article. This article provides a concise summary and introduction of the
64 genera, including their species count, lifestyle, host, and geographic distribution,
classification criteria, their roles in the Aquilaria genus, and their unique biological
activities.

1. Acrocalymma (Acrocalymmaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Acrocalymma was established by Alcorn & Irwin (1987). Currently, 18
epithets are listed in this genus (Index Fungorum, 2025). Acrocalymma species are
found as endophytes, saprobes and pathogens on wood, root, leaf litter, and seed pods
in terrestrial and freshwater habitats (e.g., Arenga pinnata, Cucumis melo, Cucumis sp.,
Cycas calcicola, Eleiodoxa conferta, Ficus ampelas, Ficus sp., Magnolia liliifera,
Medicago sativa, Paeonia suffruticosa, Perilla frutescens, Pterocarpus indicus,
Quercus sp., and Trachycarpus fortune) reported from five countries (viz., Australia,
China, Egypt, India, and Thailand) (Alcorn & Irwin, 1987; Zhang et al., 2012; Dong et
al., 2020; Liu & Zeng, 2022; Shao et al., 2022; Li et al., 2023; Pem et al., 2024). This
genus is well-studied in morphology, and all the species have available sequence data

in GenBank, but mostly have only ITS and LSU sequences, while SSU and fef1-a
sequences are absent (Liu & Zeng, 2022). In previous studies, some Acrocalymma

strains were isolated from Aquilaria sinensis as agarwood-associated fungi from China
(Duetal., 2024; Fu et al., 2024). In this study, we obtained two strains of Acrocalymma
from Aquilaria sinensis, one of which was an endophytic fungus from a healthy tree
branch and one from the agarwood resin part.

2. Allophoma (Didymellaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Allophoma was established by Hsieh et al. (2005). Totally 18 epithets are

listed in this genus and members of Allophoma species are found in soil, air and
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regarded as endophytes, saprobes or regarded as pathogens on different herbaceous and
woody plants (e.g., Acanthus ilicifolius, Acropora formosa, Bambusa vulgaris, Cicer
arietinum, Coffea arabica, Cyperus aromaticus, Lantana camara, Lycopersicon
esculentum, Peperomia pereskiifolia, Piper longum, Pterospermum xylocarpum,
Radermachera sinica, Saintpaulia ionantha, Syzygium aromaticum, Thunbergia
grandiflora, and Yucca gigantea), bat flies, even human eye lesions (Chen et al., 2015;
2017a, b; Babaahmadi et al., 2017; Jayasiri et al., 2019; Hou et al., 2020; Yuan et al.,
2021; Carvalho et al., 2022; Aumentado et al., 2024; Oliveira et al., 2024; Pem et al.,
2024; Index Fungorum, 2025). This genus is well-studied in morphology and
phylogeny (ITS, LSU, rpb2, and TUB) (Chen et al., 2015; Hou et al., 2020; Aumentado
et al., 2024). In previous studies, Al/lophoma has not been reported in Aquilaria spp. In
this study, we obtained three strains of Allophoma from Aquilaria sinensis, three of
which were endophytic fungi from healthy tree branches or leaves.

3. Alternaria (Pleosporaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Alternaria was described by Nees (1816). Currently, 850 epithets are listed
in Index Fungorum (2025). Alternaria is a common fungal genus, with saprobic,
endophytic, and pathogenic species that have been reported from seeds, plants,
agricultural products, animals, soil, and the atmosphere (Woudenberg et al., 2013;
Ariyawansa et al., 2015; Wanasinghe et al., 2018b; He et al., 2024). This genus is well-
studied based on morphology and phylogeny (ITS, LSU, SSU, GAPDH, rpb2, tefl-a,
Alt al, endoPG, and OPA10-2), and the use of DNA sequence data is very important
in resolving Alternaria taxonomy (He et al., 2024). In previous studies, some Alternaria
strains were reported to be isolated from Aquilaria spp. from China and India
(Premalatha et al., 2013; Tian et al., 2013; Lisdayani et al., 2015; Sen et al., 2020; Du
et al., 2022a, d). In this study, we obtained 22 strains of Alternaria from Aquilaria
sinensis, of which 20 strains were endophytic fungi from healthy tree branches or leaves,

and two strains were from agarwood resin parts.
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4. Annulohypoxylon  (Hypoxylaceae, Xylariales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Annulohypoxylon was established by Hsieh et al. (2005). More than 90
epithets are listed in this genus, and most Annulohypoxylon species are saprobic on
wood. Some species are endophytes of herbaceous plants (e.g., Dendrobium aphyllum,
D. chrysotoxum, D. crystallinum, D. falconer, and Stanhopea trigrina) (Chen et al.,
2013; Daranagama et al., 2018; Ma et al., 2022; Liu et al., 2024b; Index Fungorum,
2025). This genus has been studied extensively in morphology and phylogeny (ITS,
LSU, ACT, and TUB) (Liu et al., 2024b). In previous studies, three Annulohypoxylon
strains were isolated from Aquilaria sinensis as agarwood-associated fungi from China
(Du et al., 2022b). In this study, we obtained two more strains of Annulohypoxylon from
Agquilaria sinensis, of which one strain was an endophytic fungus from a healthy tree
leaf, and one strain was from the agarwood resin part.

5. Aspergillus (Aspergillaceae, Eurotiales, Eurotiomycetes, Ascomycota,
Hyde et al., 2024b)

Aspergillus was described by Micheli (1729). More than 1110 epithets are
listed in Index Fungorum (2025). All members of this genus live largely as saprobes
(Pennerman et al., 2020), and some Aspergillus species are common and important
plant pathogens, they can affect agricultural crops in the field as well as after harvest
(e.g., coffee beans, corn ear, cotton boll, peanut, onion, garlic, fruit of grapes,
pomegranates, olives, citrus, and apples) (Zakaria, 2024). Among numerous existing
endophytic fungi, Aspergillus strains are one of the most abundant sources of secondary
metabolites with different biological activities (e.g., antibacterial, antifungal,
antioxidant, anti-cancer, anti-plasmodial, anti-inflammatory, and immunosuppressive
activities) (Hagag et al., 2022). The identification of Aspergillus species relies on
standardized methods based on morphological characteristics, extrolite characterization,
and multi-genes DNA sequence analyses (ITS, rpb2, CaM, and B-tubulin (BenA))
(Nguyen et al., 2020). In previous studies, there are some Aspergillus strains were
reported to isolate from Aquilaria spp. as endophytes or agarwood-associated fungi,

e.g., A. niger from China and Sri Lanka (Subasinghe et al., 2019; Du et al., 2022d).
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In this study, we obtained 40 strains of Aspergillus from Aquilaria sinensis, of which
five strains were endophytic fungi from healthy tree branches or leaves, 29 strains were
from agarwood resin parts, and six strains were from dead branches.

6. Aureobasidium (Saccotheciaceae, Dothideales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Aureobasidium was established by Viala & Boyer (1891). Totally 69
epithets are listed in this genus and members of Aureobasidium species are often found
as saprobes, endophytes, and pathogens in various plant tissues, water, soil, ice, air,
marine sediments, swamps, and high osmotic environments (Wu et al., 2023; Da Silva
et al., 2024; Pem et al., 2024; Index Fungorum, 2025). Zalar et al. (2008) first carried
out the molecular analysis. Subsequently, a large amount of molecular data became
available based on the high accessibility of sequencing services (ITS and LSU) (Wu et
al., 2023). The functional activities of Aureobasidium have been explored, such as: as
biological control agents (Sharma et al., 2009; Prasongsuk et al., 2018), can produced
commercial compounds (Wu et al., 2023), and 4. pullulans can as a natural alternative
to chemical fungicides in agricultural practices (Podgorska-Kryszczuk, 2023; Da Silva
etal., 2024). In previous studies, Aureobasidium has not been reported in Aquilaria spp.
In this study, we obtained one strain of Aureobasidium from a healthy tree branch of
Aquilaria sinensis.

7. Banksiophoma (Phacosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Banksiophoma was described by Crous et al. (2017). Currently, two epithets
are listed in Index Fungorum (2025), and Banksiophoma species have been isolated
from limestone and the leaves of Banksia coccinea (Crous et al., 2017; Pem et al., 2024;
Paiva et al., 2025). This genus is well-studied in morphology and phylogeny (ITS, LSU,
tefl-a, rpb2, and TUB) (Crous et al., 2017). In previous studies, there are no
Banksiophoma strains reported from Aquilaria spp. In this study, we obtained four
Banksiophoma strains from healthy Aquilaria sinensis tree branches.

8. Biscogniauxia (Graphostromataceae, Xylariales, Sordariomycetes,

Ascomycota, Hyde et al., 2024b)
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Biscogniauxia was introduced for the sexual morph of this genus by Pouzar
(1979). In this genus, the asexual morph was recorded as Nummularia, and the sexual
morph as Biscogniauxia (Tulasne & Tulasne, 1863; Li et al., 2021). Totally, 133
epithets are listed in this genus and members of Biscogniauxia species are pathogens
on some angiosperm genera (e.g., Acacia, Acer, Alnus, Artocarpus, Carya, Celtis,
Coprosma, Eucalyptus, Fagus, Fraxinus, Gluta, Lithocarpus, Padus, Phyllirea, Pisnia,
Populus, Psidium, Quercus, Rhamnus, Rubus, and Tilia) and endophytes reported from
oak trees (Raimondo et al., 2016; Hyde et al., 2020b; Ma et al., 2020). This genus is
well-studied in morphology, but only a few species have available DNA sequences
(Hyde et al., 2020b; Li et al., 2021; Samarakoon et al., 2022a; Qiao et al., 2024).
Biscogniauxia species can produce more than 40 secondary metabolites (Liu et al.,
2019b; Sritharan et al., 2019; Ma et al., 2020). In previous studies, Biscogniauxia has
not been reported in Aquilaria spp. In this study, we obtained one strain of
Biscogniauxia from a healthy tree branch of Aquilaria sinensis.

9. Botryosphaeria (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Botryosphaeria was described by Cesati & de Notaris (1863). Currently,
more than 300 epithets are listed in Index Fungorum (2025). Botryosphaeria is
cosmopolitan, and species of this genus have been reported in many woody plants as
endophytes, saprobes, and pathogens (Liu et al., 2012; Dissanayake et al., 2016;
Slippers et al., 2017; Sun et al., 2022; Pem et al., 2024). In the past, the species of
Botryosphaeria were mainly identified through morphological characters alone or on
host association, but these signs are not sufficient to distinguish them, later, molecular
data is being studied, but only some species have DNA sequences (ITS, LSU, fefl-a,
rpb2, and TUB) (Sun et al., 2022). In previous studies, some Botryosphaeria strains
were reported to isolate from Aquilaria spp. as endophytes or agarwood-associated
fungi, and B. rhodina shows antimicrobial activity from China (Gong & Guo, 2009; Du
et al., 2022d). In this study, we obtained five strains of Botryosphaeria from agarwood

resin parts of Aquilaria sinensis.
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10. Chaetomium (Chaetomiaceae, Sordariales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Chaetomium was described by Gustav Kunze in 1817 (Kunze & Schmidt,
1817). Currently, more than 440 epithets are listed in Index Fungorum (2025).
Chaetomium 1s one of the largest genera of saprobic ascomycetes; species are well
known as coprophilous, seed and soil fungi, and are also found in organic compost
(Pornsuriya et al., 2008). Some species can act as both pathogenic and endophytic fungi,
such as C. globosum (Zhai et al., 2018; Hassan et al., 2022). The biological activity of
Chaetomium 1s also worth noting (e.g., antitumor, antimalarial, cytotoxic, enzyme
inhibitory, antimicrobial, phytotoxic, and antirheumatoid activities) (Abdel-Azeem,
2019). Chaetomium species were traditionally identified by morphological data; the
study of molecular phylogeny is limited, and many species lack DNA sequences (ACT,
ITS, rpb2, TUB, TUB, and CAL) (Sekhar et al., 2018). In previous studies, some
Chaetomium strains were reported to isolate from Aquilaria spp. as endophytes or
agarwood-associated fungi, e.g., C. globosum from India (Tamuli et al., 2000, 2005).
In this study, we obtained four strains of Chaetomium from Aquilaria sinensis, of which
one strain was an endophytic fungus from a healthy tree branch, and three strains were
from agarwood resin parts.

11. Cladorrhinum (Podosporaceae, Sordariales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Cladorrhinum was introduced by Marchal (1885). A total of 23 epithets are
listed in this genus and members of Cladorrhinum species as saprobes in soil, dung or
plant material, as endophytes in roots, and some species as pathogenic on humans and
animals (Carmaran et al., 2015; Huang et al., 2021; Crous et al., 2024; Index Fungorum,
2025). This genus is well-studied in morphology, but some of species without available
DNA sequences (Wang et al., 2019a). Some Cladorrhinum species exhibit biocontrol
potential, promote plant growth, produce phytases, or generate enzymes beneficial for
animal feed (Carmaran et al., 2015). In previous studies, Cladorrhinum bulbillosum

was reported as a novel inoculant for agarwood formation in Aquilaria sinensis from
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China (Ma et al., 2021). In this study, we obtained one strain of Cladorrhinum from
healthy tree branch of Aquilaria sinensis.

12. Cladosporium (Cladosporiaceae, Cladosporiales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Cladosporium was established by Link (1816). More than 900 epithets are
listed in this genus and most of Cladosporium species as plant pathogenic, and some of
as saprobic, pathogenic in humans and animals, and endophytic or hyperparasitic in
terrestrial environments, such as caves, soil, air, indoors, and marine environments,
such as seawater, sediment and marine organisms (Dutra et al., 2023; Yang et al., 2023;
Pereira et al., 2024; Index Fungorum, 2025). This genus is well-studied in morphology
and phylogeny (ACT, ITS, and tef1-a) (Dutra et al., 2023; Lee et al., 2023; Yang et al.,
2023). Cladosporium species can produce diverse secondary metabolites of medical
interest or as potential biocontrol agents for other plant diseases and also can act as
biologically control agents against other fungi (Dutra et al., 2023; Lee et al., 2023; Yang
et al., 2023). Previous studies reported some Cladosporium strains from Aquilaria spp.
as endophytes and agarwood-associated fungi from China (Du et al., 2022a, b). In this
study, we obtained three strains of Cladosporium from Aquilaria sinensis, of which one
strain was an endophytic fungus from a healthy tree leaf, one strain was from an
agarwood resin part, and one strain was from a dead branch.

13. Colletotrichum (Glomerellaceae, Glomerellales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Colletotrichum was initially described under the name Vermicularia by
Tode (1790), while later revised as Colletotrichum by Corda (1837). More than 1,000
epithets are listed in Index Fungorum (2025). Colletotrichum species play as plant
pathogens, saprobes or endophytes on a wide variety of plant hosts (Than et al., 2008;
Jayawardena et al., 2021; Zhang et al., 2024d) and are considered as one of the top 10
economically important fungal pathogens, cause anthracnose in diverse hostplants (e.g.,
fruit-plants, vegetables, and ornamentals) (Dean et al., 2012; Sharma & Shenoy, 2016),
and some species reportedly infect humans (Natarajan et al., 2013). A polyphasic
approach is needed to identify new taxa (e.g., morphology, phylogenetics (ACT, ITS,
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CHS-1, GAPDH, and TUB2), and biochemical tests) (Sharma & Shenoy, 2016;
Bhunjun et al., 2021; Zhang et al., 2024d). In previous studies, some Colletotrichum
strains were reported to isolate from Aquilaria spp. as endophytes or agarwood-
associated fungi, e.g., C. gloeosporioides from China (Tian et al., 2013; Du et al.,
2022d). In this study, we obtained 49 strains of Colletotrichum from Aquilaria sinensis,
of which 45 were endophytic fungi from healthy tree branches or leaves, and four were
from agarwood resin parts.

14. Coniella (Schizoparmaceae, Diaporthales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Coniella was established by von Hohnel (1918). Totally 65 epithets are
listed in this genus and members of Coniella species as plant pathogens, endophytes
and saprobes (e.g., Castanea mollissima, Daemonorops margaritae, Eucalyptus
grandis, and Punica granatum) (Zhang et al., 2023b). This genus is well-studied in
morphology and phylogeny (ITS, tef1-a, and rpb2; Tennakoon et al., 2021; Zhang et
al., 2023b). In previous studies, Coniella has not been reported in Aquilaria spp. In this
study, we obtained two strains of Coniella from healthy tree leaves of Aquilaria sinensis
as endophytic fungi.

15. Corynespora (Corynesporascaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Corynespora was described by Giissow (1906). Currently, more than 200
epithets are listed in Index Fungorum (2025), and members of Corynespora play as
saprobes, endophytes, and pathogens on a wide range of plants, other fungi, nematodes,
and human skin (Dixon et al., 2009; Kumar et al., 2012; Li et al., 2023; Du et al., 2024a;
Pem et al., 2024). This genus is poorly studied in phylogeny, mostly due to a lack of
molecular data for species. In previous studies, two Corynespora species were reported
to isolate from Aquilaria spp., e.g., C. aquilariae as saprobe from China (Du et al.,
2024a), C. cassiicola as agarwood-associated fungi from China (Du et al., 2022b) and
as pathogen from India (Borah et al., 2012).

16. Crassiparies (Neohendersoniaceae, Pleosporales, Dothideomycetes,

Ascomycota, Hyde et al., 2024b)
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Crassiparies was established by Li et al. (2016). Three epithets are listed in
this genus and Crassiparies species are saprobic on wood (e.g., Acer sp., Arabica coffee,
Machilus japonica, Hevea brasiliensis, Mangifera indica, and Litchi chinensi) (Li et al.,
2016; Senwanna et al., 2021; Lu et al., 2022c; Yang et al., 2024; Index Fungorum,
2025). This genus is well-studied in morphology and phylogeny (ITS, LSU, SSU, fef1-
a, and rpb2; Lu et al., 2022¢; Yang et al., 2024). In previous studies, Crassiparies
strains were isolated from Aquilaria sinensis as agarwood-associated fungi from China
(Du et al., 2022b, 2024). In this study, we obtained one strain of Crassiparies from the
agarwood resin part of Aquilaria sinensis.

17. Curvularia  (Pleosporaceae, = Pleosporales, = Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Curvularia was established by Boedjin (1933). Totally 248 epithets are
listed in this genus and most Curvularia species as saprobic and endophytes, and some
species as epiphytes and pathogens (animal, human, and plants) in air, indoor
environments, soil, water, or plant material (Ferdinandez et al., 2021, 2023; Yasanthika
et al., 2023; Van Vuuren et al., 2024; Wang et al., 2024c). This genus is well-studied in
morphology, but some species lack available DNA sequences (Van Vuuren et al., 2024;
Wang et al., 2024¢). Curvularia strain has been reported to have inhibitory potential
against various pathogens (Du et al., 2022d). In previous studies, some Curvularia
strains were reported from Aquilaria spp. as agarwood-associated fungi from China and
Malaysia (Mohamed et al., 2010; Du et al., 2022a, b), and Curvularia sp. is a potential
fungal inoculant that can promote the production of dark agarwood resin (Naziz et al.,
2023).

18. Daldinia (Hypoxylaceae, Xylariales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Daldinia was established by Cesati & de Notaris (1863). Totally, 111
epithets are listed in this genus, and members of Daldinia have been reported as
endophytes, saprobes, and pathogens on dicots and monocots plants (Sir et al., 2016;
Lee et al., 2019; Wongkanoun et al., 2020; Yin et al., 2024a). This genus is well-studied

in morphology, but some species lack available DNA sequences (Wongkanoun et al.,
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2020; Yin et al., 2024a). Daldinia species can produce abundant secondary metabolites;
those metabolites can be used as taxonomic markers (Wongkanoun et al., 2020; Yin et
al., 2024a). In previous studies, Daldinia strains were isolated from Aquilaria sinensis
as agarwood-associated fungi from China (Du et al., 2022b, 2024). In this study, we
obtained 12 strains of Daldinia from agarwood resin parts of Aquilaria sinensis.

19. Deniquelata (Didymosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Deniquelata was established by Ariyawansa et al. (2013). Seven epithets are
listed in this genus and Deniquelata species as pathogens, saprobes, and endophytes on
Barringtonia asiatica, Cassia fistula, Coffea sp., Persian oak, stone, Suaeda monoica
(Ariyawansa et al., 2013; Devadatha et al., 2018; Alidadi et al., 2019; Crous et al., 2021,
2023; Lu et al., 2022b). This genus is well-studied in morphology and phylogeny (ITS,
LSU, SSU, and tef1-a) (Crous et al., 2021, 2023; Lu et al., 2022b). In previous studies,
Deniquelata strains were isolated from Aquilaria sinensis as agarwood-associated fungi
from China (Du et al., 2024). In this study, we obtained three strains of Deniquelata
from agarwood resin parts of Aquilaria sinensis.

20. Diaporthe (Diaporthaceae, Diaporthales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Diaporthe was described by Nitschke (1870). More than 1,300 epithets are
listed in Index Fungorum (2025). Diaporthe (Phomopsis) species have often been
reported as plant pathogens, endophytes, or saprobes, commonly isolated from various
hosts (Gomes et al., 2013; Dissanayake et al., 2017). The polyphasic taxonomy is
essential to identify and comprehensively characterize Diaporthe, and the phylogenetic
analysis is based on muti-genes combined ITS, tef1-a, TUB, CAL, and HIS (Gomes et
al., 2013; Norphanphoun et al., 2022; Zhu et al., 2023; Dissanayake et al., 2025). In
previous studies, some Diaporthe strains were reported to isolate from Aquilaria spp.
as endophytes or agarwood-associated fungi, and some strains showed excellent
antioxidant capacity from China and Thailand (Monggoot et al., 2017; Du et al., 2022a,
2022b, 2022d). In this study, we obtained 55 strains of Diaporthe from Aquilaria
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sinensis, of which 31 strains were endophytic fungi from healthy tree leaves, 21 strains
were from the agarwood resin part, and three strains were from dead branches.

21. Didymella (Didymellaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Didymella was described by Saccardo (1880). Currently, more than 600
epithets are listed in Index Fungorum (2025); most of the Didymella species are usually
found as saprobes from herbaceous and woody plants, and many are also important
plant pathogens (Magana-Duefias et al., 2021; Chen et al., 2022; Luo et al., 2024; Pem
et al., 2024). Some endophytic species, such contain abundant metabolites (Yuan et al.,
2023). This genus is well-studied in morphology and phylogeny based on multiple-loci
(ITS, LSU, rpb2, and TUB) (Luo et al., 2024). In previous studies, no Didymella strains
were reported from Aquilaria spp. In this study, we obtained one strain of Didymella
from a healthy tree leaf of Aquilaria sinensis.

22. Epicoccum (Didymellaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Epicoccum was established by Link (1815). Totally, 178 epithets are listed
in this genus, and members of the Epicoccum have been reported as saprobes, pathogens,
and endophytes from air, soil, on human toenails, in various plant parts, and in water
(Senanayake et al., 2023; Pem et al., 2024; Tian et al., 2024). This genus is well-studied
in morphology, most of the species sequence data are unavailable (De Silva et al., 2021;
Keirnan et al., 2021; Tian et al., 2024; Wang et al., 2024b). Some endophytic Daldinia
species have biological control ability, and some species can produce mycotoxins
(Oliveira et al., 2018; Bagy et al., 2019; Senanayake et al., 2023). In previous studies,
Epicoccum strains were isolated from Aquilaria spp. as endophytes and agarwood-
associated fungi from China (Du et al., 2022a). In this study, we obtained eight strains
of Epicoccum from healthy tree branches or leaves of Aquilaria sinensis as endophytic

fungi.

23. Exophiala (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes,
Ascomycota, Hyde et al., 2024b)



67

Exophiala was established by Carmichael (1967). Totally 97 epithets are
listed in this genus and members of Exophiala as black yeast-like fungi isolated from
various habitats worldwide such as air, biological crusts, bulk soil, infected animals and
human tissue, natural water masses, plant tissues, rhizosphere, and rock surfaces (Yang
et al., 2021; Lv et al.,, 2022; Thitla et al., 2022). This genus is well-studied in
morphology, but some of the species' sequence data are unavailable (Lv et al., 2022;
Thitla et al., 2022; Ide-Pérez et al., 2024). In previous studies, Exophiala has not been
reported in Aquilaria spp. In this study, we obtained five strains of Exophiala from
agarwood resin parts of Aquilaria sinensis.

24. Fomitiporia (Hymenochaetaceae, Hymenochaetales, Agaricomycetes,
Basidiomycota, Hyde et al., 2024b)

Fomitiporia was established by Murrill (1907). Totally, 101 epithets have
been listed in this genus, and Fomitiporia species have been reported as pathogens and
saprobes (Alves-Silva et al., 2020a, b; Brown et al., 2020). This genus is well-studied
in morphology and phylogeny (ITS and nLSU) (Alves-Silva et al., 2020a, b; Brown et
al., 2020; Wu et al., 2022). In previous studies, Fomitiporia has not been reported in
Agquilaria spp. In this study, we obtained three strains of Fomitiporia from agarwood
resin parts of Aquilaria sinensis.

25. Fonsecaea (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes,
Ascomycota, Hyde et al., 2024b)

Fonsecaea was described by Brumpt (1922) and Negroni (1936) (Ajello et
al., 1988). Totally, 16 epithets are listed in this genus, and members of Fonsecaea have
been reported as black yeasts, as pathogen in humans and animals, and potential
etiologic agents of human chromoblastomycosis (Najafzadeh et al., 2010a, b; Vicente
etal., 2012, 2013; de Azevedo et al., 2015). This genus is well-studied in morphology,
but some of the species' sequence data are unavailable (De Hoog et al., 2004;
Najafzadeh et al., 2009, 2010a b; Vicente et al., 2012, 2013; de Azevedo et al., 2015).
In recent studies, Fu et al. (2024) considered Fonsecaea isolated from China potentially
associated with agarwood formation in Aquilaria sinensis. In this study, we obtained

29 strains of Fonsecaea from agarwood resin parts of Aquilaria sinensis.
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26. Fusarium (Nectriaceae, Hypocreales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Fusarium was described in 1809 by Link (Nelson et al., 1981). Currently,
more than 1,800 epithets are listed in Index Fungorum (2025). Fusarium is a common
fungal genus in nature, including saprobic, endophytic and pathogenic species reported
from air and soil, usually associated with plants, and some also associated with humans
(Ma et al., 2013; Aoki et al., 2014; Wu 2014; Ekwomadu et al., 2018; Torbati et al.,
2021; Ekwomadu & Mwanza, 2023; Song et al., 2023; Zhang et al., 2023c). There are
many species in this genus, which are divided into multiple complex groups. Common
muti-genes include ITS, LSU, ftef1-a, rpb2, TUB, and CaM (Ma et al., 2023; Afzalinia
et al., 2025). In previous studies, there are many Fusarium strains were reported to
isolate from Aquilaria spp., Fusarium is a dominant genus among fungi associated to
Agquilaria, and F. solani has been repeatedly reported as an excellent inducer from
China, India, Indonesia, Malaysia, Sri Lanka, Sumatra island, and Vietnam (Tabata et
al., 2003; Tamuli et al., 2005; Gong & Guo, 2009; Cui et al., 2011; Premalatha et al.,
2013; Subasinghe et al., 2019; Du et al., 2022a, b, d, 2024b). In this study, we obtained
140 strains of Fusarium from Aquilaria sinensis, of which two strains were endophytic
fungi from healthy tree branches, 122 strains were from agarwood resin parts, and 16
strains were from dead branches.

27. Hermatomyces (Hermatomycetaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Hermatomyces was introduced by Spegazzini (1910). Totally, 35 epithets
are listed in this genus, and most Hermatomyces species are saprobic on various plants
(De Silva et al., 2022) and have a worldwide distribution (Hashimoto et al., 2017; De
Silva et al., 2022; Zhang et al., 2023a; Pem et al., 2024; Index Fungorum, 2025).
Currently, this genus is well-studied based on morphology and phylogeny (ITS, LSU,
SSU, tefl-a, and rpb2) (Delgado et al., 2022; Zhang et al., 2023a). In previous studies,
Hermatomyces strains were isolated from Aquilaria sinensis as agarwood-associated
fungi in China (Song et al., 2021), and Zhang et al. (2024b) proposed that the abundance

of Hermatomyces was correlated with the formation of the sesquiterpene constituents
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of agarwood. In this study, we obtained one strain of Hermatomyces from the agarwood
resin part of Aquilaria sinensis.

28. Hypoxylon (Hypoxylaceae, Xylariales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Hypoxylon was described by the world monograph of Hypoxylon (Miller
1961). Currently, more than 1,200 epithets are listed in Index Fungorum (2025).
Hypoxylon species are mainly saprobes that live on dead and decaying wood of
angiospermous plants (Stadler 2011; Song et al., 2022b), while some strains serve as
plant pathogens (Nepolean et al., 2014). In addition, some species as endophytes may
protect their host plants from pathogens (Song et al., 2022b). The identification of this
genus is based on polyphasic taxonomic methods, and the phylogenetic analysis is
based on multiple-loci (ITS, LSU, tefl-a, EPB2, and TUB) (Song et al., 2022b). In
previous studies, some Hypoxylon strains were reported to isolate from Aquilaria
sinensis as agarwood-associated fungi from China (Du et al., 2022b, 2024b). In this
study, we obtained 15 strains of Hypoxylon from Aquilaria sinensis, of which nine
strains were endophytic fungi from healthy tree branches or leaves, and six were from
agarwood resin parts.

29. Lasiodiplodia (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Lasiodiplodia was described by Clendenin (1896). Currently, 92 epithets are
listed in Index Fungorum (2025). Lasiodiplodia species are commonly saprobes and
pathogens on woody hosts (Wu et al., 2021). This genus is well-studied in morphology
and phylogeny (ITS, tef1-a, and TUB) (Wu et al., 2021). In previous studies, there are
many Lasiodiplodia strains were reported to isolate from Aquilaria spp. as endophytes
or agarwood-associated fungi, Lasiodiplodia is a common genus in Aquilaria-
associated fungi, some Lasiodiplodia strains are also considered to have strong
induction potential, e.g., L. theobromae from China and Laos (Zhang et al., 2014; Chen
et al., 2017a; Huang et al., 2017; Wang et al., 2019b; Du et al., 2024b). In this study,

we obtained 163 strains of Lasiodiplodia from Aquilaria sinensis, of which eight strains
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were endophytic fungi from healthy tree branches or leaves, and 155 strains were from
agarwood resin parts.

30. Loculosulcatispora (Sulcatisporaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Loculosulcatispora was introduced by Ren et al. (2020). Currently, four
epithets are listed in Loculosulcatispora (Index Fungorum, 2025) and all of
Loculosulcatispora species were reported as saprobes on Juglans regia, Paeonia
suffruticosa, Vernicia fordii, and decaying wood or twigs of unidentified plants in
China and Thailand (Ren et al., 2020; Xu et al., 2022; Wanasinghe et al., 2022; Li et
al., 2023; Wang et al., 2023b). This genus is well-studied in morphology and phylogeny
(ITS, LSU, SSU, tefl-a, and rpb2) (Li et al., 2023; Wang et al., 2023b). In previous
studies, no Loculosulcatispora species have been isolated from Aquilaria spp. In this
study, we obtained one strain of Loculosulcatispora from the agarwood resin part of
Agquilaria sinensis.

31. Massaria (Massariaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Massaria was introduced by de Notaris (1844). A total of 193 epithets are
listed in this genus (Index Fungorum, 2025). The Massaria species are highly host-
specific on Acer and Rosaceae plants through hemibiotrophic or weakly parasitic
lifestyles, distributed in northern temperate climatic regions (Voglmayr & Jaklitsch,
2011; Hongsanan et al., 2020; Samarakoon et al., 2022b; Pem et al., 2024). Some
species, including M. campestris, M. gigantispora, and M. vindobonensis have been
identified from dead branches attached to trees, indicating their weak pathogenicity or
opportunistic growth in plants (Michalopoulos-Skarmoutsos & Skarmoutsos, 1999;
Voglmayr & Jaklitsch; 2011; Hongsanan et al., 2020). Presently, there are 54 accepted
species, of which only 19 species have molecular data (SSU, LSU, tefl-a, and rpb2);
there are many species that lack molecular data (Hongsanan et al., 2020; Samarakoon
et al., 2022; Index Fungorum, 2025). In previous studies, some Massaria strains were

isolated from Aquilaria sinensis as agarwood-associated fungi from China (Du et al.,
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2022b). In this study, we obtained three strains of Massaria from agarwood resin parts
of Aquilaria sinensis.

32. Medicopsis (Neohendersoniaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Medicopsis was introduced by de Gruyter et al. (2013). Currently, two
epithets have been listed in this genus (Index Fungorum, 2025) and members of
Medicopsis can be found as pathogen of humans, endophytes and saprobes on plants
(Badali et al., 2010; Khan et al., 2011; De Gruyter et al., 2013; Ahmed et al., 2014;
Jeddi et al., 2020; Garofalo et al., 2022; Want et al., 2022). This genus is well-studied
in morphology and phylogeny (ITS, LSU, and SSU) (De Gruyter et al., 2013; Hyde et
al., 2018). In previous studies, some Medicopsis strains were isolated from Aquilaria
sinensis as agarwood-associated fungi from China (Du et al., 2024). In this study, we
obtained three strains of Medicopsis from agarwood resin parts of Aquilaria sinensis.

33. Meyerozyma (Debaryomycetaceae, Saccharomycetales, Saccharomycetes,
Ascomycota, Hyde et al., 2024b)

Meyerozyma as one of genus of ascomycete yeasts was proposed by
Kurtzman and Suzuki (2010). Eight epithets have been listed in this genus (Index
Fungorum, 2025), and it can be distinguished well from another close genus in
morphology and phylogeny (ITS and LSU) (Kurtzman & Suzuki, 2010; Yurkov et al.,
2017). Most yeasts of Meyerozyma have been isolated from insect-related habitats and
the plant materials in the forest (Carpinus betulus). In previous studies, no Meyerozyma
have been isolated from Aquilaria spp. In this study, we obtained two strains of
Meyerozyma from healthy tree branches of Aquilaria sinensis.

34. Montagnula (Didymosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Montagnula was described by Berlese (1896). Currently, 57 epithets are
listed in Index Fungorum (2025). Most Montagnula species have been reported as
saprobes on a wide range of hosts (dead wood, bark, or leaves) in various countries
(Ariyawansa et al., 2014b; Du et al., 2021; Pem et al., 2024), and M. cylindrospora was

reported from a human skin sample (Crous et al., 2020). This genus is well-studied in
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morphology and phylogeny (ITS, LSU, SSU, tefl-a, and rpb2) (Hyde et al., 2023;
Wanasinghe et al., 2024). In previous studies, only M. aquilariae was reported to isolate
from Aquilaria sinensis as a saprobe from China (Hyde et al., 2023). In this study, we
obtained 13 strains of Montagnula from agarwood resin parts of Aquilaria sinensis.

35. Mucor (Mucoraceae, Mucorales, Mucoromycetes, Mucoromycota, Hyde
et al., 2024b)

Mucor was designated by Fresenius (1850). More than 770 epithets are
listed in this genus (Index Fungorum, 2025). Mucor species are distributed worldwide
and commonly collected in soil and dung (Walther et al., 2013; Zhao et al., 2023). Some
species of Mucor are widely used in fermentation, biotransformation, and the
pharmaceutical industry (Hong et al., 2012; Huang et al., 2014; Khan et al., 2019), and
some species are well-known pathogens causing mucormycosis (Chibucos et al., 2016;
Panthee et al., 2021). In this genus, only some species have molecular data (ITS and
LSU), while most species lack it (GenBank, 2024). In previous studies, some Mucor
strains were isolated from Aquilaria sinensis from China, India and Sri Lanka
(Subasinghe et al., 2019; Gogoi et al., 2022; Du et al., 2024b). In this study, we obtained
three strains of Mucor from Aquilaria sinensis, of which one strain was an endophytic
fungus from a healthy tree branch, and two strains were from agarwood resin parts.

36. Nemania (Xylariaceae, Xylariales, Sordariomycetes, Ascomycota, Hyde et
al., 2024b)

Nemania was described by Gray (1821). Currently, 123 epithets are listed
in Index Fungorum (2025). Nemania are more diverse in temperate zones than tropical
zones, and mainly distributed on the rotting wood of angiosperms (Ju & Rogers, 2002;
Tang et al., 2007; Pietb al. 2021) and as pathogens of some plants (Wang et al., 2023a).
In addition, Nemania species exhibits different biological activities as an endophytic
fungus (Kumarihamy et al., 2019; Tibpromma et al., 2021). The species of this genus
are mainly identified through morphology, as most species lack molecular data (ITS,
LSU, rpb2, and TUB) (Pourmoghaddam et al., 2022). In previous studies, N. aquilariae
and N. yunnanensis were isolated from Aquilaria sinensis as agarwood-associated fungi,

and N. aquilariae showed antibacterial and antimicrobial properties from China
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(Tibpromma et al., 2021). In this study, we obtained two strains of Nemania from
healthy tree branches of Aquilaria sinensis.

37. Neodeightonia (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Neodeightonia was reported by Punithalingam (1969). A total of 15 epithets
are listed in this genus (Index Fungorum, 2025). Mostly members of Neodeightonia are
associated with palms, bamboos, and other plants (Punithalingam, 1969; Phillips et al.,
2008; Liu et al., 2012; Adamcik et al., 2015; Dai et al., 2017; Pereira & Phillips, 2023;
Zhang et al., 2024a), and primarily reported as saprobes, although a few have been
reported as pathogens causing leaf spots and leaf, rachis and root rot (Ligoxigakis et al.,
2013; Bengyellaetal., 2015; Nishad & Ahmed, 2020; Shabong & Kayang, 2022; Zhang
& Song, 2022; Pereira & Phillips, 2023). This genus is well-studied in morphology and
phylogeny (ITS, LSU, tef1-a, and TUB). In previous studies, no Neodeightonia species
were isolated from Aquilaria spp. In this study, we obtained one strain of Neodeightonia
from the agarwood resin part of Aquilaria sinensis.

38. Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Neofusicoccum was reported by Crous et al. (2006). A total of 71 epithets
are listed in this genus (Index Fungorum, 2025). The members of Neofusicoccum have
a worldwide and cosmopolitan distribution and are known as endophytes and pathogens
causing shoot blight, cankers and dieback on a wide range of woody hosts, including
wild, ornamental and economically important species (Slippers & Wingfield, 2007;
Diniz et al., 2021; Si et al., 2023). Neofusicoccum are difficult to differentiate from one
other since many morphological characters overlap between species; thus, the
molecular data (ITS, tef1-a, rpb2, and TUB) are an indispensable part to distinguish
species (Crous et al., 2006; Phillips et al., 2008; Phillips et al., 2013; Zhang et al., 2021).
In previous studies, some Neofusicoccum species were isolated from Aquilaria sinensis

as agarwood-associated fungi from China (Du et al., 2022d).



74

39. Neopestalotiopsis (Sporocadaceae, Amphisphaeriales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Neopestalotiopsis was introduced by Maharachchikumbura et al. (2014).
A total of 119 epithets are listed in this genus (Index Fungorum, 2025). Members of
Neopestalotiopsis are important plant pathogens and are roughly ubiquitous in
agricultural settings, causing several diseases and losses on various hosts worldwide
(Maharachchikumbura et al., 2014; Jayawardena et al., 2016; Norphanphoun et al.,
2019; Farr & Rossman, 2023; Sun et al., 2023). Also, several species have been reported
as saprobes and endophytes (Chethana et al., 2021; Sun et al., 2023). The species of
Neopestalotiopsis can be distinguished from Pseudopestalotiopsis and Pestalotiopsis
by morphology and phylogeny (ITS, fefl-a, and TUB). In previous studies,
Neopestalotiopsis spp. were isolated from Aquilaria sinensis as agarwood-associated
fungi from China (Du et al., 2022b, d). In this study, we obtained 13 strains of
Neopestalotiopsis from Aquilaria sinensis, of which 10 strains were endophytic fungi
from healthy tree branches or leaves, one strain was from the agarwood resin part, and
two strains were from dead branches.

40. Neoscytalidium (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Neoscytalidium was introduced by Crous et al. (2006). Eight epithets are
listed in this genus (Index Fungorum, 2025). Species of Neoscytalidium have been
reported as plant and human pathogens with worldwide distribution. (Crous et al., 2006;
Calvillo-Medina et al., 2018; Wonglom et al., 2023). This genus can be distinguished
from other genera based on morphology and phylogeny (ITS, tefl-a, and TUB)
(Wonglom et al., 2023). In previous studies, some Neoscytalidium strains were isolated
from Aquilaria sinensis as agarwood-associated fungi from China (Du et al., 2024). In
this study, we obtained 25 strains of Neoscytalidium from Aquilaria sinensis, of which

17 strains were from agarwood resin parts, and eight strains were from dead branches.
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41. Nigrograna (Nigrogranaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Nigrograna was described by De Gruyter et al. (2013). Currently, 43
epithets are listed in Index Fungorum (2025), and Nigrograna species have been
reported as saprobes, endophytes, and human pathogens distributed in marine and
terrestrial habitats (Jaklitsch & Voglmayr, 2016; Dayarathne et al., 2020; Lu et al.,
2022a; Du et al., 2024a). This genus is well-studied in morphology and phylogeny (ITS,
LSU, SSU, tef1-a, and rpb2) (Du et al., 2024a). In previous studies, only N. aquilariae
was reported from Aquilaria sinensis as a saprobe from China (Du et al., 2024a). In this
study, we obtained one strain of Nigrograna from the agarwood resin part of Aquilaria
sinensis.

42. Nigrospora (Apiosporaceae, Amphisphaeriales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Nigrospora was described by Zimmerman (1902). Currently, 52 epithets are
listed in Index Fungorum (2025). This genus includes pathogens, endophytes, and
saprobes, and it is usually isolated from various substrates like plants, soil, and air
(Zhang et al., 2024c). This genus is well-studied in morphology and phylogeny (ITS,
tefl-a, and TUB) (Zhang et al., 2024c). Nigrospora is considered a natural product
source and is used for industrial applications (Metwaly et al., 2014; Zhong et al., 2016;
Zhang et al., 2024c¢). In previous studies, some Nigrospora strains were reported to
isolate from Aquilaria spp. as endophytes or agarwood-associated fungi, and some
strains show a high inhibition rate to Botrytis cinerea from China (Li et al., 2014; Huang
et al., 2018; Du et al., 2022a, b, d). In this study, we obtained 34 strains of Nigrospora
from Aquilaria sinensis, of which 28 strains were endophytic fungi from healthy tree
branches or leaves, and six strains were from agarwood resin parts.

43. Paracamarosporium (Didymosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Paracamarosporium was introduced by Wijayawardene et al. (2014). Nine
epithets are listed in this genus (Index Fungorum, 2025). Members of Paracamarosporium

are found as endophytes and saprobes on leaves, twigs, branches, and stems of various
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plants (Wijayawardene et al., 2014; Pelo et al., 2020; Thuong et al., 2022). And the
species of Paracamarosporium have greater medicinal potential; a Paracamarosporium
sp. has been reported to produce potent antimalarial compounds (Hayashi et al., 2019).
It is difficult to morphologically distinguish the taxa in this genus (Crous et al., 2015),
but can be well-studied by morphology and phylogeny (ITS and LSU) (Thuong et al.,
2022). In previous studies, some Paracamarosporium strains were isolated from
Aquilaria sinensis as agarwood-associated fungi from China (Du et al., 2022b, d,
2024b). In this study, we obtained 16 strains of Paracamarosporium from healthy tree
branches of Aquilaria sinensis.

44. Paraconiothyrium (Didymosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Paraconiothyrium was introduced by Verkley et al. (2004). A total of 36
epithets are listed in this genus (Index Fungorum, 2025). The genus is reported as a
phytopathogen, saprobe, and endophyte in a wide range of hosts and substrates
worldwide (Lu et al., 2022b; Pem et al., 2024). The species delineation of this genus
should be incorporated with morphology and molecular phylogeny (ITS, LSU, SSU,
tefl-a, and rpb2) (Xiong et al., 2023). In previous studies, some Paraconiothyrium
strains were isolated from Aquilaria sinensis as agarwood-associated fungi from China
(Du et al., 2022a, b). In this study, we obtained four strains of Paraconiothyrium from
Aquilaria sinensis, of which one strain was from the agarwood resin part, and three
strains were from dead branches.

45. Paradictyoarthrinium (Paradictyoarthriniaceae, Pleosporales,
Dothideomycetes, Ascomycota, Hyde et al., 2024b)

Paradictyoarthrinium was established by Matsushima (1996). There are
five epithets have been listed in this genus (Index Fungorum, 2025). Members of
Paradictyoarthrinium are mainly discovered as saprobes from terrestrial, freshwater,
and marine environments in China, India, South Africa, and Thailand (Htet et al., 2023;
Pem et al., 2024). This genus has also been reported as endophytes (Kristiani et al.,
2023), and pathogen in humans (Kang et al., 2024). The genus can be identified by
morphology and phylogeny (ITS, LSU, and »pb2) (Liu et al., 2018; Htet et al., 2023).
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In previous studies, no Paradictyoarthrinium species have been isolated from Aquilaria
spp. In this study, we obtained one strain of Paradictyoarthrinium from the agarwood
resin part of Aquilaria sinensis.

46. Penicillium (Aspergillaceae, Eurotiales, Eurotiomycetes, Ascomycota,
Hyde et al., 2024b)

Penicillium was established by Link (1809). More than 1400 epithets are
listed in this genus (Index Fungorum, 2025). Members of Penicillium can be isolated
from various substrates and reported across the world (Wang et al., 2023d). Penicillium
species are ubiquitous in all kinds of environments, and they are of industrial,
agricultural and clinical importance (Wang et al., 2023d). There are many species in
this genus, with morphology and phylogeny (ITS, rpb2, BenA, and CaM) as the
classification basis. In previous studies, there are several Penicillium strains as
endophytes and agarwood-associated fungi were isolated from Aquilaria spp. in China
and Bangladesh (Tian et al., 2013; Du et al., 2022a, 2024; Zaftrin et al., 2024). In this
study, we obtained 23 strains of Penicillium from Aquilaria sinensis, of which seven
strains were endophytic fungi from healthy tree branches or leaves, and 16 strains were
from agarwood resin parts.

47. Periconia (Periconiaceae, Pleosporales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Periconia was introduced by Tode (1791). More than 200 epithets are listed
in this genus (Index Fungorum, 2025). The members of Periconia have been reported
as saprobes, endophytes, and plant and human pathogens, distributed widely in
terrestrial habitats and rarely in aquatic and marine environments (Liao et al., 2024;
Pem et al., 2024). And Periconia is also the source of many economically important
bioactive compounds (Azhari & Supratman, 2021). More than 100 compounds have
been isolated from Periconia species (Liu et al., 2020a; Azhari & Supratman, 2021).
Currently, this genus is well-studied based on morphology and phylogeny (ITS, LSU,
SSU, and tef1-a) (Liao et al., 2024; Yu et al., 2024). In previous studies, some Periconia
species were isolated from Aquilaria sinensis from China (Du et al., 2022b; Fu et al.,

2024).
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48. Pestalotiopsis (Sporocadaceae, Amphisphaeriales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Pestalotiopsis was proposed by Steyaert (1949). More than 400 epithets
have been listed in this genus (Index Fungorum, 2025) and most Pestalotiopsis species
are known as endophytes, saprobes and can cause severe human, animal, and plant
diseases, and are mainly found in the host of Araceae, Ericaceae, Fagaceae, Garryaceae,
Hypericaceae, Oleaceae, Theaceae, and Winteraceae (Razaghi et al., 2024). This genus
is well-studied in morphology and phylogeny (ITS, tef1-a, and TUB) (Tibpromma et
al., 2018; Li et al., 2024c; Razaghi et al., 2024; Yin et al., 2024b). In previous studies,
several Pestalotiopsis strains were isolated from Aquilaria spp. as agarwood-associated
fungi from China and Thailand (Tian et al., 2013; Monggoot et al., 2017; Du et al.,
2022a; Li et al., 2023). In this study, we obtained one strain of Pestalotiopsis from a
healthy tree leaf of Aquilaria sinensis.

49. Phaeoacremonium (Togniniaceae, Togniniales, Sordariomycetes,
Ascomycota, Hyde et al., 2024b)

Phaeoacremonium was established by Crous et al. (1996). A total of 74
epithets are listed in this genus (Index Fungorum, 2025) and most Phaeoacremonium
species were associated with human and plant infections, and the majority have also
been isolated as saprobes or endophytes from woody hosts (terrestrial or aquatic
habitats), soil, and air (Mostert et al., 2006; Damm et al., 2008; Gramaje et al., 2015;
Spies et al., 2018; Halleen et al., 2020; Calabon et al., 2024; Mostert et al., 2024). The
combination of morphology and phylogeny (ACT, ITS, LSU, TUB, and fef1-a) offers
the standard for Phaeoacremonium identification (Calabon et al., 2024; Mostert et al.,
2024). In previous studies, several Phaeoacremonium strains were isolated from
Agquilaria species as agarwood-associated fungi and reported to promote agarwood
sesquiterpene accumulation (e.g., P. parasiticum and P. rubrigenum) from China and
India (Le et al., 2017; Liu et al., 2022a; Li et al., 2023; Du et al., 2024b). In this study,
we obtained 28 strains of Phaeoacremonium from Aquilaria sinensis, of which one
strain was an endophytic fungus from a healthy tree branch, and 27 strains were from

agarwood resin parts.
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50. Phanerochaetella  (Irpicaceae,  Polyporales, = Agaricomycetes,
Basidiomycota, Hyde et al., 2024b)

Phanerochaetella was established by Chen et al. (2021). Eight epithets are
listed in this genus (Index Fungorum, 2025), and most Phanerochaetella species are
plant pathogens that cause white rot on hardwood and conifers in China, India, Italy,
Japan, Mexico, and the United States (Chen et al., 2021; Li et al., 2022a). This genus is
well-studied in morphology and phylogeny (ITS and LSU) (Chen et al., 2021; Li et al.,
2022a). In previous studies, Phanerochaetella was not reported from Aquilaria spp. In
this study, we obtained one strain of Phanerochaetella from the agarwood resin part of
Agquilaria sinensis.

51. Phlebiopsis  (Phanerochaetaceae, Polyporales, Agaricomycetes,
Basidiomycota, Hyde et al., 2024b)

Phlebiopsis was introduced by Jiilich (1978). A total of 41 epithets are listed
in this genus (Index Fungorum, 2025), and most Phlebiopsis species are saprobic on
wood, and some species are used as biocontrol agents (P. gigantea) (Gaitnieks et al.,
2020; Zhao et al., 2021). This genus is well-studied in morphology and phylogeny (ITS
and LSU) (Miettinen et al., 2016; Zhao et al., 2021). In previous studies, Phlebiopsis
strains were isolated from Aquilaria sinensis as agarwood-associated fungi from China
(Liu et al., 2019a; Du et al., 2022b).

52. Phyllosticta (Phyllostictaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Phyllosticta was established by Persoon (1818). More than 3,200 epithets
are listed in this genus (Index Fungorum, 2025) and most Phyllosticta species as
saprobic, pathogenic, and endophytic fungi associated with variety of plants (e.g.,
Citrus spp., Garcinia oblongifolia, Musa spp., Pterospermum heterophyllum, and Vitis
spp.) (Wangetal., 2012, 2023; Wong et al., 2012; Tran et al., 2019; Zhang et al., 2022a,
2024). This genus is well-studied in morphology and phylogeny (ACT, ITS, LSU, tef1-
a, and GAPDH) (Wikee et al., 2013; Norphanphoun et al., 2020; Zhang et al., 2022a,
2024b; Wang et al., 2023c¢). In previous studies, many Phyllosticta strains were isolated
from Aquilaria spp. as agarwood-associated fungi from China (Chen 2007; Zhang et
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al., 2015; Li et al., 2018). In this study, we obtained 18 strains of Phyllosticta from
healthy tree leaves of Aquilaria sinensis.

53. Pithomyces (Astrosphaeriellaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Pithomyces was proposed by Berkeley & Broome (1873). More than 50
epithets are listed in this genus (Index Fungorum, 2025) and most Pithomyces species
are known as saprobes, endophytes, pathogens on wood, leaf, also found in soil, air,
and clinical materiel (Da Cuncha et al., 2014; Walsh et al., 2018; Xiang et al., 2024).
This genus is studied mostly based on morphology, and few species are supported by
phylogeny analysis (ITS, LSU, SSU, and »pb2) (Pratibha & Ashish 2015; Wanasinghe
et al., 2018a). In previous studies, Pithomyces strains were isolated from Aquilaria sp.
as agarwood-associated fungi from Thailand (Subansenee et al., 1985). In this study,
we obtained one strain of Pithomyces from a healthy tree branch of Aquilaria sinensis.

54. Pseudofusicoccum (Phyllostictaceae, Botryosphaeriales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Pseudofusicoccum was introduced by Crous et al. (2006). Nine epithets are
listed in this genus (Index Fungorum, 2025), and Pseudofusicoccum species are known
as saprobes, endophytes, and pathogens on different hosts (Marques et al., 2012;
Phillips et al., 2013; Jayasiri et al., 2019; lantas et al., 2023). This genus is well-studied
in morphology and phylogeny (ITS, LSU, and tef1-a) (Crous et al., 2006; Jayasiri et al.,
2019). In previous studies, some Pseudofusicoccum strains were isolated from
Aquilaria sinensis as agarwood-associated fungi from China (Du et al., 2024). In this
study, we obtained two strains of Pseudofusicoccum from agarwood resin parts of
Aquilaria sinensis.

55. Pseudopithomyces (Didymosphaeriaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Pseudopithomyces was established by Ariyawansa et al. (2015). A total of
13 epithets have been listed in this genus (Index Fungorum, 2025) and most
Pseudopithomyces species are saprobic, endophytic or parasitic on dead leaves, and

stems of plants and humans (e.g., Acacia sp., Acoelorrhaphe wrightii, Entada
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phaseoloides, Gnidia polycephala, Homo sapiens, Morus australis, Pandanus
amaryllifolius, Poaceae, Rosa canina, Saccharum officinarum, and Zea mays) (Crous
etal., 2016; Hyde et al., 2017; Tibpromma et al., 2018; Tennakoon et al., 2021; Garcia-
Latorre et al., 2024). This genus is well-studied in morphology and phylogeny (ITS,
LSU, SSU, and fefl-0) (Ariyawansa et al., 2015; Tibpromma et al., 2018; Tennakoon
et al., 2021). Previous studies reported Pseudopithomyces strains as agarwood-
associated fungi from Aquilatia sinensis from China (Du et al., 2022a, b). In this study,
we obtained one strain of Pseudopithomyces from a healthy tree branch of Aquilaria
sinensis.

56. Pseudorobillarda (Pseudorobillardaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Pseudorobillarda was established by Morelet (1968). A total of 21 epithets
are listed in this genus (Index Fungorum, 2025) and most Pseudorobillarda species are
saprobic on wood, dead leaves, stems, barks, and some species are endophytes of plants
(e.g., Asparagus, Bambusa, Bolusanthus, Camellia, Dicotyledon, Eucalyptus, and
Setaria) (Vujanovic & St-Arnaud, 2003; Tangthirasunun et al., 2014; Li et al., 2020;
Nag Raj et al., 1972; Vujanovic et al., 2003; Plaingam et al., 2005; Crous et al., 2018;
Rathnayaka et al., 2021). Ten species of Pseudorobillarda were well-studied in
morphology and phylogeny (ITS, LSU, SSU, and »pb2) (Crous et al., 2018; Li et al.,
2020; Rathnayaka et al., 2021; Song et al., 2022a). In previous studies,
Pseudorobillarda strains were isolated from Aquilaria spp. as agarwood-associated
fungi from China and Greece (Song et al., 2021; Theologidis et al., 2023). In this study,
we obtained one strain of Pseudorobillarda from a dead branch of Aquilaria sinensis.

57. Rhytidhysteron (Hysteriaceae, Hysteriales, Dothideomycetes, Ascomycota,
Hyde et al., 2024b)

Rhytidhysteron was described by Spegazzini (1881). Currently, 43 epithets
are listed in Index Fungorum (2025) and most members of Rhytidhysteron are known
as saprobes, some also as endophytes and weak pathogens on woody plants distributed
on a wide range of hosts in many countries, and some are rarely found as human

pathogens (Thambugala et al., 2016; De Silva et al., 2020; Wanasinghe et al., 2021;
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Ren et al., 2022; Du et al., 2023). This genus is well-studied in morphology and
phylogeny (ITS, LSU, SSU, and fef1-a) (Du et al., 2023). In previous studies, only R.
thailandicum was reported to isolate from Aquilaria sinensis as a saprobe from China
(Du et al., 2023). In this study, we obtained one strain of Rhytidhysteron from a healthy
tree branch of Aquilaria sinensis.

58. Scytalidium (Helotiaceae, Helotiales, Leotiomycetes, Ascomycota, Hyde et
al., 2024b)

Scytalidium was established by Pesante (1957). A total of 39 epithets are
listed in this genus (Index Fungorum, 2025) and most Scytalidium species are quite
common saprobic, endophytic or parasitic on soil, plants, animals, and others fungal
members (e.g., Betula alba, Globodera rostochiensis, Picea abies, Pinus, and Platanus)
(Klingstrom & Beyer, 1965; Ellis, 1971; Dickinson et al., 1983; Holubova-Jechova,
1990; Egger & Sigler, 1993; Kang et al., 2010; Gautam et al., 2015). Only ten species
of Scytalidium have molecular data (ITS and LSU) (Crous et al., 2022, 2023). Previous
studies isolated Scytalidium strains from Aquilaria spp. as agarwood-associated fungi
from China and Indonesia (Lisdayani et al., 2015; Gong & Guo, 2009; Fauzi et al.,
2024). In this study, we obtained eight strains of Scytalidium from agarwood resin parts
of Aquilaria sinensis.

59. Talaromyces (Trichocomaceae, Eurotiales, Eurotiomycetes, Ascomycota,
Hyde et al., 2024b)

Talaromyces was established by Benjamin (1955). A total of 296 epithets
are listed in this genus (Index Fungorum, 2025) and Talaromyces species have been
isolated as saprobes, endophytes, or pathogens from air, soil, food products, and leaf
litter; Talaromyces marneffei is a pathogen association with HIV patients (Guevara-
Suarez et al., 2017; Morales-Oyervides et al., 2020; Nguyen & Lee, 2023). This genus
is well-studied in morphology and phylogeny (BenA, cmdA, ITS, rpb2, and TUB; Alves
et al., 2022; Nguyen & Lee, 2023; Paiva et al., 2024; Tian et al., 2024). In previous
studies, some Talaromyces strains were isolated from Aquilaria sinensis as agarwood-
associated fungi from China (Du et al., 2022b; Pang et al., 2024). In this study, we

obtained two strains of Talaromyces from agarwood resin parts of Aquilaria sinensis.
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60. Trichoderma (Hypocreaceae, Hypocreales, Sordariomycetes, Ascomycota,
Hyde et al., 2024b)

Trichoderma was established by Persoon (1794). A total of 549 epithets are
listed in this genus (Index Fungorum, 2025) and most Trichoderma species are
pathogenic or saprobic in dead wood and bark, other fungi, soil, bats, and some species
are endophytes of plants (Prameeladevi et al., 2021; Zheng et al., 2021; Liu et al., 2023;
Nascimento Brito et al., 2023; Zhao et al., 2024). This genus is well-studied in
morphology and phylogeny (tef1-a and 7pb2) (Zhao et al., 2024). Trichoderma species
are extensively utilized in industrial applications as producers of enzymes such as
cellulases, hemicelluloses, and proteases, which are essential for biofuel production,
food processing, and textile manufacturing (Bustamante et al., 2021; Cai & Druzhinina,
2021; Liu et al., 2023). In previous studies, Trichoderma was found as the main genus
isolated from Aquilaria spp. as agarwood-associated fungi from China, India and
Malaysia (Mohamed et al., 2010; Li et al., 2012; Chhipa & Kaushik, 2017; Du et al.,
2022a, b). In this study, we obtained 16 strains of Trichoderma from Aquilaria sinensis,
of which four strains were endophytic fungi from healthy tree branches or leaves, and
12 strains were from agarwood resin parts.

61. Trichosporon (Trichosporonaceae, Trichosporonales, Tremellomycetes,
Ascomycota, Hyde et al., 2024b)

Trichosporon was established by Doweld (2001). More than 130 epithets
are listed in this genus (Index Fungorum, 2025) and most Trichosporon species have
been found from soil, water, plants, clinical specimens, and insects as pathogens,
endophytes or saprobes (Sheikh et al., 1974; Molnar et al., 2004; Sugita, 2011;
Kunthiphun et al., 2016; Francisco et al., 2019). Species of Trichosporon play a
significant role due to its antifungal resistance, especially to echinocandins and
amphotericin B, with azoles like voriconazole being the preferred treatment (Colombo
et al., 2011; Francisco et al., 2019; Guo et al., 2019; Nobrega de Almeida et al., 2021).
This genus is well-studied in morphology and phylogeny (ITS, IGS1, and LSU)
(Novakova et al., 2015; Guo et al., 2019; Nobrega de Almeida et al., 2021; Francisco

et al., 2019). In previous studies, some Trichosporon strains were isolated from
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Agquilaria spp. as agarwood-associated fungi from Brunei Darussalam and China
(Mohammad et al., 2021; Du et al., 2022a, b; Zhang et al., 2024b).

62. Veronaea (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes,
Ascomycota, Hyde et al., 2024b)

Veronaea was established by Cifferi & Montemartini (1957). A total of 31
epithets are listed in this genus (Index Fungorum, 2025) and some Veronaea species
saprobic on dead plant materials (e.g., Carex pendula, Carlina vulgaris, Ficus hispida,
Grewia asiatica, Hedychium coronarium, Thylacospermum caespitosum, and bamboo),
soil, and some Veronaea strains act as pathogens for human, animals or plants (Hyde
& Goh, 1998; Kondo et al., 2007; Hosoya et al., 2015; Wijayawardene et al., 2020;
Chandrasiri et al., 2021). The molecular data is not available for most Veronaea species,
with only six species having sequence data (Wijayawardene et al., 2020; Chandrasiri et
al., 2021; Su et al., 2023). In previous studies, Veronaea strains were isolated from
Agquilaria spp. as agarwood-associated fungi from China (Liu et al., 2019a; Zhang et
al., 2024b). In this study, we obtained two strains of Veronaea from agarwood resin
parts of Aquilaria sinensis.

63. Xenoroussoella (Roussoellaceae, Pleosporales, Dothideomycetes,
Ascomycota, Hyde et al., 2024b)

Xenoroussoella was established by Mapook et al. (2020). Up to now, only
one species has been introduced in this genus (Mapook et al., 2020; Index Fungorum,
2025). This genus has been reported to have both sexual and asexual morphs (Mapook
et al., 2020; De Silva et al., 2022) as saprobes on Anomianthus dulcis, Chromolaena
odorata, and Desmos chinensis in Thailand (Pem et al., 2024). This genus is well-
studied in morphology and phylogeny (ITS, LSU, SSU, tef1-a, and rpb2) (Mapook et
al., 2020; De Silva et al., 2022). In previous studies, Xenoroussoella was not reported
from Aquilaria spp. In this study, we obtained four strains of Xenoroussoella from
Aquilaria sinensis, of which one strain was from the agarwood resin part, and three

strains were from dead branches.
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64. Xylaria (Xylariaceae, Xylariales, Sordariomycetes, Ascomycota, Hyde
et al., 2024b)

Xylaria is a large and the described genus of the Xylariaceae (Martin 1970).
Currently, more than 930 epithets are listed in Index Fungorum (2025), most Xylaria
are saprobes, endophytes and pathogens reported from multiple hosts (wood, sawdust,
leaf, dung or soil), and are highly diverse in the tropics and subtropics (Rogers, 1979;
De Vegaetal., 2010; Wangsawat et al., 2021; Zhu et al., 2024). So far, the phylogenetic
analysis of this genus has mainly been based on combining multiple loci (ITS, rpb2,
and TUB) (Li et al., 2024b). Previous studies reported some Xylaria strains isolating
from Aquilaria spp. as endophytes or agarwood-associated fungi from China (Du et al.,
2022a, b, 2024b). In this study, we obtained 12 strains of Xylaria from Aquilaria
sinensis, of which eight strains were endophytic fungi from healthy tree branches or

leaves, and four strains were from agarwood resin parts.

3.4 Discussion

This study analyzed community composition data of 960 fungal strains
representing 64 genera, which were isolated from Aquilaria sinensis samples collected
in Guangdong and Yunnan provinces. Among these, 142 strains have previously been

reported by our research team (Du et al., 2022b, 2022d, 2024b) and are included in this
study solely for data analysis. Therefore, a total of 818 strains are used in this study as

newly reported Aquilaria sinensis-associated fungi. This study briefly documents the
64 genera and conducts meticulous phylogenetic and morphological analyses on five
new species, ensuring the robustness and reliability of our findings.

In this study, 64 genera are documented, including information on their habitats,
lifestyles, specific roles, and relationships with Aquilaria spp. Among these, 50 genera
have been previously reported on Aquilaria spp., with some genera considered to be
associated with the formation of agarwood resin, e.g., Cladorrhinum, Curvularia,

Fonsecaea, Fusarium, Hermatomyces, Lasiodiplodia, and Phaeoacremonium (Du et al.,
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2022a). Some genera (e.g., Aspergillus, Aureobasidium, Chaetomium, Curvularia,
Diaporthe, Epicoccum, Nemania, Paracamarosporium, Phaeoacremonium, and
Trichoderma) exhibit rich secondary metabolites or biological activity, e.g.,
antibacterial, anti-cancer, anti-inflammatory, antimalarial, antimicrobial, antioxidant,
anti-plasmodial, antirheumatoid, antitumor, cytotoxic, enzyme inhibitory, and
immunosuppressive, there is detailed information in the above text. The potential of
these secondary metabolites for various applications is a promising area for future
research. Additionally, 14 genera (21.88%) are reported for the first time in Aquilaria,
viz., Allophoma, Aureobasidium, Banksiophoma, Biscogniauxia, Coniella, Didymella,

Exophiala,  Fomitiporia, = Loculosulcatispora, =~ Meyerozyma,  Neodeightonia,
Paradictyoarthrinium, Phanerochaetella, and Xenoroussoella. The strains within these

genera may also possess a similar potential for producing secondary metabolites or
promoting agarwood formation, warranting further research in the future.

This study isolated 960 fungal strains of 64 genera in 44 families, a substantial
number that provides a comprehensive view of the fungal community composition in
our study area. At the same time, most of these strains belong to known taxa and are
primarily concentrated in a few common genera, such as Fusarium and Lasiodiplodia.
The proportion of unknown taxa is relatively low; we describe five new taxa:
Banksiophoma endophytica, Deniquelata aquilariae, Montagnula sinensis, M.
yunnanensis, and Fomitiporia aquilariae. These taxa, with their distinct phylogenetic
lineages or morphological differences compared to their sister branches in the
phylogenetic analyses, represent a significant contribution to the field of fungal biology.
Banksiophoma and Fomitiporia genera are reported for the first time in Aquilaria spp.,
providing new insights into their ecological roles, host range, and their potential roles
in the formation process of agarwood. The genus Fomitiporia, a basidiomycete
previously reported as a pathogenic and saprobic fungal genus (Alves-Silva et al.,
2020a, 2020b; Brown et al., 2020), has three strains reported in this study as an
agarwood-associated fungus isolated from agarwood resin, further underlining the

importance of our findings.
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In previous studies, Montagnula has often been reported as a saprobic genus on
various hosts, including M. aquilariae, found on Aquilaria sinensis as a saprobe (Hyde
et al., 2023). The discovery of the asexual morphs of Montagnula has been limited,
with only M. cylindrospora and M. menglaensis identified to date (Crous et al., 2020;
Wanasinghe et al., 2024). In this study, 13 strains of Montagnula were isolated and
identified as two new species and one new record based on molecular and
morphological analyses. All of these strains clustered with M. cylindrospora in an
independent clade. The 13 strains of Montagnula in this study were isolated from the
agarwood resins of samples collected from Yuanjiang, Yunnan, and are considered
agarwood-associated fungi. Among them, 11 strains were identified as the same species,

although they were not isolated from the same tree and were collected at different times.
This suggests that the isolation of Montagnula strains from Aquilaria sinensis is not

incidental and is not limited by the survival state of the plant material, as the species of
Montagnula can live in Aquilaria as saprobic and agarwood-associated fungi. However,
Montagnula strains have so far been discovered only on Aquilaria sinensis from
Yunnan, and the saprobic fungus M. aquilariae has also been reported only in Yunnan.
The potential implications of these findings for fungal distribution and the ecology of
Aquilaria sinensis are significant, and further research is needed to fully understand
these implications.

Additionally, strains of the genera Corynespora, Nigrograna, and Rhytidhysteron
were also found in fresh plant material in this study. In previous research, these genera
have primarily been described as saprobic genera present on various plants, including
records on Aquilaria spp. (Du et al., 2023, 2024a). This evidence suggests that some
common saprobic fungal groups are capable of living within healthy plant tissues and
may alter their lifestyle in response to changes in the plant's health. These lifestyle
transitions could be closely associated with the formation of agarwood resin,
underscoring the importance of future studies on these genera and intriguing research
topics.

Through a series of data analyses on 960 fungal strains, it was found that

Ascomycota was the most dominant group, accounting for as much as 99.06%, while
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Basidiomycota and Mucoromycota made up only a small proportion. This dominance
of Ascomycota in Aquilaria sinensis suggests that it occupies the primary ecological
niche, demonstrating both dominance and community diversity. These findings align
with previous studies, which also identified Ascomycota as the major group, whether
as saprobes or pathogens associated with Aquilaria spp. (Liao et al., 2018; Liu et al.,
2020b; Du et al., 2024a). Data analysis revealed some overlap in fungal community
composition between agarwood samples from two different provinces. Genera such as
Diaporthe, Fusarium, and Lasiodiplodia were isolated from samples at four collection
sites in Guangdong and Yunnan, and these genera have been frequently reported in
prior studies (Du et al., 2022a). This suggests that the fungal taxa associated with
Aquilaria sinensis do not exhibit significant geographic variation. However, some
genera were “region-specific”. For instance, Cladosporium and Hermatomyces were
found only in two sites in Guangdong, while Botryosphaeria and Mucor were detected
only in two sites in Yunnan. These differences may stem from insufficient sampling or
variations in the Aquilaria sinensis cultivars. Given that the physiological functions and
defense mechanisms of each tree are not entirely consistent, variations in microbial
communities are understandable. These differences contribute to the rich biodiversity
associated with Aquilaria sinensis.

Notably, all samples collected from Maoming were agarwood resins, from
which 219 fungal strains belonging to 18 genera were isolated. Most of these fungal
genera have been extensively reported in previous studies, with only three genera, viz.,
Exophiala, Neodeightonia, and Paradictyoarthrinium, being reported for the first time
in Aquilaria. Previous studies on agarwood and its associated fungi have revealed their
richness in secondary metabolites, with some strains shown to promote agarwood resin
formation (Wang et al., 2018; Du et al., 2022a). Therefore, the strains isolated from the
Maoming agarwood resins, particularly those belonging to the newly discovered genera,
may represent potential candidates for enhancing resin formation. These findings
underscore the hopeful prospect of enhancing resin formation and suggest significant

research potential for these genera in the future.
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Additionally, in this study, we primarily analyzed the fungal community
composition based on culture-dependent techniques across different isolation parts of
Agquilaria sinensis. Data analysis revealed that fungal strains from various parts of the
tree showed a certain degree of overlap, a finding that underscores the
interconnectedness of these organisms. For instance, Aspergillus, Diaporthe,
Lasiodiplodia, and Neopestalotiopsis were found in agarwood resins, dead branches,
healthy branches, and healthy leaves in four parts, representing common genera. This
suggests that the endophytic fungi (from healthy tissues), agarwood-associated fungi
(from agarwood resins), and saprobic fungi (from dead tissues) isolated from Aquilaria
sinensis are not entirely distinct or unrelated. For example, Fusarium and
Paraconiothyrium were present in healthy branches, agarwood resins, and dead
branches, while Cladosporium was a common genus in agarwood resins, healthy leaves,
and dead branches. These overlaps might result from lifestyle transitions among these
fungi, indicating their adaptability to different environments or their broad presence on
Aquilaria sinensis, regardless of the tissue’s survival state. At the same time, we
observed that the strains and genera of fungi isolated from agarwood resin were the
highest (645 strains of 48 genera). And among the 48 genera, 12 genera have been
reported in previous studies to promote the formation of agarwood resin, viz.,
Aspergillus, Botryosphaeria, Chaetomium, Cladosporium, Colletotrichum, Diaporthe,
Fusarium, Lasiodiplodia, Penicillium, Phaeoacremonium, Trichoderma, and Xylaria.
Among the other 36 genera, 30 genera have been reported as isolated from agarwood
or Aquilaria spp. in previous studies, viz., Acrocalymma, Alternaria, Annulohypoxylon,
Corynespora,  Crassiparies, — Curvularia, — Daldinia,  Deniquelata, = Fonsecaea,
Hermatomyces, Hypoxylon, Massaria, Medicopsis, Montagnula, Mucor, Neofusicoccum,
Neopestalotiopsis, Neoscytalidium, Nigrograna, Nigrospora, Paracamarosporium,
Paraconiothyrium, Periconia, Phlebiopsis, Pseudofusicoccum, Pseudopithomyces,
Scytalidium, Talaromyces, Trichosporon, and Veronaea; Only six genera have been
reported for the first time on Aquilaria, viz., Exophiala, Fomitiporia,
Loculosulcatispora, Neodeightonia, Paradictyoarthrinium, and Phanerochaetella. Due

to the rich fungal community and abundant secondary metabolites (sesquiterpenes and
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chromones) in agarwood resin, these genera are worthy of development and utilization
research. Not only should the induction effect of agarwood resin be studied on these
genera, but their secondary metabolites should also be extracted and their biological
characteristics analyzed.

Agquilaria sinensis, as an important economic plant, is undoubtedly a hot
research topic. In previous studies, Fusarium has been the most widely studied genus
due to its abundant presence as an endophytic or agarwood-associated fungus in
Agquilaria spp. (Tabata et al., 2003; Tamuli et al., 2005; Gong & Guo, 2009; Cui et al.,
2011; Premalatha et al., 2013; Subasinghe et al., 2019; Du et al., 2022a, b, d, 2024b).
Some Fusarium strains have shown excellent potential for inducing agarwood
formation, such as F. solani (Du et al., 2024b). Du et al. (2024b) reported that F. solani
could induce agarwood that meets medicinal standards within six months. Moreover,
Lasiodiplodia is another genus that has been extensively studied. Zheng et al. (2019)
reported that F. solani and Lasiodiplodia theobromae were used as inducers to promote
agarwood production. These two genera are also the most frequently isolated in this
study, indicating their widespread presence in Aquilaria spp., which aligns with
previous research. Additionally, Aspergillus and Botryosphaeria, as common
pathogens, are also frequently found as Aquilaria-associated fungi (Wang et al., 2018;
Du et al., 2022a). Furthermore, Aspergillus niger and Botryosphaeria spp. have been
reported to promote agarwood formation (Gong & Guo, 2009; Tian et al., 2013;
Subasinghe et al., 2019). However, in Du et al. (2024b), 4. niger and Botryosphaeria

fusispora showed a 75% mortality rate in the tested samples (small branches). This

could be due to differences in biochemical characteristics between strains or variations
in host defense mechanisms. Therefore, this study recommends that researchers
investigate the characteristics of the strains before conducting related experiments to
minimize the damage to economic plants.

In fungal induction of agarwood, endophytic fungi are often used as fungal
inducers and have been reported to be effective (Laurence, 2013; Azren et al., 2018;
Subasinghe et al., 2019). Additionally, the formation of aromatic compounds in

agarwood is believed to be closely related to endophytic fungi (Pang et al., 2024).
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However, the definition of endophytic fungi in agarwood research has been unclear in
previous studies. For example, in the study by Li et al. (2022), fungi isolated from
agarwood resin were considered endophytic fungi, and several other studies have also
classified fungi isolated from agarwood resin as endophytic fungi (Wang et al., 2009;
Premalatha & Kalra, 2013; Chen et al., 2018; Pang et al., 2024). However, this is
unreasonable. Firstly, the formation of agarwood requires the presence of a wound, then,
through which microorganisms invade and trigger the tree's defense mechanisms,
leading to agarwood resin production to counter these external injuries. While,
endophytic fungi are defined as “asymptomatic microbial partners that are intimately
associated and co-inhabit within healthy internal plant tissues with the ability to confer
benefits, co-evolve and alter their lifestyle depending upon plant life stages and adverse
conditions” (Liao et al., 2025). Therefore, fungi isolated from resin cannot be
definitively identified as endophytic fungi originally residing in healthy trees, nor as
exophytic fungi that have invaded through the wound. The mechanism of agarwood
formation has not yet been fully explained, and only some hypotheses remain unproven.
The relationship between agarwood resin formation and the microbial community has
also not been clarified. Therefore, to better understand and explore the relationship
between agarwood's microbiota, agarwood resin, and the agarwood-producing tree
genera, we suggest referring to fungi/bacteria isolated from the agarwood resin as
“agarwood-associated fungi/bacteria,” while endophytic fungi/bacteria should
specifically refer to those isolated from healthy tissues of the agarwood-producing trees.
This approach will help to more clearly define the microbial community of agarwood
in future studies, avoid confusion between microorganisms from different sources, and
provide more accurate evidence for the exploration of the mechanism of agarwood
formation. Future research should focus on the diversity, functional characteristics, and
relationship of agarwood-associated fungi and bacteria with agarwood resin synthesis
in order to reveal the potential role of microorganisms in agarwood formation.
Meanwhile, through precise microbial classification and functional analysis, more
scientifically grounded theoretical support and practical guidance can be provided for

the artificial induction and quality control of agarwood.
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This study is the first to conduct a community analysis of a large number of
agarwood-producing tree strains and reports strains of 14 new fungal genera isolated
from Aquilaria, significantly increasing the community richness of fungi related to
Agquilaria sinensis and providing valuable data support for future research. The results
indicate that Ascomycota are the dominant taxa, playing a significant role in the
formation of agarwood resin, particularly genera such as Fusarium and Lasiodiplodia,
which have been widely reported, with some strains showing potential in inducing
agarwood resin formation. Additionally, this study is the first to perform a data analysis
of fungi isolated from different parts of the plant, revealing their interactions and laying
a solid foundation for the in-depth study of agarwood formation mechanisms. Future
research is crucial to further explore the biochemical characteristics and ecological
functions of different strains to reveal their specific roles in the formation of agarwood
resin. Moreover, with the continuous development of agarwood cultivation techniques,
optimizing the use of fungi to improve the quality and yield of agarwood resin will
become a key issue that needs to be addressed. In particular, for those fungal genera
with potential, in-depth functional research and applied exploration may reveal their
specific roles in agarwood resin synthesis, thereby promoting the sustainable

development of the agarwood industry.

3.5 Conclusion

This study provides a comprehensive overview of the fungal community
associated with Aquilaria sinensis, highlighting its remarkable community composition
diversity and ecological complexity. By analyzing 960 fungal strains representing 64
genera of 44 families, including 818 newly reported strains, this work significantly
expands the current understanding of Aquilaria-associated mycobiota. The dominance
of Ascomycota, alongside the presence of Basidiomycota and Mucoromycota, reflects
distinct fungal distribution patterns across different plant parts and geographic locations.
Identifying 14 genera newly associated with Aquilaria and five novel species supported

by phylogenetic and morphological evidence underscores the taxonomic richness
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uncovered. Furthermore, the proposed term “agarwood-associated fungi” offers a new
perspective for distinguishing fungi linked to resin formation, potentially advancing
future studies on the role of fungi in agarwood induction. With its significant
contribution to the field, this research provides valuable insights into fungal ecology,
systematics, and plant-fungal interactions in economically important tree species,

underscoring the importance and impact of the findings.



94

CHAPTER 4

THE FUNGAL STRAIN PROMOTES RAPID AGARWOOD
RESIN PRODUCTION WITH MEDICINALLY ACCEPTED
AGAROTETROL LEVEL

4.1 Introduction

Agarwood is a dark resin heartwood, mainly produced by the plant genera
Aquilaria Lam. and Gyrinops Gaertn. (Thymelaeaceae Juss.) (Xu et al., 2016; Azren et
al.,2018; Chen et al., 2018; Wang et al., 2018, 2019). Agarwood has a unique fragrance
produced by its rich secondary metabolites, sesquiterpenes, and chromones (Cui et al.,
2013; Rasool & Mohamed, 2016; Sen et al., 2017). It is often traded as incense, carvings,
and jewelry, and the essential oil of agarwood is used in high-grade perfume (Liu et al.,
2013; Monggoot et al., 2017; CITES, 2022; Ngadiran et al., 2023). Due to the small
amount of agarwood collected in the wild and its unique fragrance, agarwood has a high
economic value in the global market (Azren et al., 2018; Wang et al., 2018; Niego et
al., 2023a). At present, the global market of agarwood essential oil is estimated to be
worth more than $200 million (Ngadiran et al., 2023; Niego et al., 2023a).

Nevertheless, agarwood possesses significant medicinal value in addition to its
other attributes. Agarwood plays important roles in traditional medicine in Arabia,
China, and India, as well as in modern pharmacology (Liu et al., 2013; Liao et al., 2018;
Wang et al., 2018; Du et al., 2022a; Ngadiran et al., 2023). Takamatsu and Ito (2020)
proposed that agarotetrol is a characteristic substance of medicinal-grade agarwood.
National Pharmacopoeia Committee (2015, 2020) has set agarotetrol as the main
standard for testing whether agarwood has a medicinal value, i.e., if the agarotetrol
content in the agarwood reaches 0.10%, it indicates the agarwood has a medicinally
accepted agarotetrol level. In China, only two species of agarwood-producing trees,

Agquilaria sinensis (Lour.) Spreng. and A. yunnanensis S. C. Huang are currently
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distributed, of which the main source of agarwood in China is A. sinensis (National
Pharmacopoeia Committee 2015, 2020; Tibpromma et al., 2021; CITES 2022).

The natural formation of wild agarwood is slow, and yields are low because it
unexpectedly occurs in over 20 years old trees as a defense mechanism against external
damage (Liu et al., 2013; Wang et al., 2018; Du et al., 2022a; Ngadiran et al., 2023).
Due to the extremely high economic value and strong market demand for agarwood,
artificial induction methods have developed accordingly. Early physical methods
involved using different tools to damage trees, which were simple and cost-effective,
but required a significant amount of labor and time, resulting in low yields (Azren et
al., 2018; Wang et al., 2018; Tan et al., 2019; Ngadiran et al., 2023). Later, chemical
and biological methods were introduced, which involved creating wounds on trees and
injecting inducers in different ways (Chen et al., 2017; Azren et al., 2018; Ngadiran et
al., 2023). Chemical methods can quickly produce high-quality agarwood, there are
some common compounds used to trigger the formation of agarwood, viz., jasmonic
acid, sulfuric acid, acetic acid, and alcohol, but the chemicals injected into the trees
may be released back into the environment, causing water and soil pollution, causing
safety issues (Zhang et al., 2012; Liu et al., 2013; Wang et al., 2018; Du et al., 2022a;
Ngadiran et al., 2023). The biological induction method most commonly reported by
fungi as induction factors, and fungal induction is considered effective; in recent years,
some research has also been conducted on bacteria as induction factors (Wang et al.,
2018; Fitriasari et al., 2020; Du et al., 2022a; Ngadiran et al., 2023). The use of bacteria
as inducers has not been extensively studied; the methods and technologies are still
immature, and only a few bacteria have been reported to promote the production of
some characteristic compounds in agarwood, e.g., Bacillus sp., Bacillus pumillus, and
Pseudomonas sp. (Fitriasari et al., 2020). Fungi which is environmentally friendly and
can produce high-quality agarwood resins similar to wild agarwood, although the
results may vary depending on the fungal strain used (Mohamed et al., 2014;
Mohammed et al., 2021; Du et al., 2022a; Ngadiran et al., 2023). The fungal induction
method was first proposed by Tunstall in 1929 (Gibson 1977) and scientists paid more

attention to it with the development of science and technology. To date, 34 fungal
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genera have been used to induce agarwood production (Du et al., 2022a; Ngadiran et
al., 2023), out of which, the most reported are Fusarium, followed by Lasiodiplodia,
then, Aspergillus and Botryosphaeria. Fusaruim solani, Cunninghamella bainieri, and
Lasiodiplodia theobromae are commonly reported to be used in the fungal inoculation
process (Rasool & Mohamed, 2016). Fusarium solani was found to be the most
effective fungus in inducing agarwood resin (Faizal et al. 2022).

There are two most common fungal induction methods, viz., the pinholes-
infusion technique (PIT) (Tian et al., 2013) and the Agar-Wit technique (Liu et al.,
2013). The pinhole-infusion technique involves injecting the inducer using a syringe,
which is simple and easy to complete, and consumes a small amount of inducer (Tian
et al., 2013). For example, Faizal et al. (2020) used a DeWalt® bore injector to drill
holes and injected Fusarium solani inoculant into the Gyrinops versteegii trunk to
induce resin formation. The Agar-Wit technique involves transporting the inducer using
an infusion device, which is low cost, high yield, and easy to operate and is the most
widely used artificial fragrance technology in agarwood-producing regions (Liu et al.,
2013). For example, Zheng et al. (2019) induced the production of agarwood resin by
injecting fungal inducers (Fusarium solani and Lasiodiplodia theobromae) into
Agquilaria sinensis using the same method as Agar-Wit.

We, as a collective of researchers, are tackling the challenge of precisely
screening effective fungal species. In the forest environment where agarwood-
producing trees grow, hundreds or even thousands of microorganisms are on the surface
and inside the trunk and bark. It is difficult to screen out effective agarwood-inducing
fungi from such a large microbial library. This study is based on collective previous
research and has screened some potential fungal strains for validation experiments. We
also mentioned several previous publications that provide details about agarwood resin-
inducing fungi (Wang et al., 2018; Zheng et al., 2019; Faizal et al., 2020; Ngadiran et
al., 2023). Our research aims to support and identify the use of biological inducers to
reduce and avoid adverse effects on the environment, livestock, and human health.

In this study, we selected the PIT method (Tian et al., 2013) to test the induction

ability of agarwood resin from 12 selected strains. The fungi selected for this study
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were isolated from different parts of one of the agarwood-producing trees, Aquilaria
sinensis, and were selected based on previous relevant reports. However, in previous
studies, parallel experiments and analyses were not conducted on multiple strains.
Therefore, this study analyzed the different induction effects and important agarwood
characteristic compounds of the selected fungal strains. Fusaruim species have been
used in the inoculation process (Akhsan et al., 2015; Faizal et al., 2017, 2020;
Subasinghe et al., 2019; Zheng et al., 2019); Fusarium solani is considered the most
effective fungus in promoting the production of agarwood resin (Turjaman et al., 2016;
Herath & Jinendra 2023), accompanied by the production of characteristic agarwood
compounds (Faizal et al., 2020).

This study used fungal inoculation to induce agarwood production, addressing
a key research gap: the lack of strains that can promote the production of agarwood that
meets medicinal standards in a short time. This variability hampers the large-scale and
reliable production of agarwood. The main objectives are to identify a fungal strain that
consistently and efficiently promotes agarwood resin formation while ensuring the
product meets medicinal standards, a task that is urgently needed in the field. The study
highlights the biological significance of developing scalable, efficient methods for
sustainable agarwood production by focusing on these objectives. Understanding the
interactions between fungal strains and host trees is essential for improving induction
techniques. The detailed processes, data, and analyses emphasize the potential impact

on future agarwood cultivation.

4.2 Research Methodology

4.2.1 Pre-Experiment - Screening and Identifying the Most Effective Fungal
Strain for Agarwood Resin Induction
4.2.1.1 Isolation and identification of the agarwood associated fungal strains
Twelve fungal strains were isolated from the agarwood resin parts, healthy
leaves, and branches of agarwood-producing trees (Aquilaria sinensis) in Yunnan and

Guangdong provinces (Table 4.1). The strains were isolated according to Du et al. (2022b),
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and pure cultures were used for genomic DNA extraction and deposited at Guizhou
Medical University Culture Collection (GMBCC) in Guiyang, China.

These fungal strains were identified according to the description of Du et al.
(2022b). Fungal mycelia on potato dextrose agar (PDA) aged one week were used to
extract DNA and amplify polymerase chain reaction (PCR). The PCR products were
purified and sequenced by Sangon Biotech Co., Kunming, China. The quality or
chromatogram of the internal transcribed spacers (ITS) sequences obtained in the
present study was checked in BioEdit v.7.2.6.1 (Hall, 1999), and the forward and
reverse sequences were spliced with Geneious 9.1.8 (Kearse et al., 2012). The spliced
sequences were blasted in GenBank (https://www.ncbi.nlm.nih.gov) for preliminary
identification (Table 4.1). All newly generated sequences in this study were deposited

to GenBank (https://www.ncbi.nlm.nih.gov) (Table 4.1).
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4.2.1.2 Agarwood-producing tree
Thirteen healthy eight-year-old agarwood-producing Aquilaria sinensis trees
were selected from agarwood plantations (Yunnan Yuanjiang Qinan Chenxiang
Agricultural Technology Development Co., Ltd.) in Yunnan Province, China. Four healthy
branches, each with a diameter ranging from 3-5 cm (from the first branch to the central
branch), were selected from each tree for experimentation (modified from Faizal et al.,
2020).
4.2.1.3 Determination of agarwood production
1. Preparation of fungal fermentation broth
Fungal fermentation broths were made according to the method described
by Tibpromma et al. (2021). Fungal cultures were divided into small pieces (0.4 cm diam.)
by sterilized straws; five pieces were placed in a conical flask containing 100 mL of sterile
malt extract medium broth (MEB) (autoclaved at 121 °C, 20 mins and kept at room
temperature 25+2 °C to cool it down). The conical flask mouth was sealed with cotton, and
then the cotton was covered with tin foil to avoid contamination by other microorganisms.
Finally, the conical flasks were incubated on a shaker (120 rpm, 28 °C) for five days in the
darkness. Five days later, the mycelium blocks in the flasks were stirred by the sterilized
glass rod and filtered by a filter to obtain fungal fermentation broth.
2. Inoculation method of fungal fermentation broth
This study used pinhole-infusion technology (PIT) to induce the production
of agarwood (Tian et al., 2013). Thirteen healthy trees were selected for the experiment,
with 12 trees as the experimental group labeled in order: A, B, C, D, E, F, G, H, I, J, K, and
L. The 13th tree was the control group, marked as CK. Four branches are selected in each
tree, and three holes (0.5 cm wide and 1-3 c¢cm deep) are drilled on each selected branch
using a disinfection drill. Three holes on each branch are evenly spaced (5 cm) and arranged
in a straight line. In the experimental group, 12 different fungal fermentation broths were
inoculated with 1 mL, thrice per hole, using sterile syringes for the experiment group (A-
L). The control group was only drilled holes and was not inoculated with fermentation broth.
Later, plastic films were used to seal the holes to avoid contamination by other

microorganisms.
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3. Agarwood analysis
1) The physical properties of agarwood
The total duration of this experiment was 12 months; one branch of
each tree was cut off and observed every three months. The formation area and color of
agarwood resin are crucial indicators of its quality. Typically, a larger formation area and
a darker resin color suggest superior quality. The measurement and comparison of the
formation area of agarwood resin forms were meticulously checked with a ruler tool,
underscoring the precision and accuracy of the assessment. In contrast, agarwood resin's
color observation and contrast were carried out through active visual engagement.
2) Detection of the content of three chromones in agarwood
Twelve-month-old agarwood samples were collected from each tree. All
agarwood resins from each sample were cut into small pieces and mixed to make it
homogenize, and then 0.2 g of each sample was selected for testing. The content of
agarotetrol, 2-[2-(4-methoxyphenyl)ethyl|chromone (2-MC), and 2-(2-phenylethyl)
chromone (2-PC) was detected by high-performance liquid chromatography (HPLC)
following the established protocol (National Pharmacopoeia Committee, 2020; Quality
Grade of Agarwood, 2017). According to the National Pharmacopoeia Committee (2020),
a content of agarotetrol greater than 0.10% indicates that agarwood has medicinal value.
3) Identification of the fungal strains occurring during the agarwood
production
To confirm whether the original inoculated strain induced the fungi
from agarwood samples, each sample collected every three months was re-isolated. The
isolation and identification methods were followed according to the methodology described
in 2.1.1. ITS sequences were used to compare with the sequences of the original strains
separately.
4.2.2 Extended Experiment - Agarwood Production by Fusarium Solani
(GDA-HC01)
4.2.2.1 Source of fungal strains
The best strains identified and screened during the pre-experiment were used

for further experiment expansion.
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4222 Agarwood-producing tree

The artificial plantation of agarwood-producing trees was the same as 2.1.2.
The experiment was conducted on 8-year-old trees with a diameter of 15-20 cm (nine trees),
which were healthy (no pests and diseases) and in good growth conditions in a tropical
monsoon climate. According to the plantation, in 8-year-old trees, a diameter of 15-20 cm
is a common size to conduct the experiment.

4.2.2.3 Determination of agarwood production

1. Preparation of fungal fermentation broth

The fungal fermentation broths were the same as mentioned in section
2.1.3.1., prepared according to the method described by Tibpromma et al. (2021). After
five days of cultivation; they were obtained.

2. Inoculation method of fungal fermentation broth

Two standard fungal inoculation methods were selected as a comparison,
aiming to find a fast and efficient way to induce agarwood for six months. The two methods
used in this experiment were the pinholes-infusion technique (PIT) (Tian et al., 2013) and
the Agar-Wit technique (Liu et al., 2013). Nine trees were divided into three groups (three
trees in each group) and tested in the PIT, Agar-Wit, and control groups. Each tree was
drilled with three holes (0.5 cm diam., 68 cm deep) using a sterilized electric drill.

In the PIT group, each tree was arranged in a vertical straight line, with the
first hole at a height of 50 cm above the ground, and the distance between each hole is 8
cm. Fungal fermentation broth was injected into the holes by using sterile syringes,
injecting 1 mL into each hole three times (total of 3 mL/hole) and plastic films were used
to seal the holes to avoid contamination by other microorganisms.

In the Agar-Wit group, the three holes on each tree were arranged in a
vertical spiral pattern, with the first hole located 30 cm above the ground and a distance of
10 cm between each hole. The Agar-Wit groups were injected with fungal fermentation
broth into the holes using infusion bags and tubes. First, 500 mL of fermentation broth was
put in each infusion bag, and each infusion bag was equipped with three infusion tubes.
Then the infusion tubes were inserted into the holes respectively. Finally, the flow rate was

adjusted to be input into the tree trunk within 3—5 days. Finally, plastic films were used to
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seal the holes to avoid contamination by other microorganisms.

The control groups were only drilled holes and were not inoculated with
fermentation broth. Plastic films were used to seal the holes to avoid contamination by other
microorganisms.

3. Agarwood analysis

The inspection method for inoculation results was the same as in section
2.1.3.3. The results were checked after six months.

4. Statistical Analysis

To evaluate the effect of different treatments on agarotetrol, one-way
ANOVA was used. This experiment set up three treatment groups: The Agar-Wit, PIT, and
the control. The analysis of variance was conducted using IBM SPSS v. 27 statistical
software, with a significance level set at 0.05. Use one-way analysis of variance to test the
differences in agarotetrol content between groups. At the same time, to visually
demonstrate the impact of different processing methods on agarotetrol content, this study
used IBM SPSS v. 27 statistical software to draw box plots.

5. Identification of the fungal strains occurring during the agarwood
production

To confirm whether the original inoculated strain induced the fungi from
agarwood samples, each sample collected every six months was re-isolated. The isolation
and identification methods followed the methodology described in section 2.1.1. ITS

sequences were used to compare with the sequences of the original strains, separately.

4.3 Results

4.3.1 Isolation and Identification Results of the Agarwood Associated
Fungal Strains

Twelve fungi strains isolated from Aquilaria sinensis are listed in Table 4.1 with
relevant information (collection site, date, and isolation part). The preliminary
identification based on ITS BLAST search in NCBI resulted in Aspergillus niger Tiegh.
(Identity: 100%, YNA-A73 and 100%, YNA-A18), Botryosphaeria fusispora
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Boonmee, Jian K. Liu & K.D. Hyde (identity: 100%, YNA-1B2), Daldinia
eschscholtzii (Ehrenb.) Rehm (Identity: 99.66%, GDA-3B17), Fusarium proliferatum
(Matsush.) Nirenberg (Identity: 100%, GDA-3A25), F. solani (Mart.) Sacc. (Identity:
99.81%, GDA-HCO1), Lasiodiplodia pseudotheobromae A.J.L. Phillips, A. Alves &
Crous (Identity: 99.64%, GDA-2A9 and identity: 100%, YNA-D3), L. theobromae
(Pat.) Griffon & Maubl. (Identity: 99.82%, YNA-1C2), Trichoderma harzianum Rifai
(identity: 100%, GDA-3A26 and 99.84%, YNA-1C1) and T. koningiopsis Samuels,
Carm. Sudrez & H.C. Evans (identity: 99.68%, YNA-2C5). In addition, YNA-D3 and
GDA-2A9 were identified as Lasiodiplodia pseudotheobromae; even though they were
isolated from different host parts (YNA-D3 from a healthy branch while GDA-2A9
from agarwood resin part).

4.3.2 Analysis of Induction Results of 12 Fungal Strains on Agarwood
Resin (Pre-Experiment)

Notably, previous studies revealed that fungal infections accelerate the process
of'agarwood formation when compared to the traditional method of inducing agarwood,
and these fungi were isolated from agarwood resin or agarwood-producing trees
(Ngadiran et al., 2023). Therefore, this study selected 12 fungal strains isolated from
Agquilaria sinensis to investigate their agarwood resin formation potential.

After 12 months, 12 Aquilaria sinensis trees inoculated by fermentation broths
of 12 fungal strains formed black-brown layers of agarwood resin around the hole. All
groups in the pre-experiment showed their ability to induce agarwood resins, including
the control group; the results are meticulously recorded in Table 4.2 and visually
represented in Figure 4.1. According to the comparison of the colors of the samples
collected in the 12 month, the 12 groups are arrayed in descending order from darken
to clarity pigment: G>A>B>C>F>1>]J>D>K>L >H > E. There are significant
differences among them (Figure 4.1).

Group G exhibited the most effective induction effect (Table 4.2 and Figure 4.1).
Its average growth width expanded to 8.5 cm by the third month, demonstrating a
continuous increase over time, ultimately reaching 13.5 cm by the 12" month.

Moreover, by the 12% month of compound testing, group G exhibited significantly
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medicinally accepted agarotetrol level and other two chromones (2-MC and 2-PC)
content compared to the other groups. Specifically, its agarotetrol content was 37.7
times higher than that of the control group, and its 2-MC and 2-PC content was 3.8
times higher than that of the control group. Notably, the experimental observations for
group G indicated the absence of wound healing or death of central tissue (around the
hole). The original strain was successfully obtained during the re-isolation.

Regarding formation area and compound content (Table 4.2, Figure 4.1 and 4.2),
groups A and H showed more significant results than the other ten groups (including
the control group). Neither group A nor group H manifested any discernible signs of
wound healing; instead, the central regions exhibited pronounced desiccation and
necrosis. Particularly, the observation of group H was noteworthy, wherein the area
formed by 12 months witnessed a substantial reduction compared to the measurements
taken in the ninth month.

The induction effects of the other six groups (B, C, D, E, J, and L) were not
significantly different from those of the control group. All six experimental groups had
wounds that healed over time, and three groups showed wound healing and central
tissue death (groups B, C, and E). The size of the area formed by agarwood in these
groups remained unchanged or decreased over time.

In addition, groups D and L showed a mortality rate of 75% in all collections.
A total of four branches were collected, of which three died. Fungal species of these
two groups all belong to Aspergillus niger. While the other three groups (F, I, and K)
did not obtain the original strains during the re-isolation.

Therefore, based on the pre-experiment results mentioned above, Group G
showed significant positive results compared to other experimental groups (Table 4.2
and Figure 4.1). Therefore, Group G strain Fusarium solani (GDA-HCO01) was selected

for further agarwood induction experiments.



106

‘(a0 2 Jo saprs 1omo[ pue 1ddn o Jo wins) WIAX Y} Suoe A[euIpmI3uo] SPUIXa 1By} YIPIM dFBIOAL Y, = PPIM 33BIAY
‘Pa109][00 seM JT uayMm PaIp Apeaife pey Jey ofdues sIy) 03 s19Ja1  pea], ‘dnois jonuo) = D, ‘9[qedrddeu] =/, ‘ON = N, ‘S9& = (A, AON

01 %6810°0 01 %L000°0 90 N / 10 N / 9¢°0 N / ¥€0 N / pfo)
v0 %€800°0 v'6 %L900°0 91 N N 91°0 N pedaa 810 N peaq 10 N peaq (7 dno1s) ¢/, V-VNA
70 %0000 81 %€100°0 €0 N N Sl N N 0 N N 81°0 N N (31 dno13d) L1g¢-VAD
60 %6910°0 8¢ %LT00°0 8L°0 N N T N N 0 A A €0 X N (r dno13d) 97vVE-vAon
0 %8L00°0 LT %2100°0 80 A A Tl N N SS0 N N 70 N N (I dno1d) $DZT-VNA
Il %€020°0 96 %0000 LT N A 8y N A Sy N A S¢ N A (H dno13) ZO1-VNA
8¢ %01L0°0 L'LE %L920°0 Sel N A €Tl N A 86 N A ¢ N A (D dnoid) [0OH-VAD
€0 %0900°0 0T %¥100°0 8Y°0 A N S0 A N €0 A N SE0 b5 N (d dnoi3) sTveE-van
T0 %E700°0 / / 0 N peaQ SE0 N peaq 0 N peaq ¥T0 N A (g dno1d) g 1-VNA
S0 %8600°0 Tl %6000°0 90 A N L0 A N STl A A vel N A (g dnois) g1V-VNA
Ll %97£0°0 9°¢ %S200°0 80 A A 'l A A Sl A A 9¢°0 A N (D dnois) 6v-van
T0 %LE00°0 S0 %0000 S0 A N 89°0 A A I'1 A A L0 A A (g dno1d) 1D1-VNA
60 %b910°0 0 %€£000°0 $9 N A 9 N A 8Y N A (417 N A (v dnoid) ¢a-VNA
> > > > >

3 s O g & z < S 3 < LLE < R 2 < e

g £ 3 = 3 3 s & 3 S & 2 s € F s L3

< a 2 S = g £ 7 = g £ = B oe £ = = ae £ 7 =

3 - s 3 3 o 2 £ = o 2 £ = c g £ & Z 2 £ £

g Y o g S 3 z = = = zZ = 2 =z zZ = £ z Z = 5 oz ajeost [eSuny £q

& a = 3 -~ = o & c = o & e = [y & e = [y 3 e =

= —_~ N = <4 = & [T = 15 =T = & e = S a

oy < ! - g = = = = = 5 = = =y = = =y Pa)e[nooul 33.1) poom.iedy
3 S = 3 2 5 = = 5 & 5 2 = = 2 & =

2 o g 2 g ¢ g ¢ g 7 g 7

ypuow 7] Y, ypuouw 6y, ypuou ,,9 Y, puow €3y,

(quowradxa-a1g) S)NSaI UORONPUI POOMIBIY T'f dqEL



107

0 DY R A-ATED
b i

R

Laiteiplodia feestmomae
K (EDAARIT)

Note Ck—1,-2 and -3, Control groups. A—L, Group A—L (White is the normal color of
the xylem, while brown to dark brown is the agarwood resin part).
Figure 4.1 Induction results of agarwood resin, after one year of inoculation with 12

different fungal fermentation broths
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Figure 4.2 Comparison of the agarwood resin formation area width collected in 12

groups and control groups at different periods

4.3.3 Analysis of Agarwood Resin Induction Results of Fusarium Solani
(GDA-HCO01) (Extended Experiment)

The pre-experiment results showed that group G (F. solani GDA-HCO1) had
the best effect, as it had a darker, wider resin area and higher chromone content
compared to other experimental groups (Table 4.2 and Figure 4.1); therefore, this strain
was selected as the best strain for the extended experiment.

According to the six-month results, the growth width of agarwood infused with
infusion bags in Agar-Wit is 2.2 times larger than that in PIT and 6.6 times larger than
that in the control group (Table 4.3, Figure 4.3). Regarding the colors, Figure 4.3-B
(control group) appears black, a color that only forms after the tissue necrosis. In
contrast, Figure 4.3-C (PIT) displayed brown resin, while Figure 4.3-D (Agar-Wit)
showed brown to black, brown resin. The darker color of Agar-Wit's resin compared to
PIT's indicated higher quality. At the same time, in terms of texture, the resin content
of PIT was relatively low, the oil lines were sparse, the oil distribution was uneven, the
hand feel was light, it felt slightly rough, the woody feeling was more obvious, and the
fragrance was weak and not long-lasting when burned; while, the Agar-Wit had a higher
resin content, especially in the central part, with abundant internal oil and clear and full

oil lines, a harder texture, a heavier hand feel, and a smoother texture; when burned,
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the smoke was light and soft and lasted longer.

The agarotetrol content in Agar-Wit is 3.4 times that of PIT and 216.6 times that
of the control group, while the 2-MC and 2-PC content of Agar-Wit is 1.5 times that of
PIT and 40.4 times that of the control group (Table 4.3). The structures of agarotetrol,
2-MC, and 2-PC are shown in Figure 4.4, and the peak plot of High-performance liquid
chromatography (HPLC) is shown in Figure 4.5.

The statistical analysis results showed that there is a significant difference in the
effect of different treatment methods on the content of agarotetrol (F =1220.2, p=1.37
x 10 74, far less than 0.05). The specific analysis is as follows:

Agar-Wit has the highest content of agarotetrol, with an average of 0.140%. The
agarotetrol in this treatment group was significantly higher than that in other groups
(p<0.001), indicating that the Agar-Wit method has the strongest promoting effect on
the synthesis of agarotetrol. PIT: The agarotetrol content was 0.040%, second only to
the Agar-Wit method and significantly higher than the control group (p<0.001). This
indicates that the PIT method can also promote the synthesis of agarotetrol to a certain
extent, but its effect is not as good as the Agar-Wit method. Control: Agarotetrol has
the lowest content, averaging only 0.001%, which is almost negligible. The agarotetrol
content in the control group was significantly lower than that in the treatment group
(p<0.001), indicating that the natural generation of agarwood resin is extremely limited
under no treatment conditions. In summary, the Agar-Wit method has the strongest
promoting effect on the synthesis of agarotetrol; in contrast, the PIT method, although
less effective, is still significantly higher than the control group, indicating that it also
has a certain effect on increasing the content of agarwood resin. The box plot (Figure
4.6) further illustrates the significant differences among the three groups: the data
distribution of the Agar-Wit group is completely higher than the other two groups,
followed by the PIT group, and the Control group has the lowest and tighter distribution.
These results indicate that there are significant differences in the induction effect of
different fungal treatment methods on agarotetrol, with the Agar-Wit method being the
most effective.

In addition, the agarotetrol content in Agar-Wit exceeds the National
Pharmacopoeia Committee (2020) requirement (0.1%) by 1.4 times. From this, it can

be seen that strain F. solani (GDA-HCO01) can quickly induce agarwood through Agar-
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Wit within six months and meet the medicinally accepted agarotetrol level.

Note A, Field experiment site in the plantation. B, Control group (the black part

represents decaying tissue). C, PIT. D, Agar-Wit.

Figure 4.3 The results of the extended experiment in the sixth month. (A) Field

experiment site in the plantation

Table 4.3 Comparison of agarwood induction results of different methods after six

months
Original Average Agarotetrol Content of
Wound Improvement Improvement
Methods  strain re- width content 2-MC and
healing rate rate
isolated (cm) (%) 2-PC (%)
Agar-Wit Y N 33 0.14% 216.6 0.26% 40.4
PIT Y N 1.5 0.04% 63.4 0.17% 26.2
Control / N 0.5 0.001% 1.0 0.01% 1.0

Note “Y”=Yes, “N”=No, “/” = Inapplicable, Average width = Horizontal expansion

average width.
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Note (A) Agarotetrol. (B) 2-[2-(4-methoxyphenyl)ethyl]chromone (2-MC). (C) 2-(2-
phenylethyl)chromone (2-PC).

Figure 4.4 Structures of agarwood chromones that were obtained in this study
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three main compounds.
Figure 4.5 High-performance liquid chromatography (HPLC) results of agarwood

resin induced by three treatments
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Figure 4.6 The agarotetrol content under different treatments

4.3.4 Analysis of Fungal Strains in the Induction Process of Agarwood

In the results of strain re-isolation, all re-isolated strains were compared with
the original strain in terms of bases, and the results showed that, except for the
inevitable impact of peaks at both ends of the ITS gene, most were not different from
the original strain. Some strains had a 1 or 2 bp base difference, which is less than 0.5%.
Except for the original strains, other strains belonging to 20 genera were also isolated
viz., Acrocalymma Alcorn & J.A.G. Irwin, Alternaria Nees, Aspergillus,
Camarosporium Schulzer, Colletotrichum, Crassiparies M. Matsum., K. Hiray. & Kaz.
Tanaka, Daldinia Ces. & De Not., Deniquelata Ariyaw. & K.D. Hyde, Diaporthe
Nitschke, Fusarium, Hypoxylon Bull., Lasiodiplodia, Medicopsis Gruyter, Verkley &
Crous, Montagnula Berl., Mucor P. Micheli, Neoscytalidium Crous & Slippers,
Penicillium Link, Phaeoacremonium W. Gams, Crous & M.J. Wingf,
Pseudofusicoccum Mohali, Slippers & M.J. Wingf. and Xylaria. Lasiodiplodia was the

most prominent genus, accounting for 50% of all the above.
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4.4 Discussion

This study conducted pre- and extended experiments to screen the best fungal
strain and explore the most suitable inoculation method for inducing agarwood resin
formation.

In the pre-experiment, 12 strains were selected to undergo PIT induction on the
small branches of 12 trees. The pre-experiment results indicated that all available strains
can induce agarwood formation, but their effects vary greatly. This PIT causes minimal
damage to the host and uses less inoculum, so it is the most appropriate method for
inoculation experiments on small branches. In this experiment, an agarwood-associated
fungal strain (Fusarium solani GDA-HCO01) showed the best result: an increase in the
formation area of agarwood resin over time, and no signs of wound healing or tissue
death around the wound were observed. Therefore, this strain was selected for the
extended experiments on tree trunks, and the results showed that after only six months,
the content of agarotetrol in agarwood resin induced by the F. solani (GDA-HCO1) was
1.4 times higher than the required standard.

Species of Fusarium are commonly reported as endophytic fungi or agarwood
resin-associated fungi in agarwood-producing trees (Chhipa et al., 2017; Azren et al.,
2018; Du et al., 2022a; Ngadiran et al., 2023). Fusarium solani has been proven to be
an effective fungus in inducing the formation of agarwood resin in previous studies.
For example, Faizal et al. (2020) reported that Gyrinops versteegii (Gilg.) Domke
produced a large area of agarwood after being inoculated with a fungal solution of F.
solani (strains GSL1 and GSL2) for three months, while the study did not detect the
content of agarotetrol. In previous studies, Chen et al. (2018) reported that the content
of agarotetrol induced by Rigidoporus vinctus (Berk.) Ryvarden could meet the
medicinal standards in the sixth month. This study reports for the first time that
qualified agarotetrol can be detected on induced wood after six months of inoculation
with F. solani (GDA-HCO01) on A. sinensis. These pieces of evidence indicate that this
strain has a high potential in inducing agarwood resin formation and is expected to be
developed into a highly efficient, low-cost, pollution-free, and environmentally friendly

fungal inducer.
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In addition, both group A (Lasiodiplodia pseudotheobromae strain YNA-D3)
and group H (L. theobromae strain YNA-1C2) were able to significantly induce the
production of agarwood resin; but both showed signs of central tissue necrosis, with
group H being more severe. Lasiodiplodia pseudotheobromae was first reported to have
the ability to induce agarwood production in this study. This may be worth further
research.

Additionally, in groups F (Fusarium proliferatum strain GDA-3Al11), 1
(Trichoderma koningiopsis strain YNA-2CS5), and K (Daldinia eschscholtzii strain
GDA-3B13), original strains were not obtained during re-isolations. The possible
reason could be that these three strains could not settle in A. sinensis trees. This might
be because those fungi are related to the inherent characteristics of the strain, host,
temperature, humidity, and other factors. Therefore, further research is needed to
explore why these three strains cannot settle on A. sinensis trees to induce agarwood
resin.

Moreover, in this experiment, four experimental groups (groups B, C, D, and J)
showed healing of tree wounds, and two groups (groups B and C) showed healing of
tree wounds and central tissue death. These two situations produced small resin regions
and did not accumulate more resins over time, resulting in gradual wound healing and
less damage to the tree. Groups A and H experienced severe central tissue death without
healing, causing certain damage to the tree, while E and L groups had a mortality rate
of up to 75% for tree branches. However, group G did not show any sound healing or
central tissue death; over time, it promoted the formation of more agarwood resin.
Therefore, this study indicates that some strains (from groups B, C, D, and J) that have
no effect on the tree or cause too weak damage have minimal damage to the tree,
making it easy for the tree to produce callus tissue for wound healing. The strains (from
groups A, E, H, and L) that cause too serious damage to the tree will cause the tree to
die or wither around the inoculation hole, so neither of these strains is suitable for
inducing agarwood production.

In the extended experiment, two methods viz., PIT and Agar-Wit were used to
explore the suitable methods for fungal induction of agarwood. After six months, PIT
significantly promoted the production of agarwood resin compared to the control group,

although the agarotetrol content did not meet the required standard. In contrast, the
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Agar-Wit method not only significantly enhanced agarwood resin formation but also
resulted in agarotetrol amount that meets the medicinally accepted agarotetrol level.
This may be because Agar-Wit can inject a large amount of fungal fermentation broth
(500 mL/tree) simultaneously, and a large amount of fungal fermentation broth is input
into the lower base of the tree trunk, facilitating the colonization of the fermentation
broth. Then, through transpiration, it continuously infects and induces the trees to
accelerate the formation of a large amount of agarwood resin. However, the volume
content of the fermentation broth used by Agar-Wit is relatively high, and further
experiments are needed to determine the most suitable volume of fermentation broth
for inoculation. In addition, using fermentation broth with different concentration
gradients to determine the optimal concentration for agarwood induction is also a
worthy topic for future research. Subsequent research should further focus on exploring
other methods of fungal agent production to reduce costs, making it easier for pollution-
free fungal inducers to be promoted and used in the market, and promoting sustainable
development of the green economy.

The results of strain re-isolation showed that Lasiodiplodia is the most
prominent genus except for the original strains. These fungi may contribute to the
formation of agarwood resin, which is one of the many factors.

Our research has revealed significant differences in the induction results of the
12 strains through pre-experiments. These findings are closely related to the
interactions between fungi and plants. The effects vary depending on the strain, and the
difference in induction effect may be due to the different secondary metabolic pathways
of different strains. These pathways produce different types and contents of secondary
metabolites during growth, which play a crucial role in interacting with fungi and host
plants. For strains with good induction effects, the secondary metabolites produced may
be more conducive to activating genes related to agarwood formation in the host plant.
The formation mechanism of agarwood is currently unclear and presents an exciting
opportunity for further research. The data and strains provided in this study can assist
subsequent research and fuel curiosity in this field.

The advantage of this study is the identification of an effective strain capable of
inducing agarwood resin formation, which achieved significant results within six

months. Lasiodiplodia pseudotheobromae was first reported to have the ability to
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induce agarwood production in this study. However, some strains didn’t have the ability
to colonize on trees (Fusarium proliferatum strain GDA-3A11, Daldinia eschscholtzii
strain GDA-3B13, and Trichoderma koningiopsis strain YNA-2C5), while, some
strains caused severe tissue damage (Aspergillus niger strain YNA-A73 and
Botryosphaeria fusispora strain YNA-1B2), restricting their applicability. Although the
Agar-Wit method is applicable in this study, further research is needed to optimize
inoculation volume and concentration to maximize efficiency and reduce costs.

The significance of this study lies in the potential for utilizing Fusarium solani
and other strains for fungal induction. This approach can significantly shorten the
formation cycle of agarwood and boost its yield while reducing dependence on
chemical agents in production, thereby reducing environmental pollution and protecting
soil microbial communities. To mitigate damage to the ecological environment, we can
develop low-damage induction techniques and precise inoculation techniques when
promoting the use of these strains in agarwood production. These technical techniques
can improve the effective interaction between strains and agarwood trees by controlling
the depth, dosage, and location of inoculation while reducing negative impacts on trees
and the surrounding environment. Moreover, the application of modern biotechnology,
such as gene editing, can enable strains to more accurately target specific tissues or
cells within the agarwood-producing tree, thereby enhancing the induction efficiency
of agarwood while reducing the risk of strain spread in the environment. To ensure the
sustainability of these methods, it is crucial to stress the importance of regularly
monitoring soil, air, and water quality during fungal inoculation. This will prevent strain
spread or negative impacts on soil microbial communities. If necessary, soil
disinfection or fungal control treatment can be carried out to maintain the stability of
the surrounding ecosystem. At the same time, a corresponding ecological management
system should be established, and strict operational norms and standards should be
formulated. This will ensure that agarwood production does not cause excessive
damage to the surrounding ecological environment, and will help us achieve sustainable
production.

In this study, we successfully identified Fusarium solani (GDA-HCO1) as an
efficient fungal strain that induces agarwood resin formation, demonstrating its

potential to meet and exceed medicinal standards in just six months. This discovery
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provides valuable insights for optimizing fungal inoculation to achieve sustainable and
efficient agarwood production; and it has the potential to develop a low-cost,
environmentally friendly inducer that can be widely applied in the industry. Future
research will focus on optimizing inoculation volume and fermentation broth
concentration to increase agarwood yield further while reducing costs and promoting

green production in the agarwood industry.

4.5 Conclusions

The innovation part of this study is the discovery of Fusarium solani (GDA-
HCO1) with good agarwood resin induction potential, which was tested on A. sinensis
in field experiments. The fungal strain F. solani (GDA-HCO1) is patented under patent
number 7067418 (https://pss-system.cponline.cnipa.gov.cn/conventionalSearch) (Du
et al., 2024c).

The conclusions are as follows:

4.5.1 Fusarium solani (GDA-HCO1) can quickly and stably induce the formation
of agarwood resin in 4. sinensis. Within six months, the content of agarotetrol in agarwood
resin can meet the medicinally accepted agarotetrol level, and it does not cause the tree's
wound to heal or wither around the wound.

4.5.2 Lasiodiplodia pseudotheobromae (YNA-D3) and L. theobromae (YNA-
1C2) significantly induced agarwood resin. This is the first report of L. pseudotheobromae
that can induce agarwood production, but they cause the central tissue to wither.

4.5.3 Aspergillus niger (YNA-AT73) and Botryosphaeria fusispora (YNA-1B2)
showed direct withering of the tested branches, with a mortality rate of up to 75%.
Therefore, we suggest that if 4. niger and B. fusispora will be used to conduct relevant
induction experiments on A. sinensis trees, it is recommended to conduct a pre-experiment

on small tree branches first to avoid unnecessary and unpredictable damage to the trees.
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CHAPTER 5

ENDOPHYTIC FUNGI ASSOCIATED WITH AQUILARIA SINENSIS
(AGARWOOD) FROM CHINA SHOW ANTAGONISM AGAINST
BACTERIAL AND FUNGAL PATHOGENS

5.1 Introduction

Aquilaria Lam. (Thymelacaceae Juss.) is the main genus that can produce
agarwood (Kalra & Kaushik, 2017). Agarwood, a fragrant, dark, and resinous
heartwood is the most expensive non-construction wood product in the world (Azren et
al., 2018; Naziz et al., 2019). In China, agarwood is used in traditional Chinese
medicine, and only A. sinensis (Lour.) Spreng. is the main agarwood tree species
cultivated in Guangdong, Guangxi, Hainan, and Yunnan Provinces (Cui et al., 2013;
National Pharmacopoeia Committee, 2015; Rasool & Mohamed, 2016; Azren et al.,
2018; Lv. etal., 2019). Current research on endophytic fungi associated with A. sinensis
mainly focuses on the agarwood formation ability of the endophytic fungi (Tibpromma
et al., 2021; Du et al., 2022a), and only a few of the 4. sinensis associated endophytic
fungi have been studied for antimicrobial activities via dual culture assay (Hidayat et
al., 2019). In a previous study, 38 endophytic strains have been reported to have
antimicrobial activities, for example, Botryosphaeria rhodina (Berk. & M.A. Curtis)
Arx, Cladosporium edgeworthiae H. Zhang & Z.Y. Zhang, Fusarium oxysporum
Schltdl., and Guignardia mangiferae A.J. Roy showed antimicrobial activities (Gong
& Guo, 2009); and a variety of important secondary metabolites with antibacterial and
antimicrobial activities have been extracted from Nemania aquilariae Tibpromma &
Zhang Lu (Tibpromma et al., 2021). However, the microorganisms that can be inhibited
by agarwood are not clear enough, thus it is necessary to continue the research on the
microbial spectrum of agarwood (Wang et al., 2018).

In this study, endophytic fungi associated with agarwood isolated from different

plant tissues were used to test their antagonistic abilities against three pathogenic
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bacteria viz. Erwinia amylovora (Burrill) Winslow et al., Pseudomonas syringae van
Hall, and Salmonella enterica (ex Kauffmann and Edwards) Le Minor and Popoff; and
three pathogenic fungi viz. Alternaria alternata (Fr.) Keissl., Botrytis cinerea Pers., and

Penicillium digitatum (Pers.) Sacc.

5.2 Research Methodology

5.2.1 Sample Collection and Isolation

5.2.1.1 Sample Collection

Fresh samples of A. sinensis were collected three times; i.e., two times in
Yunnan Province (21°55'48” N, 101°15’36” E, in November 2020; 22°21'09" N,
101°01'06" E, in September 2021) and one time in Guangdong Province (21°49'48" N,
111°40'12" E, in December 2020). Samples from Yunnan Province are denoted YNA,
while from Guangdong Province are denoted GDA. The leaves and twigs of healthy
plants, and the branches and twigs with agarwood dark resin were collected. Branch
cutters, knives, and saws were used to cut the samples and they were cleaned with 75%
alcohol before and after use. After collection, the fresh samples were placed in a thermal
insulation ice box, brought back to the laboratory, and placed in the 4°C refrigerators
until the endophytic fungi are isolated.

5.2.1.2 Isolation of Endophytic Fungi

Du et al. (2022b) with some adjustments was followed for the isolation of
endophytic fungi in fresh agarwood samples. The bark of fresh samples was removed
and then washed under running water, transferred to a laminar flow hood and the
samples were cut into small pieces (0.5 cm x 0.5 cm) by sterilized knives and blades
(sterilized with 75% alcohol). The surface disinfection steps of each sample are washed
in sterile water, 75% alcohol for 30 s, 2.5% sodium hypochlorite for 1 min, and 75%
alcohol for 30 s, finally, samples were washed in sterile water three times, and
transferred to the sterilized filter paper to absorb the water. All tools were dipped in 95%
alcohol and flamed before and after use. All the steps were done in a laminar flow hood.
Five sterilized small pieces were placed in each 90 mm potato dextrose agar (PDA)

plate (Ampicillin was added), and incubated at 28°C for 14 days. During incubation,
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plates were checked every two days and the fresh mycelia were transferred to new 60
mm PDA plates to get pure cultures. The pure cultures were used for DNA extraction.
Living pure cultures were deposited in the Zhongkai University of Agriculture and
Engineering Culture Collection (ZHKUCC), China.
5.2.2 Endophytic Fungi Identification

5.2.2.1 DNA Extraction, PCR Amplification and Sequencing

Ten days old fresh mycelia were used for DNA extraction using the Biospin
Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux, Hangzhou, China),
following the manufacturer’s instructions (Dissanayake et al., 2020). Polymerase chain
reaction (PCR) was used to amplify the ITS gene (internal transcribed spacer 1, 5.8S
ribosomal RNA gene and internal transcribed spacer 2), using primers ITS5/ITS4
(White et al., 1990). The PCR amplification was followed Du et al., (2021), and the
total volume of PCR mixtures for amplifications was 25 pL, with 94°C: 3 min, (94°C:
305s,55°C: 505, 72°C: 90 s) % 35 cycles, 72°C: 10 min, final 4°C. Finally, PCR products
were purified and sequenced by Qinke Biotech Co., Kunming, China.

5.2.2.2 Phylogenetic Analyses

Phylogenetic analyses are widely used in the identification of endophytic
fungi, and the ITS gene is commonly used to primarily identify endophytic fungi to
genus level (Guo et al., 2001, 2003; Ko et al., 2011; Tibpromma et al., 2018, 2022). In
this study, to confirm the endophytic fungal genera, the ITS phylogenetic analyses were
performed by Randomized Accelerated Maximum Likelihood (RAXML) analyses
according to the parameters described in Dissanayake et al. (2020). The obtained
sequences of the forward and reverse were merged in Geneious (9.1.2), and the merged
sequences were subjected to BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi?’PAGE
TYPE=BlastSearch, accessed on 18 September 2022). Based on the BLAST search, the
closest sequences were retrieved from the aNationl Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/, accessed on 18 September 2022).
The sequences were aligned in the online website MAFFT v.7 (https://maftt.cbre.jp/
alignment/server/, accessed on 18 September 2022) (Katoh & Standley, 2013), and
automatic cutting was done in trimAl.v1.2rev59. BioEdit v. 7.0.5.2 (Hall, 1999) was
used to manually combine the sequences, and subsequently, multiple sequence

alignments were converted from FASTA to PHYLIP in ALTER (http://www.sing-
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group.org/ALTER/, accessed on 18 September 2022) (Glez-Pefia et al., 2010). The
RAXML tree was run using the PHYLIP file, in RAXML-HPC BlackBox (8.2.12)
(Stamatakis et al., 2008; Stamatakis 2014) on the CIPRES Science Gateway platform
(https://www.phylo.org/portal2/home.action, accessed on 18 September 2022) (Miller
et al., 2010), with the GTR+I+G model of evolution. The final tree was visualized in
FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 18 September
2022) (Rambaut, 2012), and edited in Microsoft PowerPoint 2010. The sequences
generated in this study were uploaded to NCBI (https://submit.ncbi.nlm.nih.gov/ subs/,
accessed on 18 September 2022) to obtain the GenBank numbers (Table 5.1).
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5.2.3 Pre Dual Culture Assay for Antibiosis Test (Pretest)

The ability of endophytic fungal isolates to inhibit the growth of pathogens was
evaluated by the dual culture technique (Rahman et al., 2009). The six pathogens (three
bacterial pathogens viz. E. amylovora, P. syringae, and S. enterica; and three fungal
pathogens viz. A. alternata, B. cinerea, and P. digitatum) used in this study were
obtained from the China General Microbiological Culture Collection Center (CGMCC).

The pretest is a screening test conducted before the formal test. We used 47
strains from all isolated strains for the pretest. The 47 endophytic fungi strains and six
pathogenic strains (Table 5.2) were incubated at 28°C for 10 days before the test. Fungi
were cultivated on PDA, while bacteria were cultivated in nutrient agar (NA). After 10
days of incubation, the fungal colonies were cut into 0.4 cm diameter discs (sterilized
plastic straw) in the laminar flow cabinet, then endophytic fungi and pathogenic fungi
were inoculated in the same 90 mm PDA plates, and endophytic fungi and pathogenic
bacteria (bacteria scraped with 0.4 cm wide strip) were inoculated in the same 90 mm
NA plates. The control was inoculated with only pathogens. All the plates were
incubated at 28°C for 10 days. After 10 days, the colony growth of the test group and
the control group were checked and recorded. According to the test results, we
compared the colony diameters of the test group and the control group, and then
endophytic fungi that can inhibit three pathogenic fungi or three pathogenic bacteria
were selected. These selected strains with antagonistic activities were used for formal

testing.



127

(6107) ‘Te 12 BISOD S1INIJ SN0 JO SSO[ Y} 03 Sped] A1o1119ads 350 Y31y SIy [, “ssnf ovddeIny 03 3ursuojoq 01¥ST°€ wnvsp
“(8107) "Te 3@ yauepysooyn ‘(¢007) ‘e 10 addog syniy jo Aeoap isaareyisod jo snuny oruaSoyyed urewr e st wmpISIp winijj1o1ud J DOINDD wnijjousg cdd
uadoyyed oy 10J so13arens [0nU0o [ed130]01q Jo Justwdo[oAsp o) U0
SuISNo0J ‘N0 PATIILD U SARY SONIATIOR [OTEISAT JO IOqUINT B ‘SOPIOISUNy oNofiuAs pasn
A[uowrtos 0} jue)stsal st uagoyyed oy} asneoag ‘WO0I 23LI0)S PUL P[AI Y} UI PAUTLIQO 06LE°€ D2.42U1>
(0207) Te 0 ofuy-1eAriog “(6107) ‘Te 10 £9qqy sy pue pooy 10J A[[eroadss ‘suadoyied 9ANONISOP ISOUL oY} JO SUO SI D2.L2U1D SLJOg DOINDD sudiog zdd
(2202) Te 30 zoyouesg sme)s A1ojeridsar pue eunyise
“(0207) ‘Te 1 Suepm “(9102) QI0A3S 0} PAJL[I AIE YOIYM ‘pIom 3} ur suaFiaffe [eduny jueirodwr jsour o) Jo aUo 3q
“Te 32 2oua1meT (9107) e I° [1qeD (S107) 0) PRISPISUOD ST PIVULD " ‘SISBASIP UBWINT JO P[3LJ SY} UJ "SISEISIP [BWIUER PUL URWIN| GESST € vIDULDID 13uny
‘Te 30 S1oquapnop, (ST0T) e 10 yootem], 03 pedf pue sdoio yseo jueprodur syoafur et ‘snduny oruaSoyied e SI vyviLid)p DLIDUII] DOINDD DIDUII T 14d oruagoyped
SOLIUNOD
1202 Te 30 eneg uelsy jsow o3 yeaxty orjqnd e st sonoiquue djdnmnu 03 usSoyyed sy Jo douLISISAI YL,
“(6107) urequayg pue 13[pous (0002) "UOILIOqE 10/puk 1249 “eruwioeondas se yons swojdw&s 1910 sasned 31 pue ‘SnLjuonses €0901°1 DOLI2JUD
‘e 10 nezzn (L661) e 10 901y (1661) ZHemyds 2JNok 9SMED UBD I "WNLIYOR] dluagoyied o1}0U00Z © ST DILI2JUD D][UOUDS ) Nis)e) pjjoUOUDS cdd
S9SSO[ DIWOU0D I0[BL 3SNED YIIYM (S90jJBUI0} PUk ‘0008q0) ‘@oLI ‘sead
(L007) 'Te 3 Ajjouuay] ‘5180 ‘sIoquInond ‘@3eqqes ‘s109q se yons) sdoio pory swos pue (swnjd pue synujozey ceee1 a3uLIfs
“(5007) ‘T 310 SuemH “(0661) 3SI0H ‘sojdde se yons) soox 31y Surpnjour ‘sysoy jueld swLrey AJurew 20SuULILS SDUOULOPNIS T DDINDD  Spuouwopnasg zdd
(1202) "8 30 tpereyy| (510T) '[e 10 9nbig
(#107) T8 12 utog “(T107) & 19 10MZ 10p UBA
‘(5007) 109g pue 4O (0007) d1seuueA (0007) (A1roqdser pue ‘eypueselfd ‘aead ‘10)seOU0)00 ‘A11dgyoR[q 9jdde “3°9) "ssn[ oeaoes0Yy JO 9LTL 1 paoaojun BLIDJORQ
uoswoy ], {(0007) I9MZ I9p UeA pue uuog s9109ds Jsoy Auew s1oSuepud jey) 9seasIp jueld SANONIISOP € SISNED DLOAOJAUD DIUINAT DDOINDD prmLg 19d oruadoyied
SIIUIIIY sudgoyyed Jo $)931q AN JuIeN urens po uddoyeg
urensg MAN

13uny orua3oyied pue eLojoeq druagoyied ysm3unsip 03 Apnis SIy} Ul pajeard sapod mau are (13uny oruagoyied) 14 pue (e119108q

orudgoyred) gd Ul (DDANDD) 191Ud) UONII[[0)) dIM[N)) [BIISO[OIqOIIIA [BIdUAD) BUIY)) WOy paseyoind ozom suodoyied x1§ 7°S dIqeL



128

5.2.4 Dual Culture Assay for Antibiosis Test (Formal Test)

5.2.4.1 Methods of Dual Culture Assay

The test method is similar to the pretest. According to the results of the
pretest, among 47 endophytic fungi, 25 strains were able to inhibit pathogenic bacteria,
40 strains were able to inhibit pathogenic fungi, and 18 strains were able to inhibit both
pathogenic fungi and bacteria. Therefore, 47 endophytes and six pathogens were
incubated at 28°C for 10 days before the formal test. Fungi were incubated on PDA,
while bacteria were incubated in NA.

The endophytic and pathogenic fungi grown on PDA plates were cut into
small fungal discs (0.4 cm diam.) using a sterilized plastic straw in laminar. Then, the
25 selected endophytic fungal strains were inoculated with three pathogenic bacteria
(0.4 cm wide strip) in the same NA plates, and each test was replicated three times (total
of 25 x 3 x 3 = 225 plates). The 40 selected endophytic strains were inoculated with
three pathogenic fungi in the same PDA plates, and each test was replicated three times
(total of 40 x 3 x 3 =360 plates). The pathogens were inoculated on the left of the petri
dish, while the endophytic fungi were inoculated on the right by keeping a space of 6
cm between the pathogens and endophytes. Negative controls were set in the antibiosis
tests of each pathogen. The control group used the same culture medium as the test
group. The pathogen was inoculated on the left of the medium, while nothing was
inoculated on the right. Controls were incubated under the same conditions as the test
groups. After inoculation, petri dishes were incubated at 28°C for 10 days. While
incubating, they were observed, photographed and the diameter of the pathogens in the
test group and the control group was measured every two days.

5.2.4.2 Calculation and Analysis of Inhibition Rate

According to the test results, the data were processed and analyzed. The
antibiosis effects and the degree of endophytic fungi effect on pathogens can be
expressed by calculating the inhibition rate of endophytic fungi on the growth diameter
of pathogens. The inhibition rate was calculated according to the method described in

Gao et al. (2017) and Rajani et al. (2021), and the calculation formula used is as follows:

Inhibition% = (Cd-Td)/(Cd-0.4) x 100
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Notes: Cd =radial growth of the pathogen in pure control culture, Td =radial
growth of the pathogen in dual culture. The width of the original fungal discs and
bacterial strip in this test is 0.4 cm.

5.2.4.3 Statistical Analyses

The statistical analyses of the inhibition rate were carried out in Microsoft
Excel 2010. The measured data (colony diameter) were recorded in an excel table. The
inhibition rate and average inhibition rate were obtained by the formula. The standard
deviation (SD) reflects the dispersion degree of a data set, and the values were obtained
by inserting the function (STDEV) of standard deviation into the excel table. In addition,
clustered column graphs were inserted in the excel table based on the average inhibition

rate and edited in Microsoft Excel 2010.

5.3 Results

5.3.1 Results of Sample Collection and Isolation

In this study, agarwood samples were collected from Guangdong and Yunnan
Provinces. The fresh samples were isolated to obtain pure cultures for molecular
analyses and antibiosis tests. In Table 5.1, we list the host, collection site, and other
information of 47 endophytic fungi used in this study.

5.3.2 Single Gene Phylogenetic Analyses

The single-gene phylogenetic analyses were carried out by constructing an
RAXML phylogenetic tree based on ITS. The RAXxML analyses gave a final ML
optimization likelihood value of —12,190.561600. The matrix had 567 distinct
alignment patterns, with 19.72% of undetermined characters or gaps. Parameters for
the GTR+I+G model of the ITS were as follows: estimated base frequencies A =
0.249972,C=0.260278, G = 0.245555, T = 0.244194; substitution rates AC = 1.190651,
AG = 3.363586, AT = 2.316682, CG = 1.153165, CT = 3.693909, GT = 1.000000;
proportion of invariable sites I = 0.105968; and gamma distribution shape parameter o

=0.446892.
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The final RAXML tree is shown in Figure 5.1. The 47 strains are distributed in
four classes in Ascomycota, viz. Dothideomycetes, Eurotiomycetes, Saccharomycetes,
and Sordariomycetes. According to the BLAST results and phylogenetic analyses, 46
strains were identified at the genus level, and they belong to 18 genera. While one of
our strains (GDA-2B15) is closest to two strains of Xylariaceae viz. (CHTAE14) and
(PB-85), therefore, GDA-2B15 was identified as a member of Xylariaceae in this paper.

The results can be summarized as 47 endophytic fungi strains belong to
Ascomycota Caval.-Sm., of which 30 strains belong to Sordariomycetes O.E. Erikss. &
Winka (63.83%), 14 strains belong to Dothideomycetes O.E. Erikss. & Winka
(29.79%), two strains belong to Eurotiomycetes O.E. Erikss. & Winka (4.26%), and

one strain belongs to Saccharomycetes G. Winter (2.13%)).
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T e

Figure 5.1 A RAXML single gene phylogenetic tree of 47 endophytic fungi strains and

their related sequences based on ITS
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Figure 5.1 Bootstrap support values for maximum likelihood (ML) equal to or
higher than 50% are indicated above the branches. The endophytic fungi with original
strain numbers isolated in this study are marked with red font.

5.3.3 Dual Culture Assay for Antibiosis Test (Pretest)

A total of 47 endophytic fungi strains were tested on six pathogens under the
same conditions. The results showed that 18 strains had inhibitory effects on all six
pathogens, seven strains had inhibitory effects on all three pathogenic bacteria, and 22
strains had inhibitory effects on all three pathogenic fungi. Therefore, 25 strains had
inhibitory effects on all three pathogenic bacteria, and 40 strains had inhibitory effects
on all three pathogenic fungi. Therefore, 25 strains and 40 strains were used to conduct
formal tests on three pathogenic bacteria and three pathogenic fungi respectively.

5.3.4 Dual Culture Assay for Antibiosis Test (Formal Test)

Through the results of the pretest, we carried out the formal test with the selected
strains (25 endophytic fungi for pathogenic bacteria, and 40 endophytic fungi for
pathogenic fungi) By calculating the inhibition rate through the formula, the strains
whose inhibition rate was more than 60% were considered to have an inhibition effect,
and the results recorded in Table 5.3 and only Lasiodiplodia sp.(YNA-D3) can inhibit
all six pathogens, and its inhibition rate to pathogenic fungi is higher than bacteria
pathogens (Inhibition rate: 93.30% to PF2-B. cinerea, 76.73% to PF3-P. digitatum,
75.90% to PF1-A. alternata, 74.07% to PB2-P. syringae, 63.33% to PB3-S§. enterica,
63.64% to PB1-E. amylovora). Figure 5.2 shows the pictures of several endophytic

fungi with significant inhibition rates to pathogens in the dual culture assay.
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Note Left: pathogen. Right: endophytic fungus. a—¢, Endophytic fungi dominate

against the pathogenic fungus PF2. d.e, Endophytic fungi dominate against
pathogenic fungus PF3. f, Endophytic fungi dominate against pathogenic
bacterium PB1. g,h, Endophytic fungi dominate against pathogenic bacterium

PB2.

Figure 5.2 Dual culture assay

5.3.4.1 Inhibition of 25 Endophytic Fungi on Three Pathogenic Bacteria

The inhibitory effect (>60%) of 25 endophytic fungi on pathogenic bacteria
is shown in Figure 5.3 and Table 5.3, and the inhibitory effect is ranked as E. amylovora
(CGMCC 1.7276) > P. syringae (CGMCC 1.3333) > S. enterica (CGMCC 1.10603).
For S. enterica (CGMCC 1.10603), there is almost no inhibitory effect.
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Figure 5.3 Inhibition rate of 25 endophytic fungi to three pathogenic bacteria. The

inhibition >60% is considered a good inhibition effect

For PB1-E. amylovora (CGMCC 1.7276), eight strains showed inhibitory
effects (Table 5.3 and Figure 5.3), and the three strains with the highest inhibition rate
are Curvularia sp. (GDA-3A9, 86.36%), Lasiodiplodia sp. (GDA-1A7, 86.36%), and
Fusarium sp. (YNA-2C3, 81.82%). Among the eight strains, the genus Lasiodiplodia
Ellis & Everh. has the highest number of strains (five strains).

For PB2-P. syringae (CGMCC 1.3333), nine strains showed inhibitory
effects (Table 5.3 and Figure 5.3), and the three strains with the highest inhibition rate
are Curvularia sp. (GDA-3A9, 74.07%), Lasiodiplodia sp. (YNA-D3, 74.07%), and
Lasiodiplodia sp. (YNA-1C2, 70.37%). Among the nine strains, the genus
Lasiodiplodia has the largest number of strains (three strains).

For PB3-S. enterica (CGMCC 1.10603), three strains showed inhibitory
effects (Table 5.3 and Figure 5.3), and Lasiodiplodia sp. (YNA-D3, 63.33%) had the
strongest inhibitory effect, followed by Lasiodiplodia sp. (GDA-2A9, 60.00%), and
Trichoderma sp. (YNA-1C1, 60.00%). Among the three strains, the genus

Lasiodiplodia has the largest number of strains (two strains).
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5.3.4.2 Inhibition of 40 Endophytic Fungi on Three Pathogenic Fungi

The inhibitory effect (=60%) of 40 endophytic fungi on pathogenic fungi
shows some good results in Figure 5.4 and Table 5.3, and the inhibitory effect is ranked
as B. cinerea (CGMCC 3.3790) > P. digitatum (CGMCC 3.15410) > A. alternata

(CGMCC 3.15535).
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Figure 5.4 Inhibition rate of 40 endophytic fungi to three pathogenic fungi. The

inhibition >60% is considered a good inhibition effect

For PF1-4. alternata (CGMCC 3.15535), 18 strains showed inhibitory effects
(Table 5.3 and Figure 5.4), among them, the three strains with the highest inhibition
rate are Curvularia sp. (GDA-3A9, 77.07%), Trichoderma sp. (YNA-1C1, 77.07%),
and Lasiodiplodia sp. (YNA-D3, 75.90%). Among the 18 strains, the genus
Lasiodiplodia has the largest number of strains (six strains).

For PF2-B. cinerea (CGMCC 3.3790), 36 strains showed inhibitory effects
(Table 5.3 and Figure 5.4), among them, the three strains with the highest inhibition
rate are Lasiodiplodia sp. (GDA-3C2, 93.30%), Lasiodiplodia sp. (YNA-D3, 93.30%),
and Lasiodiplodia sp. (GDA-2B1, 93.30%). Among the 36 strains, the genus
Lasiodiplodia has the largest number of strains (six strains).

For PF3-P. digitatum (CGMCC 3.15410), 38 strains showed inhibitory effects
(Table 5.3 and Figure 5.4), among them, the three strains with the highest inhibition
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rate are Diaporthe sp. (GDA-2A1, 79.87%), Lasiodiplodia sp. (GDA-1A7, 79.25%),
and Lasiodiplodia sp. (GDA-2A9, 78.62%). Among the 38 strains, the genus
Lasiodiplodia has the largest number of strains (six strains).

To sum up, the endophytic fungi used in this test have a good inhibitory effect
on PF2-B. cinerea (CGMCC 3.3790), which can reach a 93.30% inhibition rate,
however, for PB3-S. enterica (CGMCC 1.10603), there was almost no inhibitory effect,
and the highest inhibitory rate was 63.33%. Among the inhibition results of endophytic
fungi on these six pathogens, it can be seen that most fungi with inhibitory effect belong
to the genus Lasiodiplodia, and Lasiodiplodia sp. (YNA-D3) showed the best inhibition
effect on pathogens (anti-PB1 63.47%, anti-PB2 74.07%, anti-PB3 63.33%, anti-PF1
75.90%, anti-PF2 93.30%, and anti-PF3 76.73%).

5.4 Discussion

The 47 endophytic fungal strains isolated from agarwood were tested against
six bacterial and fungal pathogens. The reasons for selecting these six pathogens are:
few studies have been carried out on the pathogens of A. sinensis trees, thus no
pathogenic strains of A. sinensis are available to be used, and these six pathogens can
cause severe damages, their hosts and distribution are very wide and common
(Schwartz, 1991; Poppe et al., 2003; Woudenberg et al., 2015; Abbey et al., 2019).

The results of the dual culture assay showed that 40 endophytic fungi strains
with antimicrobial activities out of 47 strains belong to 18 genera viz. Alternaria Nees,
Annulohypoxylon Y .M. Ju, J.D. Rogers & H.M. Hsieh, Aspergillus P. Micheli ex Haller,
Botryosphaeria Ces. & De Not., Colletotrichum Corda, Corynespora Gilissow,
Curvularia Boedijn, Daldinia Ces. & De Not., Diaporthe Nitschke, Fusarium Link,
Lasiodiplodia, Neofusicoccum Crous, Slippers & A.J.L. Phillips, Neopestalotiopsis
Maharachch., K.D. Hyde & Crous, Nigrospora Zimm., Paracamarosporium Wijayaw.
& K.D. Hyde, Pseudopithomyces Ariyaw. & K.D. Hyde, Trichoderma Pers., and
Trichosporon Behrend while one strain was identified as Xylariaceae Tul. & C. Tul.,
while their inhibitory effects on different pathogens were identified as different (Table

5.3). Among them, the strains of six genera (Curvularia, Diaporthe, Lasiodiplodia,
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Neofusicoccum, Nigrospora, and Trichoderma) showed relatively significant inhibition
effects (Table 5.3) and the most significant of which is Lasiodiplodia sp. (YNA-D3),
which can inhibit all six pathogens.

In previous studies, some agarwood endophytic fungal strains have been shown
to have antimicrobial properties that are consistent with our results viz. Botryosphaeria
rhodina (Gong & Guo, 2009), Colletotrichum sp. (Gong & Guo, 2009), Diaporthe sp.
(Monggoot et al., 2017), Fusarium equiseti (Corda) Sacc. (Cui et al., 2011), F.
oxysporum (Gong & Guo, 2009; Cui et al., 2011), F. solani (Mart.) Sacc. (Cui et al.,
2011), F. verticillioides (Sacc.) Nirenberg (Chi et al., 2016), Lasiodiplodia theobromae
(Pat.) Griffon & Maubl. (Cuietal.,2011), and Xylaria mali Fromme (Tian et al., 2013).

In addition, in this study, this is the first time that 13 genera of agarwood endophytic
fungi are reported for antimicrobial activities viz. Alternaria, Annulohypoxylon,
Aspergillus, Corynespora, Curvularia, Daldinia, Neofusicoccum, Neopestalotiopsis,
Nigrospora, Paracamarosporium, Pseudopithomyces, Trichoderma, and Trichosporon. At
the same time, nine genera viz. Alternaria, Annulohypoxylon, Corynespora, Daldinia,
Neofusicoccum, Neopestalotiopsis, Paracamarosporium, Pseudopithomyces, and
Trichosporon were reported as endophytic fungi of agarwood for the first time.

In this study, some potential fungal strains that can be used as biocontrol agents
were screened (Table 5.3). Botrytis cinerea (CGMCC 3.3790) is one of the most
destructive pathogens with a large number of hosts (Abbey et al., 2019). This pathogen
is resistant to commonly used synthetic fungicides, so it is necessary to carry out more
research on biological control strategies (Abbey et al., 2019; Bolivar-Anillo et al., 2020).
In this study, strains of the five genera viz. Curvularia sp., Lasiodiplodia sp.,
Neofusicoccum sp., Nigrospora sp., and Trichoderma sp. with inhibition rates to B.
cinerea (CGMCC 3.3790) more than 90% were identified. These strains have the
potential to be developed into fungicides against B. cinerea (CGMCC 3.3790).

In conclusion, this study enriches the diversity of the endophytic fungi of
agarwood and their antagonistic potential against bacterial and fungal pathogens. The
most significant fungal strain is Lasiodiplodia YNA-D3 which can inhibit all pathogens
and needs further studies to identify and analyze its secondary metabolites with
antimicrobial effects. In addition, in-depth studies on the endophytic fungi associated

with agarwood are needed to develop effective biocontrol agents.
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CHAPTER 6

THE POLYPHASIC APPROACH REVEALS FIFTEEN NOVEL AND
TWO KNOWN ASCOMYCOTA TAXA FROM TERRESTRIAL
AGARWOOD PRODUCING TREES

6.1 Introduction

Agarwood, a rare and highly valuable dark resin with a unique fragrance, is
produced by the defense mechanism of Thymelaeaceae Juss. plants after being damaged
by external factors such as animals, insects, lightning, and microorganisms (Chhipa et al.,
2017; Wang et al., 2018). Agarwood is a multipurpose wood sold in the market as wood
chips, powder, prayer beads, and wood carvings; and it also plays an essential role in
Chinese traditional medicine (National Pharmacopoeia Committee, 2015, 2020; CITES,
2022). Agarwood chips and essential oils have created enormous economic value in the
market; for example, agarwood oil had a global market value of USD 278.03 million in
2021 (Niego et al., 2023a). Members of Thymelaeaceae are well known for their ability to
produce agarwood and are distributed in tropical and subtropical regions (Xu et al., 2016;
Azren et al., 2018; Kang, 2021). These plants are native to Southeast Asia and are
distributed in Borneo, Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar,
Papua New Guinea, Sri Lanka, Thailand, the Philippines, and Vietnam (Rasool &
Mohamed, 2016; Xu et al., 2016; Kang, 2021). The family Thymelaeaceae contains of
many important agarwood-producing tree species, including those from the genera
Aetoxylon Airy Shaw, Aquilaria Lam., Gonystylus Teijsm. & Binn., Gyrinops Gaertn., and
Phaleria Jack, and these tree species that can produce agarwood are called “agarwood-
producing trees” (Rasool & Mohamed, 2016). Aquilaria is an important genus of
agarwood-producing tree genera due to its unique and precious fragrant resins (Rasool &
Mohamed, 2016). There are 21 accepted species, of which 13 are reportedly capable of
producing agarwood, including two native Chinese species — Aquilaria sinensis (Lour.)
Spreng. and Aquilaria yunnanensis S. C. Huang (Su et al., 2016; CITES, 2022). Aquilaria

sinensis 1s the main source of agarwood in China (National Pharmacopoeia Committee,
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2015, 2020), and is mainly distributed in Fujian, Guangdong, Guangxi, Hainan, Hong
Kong, Taiwan, and Yunnan provinces/regions (Cui et al., 2013) while A. yunnanensis is
found only in Xishuangbanna, Yunnan Province, China (Su et al., 2016). The main
morphological difference between A. yunnanensis and A. sinensis is that the fruit of A.
yunnanensis 1s oval, with short seed appendages, and the seed surface is densely covered
with yellow pubescence, while 4. sinensis has oblong fruit, seeds with long appendages,
and smooth or covered with white pubescence on the surface (Kang, 2021).

Studies of the microfungi associated with agarwood- producing trees have been
carried out over a long time, but those studies were focused mainly on endophytic and
pathogenic fungi (Liao et al., 2018; Wang et al., 2018, 2019b; Liu et al., 2020; Du et al.,
2022a, 2022b; Li et al., 2022¢). In the studies of endophytic fungi associated with A.
sinensis and other agarwood-producing tree species, Fusarium is the most significant genus
among the endophytic fungi (Du et al., 2022a; Li et al., 2022c). In the past 20 years,
endophytic fungi associated with agarwood-producing trees have been extensively studied
for their induction potential and their biological activity (Azren et al., 2018; Wang et al.,
2018; Subasinghe et al., 2019; Tibpromma et al., 2021; Du et al., 2022d). Studies of
pathogenic fungi associated with agarwood-producing trees have also received
considerable attention due to the highly valuable agarwood (Li & Chen, 2008; Xu et al.,
2012; Samsuddin et al. 2019; Syazwan et al., 2019). The most commonly reported
pathogenic fungi genus of A4. sinensis is Colletotrichum Corda, followed by Lasiodiplodia
Ellis & Everh. and Rhizoctonia DC., which cause damage to the seedling, branches, and
leaves (Liao et al., 2018; Liu et al., 2020). With respect to the study of saprobic fungi
associated with agarwood-producing trees, Punithalingam and Gibson (1978) described
Phomopsis aquilariae Punith. & 1. A. S. Gibson from the dead wood of Aquilaria
malaccensis Lam. Later, Subansenee et al. (1985) reported seven saprobic fungi on
Agquilaria spp., viz. Cercosporella sp., Chaetomium spirale Zopf, Cladosporium sp.,
Phialogeniculata sp., Pithomyces sp., Rhizopus sp., and Trichoderma sp. but lacked
complete morphological characteristics and sequence data. With only eight records,
research on saprobic fungi associated with agarwood-producing trees is limited compared
to studies of endophytes and diseases.

As a continuation of fungal diversity studies in the Greater Mekong Subregion
(GMS) (Chaiwan et al., 2021), we collected specimens of Aquilaria spp. with fungal
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fruiting bodies present from Guangdong and Yunnan provinces of China. One new genus
and nine new species are described herein, based on morphology, multigene phylogeny,
and multiple gene sequences are provided for a known species, Camarographium
clematidis for the first time. Full descriptions, illustrations, photo plates, and phylogenetic

trees to indicate the placement of new taxa are provided.

6.2 Research Methodology

6.2.1 Sample Collection, Morphological Study, and Single Spore Isolation

Dead twigs of Aquilaria spp. with fungal fruiting bodies present were collected from
Guangdong and Yunnan provinces in China during 2021-2023. Morphological structures of
the fungi were examined with an OPTEC SZ650 dissecting stereomicroscope (Chongging,
China), and microscopic fungal structures were photographed with an OLYMPUS DP74
(Tokyo, Japan) digital camera on an OLYMPUS optical microscope (Tokyo, Japan).
Distilled water was used as a mounting slide solution, India ink was used to examine the
sheath of ascospores, and Melzer's reagent was used to stain the apical ring structure in
members of Sordariomycetes. All fungal micromorphological structures were measured by
the Tarosoft Image Framework program v. 1.3, and photo plates were made by Adobe
Photoshop CS3 Extended version 10.0 software (Adobe Systems, San Jose, CA, USA).

Single spore isolations were carried out following the methods outlined by
Senanayake et al. (2020). The fruiting bodies of the fungi were observed under a
stereomicroscope (Chongging, China). A sterile blade was used for lateral cutting of the
fruiting bodies, and a sterile needle was used to pick and place spores in 1 mL of sterile water.
Then, the sterile needle was used to mix the sterile water and spores to form a mixture. Later,
the sterile water with spores was transferred to a potato dextrose agar (PDA) culture plate by
pipette gun and incubated at 23°C—28°C for 1248 h. After the spores germinated, sterile
needles were used to pick up the germinated individual spores and transfer them to new PDA
plates under sterile conditions. Pure cultures were obtained after 57 days of incubation
(23°C-28°C), then the culture characteristics were observed and recorded.

The specimens were deposited in the Guizhou Medical University (GMB-W),
Kunming Institute of Botany Academia Sinica (HKAS), and Mycological Herbarium of
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Zhongkai University of Agriculture and Engineering (MHZU), China. Living cultures were
deposited in the Kunming Institute of Botany Culture Collection (KUNCC), Guizhou
Medical University Culture Collection (GMBCC), Guizhou Culture Collection (GZCC),
and Zhongkai University of Agriculture and Engineering Culture Collection (ZHKUCC),
China. Facesoffungi (FoF) numbers were registered as described in Jayasiri et al. (2015),
and MycoBank (MB) numbers were registered as outlined in MycoBank
(http://www.MycoBank.org).

6.2.2 DNA Extraction, PCR Amplification, and Sequencing

Molecular phylogenetic studies were carried out according to Dissanayake et al.
(2020). Fresh mycelia grew for 2—4 weeks on PDA plates were scraped and placed ina 1.5
mL centrifuge tube. Genomic DNA of mycelia was extracted using DNA Extraction Kit-
BSC14S1 (BioFlux, Hangzhou, PR China), following the manufacturer's protocol. The
partial nuclear genes and primers were used in polymerase chain reaction (PCR)
amplification and sequencing: 28S nrfRNA gene (LSU) was amplified by using the primers
LROR and LR5 (Vilgalys & Hester, 1990), the internal transcribed spacer (ITS) regions
gene was amplified by using the primers ITS5 and ITS4 (White et al., 1990), 18S ribosomal
RNA (SSU) was amplified using the primers NS1 and NS4 (White et al., 1990), and
translation elongation factor 1-alpha (tef1-a) was amplified using the primers EF1-983F
and EF1-2218R (Rehner, 2001), - tubulin (TUB) was amplified using the primers T1 and
2b (Trouillas et al., 2011), and RNA polymerase II second largest subunit (rpb2) was
amplified using the primers fRPB2-5f and fRPB2—-7cR (Liu et al., 1999). The total volume
of the PCR mixture for amplifications was 25 pL containing 12.5 pL 2xMaster Mix
(mixture of Easy Taqg TM DNA Polymerase, dNTPs, and optimized buffer [Beijing Trans
Gen Biotech Co., Beijing, China]), 8.5 uL ddH20, 2 pLL of DNA template, and 1 pL of
each forward and reverse primer (10 pM). The conditions for the PCR of LSU, ITS, SSU,
tefl-a. and rpb2 followed Dai et al. (2022), while conditions for TUB followed Du et al.
(2022c). Purification and sequencing of PCR products were carried out by Sangon Biotech
Co. (Kunming, China).

6.2.3 Phylogenetic Analyses

All sequences obtained in this study were checked in BioEdit v.7.2.6.1 (Hall, 1999),
and the forward and reverse sequences were spliced with Geneious 9.1.8 (Kearse et al.,

2012). The spliced sequences were subjected to nucleotide BLAST searches to identify
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closely related sequences available in the NCBI (http://blast.ncbi.nlm.nih.gov/). Sequence
data for the phylogenetic analyses were searched from GenBank based on recent
publications. Sequences were aligned by MAFFT v.7 (http:/mafft.cbre.jp/alignment/server/)
(Katoh et al., 2019), and automatic optimization by TrimAl.v1.2rev59 (Capella-Gutiérrez
et al., 2009). The sequence data sets were automatically combined using Sequence Matrix
1.7.8 (Vaidya et al., 2011), and were converted FASTA to PHYLIP and NEXUS formats
in AliView (Larsson, 2014) or ALTER (http:// www.sing-group.org/ALTER/) (Glez-Pefia
etal., 2010).

Randomized accelerated maximum likelthood (RAXxML) and Bayesian inference
(BI) analyses were carried out in the CIPRES Science Gateway platform
(https://www.phylo. org/portal2/login!input.action) (Miller et al., 2010). The RAXML trees
analyzed with 1000 bootstrap replicates were generated using RAXML-HPC2 on XSEDE
(8.2.12) (Stamatakis et al., 2008; Stamatakis, 2014) with the different models of evolution
generated from different data sets. Bayesian analyses were performed with MrBayes on
XSEDE (3.2.7a) (Ronquist et al., 2012) by the Markov chain Monte Carlo (MCMC)
method to evaluate posterior probabilities (BYPP) (Richard & Lippmann, 1991; Rannala
& Yang, 1996; Zhaxybayeva & Gogarten, 2002). According to different data sets, six
simultaneous Markov chains were run for 1 000 000— 10 000 000 generations, and trees
were sampled every 100" generation. Max-trees were set to 5000, and clade robustness was
assessed with a bootstrap (BT) analysis of 1000 replicates. The phylogenetic trees were
visualized in FigTree v.1.4.2 (Rambaut, 2012), and edited by Microsoft Office PowerPoint
2021. All novel sequences generated in this study were deposited to the GenBank
(https://www.ncbi.nlm.nih. gov/WebSub/?form=history&tool=genbank).

6.3 Results

The new taxa described according to the guidelines outlined in Chethana et al.
(2021a), Pem et al. (2021), and Maharachchikumbura et al. (2021). Taxa illustrated
below are in alphabetical order. They represent 22 species, 14 genera in nine families,
four orders and two classes in Ascomycota. There species name with their taxonomic

placement are provided in the Table 6.1.
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Table 6.1 Taxonomic placement of the taxa presents in this study

Phylum Class Order Family Genus Species

Ascomycota  Dothideomycetes

Sordariomycetes

Ascomycota genera

incertae sedis

Dyfrolomycetales

Pleosporales

Sordariales

Xylariales

Pleurotremataceae

Corynesporascaceac

Didymosphaeriaceae

Nigrogranaceae

Phaeoseptaceae

Thyridariaceae

Torulaceae
Pleosporales genera
incertae sedis

Podosporaceae

Diatrypaceae

Melomastia

Corynespora

Camarographium

Montagnula

Nigrograna

Phaeoseptum

Agquilariomyces

Parathyridariella

Pseudothyridariella

Torula

Mangifericomes

Triangularia

Allocryptovalsa

Peroneutypa

Melomastia
aquilariae
Melomastia
guangdongensis
Melomastia
maomingensis
Melomastia sinensis
Melomastia
yunnanensis
Corynespora
aquilariae
Camarographium
clematidis
Montagnula
aquilariae
Nigrograna
aquilariae
Phaeoseptum
aquilariae
Aquilariomyces
aquilariae
Aquilariomyces
maomingensis
Parathyridariella
aquilariae
Pseudothyridariella
aquilariae
Torula fici
Mangifericomes
aquilariae
Triangularia
aquilariae
Allocryptovalsa
aquilariae
Allocryptovalsa
rabenhorstii
Peroneutypa
aquilariae
Peroneutypa
maomingensis
Pseudoacrodictys
deightonii
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6.3.1 Dothideomycetes

Dyfrolomycetales K. L. Pang, K. D. Hyde & E. B. G. Jones 2013

Pleurotremataceae Walt. Watson 1929

Melomastia Nitschke ex Sacc. 1875

Notes: Melomastia was introduced by Saccardo (1875) to accommodate
Melomastia mastoidea (Fr.) J. Schrot. (=M. friesii Nitschke) as the type species.
Melomastia was previously classified under Ascomycota as incertae sedis based only on
morphology (Maharachchikumbura et al.,, 2016). Later, Norphanphoun et al. (2017)
assigned Melomastia in Pleurotremataceae (Dothideomycetes) based on molecular data
(LSU and SSU) and introduced a new species (Melomastia italica Norph., Camporesi, T.
C. Wen & K. D. Hyde) and also transferred Dyfrolomyces maolanensis J. F. Zhang, J. K.
Liu, K. D. Hyde & Z. Y. Liu to Melomastia. Subsequently, Li et al. (2022¢) synonymized
Dyfrolomyces under Melomastia and transferred 11 species in Dyfrolomyces to Melomastia
based on molecular phylogeny and morphology. Kularathnage et al. (2023) recently
maintained Dyfrolomyces to accommodate Dibamus tiomanensis (K. L. Pang, Alias, K. D.
Hyde, Suetrong & E. B. G. Jones) W. L. Li, Maharachch. & Jian K. Liu (type) and
Dyfrolomyces chromolaenae (Mapook & K. D. Hyde) W. L. Li, Maharachch. & Jian K.
Liu based on their ascospore morphology and septation that differ from that of Melomastia.
Currently, 72 epithets of Melomastia are listed in Index Fungorum (http:/
www.indexfungorum.org/Names/Names.asp, accessed on 1 May 2025). Melomastia is
characterized by coriaceous to carbonaceous, globose ascomata with erumpent and conical
apex, bitunicate asci, short pedicel, cylindrical, and ascospores overlapping uniseriate,
ovoid, ellipsoid to fusiform, hyaline, one to 10-septate, with or without a mucilaginous
sheath, while the asexual morph of this genus has not been determined (Li et al., 2022c¢).
Members of Melomastia are often saprobes on decaying wood in terrestrial, freshwater,
and mangrove habitats (Li et al., 2022¢). However, Melomastia septemseptata Muxfeldt &
Aptroot was recently reported as a new species in Brazil based on morphology without
sequence data, which has been reported from living tree bark in a dry terrestrial
environment, and the authors mentioned that it is likely not a saprobe but rather a weak

parasite of the tree (Muxfeldt Naziazeno & Aptroot, 2023).
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Melomastia guangdongensis T. Y. Du, K.D. Hyde, Tibpromma & Karun., sp. nov.
MycoBank number: MB 856407; Facesoffungi number: FoF 16958; Figure 6.1
Etymology: Named after the type locality “Guangdong, China”.

Holotype: MHZU 23-0021.

Saprobic on a dead branch of Aquilaria sinensis. Sexual morph: Ascomata
(excluding neck) 180-360 um high x 200-300 pm diam. (X = 267 % 245 um, n = 10),
visible as black dots on the host surface, black, solitary, scattered to gregarious, semi-
immersed to immersed, uniloculate, globose to subglobose, coriaceous to carbonaceous,
ostiolate. Ostiolar canal 190-240 pm high x 120-160 um wide (X =214 x 140 um, n =
10), central, black, cylindrical, coriaceous to carbonaceous, filled with hyaline cells.
Peridium 30-60 um wide (x = 40 um, n = 20), comprising dense, several layers, outer
layers brown to dark brown, thick-walled cells of textura angularis to textura globulosa,
inner layers hyaline, thin-walled cells of textura angularis to textura prismatica, not fusion
well with host tissue. Hamathecium comprising 1.5-3 um wide, numerous filamentous,
filiform, septate, sometimes branched, hyaline, pseudoparaphyses, attached to the base and
between the asci, embedded in a gelatinous matrix. Asci 120—168 x 5.5-7.5 um (X = 144 x
6.5 um, n = 30), bitunicate, 8-spored, cylindrical, short pedicel, rounded in apex, with an
obvious ocular chamber. Ascospores (18.7-)20-26 x 5—7 pum (X = 23 X 6 um, n = 30),
overlapping-uniseriate, hyaline, 3-septate at maturity, fusiform with acute ends, slightly
constricted at the middle septum, smooth-walled, not surrounded by a mucilaginous sheath.
Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 hours, germ tubes
were produced from both ends. Colonies on PDA reaching 3 cm diam., after two weeks at
23-28°C. Colonies obverse: dense, circular, white, velvety, slightly raised at the center,
entire edge. Colonies reverse: yellow, cream at the margin.

Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin, 21°3428"N, 111°7'39"E, on a dead branch of Aquilaria sinensis
(Thymelaeaceae), 3 June 2022, T. Y. Du, MMA14, (MHZU 23-0021, holotype), ex-type,
GMBCC1046, other living culture, ZHKUCC 23-0040.

Notes: In the phylogenetic analyses, our new collection, M. guangdongensis
formed a sister branch with M. thamplaensis strains (HKAS122773, KUMCC 21-0671,
and MFLUCC 15-0635) in Melomastia sensu lato clade (Figure 6.5) with a 75% ML/0.91
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PP bootstrap support. NCBI BLASTn searches of our collection, M. guangdongensis
showed 99.88% similarity to M. thamplaensis (HKAS122773) in the LSU sequence, 100%
similarity to M. thamplaensis (AND9) in the SSU sequence, and 98.17% similarity to
M. thamplaensis (KUMCC 21-0671) in the tef1-a sequence. Our new collection, M.
guangdongensis shares similar morphology with M. thamplaensis in the shape of asci and
ascospores. However, M. thamplaensis differs from M. guangdongensis in having clypeate,
raised spots, immersed, subglobose to obpyriform, some with broad, flattened base
ascomata, and three strata of peridium (Zhang et al., 2017), while M. guangdongensis has
semi-immersed to immersed, globose to subglobose ascomata, and two strata of peridium.
Base pair differences of the LSU and SSU genes between our new collection M.
guangdongensis (GMBCC1046, ex-type) and M. thamplaensis (MFLUCC 15-0635, ex-
type) showed that there are no nucleotide differences, while the fef1-a has 1.6% nucleotide
differences (14/865 bp, without gaps), and a comparison of the tef1-a nucleotides between
new collections and another strain of M. thamplaensis (KUMCC 21-0671) resulted in 1.7%
differences (15/865 bp, without gaps) (Zhang et al., 2017; Ren et al., 2024). Therefore, we
introduce our collection, M. guangdongensis, as a new species on a dead branch of
Agquilaria sinensis from terrestrial habitats in China, based on both morphology and

phylogenetic analyses following the guidelines of Maharachchikumbura et al. (2021).
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Figure 6.1 Melomastia guangdongensis (MHZU 23-0021, holotype)
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Figure 6.1 a—c, Appearance of ascomata on the host (the arrows indicate
ascomata). d, e, Vertical sections through the ascomata. f, Ostiole. g—j, Asci (1, j asci
stained with cotton blue, and arrows indicate ocular chambers). k, Pseudoparaphyses
stained with cotton blue. 1-0, Ascospores (o ascospore stained with cotton blue). p,
Germinated ascospore. q, Colony on PDA obverse and reverse view. Scale bars: d—f =
200 pm, g—j =50 pm, k—p =10 pm.

Melomastia maomingensis T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 853997; Facesoffungi number: FoF 15261; Figure 6.2

Etymology: Named after the place of the holotype collection, Maoming.

Holotype: MHZU 23-0019.

Saprobic on a dead branch of Aquilaria sinensis. Sexual morph: Ascomata
(excluding neck) 300550 um high x 250-500 pm diam. (X = 410 % 400 um, n = 10),
solitary, semi- immersed to immersed, visible as black dots on the host surface, obvious,
raised spots, black, uniloculate, globose to subglobose, coriaceous to carbonaceous.
Ostiolar canal 120-280 pm high x 100-220 um wide (x = 230 x 175 um, n = 10), black,
cylindrical, or conical, carbonaceous, papillate with periphyses. Peridium 35-100 um wide
(X =67 um, n = 10), comprising dense, thick-walled, brown to dark brown cells of textura
angularis, fusion with host tissue. Hamathecium comprising 1.5-3.5 um wide, numerous
filamentous, hyaline, septate, sometimes branched, pseudoparaphyses, longer than asci,
attached to the base and between the asci. Asci 180-200 X 7-9 um (X = 192 x 8.5 pum,
n = 30), bitunicate, eight-spored, cylindrical, short pedicel, rounded in apex, with a minute
ocular chamber, J-apical ring. Ascospores (23—) 24.5-29 x 6-8 pum (X = 26.5 x 7 pm,
n=30), overlapping uniseriate, one to three-septate, mostly three-septate, hyaline, fusiform
with acute ends, constricted at the septum, smooth- walled, with a large guttule in each cell
when mature, not surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 h, germ tubes were
produced from both ends. Colonies on PDA reaching 2—3 cm diam., after 2 weeks at 23°C—
28°C. Colonies obverse: dense, oval, grayish white to light brown, raised at the center,
entire edge. Colonies reverse: brown, cracked at the center, cream to light yellow at the

margin.
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Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin, 21°34"25" N, 111°7'43" E, on dead branch of Aquilaria sinensis
(Thymelaeaceae), June 3, 2022, T. Y. Du, MMA12 (MHZU 23-0019, holotype), ex-type,
ZHKUCC 23-0038, other living culture, GZCC 23-0619.

Notes: In the present phylogenetic analyses, our new collection Melomastia
maomingensis formed a sister lineage to M. beihaiensis (KUMCC 21-0084) in Melomastia
Sensu lato with 93% ML, 0.97 BYPP statistical support (Figure 6.5). Morphologically, M.
maomingensis shares similar morphology with M. beihaiensis in asci and ascospores.
However, Melomastia beihaiensis differs from M. maomingensis in having solitary or
aggregated, clypeate to wide subglobose ascomata, ostiolar canal filled with hyaline cells,
periphyses absent, peridium comprising cells of textura angularis to textura prismatica,
unbranched pseudoparaphyses, smaller asci and ascospores than M. maomingensis (asci:
163 % 5.9 um vs. 186 x 8.5 um; ascospores: 22 x 5.8 um vs. 26.5 x 7 um) (Senanayake et
al., 2023). In addition, the base pair differences of the LSU and SSU genes between our
new collection and M. beihaiensis (KUMCC 21-0084, ex-type) were compared, and the
results showed that there are no nucleotide differences, while fef1-a has 1.7% nucleotide
differences (15/874 bp, without gaps), which reveals that they belong to different species.
Therefore, we introduce our new collection, M. maomingensis, as a new species based on

both morphological study and phylogenetic analyses.



153

R,
1]

L)
=

it

I‘l ) -
it ‘ i)
) \ k
=0 & E
i\
i L

= " Ty

ah, - -

] o s

il 0 e

i
:

e b

S

Figure 6.2 Melomastia maomingensis (MHZU 23-0019, holotype)
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Figure 6.2 a, b, Appearance of ascomata on the host. ¢, d, Vertical sections
through the ascomata. e, Ostiole with periphyses. f—i, Asci. j, Pseudoparaphyses.
k, Peridium. I-n, Ascospores. o, Germinated ascospore. p, q, Colony on potato dextrose
agar (PDA) obverse and reverse view. Scale bars: ¢, d =200 um, e—i, k=50 um, j =10
pm, -0 =20 pm.

Melomastia sinensis (M.C. Samar., Tennakoon & K.D. Hyde) W.L. Li,
Maharachch. & Jian K. Liu 2022

MycoBank number: MB 842093; Facesoffungi number: FoF 03935; Figure 6.3

Saprobic on a dead branch of Aquilaria sp. Sexual morph: Ascomata (excluding
neck) 400—600 um high x 430-580 um diam. (x =515 x 520 um, n = 10), solitary, scattered
to gregarious, semi-immersed to immersed, erumpent through host tissue, globose to
subglobose, black, coriaceous to carbonaceous, ostiolate. Ostiolar canal 230-365 pm high
% 200-260 um wide (X = 303 x 230 um, n = 10), central, black, conical, coriaceous to
carbonaceous, filled with hyaline sparse periphyses. Peridium 30-120 pm wide (X = 75
um, n = 20), comprising dense, several layers of thick-walled cells of textura angularis to
textura prismatica, outer layers brown to dark brown, becoming lighter inwardly.
Hamathecium comprising 2.5-6.5 pm wide, numerous filamentous, filiform, septate,
unbranched, hyaline pseudoparaphyses, attached to the base and between the asci,
embedded in a gelatinous matrix. 4sci 175-220 x 8.5-11.5 pm (X = 195 x 10.5 pum,
n = 30), bitunicate, 8-spored, cylindrical, long pedicel, thickened and rounded apex, with
an obvious ocular chamber. Ascospores (17.5-)20-26.5 x 7-9 um (X =24 x 8§ um, n = 30),
overlapping-uniseriate, hyaline, when ascospores gather together, they appear light yellow,
mostly 6-7-septate at maturity, cylindrical, with rounded ends, slightly constricted at the
septum, often similar width of cells with several small guttules, not surrounded by a
mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 hours, germ tubes
were produced from most cells, germinated ascospores appear light yellow. Colonies on
PDA reaching 3 cm diam., after two weeks at 23—-28°C. Colonies obverse: dense, circular
or irregular, umbonate, cream, light yellow at the center, entire or undulate edge. Colonies

reverse: dark gray, yellow at the margin.



155

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Naban River Nature Reserve, 22°7'48"N, 100°40'24"E, on a dead branch of Aquilaria sp.
(Thymelaeaceae), 14 September 2021, T. Y. Du, YNA41 (GMB-W 1006, new host and
geographical record), living culture, GMBCC1008.

Host and distribution: Aquilaria sp. (China; this study), Camellia sinensis
(Thailand; Hyde et al., 2018a), and Hevea brasiliensis (Thailand; Senwanna et al., 2021).

Notes: In the phylogenetic analyses, our new collection (GMBCC1008) isolated
from a dead branch of Aquilaria sp. grouped with Melomastia sinensis strains (MFLUCC
17-1344, MFLUCC 17-2606 and MFLU 17-0777) in Melomastia sensu lato, with a 99%
ML/0.93 PP bootstrap support (Figure 6.5). NCBI BLASTn searches of our collection
showed 99.78% similarity to M. sinensis (MFLUCC 17-2606) in the LSU sequence, 99.21%
similarity to M. oleae (UESTCC 21.0006) in the SSU sequence, and 99.67% similarity to
M. sinensis (MFLUCC 17-2606) in the fef1-a sequence.

Melomastia sinensis (=Dyfrolomyces sinensis Samarak., Tennakoon & K.D. Hyde)
was introduced by Hyde et al. (2018) as a saprobic on Camellia sinensis (L.) Kuntze stems.
Our new collection shares a similar morphology with M. sinensis (MFLU 17-0777,
holotype) in cylindrical ascospores with 6—7-septate ascospores. Our new collection has
semi-immersed to immersed ascomata, differs from M. sinensis (MFLU 17-0777, holotype)
in having superficial ascomata (Hyde et al., 2018a) and differs from immersed ascomata in
M. sinensis (MFLU 19-0232) (Senwanna et al., 2021). However, the nucleotide base pair
differences between our new collection (GMBCC1008) and M. sinensis
(MFLUCC 17-1344, ex-type) showed that the LSU and SSU gene has no nucleotide
differences, while the tefl-o gene of M. sinensis (MFLUCC 17-1344, ex-type) is
unavailable in NCBI (Hyde et al., 2018a). The comparison of the tefl-a nucleotides
between the new collection and another strain of M. sinensis (MFLUCC 17-2606) resulted
in 0.3% differences (3/873 bp, without gaps) (Senwanna et al., 2021). This study first
discovered M. sinensis on Aquilaria sp. in China. Therefore, we introduce our new
collection as a new host and geographical record of M. sinensis based on both

morphological study and phylogenetic analyses.
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Figure 6.3 a—c, Appearance of ascomata on the host (a the arrows indicate
ascomata). d, Vertical sections through the ascoma. e, Ostiole. f, Peridium. g,
Pseudoparaphyses. h, Asci. i, Ascus with an ocular chamber. j, k, Ascospores. 1,
Germinated ascospore. m, n, Colony on PDA obverse and reverse view. Scale bars: d,
e =200 um, h=100 pum, f=50 pum, i-1=20 pm, g =10 pm.

Melomastia yunnanensis T. Y. Du, K.D. Hyde, Tibpromma & Karun., sp. nov.

MycoBank number: MB 856408; Facesoffungi number: FoF 16959; Figure 6.4

Etymology: Named after the type location “Yunnan, China”.

Holotype: GMB-W 1007.

Saprobic on a dead branch of Aquilaria sp. Sexual morph: Ascomata (excluding
neck) 400-500 um high % 300480 um diam. (x =458 x 395 um, n = 10), solitary, scattered
to gregarious, immersed to erumpent through host tissue, globose, black, carbonaceous,
ostiolate. Ostiolar canal 100160 um high % 120-230 um wide (X = 130 % 184 pm,
n = 10), central, black, conical, carbonaceous, filled with hyaline sparse periphyses.
Peridium 2575 um wide (X =55 pm, n = 10), comprising of dense, several layers of brown
to dark brown, thick-walled cells of textura angularis to textura prismatica. Hamathecium
comprising 2.5-7.5 pum wide, numerous filamentous, filiform, septate, sometimes branched,
hyaline pseudoparaphyses, attached to the base and between the asci, embedded in a
gelatinous matrix. Asci 180-220 x 7.5-10.5 pm (X = 195.5 x 9 um, n = 30), bitunicate, 8-
spored, cylindrical, short pedicel, thickened and rounded apex, with an obvious ocular
chamber. Ascospores 20-24.5 x 6-8 pm (X =22.5 x 7 pum, n = 30), overlapping-uniseriate,
hyaline, when ascospores gather together, they appear light yellow, mostly 6—8-septate at
maturity, mostly 7-septate, cylindrical, with rounded ends, slightly constricted at the
septum, often similar width of cells with several small guttules, not surrounded by a
mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 hours, germ tubes
were produced from both ends, germinated ascospores appear light brown. Colonies on
PDA reaching 2 cm diam., after two weeks at 23—-28°C. Colonies obverse: dense, circular,
umbonate, gray at the center, cream, and entire edge. Colonies reverse: gray brown, light

brown at the margin.
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Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Naban River Nature Reserve, 22°7'51"N, 100°40"21"E, on a dead branch of Aquilaria sp.
(Thymelaeaceae), 14 September 2021, T. Y. Du, YNAS51 (GMB-W 1007, holotype),
ex-type, GMBCC1009, other living culture, GZCC 23-0621.

Notes: In the phylogenetic analyses, our new collection, M. yunnanensis formed a
sister branch with M. sinensis (MFLUCC 17-1344, MFLUCC 17-2606, MFLU 17-0777,
and GMBCC1008) in Melomastia sensu lato with a 100% ML/1.00 PP bootstrap support
(Figure 6.5). NCBI BLASTn searches of our collection M. yunnanensis showed 99.23%
similarity to M. sinensis (MFLUCC 17-2606) in the LSU sequence, 98.92% similarity to
M. thamplaensis (AND9) in the SSU sequence, and 96.34% similarity to M. sinensis
(MFLUCC 17-2606) in the tef1-a. sequence. Our new collection, M. yunnanensis shares
similar morphology with M. sinensis in cylindrical and septate ascospores. However,
M. sinensis differs from M. yunnanensis in having superficial, semi-immersed to immersed
ascomata, cylindrical or conical ostiolar canal, and unbranched pseudoparaphyses (Hyde
et al., 2018a), while our M. yunnanensis has immersed ascomata, conical ostiolar canal,
and pseudoparaphyses sometimes branched. In addition, the nucleotide base pair
differences between our new collection M. yunnanensis (GMBCC1009, ex-type) and
M. sinensis (MFLUCC 17-1344, ex-type) showed the LSU gene has 0.5% nucleotide
differences (4/760 bp, without gaps), the SSU gene has 0.5% nucleotide differences (4/813
bp, without gaps), while the tefl-a gene of M. sinensis (MFLUCC 17-1344, ex-type) is
unavailable (Hyde et al., 2018a). We compared the tef1-a nucleotides between the new
collection and another collection of M. sinensis (MFLUCC 17-2606), which resulted in 3.8%
differences (33/873 bp, without gaps) (Senwanna et al., 2021). Therefore, we introduce our
new collection, M. yunnanensis, as a new species on a dead branch of Aquilaria sp. from
terrestrial habitats in China, based on both morphological study and phylogenetic analyses
following the guidelines of Maharachchikumbura et al. (2021).
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Figure 6.4 a—c, Appearance of ascomata on the host (the arrows indicate
ascomata). d, Vertical sections through the ascoma. e, Ostiole. f, Peridium. g—i, Asci.
J, Asci ocular chamber. k, Germinated ascospore. 1, Pseudoparaphyses. m—q,
Ascospores. 1, s, Colonies on PDA obverse and reverse view. Scale bars: d = 200 um,

g-1=100 um, e, f=50 um, J, k, m—q =20 pm, 1 = 10 um.
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Note Bootstrap support values for ML greater than 60% and Bayesian posterior
probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Anisomeridium phaeospermum (MPN539) and A. ubianum (MPN94).
The new isolates are indicated in red, and the ex-type strains are in bold.

Figure 6.5 Phylogenetic tree of Melomastia
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Pleosporales Luttr. ex M. E. Barr 1987

Corynesporascaceae Sivan. 1996

Corynespora Giissow 1906

Notes: Corynespora was described by Glissow (1906) with the type species
Cor. mazei Gussow. Wei, a synonym of Cor. cassiicola. Voglmayr and Jaklitsch (2017)
assigned Cor. cassiicola and Cor. smithii to Corynesporascaceae based on phylogenetic
analyses and morphology. Currently, more than 200 epithets of Corynespora have been
recorded in Index Fungorum (2025). However, there are only 14 species in this genus
with DNA sequence data (Crous et al., 2019; Hyde et al., 2020; Li et al., 2023; Liu et
al., 2023a). This genus is characterized by conidiophores with integrated, terminal,
monotretic conidiogenous cells, and acrogenous, solitary or catenate, distoseptate
conidia, while the sexual morph is characterized by Cor. caryotae with cultural studies
(Wei, 1950; Sivanesan, 1996; Xu et al., 2020; Liu et al., 2022¢). Species of
Corynespora live as saprobes, pathogens, and endophytes on a wide range of hosts,
including woody and herbaceous plants, other fungi, nematodes, and human skin
(Dixon et al., 2009; Kumar et al., 2012; Hyde et al., 2020; Li et al., 2023). This study
introduces a new saprobic species, Corynespora aquilariae, collected from Aquilaria
yunnanensis in terrestrial habitats based on morphology and multigene phylogenetic
analyses.

Corynespora aquilariae T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 853998; Facesoffungi number: FoF 15262; Figure 6.6

Etymology: Named after its host genus Aquilaria.

Holotype: MHZU 23-0035

Saprobic on a dead branch of Aquilaria yunnanensis. Sexual morph:
undetermined. Asexual morph: hyphomycetous. Colony on natural substrate effuse, hairy,
black. Mycelium partly superficial and mostly immersed in the substratum composed of
branched, septate, pale brown, smooth-walled. Conidiophores 145-255 x 6.5-10.5 pm
(X =192 x 8 um, n = 50), macronematous, mononematous, erect, straight or flexuous,
mostly flexuous, septate, unbranched, cylindrical, brown to dark brown, thick-walled.
Conidiogenous cells 16-22 x 7-11 pm (X = 19 x 9 pm, n = 50) monotretic, integrated,
terminal, determinate, cylindrical, brown to dark brown, often percurrently proliferating.

Conidia (73-)85-110(=130) x 13—-15.5(-17.5) pm (X =99 % 14 pm, n = 50), acrogenous,
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solitary, simple, obclavate, straight or slightly curved, subhyaline to brown, 10-16-
distoseptate, guttulate, thick-walled, smooth-walled, slender at the apex, and truncate at
the base, with a dark basal scar, wide at middle and lower part, narrow and elongated at
the upper part.

Culture characteristics: Conidia germinated on PDA after 24 h, and germ tubes
were produced from both ends. Colonies on PDA reaching 2-3 cm diam., after 2 weeks at
23°C-28°C. Colonies obverse: dense, oval, white, raised, entire edge. Colonies reverse:
yellow to light brown at the center, cream at the margin.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Gasa, Naban River Basin National Nature Reserve, 22°7'50” N, 100°4029" E, on dead
branches of Aquilaria yunnanensis (Thymelaeaceae), September 14, 2021, T. Y. Du,
YNA40 (MHZU 23-0035, holotype), ex-type, ZHKUCC 2-0071; other living culture,
GZCC 23-0615.

Notes: In the present phylogenetic analyses, our new collection Corynespora
aquilariae formed a well-separated and sister lineage to Cor. citricola (CBS 169.77,
Nursery PG FL and CABI211585) with 97% ML and 1.00 PP statistical support (Figure
6.7). Additionally, Cor. citricola differs from Cor. aquilariae in having subcylindrical or
obovate, subhyaline, 4-18 pseudoseptata conidia (Ellis, 1957), while conidia of
Cor. aquilariae is obclavate, subhyaline to brown, 10—16-distoseptate. Morphologically,
Cor. aquilariae share similar cylindrical conidiophores and acrogenous, solitary conidia
with Cor. nabanheensis J. W. Liu & J. Ma (Liu et al., 2023a). However, Cor. aquilariae
differs from Cor. nabanheensis in having longer conidia (99 x 14 um), subhyaline to
brown, 10—16-distoseptate, while Cor. nabanheensis has shorter conidia (66.5 % 13 um),
brown to golden brown, nine to 13-distoseptate (Liu et al., 2023a). Overall, we introduce
our new collection, Cor. aquilariae, as a new species based on both morphological study
and phylogenetic analyses. Due to this genus's limited molecular sequence data, more

research is needed.
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Figure 6.6 Corynespora aquilariae (MHZU 23-0035, holotype)
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Figure 6.6 a, b, Appearance of hyphomycetes on the host. c-h, Conidiophores,
conidiogenous cells, and conidia. i—p, Conidia. q, Germinated conidium. r, s, Colony
on potato dextrose agar (PDA) obverse and reverse view. Scale bars: ¢, d =50 um,
e—1=20 um, j—q =50 pm.
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Figure 6.7 Phylogenetic tree of Corynespora

Figure 6.7 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Cyclothyriella rubronotata (CBS 141486 and TR). The new isolates are

indicated in red, and the ex-type strains are in bold.
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Didymosphaeriaceae Munk 1953

Camarographium Bubék 1916

Notes: Camarographium was introduced by Bubdk (1916) to accommodate
Cam. stephensii (Berk. & Broome) Bubdk as type species. Crous et al. (2022)
designated a neotype of Cam. stephensii due to the type material of Cam. stephensii has
presumably been lost and gave the phylogenetic placement of Cam. stephensii in
Didymosphaeriaceae. Camarographium is characterized by asexual morph (two types
of conidia): conidiomata globose, unilocular, conidiogenous cells enteroblastic,
phialidic, ampulliform to doliiform, macroconidia globose, ellipsoid or irregular in
shape, brown, with up to five transverse septa, numerous longitudinal or oblique septa;
microconidiogenous cells phialidic, holoblastic, ampulliform to doliiform,
microconidia subglobose to ellipsoidal, truncate at base, rounded at apex. While sexual
morph is undetermined (Sutton & Rizwi, 1980; Verkley et al., 2005; Crous et al., 2011;
Wijayawardene et al., 2016; Crous et al., 2022). Members of Camarographium were
found as saprobes on a wide range of hosts (e.g., Acacia sphaerocephala Cham. and
Schltdl., Ammophila sp., Betula papyrifera Marshall, Carpinus betulus L., Clematis
vitalba L., Cornus kousa F. Buerger ex Hance, Pteridium aquilinum (L.) Kuhn,
Scorzonera pusilla Pall., and Stachytarpheta jamaicensis (L.) Vahl) (Wijayawardene et
al., 2016; Crous et al., 2022). Currently, nine epithets of Camarographium are listed in
Index Fungorum (2025), while only Cam. stephensii has molecular data in NCBI
(https://www.ncbi.nlm. nih.gov/, accessed on November 29, 2023). In this study, based
on morphological comparisons, we introduce a new host (Aquilaria sinensis) and
geographic record (China) of Cam. clematidis Wijayaw., Camporesi, McKenzie &
K. D. Hyde, and provide molecular data for Cam. clematidis for the first time.

Camarographium clematidis Wijayaw., Camporesi, McKenzie & K. D. Hyde

MycoBank number: MB 551767; Facesoffungi number: FoF 01447; Figure 6.8

Saprobic on dead branch of Aquilaria sinensis. Sexual morph: undetermined.
Asexual morph: coelomycetous. Conidiomata 450-820 um long x 200—500 pm wide
% 300—650 pm high (X = 610 x 346 x 400 um, n = 10), pycnidial, immersed, slightly
rising causing bark cracking, the mature conidia scattered around the ostioles, solitary
or scattered in small groups, uniloculate, obpyriform, elliptical or irregular, brown to

dark brown. Ostiolar canal 120-150 pm high x 80—110 um wide (X = 134 x 100 um,
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n = 10), single, central, circular, brown to dark brown, cylindrical, without periphyses.
Conidiomata walls 20—45 um wide, composed of several light brown to dark brown
cells of textura angularis. Hamathecium comprising hyaline, filiform, septate,
unbranched, pseudoparaphyses. Conidiophores reduced to conidiogenous cells.
Conidiogenous cells short, holoblastic, hyaline, discrete, determinate, cylindrical to
elliptical, unbranched, aseptate, smooth, arising from the inner cavity of the conidioma
wall, disappear after the conidia maturity. Conidia (35—)40-50(—54) % (17-)20-29 (-31) um
(X = 46.5 x 24.5 um, n = 30), hyaline when young, with transverse-septate when
immature, becoming yellow brown to dark brown, oblong to ellipsoidal, or asymmetrical,
muriform, not constricted at the septum, thin and smooth- walled, guttulate.

Culture characteristics: Conidia germinated on PDA after 12 h, germ tubes were
produced from each cell of the conidia. Colonies on PDA reaching 3—4 cm diam., after
1 week at 23°C-28°C. Colonies obverse: soft, circular, white aerial hypha, raised at the
center and the outermost circle, entire edge. Colonies reverse: brown at the center,
cream at the margin.

Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin, 21°34'25" N, 111°7'43" E, on dead branch of Aquilaria sinensis
(Thymelaeaceae), June 3, 2022, T. Y. Du, MMA13 (MHZU 23-0020, Paratype), living
cultures, ZHKUCC 23-0039; other living culture, GZCC 23-0610.

Known distribution: Italy (Wijayawardene et al., 2016).

Known hosts: Clematis vitalba (Wijayawardene et al., 2016).

Notes: Camarographium clematidis was introduced by Wijayawardene et al.
(2016) based on morphology. Our collection and Cam. clematidis exhibit high
similarities in morphological characteristics, such as the shape and color of conidiomata,
conidiogenous cells and conidia, and the separation of conidia. Therefore, our
collection is identified here as Cam. clematidis. Wijayawardene et al. (2016) mentioned
that the single spore isolation of Cam. clematidis was successful, but the germinated
spores did not continue to grow on the medium. In this study, pure cultures were
successfully obtained from the single spores, thus multigene sequence data for Cam.
clematidis are provided. In addition, pseudoparaphyses were seen in our collection,
which were not seen in Wijayawardene et al. (2016). Moreover, this study discovered

Camarographium species on Aquilaria sinensis in China for the first time, therefore,
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our Cam. clematidis collection is reported as a new host and geographical record. In the
present phylogenetic analyses, our collection forms a well-separated sister lineage to
Anastomitrabeculia didymospora (MFLUCC 16-0412 and MFLUCC 16-0417)
(Anastomitrabeculiaceae), which is distant from Cam. stephensii (CPC 41923 and
41598) (Didymosphaeriaceae) in the phylogenetic tree (Figure 6.9). Therefore, in this
study, we place Cam. clematidis in Camarographium sensu lato, due to only Cam.
stephensii and Cam. clematidis having available molecular data. When molecular data
of other Camarographium species are available, the placement of Cam. clematidis can
accurately be determined. Due to the lack of molecular data for most species in
Camarographium, more collections from different geographical regions should be

collected and sequenced in order to resolve the taxonomic uncertainties in the genus.
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Figure 6.8 Camarographium clematidis (MHZU 23-0020 paratype)
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Figure 6.8 a—c, Appearance of conidiomata on the host. d, Transverse sections
through conidiomata on the host. e, Ostiole. f, g, Vertical sections through the conidiomata.
h, i, Conidiogenous cells, conidia, and pseudoparaphyses. j, Conidiogenous cells.
k, Conidioma wall. I-n, Conidia. o, Germinated conidium. p, q, Colony on potato dextrose
agar (PDA) obverse and reverse view. Scale bars: e = 100 um, f, g =200 pm, h, i =40 pm,
J, k=20 pm, 1-0 =40 pm.

Figure 6.9 Phylogenetic tree of Camarographium

Figure 6.9 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Sporidesmioides thailandica (KUMCC 16-0012 and MFLUCC 13-0840).

The new isolates are indicated in red, and the ex-type strains are in bold.
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Nigrogranaceae Jaklitsch & Voglmayr 2016

Nigrograna Gruyter, Verkley & Crous 2013

Notes: Nigrograna was introduced as a new genus by De Gruyter et al. (2013)
and typified by Nigrograna mackinnonii (Borelli) Gruyter, Verkley & Crous
(=Pyrenochaeta mackinnonii Borelli), which was isolated from human mycetomata
(Jaklitsch & Voglmayr, 2016). However, Ahmed et al. (2014) synonymized
Nigrograna under Biatriospora K. D. Hyde & Borse based on the phylogenetically
closely related N. mackinnonii with the type species of Biatriospora (B. marina K. D.
Hyde & Borse). Subsequently, Jaklitsch and Voglmayr (2016) established the family
Nigrogranaceae to accommodate Nigrograna based on its unique morphological
characteristics. While, Jaklitsch and Voglmayr (2016) mentioned all Nigrograna
species are morphologically very similar that, can be interpreted as cryptic species. In
2018, four endophytic species of Biatriospora were synonymized under Nigrograna
(Kolatik, 2018). Lu et al. (2022) introduced three new saprobic species in Nigrograna.
Recently, Li et al. (2023) introduced four new species in this genus. Currently, 45
epithets of Nigrograna are listed in Index Fungorum (2025). Members of this genus
have been recorded from marine and terrestrial habitats as saprobes, endophytes, and
human pathogens (Hyde et al., 2017; Tibpromma et al., 2017; Kolatik, 2018; Zhao et
al., 2018; Dayarathne et al., 2020; Zhang et al., 2020; Boonmee et al., 2021; Lu et al.,
2022; Li et al., 2023). Nigrograna is characterized by black, globose to subglobose,
ostiolate ascomata, clavate, fissitunicate, short pedicellate asci, and pale to chocolate
brown, fusoid to narrowly ellipsoid, asymmetric, septate ascospores (Zhang et al., 2020;
Boonmee et al., 2021; Lu et al., 2022). Asexual morph is characterized by pycnidia
similar to ascomata and usually co- occurring with ascomata, branched conidiophores,
filiform, with pegs, phialides terminal, one-celled conidia, oblong, cylindrical or
allantoid, hyaline or subhyaline, smooth (Jaklitsch & Voglmayr, 2016). This study
introduces one new saprobic species, Nigrograna aquilariae, collected from Aquilaria
sinensis in terrestrial habitats based on morphology and multigene phylogenetic

analyses. In addition, this is the first record of Nigrograna species on Aquilaria sinensis.
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Nigrograna aquilariae T. Y. Du, Tibpromma & Karun., sp. nov.

MycoBank number: MB 853999; Facesoffungi number: FoF 15263; Figure 6.10

Etymology: Named after its host genus Aquilaria.

Holotype: MHZU 23-0034

Saprobic on dead branches of Aquilaria sinensis. Sexual morph: Ascomata
(excluding neck) 180-270 wm high x 200-300 pm diam. (X = 205 x 225 pm, n = 10),
solitary, immersed in the substrate, globose to subglobose, dark brown to black,
appearing as black ostiolar canal, surrounded by brown hair-like setae. Ostiolar canal
150-200 pm long % 50-100 um wide (X = 175 x 82 pm, n = 10), straight or slightly
curved, without periphyses. Peridium 15-40 nm wide, comprising several layers, thick-
walled cells, comprising brown to dark brown cells of textura angularis. Hamathecium
comprising 2—-3 pm wide, hyaline, filiform, branched, septate, pseudoparaphyses. 4Asci
(51-)56-64(—67) x 7-9(=11) um (X = 59 x 8.5 um, n = 20), bitunicate, fissitunicate,
eight- spored, clavate, straight or slightly curved, with a 5-9 pm long pedicel, apically
rounded. Ascospores 10-13 x 3.5-4.5 um (X =11 x 4 um, n = 30), uniseriate to biseriate,
fusiform or inequilateral, asymmetric, with slightly obtuse ends, the two cells in the
upper part are larger than those in the lower part, hyaline to brown with age, one- (two
to three)-septate when mature, slightly constricted at the septum, curved, guttulate,
without sheath and appendages. Asexual morph: undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 h, germ tubes
were produced from both ends. Colonies on PDA reaching 2—3 cm diam., after 1 week
at 23°C-28°C. Colonies obverse: dense, circular, annular, white, raised at the center,
entire edge light reddish brown. Colonies reverse: the center is brown, and the outer
circle is light reddish brown.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Menghai City,
agarwood plantation, 22°3'22" N, 100°40"2" E, on dead branches of Aquilaria sinensis
(Thymelaeaceae), September 15,2021, T. Y. Du, YNA38 (MHZU 23-0034, holotype),
ex-type living culture, ZHKUCC 23-0070; other living culture, GZCC 23-0614.

Notes: In the present phylogenetic analyses, our new collection Nigrograna
aquilariae formed a well-separated and sister lineage to N. lincangensis (ZHKUCC 23-
0798 and ZHKUCC 23-0798) with 73% ML, 0.90 BYPP statistical support (Figure
6.11). Morphologically, N. lincangensis can be distinguished from N. aquilariae in
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having globose or ellipsoid ascomata without brown hair- like setae, unbranched
pseudoparaphyses and fusoid to narrowly ellipsoid ascospores (Xu et al., 2024), while
the globose to subglobose ascomata of N. aquilariae are surrounded by brown hair-like
setae, branched pseudoparaphyses and fusiform or inequilateral, asymmetric
ascospores. In addition, the base pair differences of the LSU, SSU, and zef1-a genes
between our new collection and N. lincangensis (ZHKUCC 23-0798, ex-type) were
compared, and the results showed that there are insignificant nucleotide differences,
while ITS has 1.04% nucleotide differences (5/476 bp, without gaps), and rpb2 has
2.91% nucleotide differences (30/1031 bp, without gaps) which reveals that they belong
to different species. Therefore, based on phylogenetic analyses and morphological
comparison, N. aquilariae is described herein as a new species from terrestrial habitats.
In addition, some species of this genus have only provided partial gene sequences in
NCBI (https://www.ncbi.nlm.nih. gov/), such as Nigrograna schinifolii (ITS and fef1-a),
Nigrograna trachycarpi (ITS and fefl-a) and Nigrograna verniciae (LSU, ITS, and
tefl1-a). Due to all Nigrograna species are morphologically very similar (Jaklitsch &
Voglmayr, 2016), phylogenetic analysis is very important in the taxonomy of this
genus. In order to better classify the Nigrograna taxa, we suggest to carry out multigene
phylogenetic analyses (LSU, ITS, SSU, tefl-a, and rpb2), together with the
morphological study.



Figure 6.10 Nigrograna aquilariae (MHZU 23-0034, holotype)
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Figure 6.10 a, b, Appearance of ascomata on the host. ¢, Transverse sections
through the ascomata on the host (the arrow points towards the brown hair-like setae
on the surface of the ascomata). d, e, Vertical sections through the ascomata (the arrow
points towards the brown hair-like setae on the surface of the ascomata). f, Ostiole
without periphyses. g, Peridium. h-k, Asci. 1, Pseudoparaphyses. m—r, Ascospores. s,
Germinated ascospore. t, u, Colony on potato dextrose agar (PDA) obverse and reverse

view. Scale bars: d, e = 200 um, =100 um, g-k =20 um, I-s = 10 pm.
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Figure 6.11 Phylogenetic tree of Nigrograna

Figure 6.11 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Seriascoma didymospora (MFLUCC 11-0179, MFLUCC 11-0194). The

new isolates are indicated in red, and the ex-type strains are in bold.
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Phaeoseptaceae S. Boonmee, Thambugala & K. D. Hyde 2018

Phaeoseptum Ying Zhang, J. Fourn. & K. D. Hyde, in Zhang 2013

Notes: Phaeoseptum was introduced by Zhang et al. (2013) to accommodate
Pha. aquaticum Ying Zhang, J. Fourn. & K. D. Hyde as the type species, collected from
freshwater habitats. Phaeoseptum was placed in Halotthiaceae based on LSU sequence
data by Zhang et al. (2013). Later, Hyde et al. (2018) introduced the second species
Pha. terricola S. Boonmee & K. D. Hyde as a saprobe from Thailand, and based on
their multigene phylogenetic analysis, Phaeoseptum was transferred from
Halotthiaceae to a new family Phaeoseptaceae. Currently, nine epithets of Phaeoseptum
are listed in Index Fungorum (2025). Phaeoseptum is characterized by ascomata
immersed under pseudoclypeus, scattered to gregarious, depressed globose, bitunicate
asci, cylindrical-clavate or broadly fusoid, eight-spored, with a small ocular chamber,
fusiform ascospores; while the asexual morph of this genus has not been determined
(Zhang et al., 2013; Hyde et al., 2018; Jayawardena et al., 2022). Later, Wanasinghe et
al. (2020) found the asci of Pha. hydei Wanas., Senwanna & Mortimer with 32-spored,
and Pha. thailandicum Samarak. & K. D. Hyde introduced by Jayawardena et al. (2022),
possesses both eight-spored and 32-spored asci, which is extremely rare. This study
introduces the new species Phaeoseptum aquilariae, which was collected from
Aquilaria yunnanensis in terrestrial habitats of China based on morphological
comparisons and phylogenetic analyses. Additionally, this is the first report of a
Phaeoseptum species on Aquilaria yunnanensis.

Phaeoseptum aquilariae T. Y. Du, Tibpromma & Karun., sp. nov.

MycoBank number: MB 854000; Facesoffungi number: FoF 15264; Figure 6.12

Etymology: Named after its host genus Aquilaria.

Holotype: MHZU 23-0032

Saprobic on dead branches of Aquilaria yunnanensis. Sexual morph: Ascomata
200—400 pm high x 500-1000 um long x 200400 um diam. (X =265 x 715 x 275 um,
n = 10), scattered to gregarious, depressed-spherical, laterally fattened, fully immersed
under a small blackened pseudoclypeus, appearing on host surface as black irregular
spots or elongated regions, with an apical ostiole, short papillate, ostiole with transverse
cells, without periphyses. Pseudoclypeus is composed of host cells with black deposits.

Peridium 15-55 pm (X = 28 pm, n = 20) wide, pseudoparenchymatous, comprising
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several layers of thin-walled cells, outer layers dark brown to black, somewhat angular
cells of fextura angularis; inner layers hyaline to lightly pigmented angular cells of
textura angularis. Hamathecium comprising 2 pm wide, septate, branched
pseudoparaphyses, embedded in a gelatinous matrix between and above the asci. Asci
(109-) 121-131(=136) x 2630 um (X = 124 x 28 um, n = 30), bituni-cate, fissitunicate,
eight-spored, cylindrical-clavate, long with club-like pedicellate, apically rounded with
a small ocular chamber. Ascospores (25-)27-30(-32) x (7-)8—10 pm (X = 28 x 9 um,
n = 30), uniseriate to slightly overlapping two-seriate, hyaline to yellow when young,
yellow-brown with age, allantoid, broadly fusoid, slightly curved, muriform, with
broadly rounded ends, smooth-walled, 10—12-transverse septa, with one to five
longitudinal septa in nearly all median cells, not constricted at the septa, the septa
thickened and heavily pigmented at maturity, without sheath or appendages. Asexual
morph: undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 h, germ tubes
were produced from both ends. Colonies on PDA reaching 2—3 cm diam., after 2 weeks
at 23°C-28 °C. Colonies obverse: dense, circular, white, aerial hypha raised at the
center, entire edge light brown. Colonies reverse: dark brown, cracked at the center,
light brown at the margin.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Gasa, Naban River Basin National Nature Reserve, 22°7'50” N, 100°4029" E, on dead
branches of Aquilaria yunnanensis (Thymelaeaceae), September 14, 2021, T. Y. Du,
YNA32 (MHZU 23-0032, holotype), ex-type living culture, ZHKUCC 23-0068; other
living culture, GZCC 23-0613.

Notes: In the present phylogenetic analyses, our new collection Pha. aquilariae
formed a well-separated and sister lineage to Pha. terricola (MFLUCC 10-0102)
(Figure 6.13). Morphologically, Pha. aquilariae share similar asci and ascospores
shapes and branched, septate, anastomosed pseudoparaphyses with Pha. terricola
(Hyde et al., 2018). However, Pha. terricola differs from Pha. aquilariae in having
globose to subglobose ascomata, ascospores with 9—10(—11) transverse septa, and one
or two longitudinal septa in each cell, and smaller ascomata, asci, and ascospores than
Pha. aquilariae (ascomata: 172 x 183.5 um vs. 265 x 275 pum; asci: 79 X 16 um vs.
124 x 28 um; ascospores: 22 X 6 um vs. 28 x 9 um) (Hyde et al., 2018). In addition,
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the base pair differences of the LSU, ITS, and SSU genes between our new collection
and Pha. terricola (MFLUCC 10-0102, ex- type) were compared, and the results
showed that there are no nucleotide differences, while tefl-a has 7.6% nucleotide
differences (61/798 bp, without gaps), which reveals that they belong to different
species of the same genus. Therefore, we introduce our new collection as a new species

Pha. aquilariae based on morphological study and phylogenetic analyses.



Figure 6.12 Phaeoseptum aquilariae (MHZU 23-0032, holotype)
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Figure 6.12 a, b, Appearance of ascomata on the host. ¢, Transverse sections
through ascomata on the host. d—f, Vertical sections through the ascomata. g, Ostiole
without periphyses. h—j, m—o, Asci. k, Pseudoparaphyses. 1, Peridium. p—r, Ascospores.
s, Germinated ascospore. t, u, Colony on potato dextrose agar (PDA) obverse and
reverse view. Scale bars: d—f =200 pm, g—j = 50 um, k, 1 = 10 pm, m—o = 50 pum, p—s
=20 pum.
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Figure 6.13 Phylogenetic tree of Phaeoseptum

Figure 6.13 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Gloniopsis praelonga (CBS 112415) and Hysterium angustatum (MFLUCC

16-0623). The new isolates are indicated in red, and the ex-type strains are in bold.
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Thyridariaceae Q. Tian & K. D. Hyde 2013

Aquilariomyces T. Y. Du, Tibpromma & Karun. gen. nov.

MycoBank number: MB 854001; Facesoffungi number: FoF 15265

Etymology: Named after its host genus Aquilaria, combined with “myces”
refers to the fungus.

Saprobic on decaying wood in terrestrial habitats. Sexual morph: Ascomata
solitary, or gregarious in small groups, brown to dark brown, surrounded by long brown
to black fluff, immersed under the bark, inconspicuous, globose to subglobose,
apapillate ostioles, with pore-like opening. Peridium comprising three to five layers,
hyaline to brown cells of textura angularis, fusing with the host tissue. Hamathecium
comprising numerous, hyaline, septate, branched, pseudoparaphyses, embedded in a
gelatinous matrix. Asci eight-spored, bitunicate, fissitunicate, thick-walled, clavate,
with short pedicel, club-shaped, apically rounded, with an ocular chamber. Ascospores
uniseriate, slightly overlapping, hyaline, one- transverse septate, constricted at the
septum, fusiform to ellipsoidal, above cells are slightly larger than below cells, rough-
walled, several guttulate and granules, surrounded by mucilaginous sheath. Asexual
morph: undetermined.

Type species: Aquilariomyces aquilariae T. Y. Du, Tibpromma & Karun.

Notes: In the present phylogenetic analyses based on a combined data set of
LSU, ITS, SSU, tefl-a, and rpb2 sequence data show that our new collection is well-
separated and formed an independent lineage with the two strains of Thyridariella
mangrovei Devadatha, V. V. Sarma, K. D. Hyde, D. N. Wanas. & E. B. G. Jones
(NFCCI 4213 and NFCCI 4214), one strain of Pseudothyridariella chromolaenae
Mapook & K. D. Hyde (MFLUCC 17-1472), two strains of Pse. aquilariae T. Y. Du,
Tibpromma & Karun. (ZHKUCC 23-0044 and ZHKUCC 23-0061), and one strain of
Pse. idesiae W. L. Li & Jian K. Liu (CGMCC 3.24439) with 98% ML, 1.00 BYPP
statistical support (Figure 6.18). Our new collection shares comparable characteristics
with Th. mangrovei in having globose to subglobose ascomata, clavate, pedicellate,
eight-spored asci, and hyaline, fusiform to ellipsoidal ascospores surrounded by a
sheath (Devadatha et al., 2018). However, our new collection differs from Th. mangrovei
by its immersed ascomata, apapillate ostioles, and one-transverse septate ascospore,

while Th. mangrovei has immersed to erumpent ascomata, ostiolate with reddish-brown
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neck, and muriform ascospore (Devadatha et al., 2018). Our new collection shares
similar characteristics with Pse. chromolaenae in having immersed ascomata, clavate,
pedicellate, eight-spored asci, and fusiform to ellipsoidal ascospores surrounded by a
sheath (Mapook et al., 2020). However, our new collection differs from Pse.
chromolaenae by its globose to subglobose ascomata, hyaline, one-transverse septate
ascospore, while Pse. chromolaenae has obpyriform ascomata, brown or olivaceous-
brown to dark brown, muriform ascospore (Mapook et al., 2020). While Pse. aquilariae
has been found only as an asexual morph, our new collection has been found as a sexual
morph, so a morphological comparison is improbable. Additionally, our new collection
shares a similar morphology to Chromolaenomyces appendiculatus Mapook & K. D.
Hyde in having immersed, globose to subglobose ascomata, and uniseptate, hyaline
ascospores (Mapook et al., 2020). However, our new collection differs from
Chr. appendiculatus by its clavate asci and ascospore surrounded by a mucilaginous
sheath, with no appendages formed. In contrast, Chr. appendiculatus has cylindrical
asci, and ascospores with a narrow sheath drawn out to form polar appendages from
both ends of the ascospores (Mapook et al., 2020). Aquilariomyces can be distinguished
from Parathyridaria and Thyridaria in having uniseptate, hyaline, and fusiform to
ellipsoidal ascospores, while the sexual morph of Cycasicola, Liua and
Parathyridariella have not been reported. Therefore, we introduce a new genus
Aquilariomyces from dead branches of Aquilaria yunnanensis in China.

Aquilariomyces aquilariae T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 854002; Facesoffungi number: FoF 15266; Figure 6.14

Etymology: Named after its host genus Aquilaria.

Holotype: MHZU 23-0036

Saprobic on decaying wood of Aquilaria yunnanensis. Sexual morph:
Ascomata 200-350 um high x 200-300 pm diam. (X =285 x 265 um, n = 10), solitary,
or gregarious in small groups, brown to dark brown, surrounded by long brown to black
fluff, immersed under the bark, inconspicuous, globose to subglobose, apapillate
ostioles, with a pore-like opening. Peridium 10-55 pm (X = 30 um, n = 20) wide,
comprising three to five layers of hyaline to brown cells of textura angularis, fusing
with the host tissue. Hamathecium comprising 1-2 pm wide, numerous, hyaline, septate,

branched, pseudoparaphyses, embedded in a gelatinous matrix. 4sci (65—) 90—110(—
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128) x 23.5-32 um (X = 100 x 27 um, n = 30), eight-spored, bitunicate, fissitunicate,
thick-walled, clavate, with short pedicel, club-shaped, apically rounded, with an ocular
chamber. Ascospores 27-31.5 x 11-14 pm (X = 29 x 12.5 um, n = 30), uniseriate,
slightly overlapping, hyaline, 1- septate, constricted at the septum, fusiform to
ellipsoidal, above cells are slightly larger than below cells, rough-walled, several
guttulate and granules, surrounded by mucilaginous sheath, and the sheath of immature
ascospores is significantly wider than that of mature ascospores. Asexual morph:
undetermined.

Culture characteristics: Ascospores germinated on PDA after 24 h, and germ
tubes were produced from both ends. Colonies on PDA reaching 2—3 cm diam., after
2 weeks at 23°C-28°C. Colonies obverse: dense, circular, white, raised at the center,
entire edge. Colonies reverse: dark brown to black at the center, cream to light brown
at the margin.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Gasa, Naban River Basin National Nature Reserve, 22°7'50” N, 100°4029" E, on dead
branches of Aquilaria yunnanensis (Thymelaeaceae), 14 September 2021, T. Y. Du,
YNA43 (MHZU 23-0036, holotype), ex-type living culture, ZHKUCC 23-0072; other
living culture, GZCC 23-0616.

Notes: In the present phylogenetic analyses, our new collection Aquilariomyces
aquilariae formed a well-separated sister lineage to the strains of Thyridariella
mangrovei, Pseudothyridariella chromolaenae, Pse. idesiae, and Pse. aquilariae with
98% ML, 1.00 BYPP statistical support (Figure 6.18). Aquilariomyces aquilariae
shares similar characteristics with 7h. mangrovei and Pse. chromolaenae in having
clavate, pedicellate, eight-spored asci, and fusiform to -ellipsoidal ascospores
surrounded by a sheath (Devadatha et al., 2018; Mapook et al., 2020). However,
Aqu. aquilariae diftfers from Th. mangrovei and Pse. chromolaenae by its one-septate
ascospore, while 7h. mangrovei and Pse. chromolaenae have muriform ascospores
(Devadatha et al., 2018; Mapook et al., 2020). Therefore, we introduce our new
collection as a new species Aqu. aquilariae based on morphological comparison and

phylogenetic analyses.
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Figure 6.14 Aquilariomyces aquilariae (MHZU 23-0036, holotype)



184

Figure 6.14 a, b, Appearance of ascomata on the host. ¢, Transverse sections
through ascomata on the host. d, e, Vertical sections through the ascomata. f—i, Asci
(i an ascus stained with cotton blue). j, Pseudoparaphyses. k, Peridium. 1-o, Ascospores
(0, An ascospore stained with cotton blue). p, Germinated ascospore. q, r, Colony on
potato dextrose agar (PDA) obverse and reverse views. Scale bars: d, e = 200 um, -1
=50 um, j =10 pm, k—p =20 pm.

Agquilariomyces maomingensis T. Y. Du, K.D. Hyde, Tibpromma & Karun. sp.

nov.
MycoBank number: MB 856409; Facesoffungi number: FoF 16960; Figure 6.15
Etymology: Named after the location “Maoming” where the holotype was
collected.

Holotype: MHZU 23-0022

Saprobic on decaying branch of Aquilaria sinensis. Sexual morph: Ascomata
(excluding necks) 250450 um high x 200-500 um diam. (X = 366 x 350 um, n = 5),
solitary, or gregarious in small groups, brown to dark brown, surrounded by short
brown to black fluffs, immersed, slightly raised under the bark, globose to subglobose,
sometimes ovoid, ostiolate. Ostiolar canal 250-280 pm long x 150-200 pm wide
(X =263 x 180 um, n = 10), cylindrical to elliptical, usually straight, dark-brown to
black necks, with periphyses. Peridium 15—70 pm (X =31 pm, n = 30) wide, comprising
3-5 layers of pale brown to brown cells of textura angularis to textura prismatica,
fusing with the host tissue. Hamathecium comprising 1 pum wide, hyaline, septate,
branched, numerous, trabeculate pseudoparaphyses (sensu Liew et al. 2000), embedded
in a gelatinous matrix. Asci 100—140 x 21-25 pum (X = 123 % 23 um, n = 30), bitunicate,
8-spored, thick-walled, clavate, apically rounded, with an ocular chamber, short pedicel,
some club-shaped. Ascospores 20—36 x 9—15 pm (X =30 x 13 pm, n = 30), uniseriate,
1-septate, fusiform to ellipsoidal, conical at both ends or round, constricted at the
septum, upper cells are slightly larger than below cells, rough-walled, with several
guttules and granules, hyaline to pale yellow when immature and surrounded by a
mucilaginous sheath, later become yellow-brown and without a mucilaginous sheath.

Asexual morph: Undetermined.
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Culture characteristics: Ascospores germinated on PDA after 12 hours, and
germ tubes were produced from one or both ends. Colonies on PDA reaching 2-3 cm
diam. after two weeks at 23—-28°C. Colonies obverse: dense, circular, or irregular, cream
to brown, umbonate, raised at the center, filamentous edge. Colonies reverse dark
brown to black at the center, and cream to light brown at the margin.

Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin Town, 21°34'25"N, 111°7'43"E, on a dead branch of Aquilaria sinensis
(Thymelaeaceae), 3 June 2022, T. Y. Du, MMA15 (MHZU 23-0022, holotype),
ex-type, GMBCC1047, other living culture, ZHKUCC 23-0041.

Notes: In the present phylogenetic analyses, our new collection Aquilariomyces
maomingensis formed a well-separated sister lineage to Aqu. aquilariae (ZHKUCC 23-
0072 and GZCC 23-0616) with 100% ML, 1.00 BYPP statistical support (Figure 6.18).
Aquilariomyces maomingensis shares similar morphological characteristics with Aqu.
aquilariae (MHZU 23-0036, holotype) in having immersed, globose to subglobose
ascomata, numerous, septate, branched, trabeculate pseudoparaphyses in a gelatinous
matrix, clavate asci, with short and club-shaped pedicel, and uniseriate fusiform to
ellipsoidal, 1-septate, ascospores, constricted at the septum, and surrounded by a
mucilaginous sheath (Du et al., 2024). However, Aqu. maomingensis (MHZU 23-0022)
differs from Aqu. aquilariae (MHZU 23-0036) from its ascomata and ascospore
characters. Aquilariomyces maomingensis has ascomata surrounded by short fluffs,
slightly raised under the bark, and brown mature ascospores; while Aqu. aquilariae
(MHZU 23-0036) has inconspicuous ascomata, surrounded by long fluffs, and hyaline
mature ascospores (Du et al., 2024).

According to the phylogenetic analysis of the present study, both Aquilariomyces
species clustered in Thyridariaceae, a family characterized by trabeculate or cellular
pseudoparaphyses. Trabeculate pseudoparaphyses are characterized by narrow, thread-like,
apparently nonseptate, branched and anastomosing or unbranched above the asci and
embedded in a gelatinous matrix (Liew et al., 2000; Hongsanan et al., 2020). Trabeculae
were considered important at the Dothideomycetes O.E. Erikss. & Winka in earlier
classifications; thus, Melanommatales was defined as having trabeculae (Barr, 1983).
However, Liew et al. (2000) showed that trabeculae were not important at the order level

and probably were important at the family level (or even species). Thyridariaceae
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comprises nine genera: Aquilariomyces, Chromolaenomyces Mapook & K.D. Hyde,
Cycasicola Wanas., E.B.G. Jones & K.D. Hyde, Liua Phookamsak & K.D. Hyde,
Parathyridaria Jaklitsch & Voglmayr, Parathyridariella Prigione, A. Poli, E. Bovio &
Varese, Pseudothyridariella Mapook & K.D. Hyde, Thyridaria Sacc., and Thyridariella
Devadatha, V.V. Sarma, K.D. Hyde, Wanas. & E.B.G Jones (Wijayawardene et al., 2022;
Du et al., 2024). Among these genera, Aquilariomyces (Du et al., 2024), Parathyridaria
(Jaklitsch & Voglmayr, 2016), and Thyridaria (Jaklitsch & Voglmayr, 2016) have
trabeculate  pseudoparaphyses, Chromolaenomyces (Mapook et al., 2020),
Pseudothyridariella (Mapook et al., 2020), and Thyridariella (Devadatha et al., 2018) have
cellular pseudoparaphyses, while, pseudoparaphyses type has not been reported yet in other
genera viz., Cycasicola, Liua, and Parathyridariella. We believe pseudoparaphyses type is
one of the important characters in the genus level.

The base pair differences in the LSU, ITS, SSU, tef1-a, and rpb2 genes (without
gaps) between our new collection and Aqu. aquilariae (ZHKUCC 23-0072, ex-type)
were also compared. The results showed that there are 3.1% nucleotide differences
(28/912 bp) in LSU; in comparison, ITS has 12.3% nucleotide differences (67/544 bp),
SSU has 0.3% nucleotide differences (3/873 bp), tef1-a has 7.5% nucleotide differences
(76/1008 bp), and rpb2 has 10.6% nucleotide differences (109/1025 bp). These
comparisons indicate minor differences in SSU and LSU, while considerable base
differences in ITS, tef1-a, and rpb2. Therefore, we introduce our new collection as a
new species, Aqu. maomingensis based on a polyphasic approach, according to the

guidelines of Maharachchikumbura et al. (2021).
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Figure 6.15 Aquilariomyces maomingensis (MHZU 23-0022, holotype)
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Figure 6.15 a—c, Appearance of ascomata on the host (the arrows indicate ascomata).
d, e, Vertical sections through the ascomata (the arrows indicate ostioles). f, Ostiole
with periphyses. g, Short fluffs around the periphery of the ascomata. h, Peridium. i,
Trabeculae pseudoparaphyses. j—m, Asci. n, A club-shaped pedicel. o—t, Ascospores (s,
stained with Indian ink). u, Germinated ascospore. v, w, Colonies on PDA obverse and
reverse views. Scale bars: =200 um, g, h=30 um, i= 10 um, j-m =50 pm, o—u =20 pm.

Parathyridariella Prigione, A. Poli, E. Bovio & Varese 2020

Notes: Poli et al. (2020) established the monotypic genus Parathyridariella
within Thyridariaceae to accommodate Par. dematiacea Prigione et al., as the type
species. Parathyridariella dematiacea is characterized by having hyphae septate,
hyaline to lightly pigmented, and numerous, globose to subglobose chlamydospores,
mostly in chains, intercalary or solitary, from brownish to dark brown, not observed the
sexual morph and asexual morph with differentiated conidiogenesis (Poli et al., 2020).
Parathyridariella is distributed in green alga Flabellia petiolata and seagrass Posidonia
oceanica (Poli et al., 2020). In this study, we introduce a new species, Parathyridariella
aquilariae, collected from the dead branches of Aquilaria yunnanensis in terrestrial
habitats from China based on molecular evidence. This study is the first to define an
asexual Parathyridariella morph and the first to describe a species of Parathyridariella
on Aquilaria yunnanensis.

Parathyridariella aquilariae T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 854003; Facesoffungi number: FoF 15267; Figure 6.16

Etymology:Named after its host genus Aquilaria.

Holotype: MHZU 23-0038

Saprobic on dead branches of Aquilaria yunnanensis. Sexual morph:
undetermined. Asexual morph: coelomycetous. Conidiomata 200-500 pm high x
300-550 pum diam. (X = 323 x 380 um, n = 10), pycnidial, surrounded by short brown
fluff, solitary or scattered in small groups, individual or aggregated, uniloculate,
immersed under the bark, inconspicuous, slightly raised through the bark, globose to
subglobose, dark brown to black, ostioles with slightly papillate. Conidiomata walls
20-50 um wide, light brown to dark brown, soft, thick-walled, composed of five to
eight cell layers, somewhat angular pseudoparenchymatous cells of textura angularis.

Hamathecium lacking. Conidiophores reduced to conidiogenous cells. Conidiogenous
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cells 4.5-6 pym x 4—6 um (X = 5.1 x 4.9 pm, n = 30), holoblastic, discrete, determinate,
phialidic, cylindrical to ampulliform, unbranched, aseptate, smooth-walled, hyaline,
arising from the inner cavity of the conidioma wall. Conidia (3.5-)4-5 % (2.7-)3—4 um
(X = 4.5 x 3.5 um, n = 30), hyaline when immature, brown at maturity, oval, apex
broadly rounded, aseptate, guttulate, with longitudinal striations when mature.

Culture characteristics: Conidia germinated on PDA after 48 h, and germ tubes
were produced from both ends. Colonies on PDA reaching 1 cm diam., after 1 week at
23°C-28°C. Colonies obverse: dense, circular or oval, white, raised at the center, entire
edge. Colonies reverse: brown at the center, light brown at the margin.

Material examined: CHINA, Yunnan Province, Xishuangbanna, Jinghong City,
Gasa, Naban River Basin National Nature Reserve, 22°7'50” N, 100°4029" E, on dead
branches of Aquilaria yunnanensis (Thymelaeaceae), September 14, 2021, T. Y. Du,
YNAS59 (MHZU 23-0038, holotype), ex-type, ZHKUCC 23-0074, other living culture,
GZCC 23-0617.

Notes: In the present phylogenetic analyses, our new collection
Parathyridariella aquilariae formed a well-separated and sister lineage to four strains
of Par. dematiacea with 81% ML, 0.96 BYPP statistical support (Figure 6.18).
Additionally, the base pair differences of the LSU, ITS, and rpb2 genes between our
strain (ZHKUCC 23-0074, ex-type) and Par. dematiacea (MUT 4884, ex-type) were
compared, and the results showed that LSU has 2.2% nucleotide differences (21/937 bp,
without gaps), ITS has 4.2% nucleotide differences (22/525 bp, without gaps), and tef1-
a has 10% nucleotide differences (46/462 bp, without gaps), which reveals that they
belong to different species of the same genus. Morphologically, Par. dematiacea has
been only reported by numerous chlamydospores, mostly in chain, there was also no
evidence of a sexual or asexual morph with distinct conidiogenesis (Poli et al., 2020).
In contrast, our new collection has complete conidiomata, conidiogenous cells, and
conidia. And the striped conidia in our latest collection set it apart from other genera in
Thyridariaceae. Therefore, we introduce our new collection, Par. aquilariae, as a new
species based on molecular data and phylogenetic analyses. Because of the type species,
Par. dematiacea, lacks asexual morphological characteristics; additional samples
containing different species morphs in this genus must be collected in the future to

determine a more precise phylogeny of Par. aquilariae.



Figure 6.16 Parathyridariella aquilariae (MHZU 23-0038, holotype)



191

Figure 6.16 a, Conidiomata on the host. b, Transverse section of conidiomata.
c, Vertical sections through the conidioma. d, Ostiole. e, f, Conidiogenous cells
developing conidia. g, Conidioma wall. h—m, Conidia. N, Germinated conidium. o, p,
Colonies on potato dextrose agar (PDA) obverse and reverse view. Scale bars: ¢ =300
pum,d =100 um, e, f=5 um, g=20 um, h-n=3 pm.

Pseudothyridariella Mapook & K. D. Hyde 2020

Notes: Pseudothyridariella was introduced by Mapook et al. (2020) to
accommodate Pse. chromolaenae Mapook & K. D. Hyde as the type species. Mapook
et al. (2020) transferred Pse. mahakashae (Devadatha, V. V. Sarma, D. N. Wanas., K.
D. Hyde & E. B. G. Jones) Mapook & K. D. Hyde (= Thyridariella mahakoshae
Devadatha, V. V. Sarma, D. N. Wanas., K. D. Hyde & E. B. G. Jones) from
Thyridariella to Pseudothyridariella based on its relatedness with Pse. chromolaenae
in phylogeny and also based on morphological similarity (Mapook et al., 2020).
Recently, Li et al. (2023) introduced a new species Pse. idesiae with the asexual morph
in this genus based on molecular evidence. Currently, four Pseudothyridariella species
are listed in Index Fungorum (2025) (accessed on May 1, 2025). Pseudothyridariella
is characterized by sexual morph having immersed to erumpent, coriaceous, globose or
subglobose to obpyriform ascomata, septate, branching pseudoparaphyses, eight-
spored, fissitunicate, bitunicate, cylindrical, clavate, pedicellate asci, ellipsoid to
broadly fusiform, one to two seriate, hyaline to brown or olivaceous-brown to dark
brown, muriform ascospores, surrounded by a hyaline gelatinous sheath (Mapook et al.,
2020). The asexual morph of this genus is characterized by subglobose to globose
conidiomata, unilocular, surrounded by yellow, hair-like setae, conidiophores reduced
to conidiogenous cells, conidia cylindrical to ellipsoidal, with transverse septate and
longitudinal or oblique septa, dark brown, straight (Li et al., 2023). Pseudothyridariella
species was reported as saprobes from Avicennia marina (Forsk.) Vierh. in India
(Devadatha et al., 2018), Chromolaena odorata (Linnaeus) R. M. King & H. Robinson
in Thailand (Mapook et al., 2020), and Idesia polycarpa Maxim. in China (Li et al.,
2023). In this study, we introduce a new species, Pseudothyridariella aquilariae,
collected from the dead branch of Aquilaria sinensis in terrestrial habitats from China
based on morphological and molecular evidence. This study is the first to describe a

Pseudothyridariella species on Aquilaria yunnanensis.
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Pseudothyridariella aquilariae T. Y. Du, Tibpromma & Karun. sp. nov.
MycoBank number: MB 854004; Facesoffungi number: FoF 15268; Figure 6.17
Etymology:Named after its host genus Aquilaria.

Holotype: MHZU 23-0025

Saprobic on dead branch of Aquilaria sinensis. Sexual morph: undetermined.
Asexual morph: coelomycetous. Conidiomata 220-350 um high x 200—400 pm diam.
(X =251 x 253 pm, n = 10), pycnidial, surrounded by white to brown hair-like setae,
solitary or scattered in small groups, uniloculate, individual or aggregated, immersed
under the bark, inconspicuous, globose to subglobose, brown to dark brown, apapillate
ostioles, with a pore-like opening. Conidiomata walls 15-35 pm wide, light brown to
dark brown, soft, thin-walled with equal thickness, composed of three to five cell layers,
somewhat angular pseudoparenchymatous cells of textura angularis. Hamathecium not
observed. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 5.5-10
pm x 4-9 um (X = 7.5 x 6.5 um, n = 30), holoblastic, discrete, determinate, phialidic,
ampulliform, unbranched, aseptate, smooth-walled, hyaline, arising from the inner
cavity of the conidioma wall. Conidia 11-12.5(-13) x 4.5-6.5 pm (X =11.7 x 5.5 um,
n = 30), aseptate, hyaline when immature, becoming brown to dark brown, oblong to
ellipsoidal, three transverse septate with age, not constricted at the septum, straight,
guttulate, rough-walled. Culture characteristics: Conidia germinated on PDA after 48
h, and germ tubes were produced from both ends. Colonies on PDA reaching 1 cm diam.
after 1 week at 23°C-28 °C. Colonies obverse: dense, oval, white, raised at the center,
entire edge. Colonies reverse: light brown at the center, cream at the margin.

Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin, 21°3425" N, 111°7'43" E, on a dead branch of Aquilaria sinensis
(Thymelaeaceae), June 3, 2022, T. Y. Du, MMA18 (MHZU 23-0025, holotype), ex-
type living culture, ZHKUCC 23-0044; other living culture, GZCC 23-0611.

Notes: In the present phylogenetic analyses, our new collection
Pseudothyridariella aquilariae formed a well-separated and sister lineage to Pse.
chromolaenae (MFLUCC 17-1472) and Pse. idesiae (CGMCC 3.24439) with 100%
ML, 1.00 BYPP statistical support (Figure 6.18). Morphologically, Pse. aquilariae
shares a similar shape and color to conidiomata and conidia of Pse. idesiae (Li et al.,

2023). However, Pse. aquilariae differs from Pse. idesiae in having immersed
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conidiomata, surrounded by white to brown hair-like setae, apapillate, conidiomatal
wall composed cells of textura angularis, and conidia with three transverse septate, no
longitudinal septum. Whereas Pse. idesiae has superficial conidiomata, surrounded by
yellow hair-like setae, papillate, conidiomatal wall composed cells of textura intricata
to textura epidermoidea, and conidia 0 to four transverse septate, one to two
longitudinal or oblique septa in the apical or second cell (Li et al., 2023).
Pseudothyridariella chromolaenae is only known from its sexual morph
(Mapook et al., 2020), and our new collection Pse. aquilariae has only the asexual
morph; thus, the morphological characteristics cannot be compared. However, the base
pair differences of the LSU, ITS, SSU, fefl-a, and rph2 genes between our strain
(ZHKUCC 23-0044, ex- type) and Pse. chromolaenae (MFLUCC 17-1472, ex-type)
were compared. The results showed that LSU has 0.2% nucleotide differences (2/809
bp, without gaps), ITS has 6.4% nucleotide differences (32/497 bp, without gaps), SSU
has 12.5% nucleotide differences (75/601 bp, without gaps), tef1-a has 1.5% nucleotide
differences (13/893 bp, without gaps), and rpb2 has 3.6% nucleotide differences
(26/726 bp, without gaps), which reveals that they belong to different species of the
same genus. Therefore, we introduce our new collection as a new species

Pse. aquilariae based on morphological and molecular data.



Figure 6.17 Pseudothyridariella aquilariae (MHZU 23-0025, holotype)
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Figure 6.17 a, Conidiomata on the host. b, ¢, Transverse section of conidiomata. d,
e, Vertical sections through the conidiomata. f~h, Conidiogenous cells developing conidia.
i, Conidioma wall. j—q, Conidia. R, Germinated conidium. s, t, Colonies on potato dextrose
agar (PDA) obverse and reverse view. Scale bars: d, e =200 um, f~=h =5 um, i =20 pm,
Jr=10 um.

ridaria .r@'-.l--u.:.: LUK 14,1318

i SI7T s
THi bR
KAT ulglf:-r'
‘:i‘lh.l.l.lml EE L
e #L -1“'I
NELT Ba1
e
i ‘9
JA5E
iy
el mm'ﬁumntc T 3
S el u'umunrc.s 3,I ua-ﬁrmrmﬂ 73 8041 TR
I - | I .-.1--.'-||r|r|-'r.-. mrﬂﬂ#lxm !
| T Lk By : T ol o
L3 oy g wﬂ’fﬁ“‘j
T oty ||.m: ¥ s i
M—,ﬁ. mﬁ,m /el epeblasioapoes
Mi’ i FEILIC L '~: (]
J il HI?
B = - - L=y
| TR A
h'-l-:l'murlﬂij.cl.'é.‘l."li;!’hlﬂl -
| .!}I-I-.l.].':tu'l.;]}.i-l:tﬂl SRR
ke NECC] a2
| oo L Uy it i
Mwmq rerara CHE TEEH CHUEr P

M g

Figure 6.18 Phylogenetic tree of Aquilariomyces, Parathyridariella and Pseudothyridariella

Figure 6.18 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Trematosphaeria pertusa (CBS 122368). The new isolates are indicated in

red, and the ex-type strains are in bold.
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Pleosporales genera incertae sedis

Mangifericomes E.F. Yang and Tibpromma 2022

Notes: Mangifericomes was established by Yang et al. (2022) as a monotypic
genus in Pleosporales genera incertae sedis to accommodate Man. hongheensis E.F.
Yang and Tibpromma as type species, which was isolated from Mangifera indica L. in
China. Mangifericomes is characterized by immersed or semi-immersed, globose to
subglobose, dark brown to black ascomata with or without ostioles; a hamathecium
comprising filiform, hyaline, septate, branched cellular pseudoparaphyses (sensu Liew
et al., 2000); 8-spored, bitunicate, cylindrical-clavate, pedicellate asci; and ellipsoid,
muriform, pale brown to brown ascospores, wrapped in a gelatinous sheath (Yang et
al., 2022).

Mangifericomes aquilariae T. Y. Du, K.D. Hyde, Tibpromma & Karun. sp. nov.

MycoBank number: MB 856410; Facesoffungi number: FoF 16961; Figure 6.19

Etymology: Named after the host genus “Aquilaria” from which the holotype
was collected.

Holotype: GMB-W 1008

Saprobic on decaying branch of Aquilaria sp. Sexual morph: Ascomata 280—
460 pm high x 250-510 pm diam. (X =375 % 380 um, n = 10), globose to subglobose,
brown to dark brown, gregarious, immersed, inconspicuous on host surface, ostiolate.
Peridium 20-70 um (X = 40 pm, n = 20) wide, comprising 5—7 layers of hyaline to pale
brown cells of textura angularis to textura prismatica, fusing with the host tissue.
Hamathecium 2.5 pm wide, hyaline, fascicular, septate, branched, numerous, cellular
pseudoparaphyses, embedded in a glutinous matrix. Asci 170-265 x 32-50 um (X =216
x 40 um, n = 30), bitunicate, fissitunicate, 8-spored, cylindric-clavate, with short
pedicel, apically rounded, with an ocular chamber. Ascospores 40—53 x 18-23 ym (X =
47 x 20 um, n = 30), muriform, uniseriate, hyaline and later become golden yellow,
pale-brown to dark brown, ellipsoid, slightly curved to straight, rough-walled, slightly
wider near apex, apically rounded, 10—13-transversally septate, and 3—6-longitudinal
septa, slightly constricted at the septum, surrounded by a 6.5-15 pm wide gelatinous

sheath. Asexual morph: Undetermined.
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Culture characteristics: Ascospores germinated on PDA after 24 hours, and
germ tubes were produced from each cell. Colonies on PDA reaching 5 cm diam., after
four weeks at 23-28 °C. Colonies obverse: loose, circular or irregular, white-cream,
slightly raised at the center, filamentous edge. Colonies reverse reddish-brown at the
center, and cream to light yellow towards the periphery.

Material examined: CHINA, Yunnan Province, Nujiang Prefecture, Lushui City,
Liuku Town, 25°4830"N, 98°51'5"E, on a dead branch of Aquilaria sp.
(Thymelaeaceae), 21 April 2023, T. Y. Du, NJT41 (GMB-W 1008, holotype), ex-type,
GMBCC1010, other living culture, GZCC 23-0628.

Notes: In the present phylogenetic analyses, our new collection,
Mangifericomes aquilariae formed a well-separated sister lineage to Man. hongheensis
(KUMCC 21-0342 and KUMUCC 21-0345) with 100% ML, 1.00 BYPP statistical
support (Figure 6.20). Mangifericomes aquilariae shares similar morphological
characteristics with Man. hongheensis (HKAS 1221888, holotype) in having globose
to subglobose, brown to dark brown, ostiolate ascomata, bitunicate asci with
fissitunicate, 8-spored, cylindrical-clavate, and muriform ascospores, ellipsoid, pale-
brown to dark brown, slightly wider near apex, surrounded by a gelatinous sheath (Yang
etal.,2022). However, Man. aquilariae (GMB-W 1008) differs from Man. hongheensis
(HKAS 1221888) by its immersed ascomata, peridium comprising textura prismatica
to textura angularis cells, fascicular, numerous pseudoparaphyses, and ascospores are
10-13-transversally septate, 3—6-longitudinal septa; while ascomata of Man.
hongheensis (HKAS 1221888) are semi-immersed to fully immersed, peridium
comprising fextura angularis to textura globosa cells, sparse pseudoparaphyses, and
ascospores are 7—11-transversally septate, 5—8-longitudinal septa (Yang et al., 2022).
In addition, the base pair differences of the LSU, ITS, tef1-a, and rpb2 genes (without
gaps) between our new collection and Man. hongheensis (KUMCC 21-0342, ex-type)
were compared, while SSU of our new collection is not available. The results showed
that there are 0.8% nucleotide differences (7/864 bp) in LSU, while ITS has 3.4%
nucleotide differences (18/533 bp), tef1-a has 3.2% nucleotide differences (31/962 bp),
and rpb2 has 4.5% nucleotide differences (41/905 bp). These comparisons indicate that
they display minor differences on LSU, while displaying significant base differences

on ITS, tefl-a, and rpb2. Therefore, we introduce our new collection (from Aquilaria
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sp. in China) as a new species, Man. aquilariae, based on a polyphasic approach
according to the guidelines of Maharachchikumbura et al. (2021). In addition, this study
introduces the second Mangifericomes species in the genus and the first

Mangifericomes species collected from Aquilaria.
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Figure 6.19 a, b, Ascomata on the host (the arrow indicates the cross-section of
the ascomata). c, Vertical sections through the ascomata. d, Peridium. e, k, Cellular
pseudoparaphyses (e, stained with cotton blue). f, Ocular chamber of asci. g—j, Asci.
l-r, Ascospores (the arrows indicate the sheath of the ascospores). s, Germinated
ascospore. t, u, Colony on PDA obverse and reverse views. Scale bars: ¢ = 200 um,

d, g, l-s=20 um, e, k=10 pm, f, h—j = 100 pm.
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Figure 6.20 (continued)

Figure 6.20 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Orbilia auricolor (AFTOL-ID 906) and O. vinosa (AFTOL-ID 905). The

new isolates are indicated in red, and the ex-type strains are in bold.
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6.3.2 Sordariomycetes

Sordariales Chadef. ex D. Hawksw. & O. E. Erikss. 1986

Podosporaceae X. Wei Wang & Houbraken 2019

Triangularia Boedijn 1934

Notes: Triangularia was transferred from Trigonia J. F. H. Beyma and
introduced as a new genus by Boedijn (1934), is typified by 7r. bambusae (J. F. H.
Beyma) Boedijn (Guarro & Cano, 1988; Huang et al., 2021). This genus was previously
classified in Lasiosphaeriaceae Nannf. by Wijayawardene et al. (2018). Subsequently,
Wang et al. (2019a) redefined 7riangularia in Podosporaceae, and synonymized
Apiosordaria under Triangularia based on phylogenetic analysis. Further, Marin-Felix
et al. (2020) transferred three species to Triangularia, and Huang et al. (2021)
transferred seven species to Triangularia based on morphological and phylogenetic
studies. Currently, 38 epithets are listed in Index Fungorum (2025). The genus is
characterized by ascomata cleistothecial or perithecial, obpyriform to pyriform, black,
glabrous or surrounded by hairs or setae, ostiole with papilla; unitunicate asci four to
eight-multispored, clavate to cylindrical, pedicellate, evanescent or persistent until
ascospores mature; ascospores aseptate, hyaline when young, becoming one-septate at
maturity, upper cell brown, ellipsoidal to polygonal, with an apical or subapical germ
pore; lower cell smaller than upper cell, hyaline, elongated fusiform, sometimes
collapsing, rarely early evanescent, guttulate, gelatinous appendages absent or present;
and asexual morph (Hyphomycetous): conidiophores reduced to conidiogenous cells,
aseptate conidia, hyaline, globose to oval, smooth-walled (Boedijn, 1934; Guarro &
Cano, 1988; Wang et al., 2019a; Huang et al., 2021). Most members of this genus are
isolated from soil, animal dung, sand, and decaying plants (Wang et al., 2019a; Huang
et al.,, 2021; Index Fungorum, 2025). In this study, we introduce a new species,
Triangularia aquilariae, collected from a dead branch of Aquilaria sinensis in China’s

terrestrial habitats based on morphological comparison and phylogenetic analyses.
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Triangularia aquilariae T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 854005; Facesoffungi number: FoF 15269; Figure 6.21

Etymology: Named after its host genus Aquilaria.

Holotype: MHZU 23-0028

Saprobic on dead branch of Aquilaria sinensis. Sexual morph: Ascomata
(excluding neck) 250-550 um high x 230-500 pm diam. (X = 335 x 325 pm, n = 10),
membranaceous to coriaceous, immersed, solitary or loosely aggregated, subglobose to
obpyriform, glabrous, black, not obvious, not easily detected, ostiolate, periphysate,
neck conical. Peridium 20-40 um wide (X = 27 um, n = 10), membranaceous, outer
layer composed of dark brown cells, inner layer composed of three to five layers of
elongated to flattened, hyaline cells of fextura angularis to textura prismatica.
Hamathecium comprising 2.5-3.5 um wide, filiform, septate, branched, hyaline,
persistent, paraphyses. Asci (148—)160-195(=215) um long x (9-)11-16(-21) pm wide
(X =178 x 13 um, n = 20), unitunicate, thin-walled, biseriate to triseriate, elongated
clavate or fusiform, slightly curved, eight- spored, pedicellate, evanescent or persistent
until ascospores mature. Ascospores hyaline, aseptate when immature, becoming
transversely uniseptate, two-celled, gelatinous bipolar appendages present at maturity,
upper cell 15-19 pm long x 811 um wide (X = 16.5 x 9.5 um, n = 30), ellipsoid,
truncate at the base, conical at the apex, dark brown, with an apical germ pore, and
lower cell (primary appendage or pedicel) 2540 um long % 4.5-7 um wide (X = 32 X
5.5 um, n = 30), elongated and narrow, slightly sigmoid, hyaline to pale brown, with
gelatinous secondary appendages, guttulate, smooth, without ornamented. Asexual
morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA after 12 h, germ tubes
were produced from both ends of immature ascospores. Colonies on PDA reaching
2-3 cm diam. after 1 week at 23°C-28°C. Colonies obverse: soft, oval, white, flat in
the center with sparse hyphae, abundant aerial hyphae raised at the margin, entire edge.
Colonies reverse: near transparent in the center, white to cream at the margin. Material
examined: CHINA, Yunnan Province, Xishuangbanna, an agarwood plantation,
21°50'1" N, 100°29'31" E, on dead branches of Aquilaria sinensis (Thymelaeaceae),
September 15, 2021, T. Y. Du, YNAO5S (MHZU 23-0028, holotype), ex-type,
ZHKUCC 23-0064, other living culture, GZCC 23-0612.
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Notes: In the present phylogenetic analyses, our new collection Tr. aquilariae
formed a distinct clade in Triangularia (Figure 6.22). Morphologically, Tr. aquilariae
share similar shape of asci and ascospores with Triangularia striata (Ellis & Everh.)
Y. Marin, A. N. Mill. & Stchigel (Miller & Huhndorf, 2001). However, Tr. striata
differs from 7r. aquilariae in having superficial ascomata, surface upon drying covered
with white to grayish granules or crystalline flakes below the neck, and unbranched
paraphyses. Whereas, 7r. aquilariae has immersed, not obvious ascomata, surface
without granules or crystalline flakes, and branched paraphyses (Miller & Huhndorf,
2001). Additionally, the base pair differences of the LSU, rph2 and TUB genes between
our new collection and 7r. striata (SMH 3431) were compared, and the results showed
that LSU has 1.9% nucleotide differences (16/837 bp, without gaps), 7pb2 has 16.8%
nucleotide differences (185/ 1098 bp, without gaps), TUB has 54% nucleotide
differences (555/1028 bp, without gaps), which reveals that they belong to different
species of the same genus. Therefore, we introduce our collection as a new species,

Tr. aquilariae based on morphological and phylogenetic analyses.



206

, holotype)

-0028

Figure 6.21 Triangularia aquilariae (MHZU 23
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Figure 6.21 a, b, Ascomata on the host. ¢, Ostiole with periphyses. d, Vertical
sections through an ascoma. e-h, Asci (e, An ascus stained with cotton blue).
i, Paraphyses stained with cotton blue. j, Peridium. k—o, Ascospores (n, 0, an ascospore
stained with cotton blue). p, Germinated ascospore. g, r, Colonies on potato dextrose
agar (PDA) obverse and reverse view. Scale bars: ¢ =50 pm, d =200 um, e-h =50 um,
1=10 pm, j—p =20 pm.
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Figure 6.22 Phylogenetic tree of Triangularia

Figure 6.22 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Camarops amorpha (SMH1450). The new isolates are indicated in red, and

the ex-type strains are in bold.
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Xylariales Nannf. 1932

Diatrypaceae Nitschke 1869

Peroneutypa Berl. 1902

Notes: Peroneutypa was introduced by Berlese (1902) to accommodate
Per. bellula (Desm.) Berl., Per. corniculata (Ehrh.) Berl and Per. heteracantha (Sacc.),
and without designating the type species. Later, Rappaz (1987) proposed Per. bellula
as the type of Peroneutypa and synonymized Peroneutypa with Eutypella (Nitschke)
Sacc. However, Carmaran et al. (2006) reinstated Peroneutypa as an independent genus
based on morphology and phylogeny. Subsequent phylogenetic analyses have also
shown that Peroneutypa is an independent genus within Diatrypaceae (Shang et al.,
2017; Mehrabi et al., 2019; Du et al., 2022¢; Li et al., 2023). Currently, 72 epithets of
Peroneutypa are listed in Index Fungorum (2025). Members of this genus are
characterized by valsoid ascostromata, perithecial ascomata with long necks, clavate
asci, sessile to subsessile, eight-spored or polysporous, allantoid ascospores, hyaline or
yellowish. In contrast, the asexual morph of this genus is undetermined (Carmaran et
al., 2006; Shang et al., 2017; Dayarathne et al., 2020; Du et al., 2022c; Li et al., 2023).
Peroneutypa is widely distributed in both terrestrial and marine habitats as saprobes or
pathogens (Lumbsch & Huhndorf, 2010; Maharachchikumbura et al., 2015; Luo et al.,
2019; Dayarathne et al., 2020). In this study, we introduce a new species, Peroneutypa
maomingensis collected from a dead branch of Aquilaria sinensis in China based on
morphological comparison and phylogenetic analyses.

Peroneutypa aquilariae T. Y. Du & Tibpromma, sp. nov.

MycoBank number: MB845438; Facesoffungi number: FoF12744; Figure 6.23

Etymology: named after the host genus, Aquilaria.

Saprobic on dead twigs of Aquilaria sinensis (Thymelaeaceae). Sexual morph:
Ascostromata 0.5-1.5 mm wide, well-developed interior, solitary to gregarious, mostly
solitary, immersed, long ostiolar canal raised through host tissue, black, irregular in
shape, arranged irregularly, 1-6 locules. Ascomata (excluding necks) 300-570 um
diam., perithecial, immersed in ascostromata, subglobose to globose, dark brown to
black. Ostiolar canal 20—40 pm wide, without periphysis, filled with hyaline cells, with
200-300 pum long, cylindrical, straight, dark-brown to black necks. Peridium 3570 um

wide, composed of outer layer thick-walled, dark brown to pale brown cells of textura
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angularis, and inner layer thin-walled, hyaline cells of fextura prismatica. Paraphyses
absent. Asci 15-20 X 57 pym (X = 18 x 6 um, n = 20), unitunicate, 8-spored, clavate to
cylindrical, thin-walled, short pedicellate or non-pedicellate, apically rounded to
truncate with indistinct J-apical ring. Ascospores (5—)5.5-7(=7.5) x (1.6-)1.8-2.2 um
(X =6 x 2 um, n = 30), overlapping 1-3-seriate, hyaline to pale yellow, oblong to
allantoid, slightly curved, aseptate, smooth-walled, with granules, ascospores turn
yellow after being stained by Melzer’s reagent. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA within 24 h at a
constant temperature incubator (28°C). Colonies on PDA reaching 6 cm diam., after
one week at 28°C, mycelium white, flossy, circular with entire edge, with filiform
margin. After one month, mycelium becomes white to light yellow from above and
light brown to brown from below.

Material examined: CHINA, Yunnan Province, Xishuangbanna, on dead twigs
of Aquilaria sinensis (Thymelaeaceae), 15 September 2021, T. Y. Du, YNAO3
(holotype, HKAS 124185), ex-type, KUNCC 22-10817=KUNCC 22-10818.

Notes: The BLASTn search of ITS sequences of our strains is 87.67% similar
to Per. mackenziei (MFLUCC 16-0072, NR _154363). In the present phylogenetic
analyses (Figure 6.25), our strains formed a sister branch with Per. mackenziei
(MFLUCC 16-0072) with a low bootstrap support (63% ML). However, they differ in
morphological characteristics i.e. stromata of Per. aquilariae have well-developed
interior, ostiolar canal without periphyse, peridium inner layer comprises of 3—5 hyaline
cell layers of textura prismatica, and paraphyses absent; while Per. mackenziei has
poorly developed interior stromata, ostiolar canal periphysate, peridium inner layer
comprises 8—10 hyaline cell layers of fextura angularis, and hamathecium is composed
of paraphyses (Shang et al., 2017). Furthermore, a comparison of ITS nucleotides
between Per. aquilariae and Per. mackenziei (MFLUCC 16-0072) resulted in 13.8%
differences (67/487 bp, without gaps), and 54.1% differences (173/320 bp, without gaps)
respectively in TUB. Based on both morphological characteristics and multigene
phylogenetic analyses results, we introduce Peroneutypa aquilariae as a distinct new

species and this is the first report of Peroneutypa from Aquilaria sinensis.
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Figure 6.23 Peroneutypa aquilariae (HKAS 124185, holotype)
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Figure 6.23 a-c Appearance of ascomata on the substrate. d A section through
an ascoma. e-h Asci (g, An ascus stained with Congo red reagent, h, Asci stained with
Melzer’s reagent). 1 Ostiole. j Peridium. k-n Ascospores. 0 A germinating ascospore.
p, q Colony on PDA medium (after one week in culture). Scale bars: d =300 um, e, j =
50 um, f, g =10 pm, h =20 pm, 1 =30 um, k-0 = Spm.

Peroneutypa maomingensis T. Y. Du, Tibpromma & Karun. sp. nov.

MycoBank number: MB 854006; Facesoffungi number: FoF 15270; Figure 6.24

Etymology: Named after the location “Maoming” where the holotype was
collected.

Holotype: MHZU 23-0011

Saprobic on dead branch of Aquilaria sinensis. Sexual morph: Ascostromata
well-developed interior, solitary to gregarious, immersed, ostiolar canal raised through
host tissue, black, arranged irregularly, one to seven locules. Ascomata (excluding
necks) 250—480 um high x 200—450 pm diam. (X =307 x 285 um, n = 10), perithecial,
immersed in ascostromata, globose, dark brown to black. Ostiolar canal 150—850 um
long x 85—150 um wide (X = 510 x 110 pm, n = 10), cylindrical, curved, dark-brown
to black necks, with periphysis. Peridium 20—45 pm wide, composed of an outer layer
of thick-walled, pale brown to dark brown cells of textura angularis, and inner part
comprising thin-walled, hyaline cells of fextura angularis to textura prismatica.
Paraphyses absent. Asci (40—)43-46(—47.5) x (6-)7-10(—13) um (X = 44.5 x 8.5 um,
n = 30), spore-bearing part length 17-24 um (X = 21.5 pm, n = 30), unitunicate, eight-
spored, oval to cylindrical, thin- walled, 20-26 um long pedicel, apically rounded to
truncate with indistinct J-apical ring. Ascospores 5—7 x 1.3-2 um (X = 6 x 1.5 um,
n = 30), uniseriate, oblong to allantoid, pale yellow when mature, slightly curved,
aseptate, smooth-walled, with granules at ends, ascospores turn yellow after being
stained by Melzer's reagent. Asexual morph: undetermined.

Culture characteristics: Ascospores germinated on PDA after 12 h, and germ
tubes were produced from one end or both ends. Colonies on PDA reaching 6 cm diam.,
after 1 week at 23°C-28°C. Colonies obverse: soft, circular, flat or effuse, filiform

margin, white, with a light yellow ring. Colonies reverse: white, no pigmentation.
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Material examined: CHINA, Guangdong Province, Maoming City, Dianbai
District, Poxin, 21°3425" N, 111°7'43" E, on a dead branch of Aquilaria sinensis
(Thymelaeaceae), June 3, 2022, T. Y. Du, MMAO1 (MHZU 23-0011, holotype),
ex-type, ZHKUCC 23-0030, other living culture, GZCC 23-0618.

Notes: The present phylogenetic analyses show that our new collection
Per. maomingensis clustered in Peroneutypa and formed a well-separated branch with
other species of Peroneutypa (Figure 6.25). Morphologically, Per. maomingensis
shares similar ascomata and asci morphology with Per. scoparia (Dayarathne, 2020).
However, Per. scoparia differs from Per. maomingensis in having uniseriate to
biseriately arranged ascospores, and smaller ascomata, asci, and ascospores than
Per. maomingensis (ascomata: 257 x 185 um vs. 307 x 285 pum; asci: 20 X 4 um vs.
21.5 x 8.5 um; ascospores: 4 x I um vs. 6 x 1.5 um) (Dayarathne et al., 2020).
Additionally, the base pair differences of the ITS and TUB genes between our new
collection and Per. scoparia (MFLUCC 17-2143) were compared, and the results
showed ITS has 14.2% nucleotide differences (68/480 bp, without gaps), while TUB
has 22.4% nucleotide differences (76/340 bp, without gaps). Therefore, we introduce
our new collection as a new species Per. maomingensis based on both morphological

study and phylogenetic analyses.
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Figure 6.24 Peroneutypa maomingensis (MHZU 23-0011, holotype)



214

Figure 6.24 a, b, Ascostromata on the host. ¢, Transverse sections through
ascostromata. d, e, Vertical sections through the ascomata. f, Ostiole with periphyses.
g—j, I, m, Asci (m, asci stained with Melzer's reagent). k, Peridium. n—o, Ascospores.
p, Germinated ascospore. g, r, Colony on potato dextrose agar (PDA) obverse and

reverse view. Scale bars: d, e =300 um, f =100 pm, g-m =20 pm, n—p =5 um.
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Figure 6.25 Phylogenetic tree of Peroneutypa

Figure 6.25 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Xylaria atrosphaerica (AFTOL-ID 51) and X. hypoxylon (CBS 122620).

The new isolates are indicated in red, and the ex-type strains are in bold.
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6.3.3 Other Work
Saprobic fungi of Aquilaria spp. were contributed to the co-authors and
published in the article.
Dyfrolomycetales K.L. Pang, K.D. Hyde & E.B.G. Jones 2013
Pleurotremataceae Walt. Watson 1929
Melomastia Nitschke ex Sacc. 1875
Notes: Melomastia was introduced by Saccardo (1875) and typified by M.
mastoidea (Fr.) J. Schrot. Melomastia was classified under Ascomycota genera
incertae sedis due to the lack of molecular data, and it was difficult to determine the
placement of Melomastia based on only morphology (Maharachchikumbura et al.,
2015). Later, Norphanphoun et al. (2017) assigned Melomastia in Pleurotremataceae
based on molecular data (LSU and SSU). Subsequently, Li et al. (2022) synonymized
Dyfrolomyces under Melomastia based on molecular phylogeny and morphology and
transferred 11 Dyfrolomyces species to Melomastia. However, Kularathnage et al.
(2023) reinstated Dyfrolomyces to accommodate two species (D. tiomanensis (K.L.
Pang, Alias, K.D. Hyde, Suetrong & E.B.G. Jones) W.L. Li, Maharachch. & Jian K.
Liu (type) and D. chromolaenae (Mapook & K.D. Hyde) W.L. Li, Maharachch. & Jian
K. Liu). Currently, 73 epithets of Melomastia are listed in Index Fungorum (2025).
Melomastia is characterized by ascomata solitary, coriaceous to carbonaceous, with
conical, periphysate papilla; septate pseudoparaphyses; asci bitunicate, cylindrical,
short pedicel; ascospores overlapping uniseriate, hyaline, ellipsoid to fusiform, 1-10-
septate, mucilaginous sheath with or without; and asexual morph unknown (Li et al.,
2022). Members of this genus are saprobic on branches, twigs, and culms of decaying
wood, distributed in terrestrial, freshwater, and mangrove habitat (Li et al., 2022).
A new species was published in the following co-authored article:
Manawasinghe, I. S., Hyde, K. D., Wanasinghe, D. N., Karunarathna, S. C.,
Maharachchikumbura, S. S. N., Samarakoon, M. C., . .. Xu, B. (2024).
Fungal diversity notes 1818—1918: Taxonomic and phylogenetic
contributions on genera and species of fungi. Fungal Diversity, 1-261.

https://doi.org/10.1007/s13225-024-00541-y
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Melomastia aquilariae T. Y. Du & Karun. sp. nov.

Index Fungorum number: IF 902121; Facesoffungi number: FoF 15849; Figure
6.26

Etymology: Named after the host genus, Aquilaria.

Holotypy: HKAS 126527

Saprobic on dead stems of Aquilaria sinensis. Sexual morph: Ascomata
(excluding neck) 350-700 um high x 300—450 um diam. (X = 524 x 377 pm, n = 10),
solitary, semi-immersed to immersed, visible on the host surface as dark, raised spots,
dark brown to black, uniloculate, globose to subglobose (wide at the base),
carbonaceous. Ostiolar canal 100—150 pm high, black, conical, carbonaceous, papillate,
with periphyses. Peridium 35-150 um wide (X = 85 pm, n = 10), comprising dense,
brown to darkbrown cells of textura angularis to textura prismatica, fusion with host
tissue. Hamathecium 1-3 pm wide, comprising numerous, hyaline, branched, septate
pseudoparaphyses, longer than asci, attached at the base and between the asci. Asci
145-220 x 7.5-9 um (X = 186 x 8.5 um, n = 30), bitunicate, 8-spored, cylindrical,
cylindrical pedicellate 7-14 um long, rounded in apex, J- apical ring. Ascospores 21.5—
28 x 7-8um (X = 25 x 7.5pum, n = 30), 3-septate, overlapping-uniseriate, hyaline,
fusiform with acute ends, slightly constricted at the septum, smooth-walled, with a large
guttule in each cell when mature, not surrounded by a mucilaginous sheath. Asexual
morph: Not observed.

Culture characteristics: Colonies on PDA reaching 6 cm diam., after one month
at 28°C; grey, soft, irregular shape, middle protrusion, filiform margin; pale yellow to
dark grey, smooth in reverse.

Specimen examined: China, Yunnan Province, Xishuangbanna, Jinghong City,
Naban River Nature Reserve, 22° 7'50” N, 100° 40" 29" E, on dead stems of Aquilaria
sinensis (Thymelaeaceae), 14 September 2021, T.Y, YNAS52, (HKAS 126527,
holotype), ex-type ZHKUCC:23-0073, ex-isotype ZHKUCC:23-0088.

Notes: Based on the results of BLAST analysis in NCBI GenBank, in LSU,
Melomastia aquilariae gave 99.65% closest match to M. oleae (CGMCC 3.20619),
99.90% for SSU with the closest match M. fusispora (CGMCC 3.20618) and 98.86%
for tef1-a with the closest matches M. winteri (CGMCC 3.20621). In the phylogenetic
analyses of this study, M. aquilariae formed a sister branch with M. winteri (CGMCC
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3.20621) with 97% ML bootstrap support (Figure 6.27). However, M. aquilariae is
different from M. winteri in having solitary, globose to subglobose ascomata, branched
pseudoparaphyses, and colonies grey, soft, irregular shape in PDA; while M. winteri
has solitary, gregarious, globose ascomata, unbranched pseudoparaphyses, and colonies
white, dense, circular in PDA (Li et al., 2022). In addition, M. aquilariae can be
distinguished from M. winteri by its wider ascomata (524 x 377 um vs. 352 x 387 pm),
wider range of peridium (35-150 pm vs. 55-62.5 um), larger asci (186 x 8.5 pm vs.
177 x 7.5 um) and longer cylindrical pedicellate (7-14 um vs. 4.8-6.5 um) (Li et al.,
2022). Furthermore, a comparison of fefl-o nucleotides between M. aquilariae and
M. winteri (CGMCC 3.20621) resulted in 1.18% differences (10/845bp, without gaps).
In this study, M. aquilariae was collected from Aquilaria sinensis in China, while
M. winteri was introduced from Olea europaea in China. Therefore, we introduce our
collection as a new species based on both morphological study and phylogenetic

analyses.
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Figure 6.26 Melomastia aquilariae (HKAS 126527, holotype)
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Figure 6.26 a, b Appearance of ascoma on the host. ¢ Vertical sections through
the ascoma. d Ostiole with periphyses. e—h Asci (h ascus stained with Melzer’s reagent).
i Pseudoparaphyses. j Peridium. k—n Ascospores. o Germinated ascospore. p, q Colony
on PDA surface and reverse view. Scale bars: ¢=300 um, d=50 pm, e-h=50 pm, i=2

pum, j—0=20pm
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Figure 6.27 Phylogenetic tree of Melomastia

Figure 6.27 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Anisomeridium phaeospermum (MPN539) and A. ubianum (MPN94). The new

isolates are indicated in red, and the ex-type strains are in bold.
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Pleosporales Luttr. ex M.E. Barr 1987
Didymosphaeriaceae Munk 1953
Montagnula Berl. 1896
Notes: Montagnula was introduced by Berlese (1896), with M. infernalis as the
type species. According to Barr (2001), Montagnula was placed in Montagnulaceae
based on morphological characteristics. Later, Montagnula was transferred from
Montagnulaceae to Didymosphaeriaceae by Ariyawansa et al. (2014). Subsequently,
Wanasinghe et al. (2016) transferred two species of Munkovalsaria (M. appendiculata
and M. donacina) to Montagnula based on phylogenetic analyses. Recently, two new
species M. aquatica and M. guiyangensis have been introduced into Montagnula, and
four species viz., M. chromolaenicola, M. puerensis, M. saikhuensis, and M. thailandica
have been synonymized under M. donacina based on morphological examination and
molecular data (Sun et al., 2023). Montagnula has 61 records in Index Fungorum (2025).
Species of genus Montagnula are characterized by immersed to erumpent, gregarious
or grouped, globose or spherical, black ascomata, mostly cylindric-clavate to clavate
asci with long pedicels, and straight or slightly curved, and fusoid or ellipsoid
ascospores (Barr, 1990; Ariyawansa et al., 2014; Tennakoon et al., 2016; Tibpromma
et al., 2018; Hongsanan et al., 2020). Montagnula plays a vital role as saprobes on a
wide range of hosts in various countries (Ariyawansa et al., 2014; Du et al., 2021).
A new species was published in the following co-authored article:
Hyde, K. D., Norphanphoun, C., Ma, J., Yang, H. D., Zhang, J. Y., Du, T.
Y., ...Zhao, Q. (2023). Mycosphere notes 387—412 — novel species of
fungal taxa from around the world. Mycosphere, 14(1), 663—744.
https://doi.org/10.5943/mycosphere/14/1/8
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Montagnula aquilariae T. Y. Du & Tibpromma, sp. nov.

MycoBank number: MB846332; Facesoffungi number: FoF12850; Figure 6.28

Etymology: Named after the host genus Aquilaria from which the holotype was
collected.

Holotype: HKAS 124186

Saprobic on dead twigs of Aquilaria sinensis. Sexual morph: Ascomata 300—
450 x 300420 pm (X =380 x 360 um, n = 5), immersed, solitary to gregarious, mostly
gregarious, subglobose to globose, black, with a long ostiole. Ostiole 100180 x 60—
160 um (X = 147 x 117 pm, n = 5), central, straight, dark brown to black, without
periphysate. Peridium 20-60 pm wide, fused with host tissues, thick-walled, pale
brown to dark brown cells of textura angularis. Hamathecium comprising 1.5-2 um
wide, numerous filamentous, branched, septate, guttulate, trabeculate
pseudoparaphyses. Asci 45—75(=88) x (13—)15-20 um (X =60 x 18 um, n = 30) (spore-
bearing part), bitunicate, 8-spored, elongate-clavate, slightly curved, with a furcate, 45—
70 um long pedicel. Ascospores 17-20 x 7-10 um (X = 19 X 8 pm, n = 30), uni-to bi-
seriate, fusoid or ellipsoid, straight or slightly curved, 1-septate, slightly or strongly
constricted at the septum, widest at the centre, tapering towards ends, hyaline to yellow
when immature, become brown to dark brown when mature, turns reddish-brown in
Melzer’s reagent, guttulate, with a thin mucilaginous sheath. Asexual morph:
Undetermined.

Culture characteristics: Ascospores germinating on PDA within 24 h at 28°C,
germ tubes produced from both upper and lower cells. Colonies on PDA reaching 6 cm
diam., after one week at 28°C, mycelium white, flossy, circular with the entire edge,
with filiform margin; white in reverse.

Material examined: China, Yunnan Province, Xishuangbanna, on dead twigs of
Agquilaria sinensis (Thymelaeaceae), 13 September 2021, T. Y. Du, YNA25 (HKAS
124186, holotype), ex-type living cultures, KUNCC 22-10815 = KUNCC 22-10816.

Notes: In the NCBI BLASTn search, the ITS sequences of Montagnula
aquilariae matched with M. opulenta (MW187736) in 98.39% similarity; the LSU
sequences of M. aquilariae matched with M. aloes (NG_042676) in 97.55% similarity;
the SSU sequences of M. aquilariae matched with M. thailandica (OL780525) in
96.61% similarity; and the tefl-o sequences of M. aquilariae matched with
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M. thailandica (MT235774) in 96.94% similarity. In the phylogenetic analyses,
M. aquilariae forms a sister branch with M. guiyangensis (HGUP 22-0800, HKAS
124556) with moderate statistical support (Figure 6.29). However, they differ in
morphological characteristics i.e., ascospores of M. aquilariae with a thin mucilaginous
sheath, not form polar appendages; while ascospores of M. guiyangensis with sheath drawn
out to form polar appendages, from both ends of the ascospores. In morphology,
M. aquilariae resembles M. opulenta in having immersed ascomata, branched and septate
pseudoparaphyses, and ascospores with a mucilaginous sheath. However, they are different
because M. aquilariae has trabeculate pseudoparaphyses (sensu Liew et al., 2000), and
ascospores uni or bi-seriate, slightly or strongly constricted at the septum, while
M. opulenta has cellular pseudoparaphyses, ascospores bi-seriate, and strongly
constricted at the septum (Aptroot, 1995b; Wang, 2000). In addition, the ascomata in
M. aquilariae are smaller than those of M. opulenta (300—450 pm vs. 400-1200 um)
(Aptroot, 1995b). Therefore, based on phylogenetic analyses and morphological

characteristics, M. aquilariae is introduced as a new species from China.
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Figure 6.28 Montagnula aquilariae (HKAS 124186, holotype)
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Figure 6.28 a, b, Appearance of ascomata on the host. ¢, Section of an ostiole.
d, Section of an ascoma. e—g, Asci. h, Ascus stained by Melzer’s reagent. i—n,
Ascospores. o, Pseudoparaphyses. p, Peridium. q, Ascospore stained by Indian ink.
r, A germinating ascospore. s, t, Colonies on PDA medium (after one week in culture).
Scale bars: ¢ = 100 um, d =200 pm, e-h =50 um, i-0 =10 um, p =20 um, q =10 um,
r =20 pm.
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Figure 6.29 Phylogenetic tree of Montagnula

Figure 6.29 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.95 are given near the nodes, respectively. The tree is
rooted with Stemphylium vesicarium (MFLUCC 13-0344). The new isolates are indicated

in red, and the ex-type strains are in bold.
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Torulaceae Corda 1829
Torula Pers. 1795
Notes: Torula is an asexual hyphomycetous genus, initially introduced by
Persoon (1794), with 7. herbarum as the type species (Tian et al., 2023). The genus is
characterized by terminal or lateral, monoblastic or polyblastic conidiogenous cells and
acrogenous conidia, dark brown, cylindrical to subcylindrical, solitary to catenate,
septate (Crane & Miller, 2016; Li et al., 2017; De Silva et al., 2022). Morphologically,
the different species of Torula can be distinguished by conidial size and the number of
septa and chains (Tian et al., 2023). Recently, Tian et al. (2023) introduced four new
species to the genus and provided molecular data and complete morphological
characteristics. Currently, 561 species epithets are listed in Index Fungorum (2025).
A new record was published in the following co-authored article:
Hyde, K. D., Wijesinghe, S. N., Amuhenage, T. B., Bera, 1., Bhunjun, C. S.,
Chethana, K. W. T., . .. Zhao, H. J. (2024). Current Research in
Applied and Environmental Mycology Fungal Profiles 1-30. Current
Research in Environmental & Applied Mycology (Journal of Fungal
Biology), 14(1), 167-266. https://doi.org/10.5943/cream/14/1/11
Torula fici Crous 2015
Index Fungorum number: IF 816154; Facesoffungi number: FoF 02712; Figure
6.30
Saprobic on dead branch of Aquilaria sp. Sexual morph: Undetermined.
Asexual morph: Hyphomycetous. Colonies effuse on natural substrate, black, powdery.
Mycelium partly immersed to superficial on the host, composed of pale brown to light
brown, septate, branched hyphae. Conidiophores 2-5 pm wide, macronematous,
mononematous, arising from hypha, solitary, erect, or slightly flexuous, subcylindrical,
pale brown to brown, thick-walled. Conidiogenous cells 3.5-6.5 x 4-5.5 ym (X =5 x
4.5 um, n = 10), monoblastic to polyblastic, terminal, doliiform to subglobose, dark
brown to black, thick-walled. Conidia 12—-17 x 5-8.5 um (X = 15 x 7 um, n = 30),
acrogenous, phragmosporous, 1-5-septate (mostly 3-septate), catenate, branched,
oblong, elongated, constricted at the septa, brown to dark brown, verrucose, straight or

sometimes slightly curved, easily separate, rough-walled.
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Culture characteristics: Conidia germinated on PDA within 24 h at 28°C and
germ tubes were produced from each cell. Colony on PDA reached 4-5 cm diam. after
two weeks at 28°C. Colonies obverse: flat, irregular, floccose, white to pale grey,
medium dense, irregular margin, and dark brown in reverse pale, edge is brown.

Material examined: China, Yunnan Province, Xishuangbanna, Menghai City,
Agarwood plantation, on a dead branch of Aquilaria sp., 15 September 2021, T. Y. Du,
YNA34 (MHZU 23-0033), living cultures (ZHKUCC 23-0069).

Known distribution (based on molecular data): China (Su et al., 2018; Jayasiri
et al., 2019; Samarakoon et al., 2021a; Yang et al., 2022b; this study), Cuba (Crous et
al., 2015), South Africa (Spies et al., 2020), and Thailand (Li et al., 2017; Tibpromma
et al., 2018; Jayasiri et al., 2019; Mapook et al., 2020; Senwanna et al., 2021;
Jayawardena et al., 2023).

Known hosts (based on molecular data): Aquilaria sp. (This study),
Chromolaena odorata (Lietal., 2017; Mapook et al., 2020), Ficus ampelas (Tennakoon
et al., 2021), Ficus religiosa (Crous et al., 2015), Freshwater habitat (Su et al., 2018),
Garcinia sp. (Jayasiri et al., 2019), Hevea brasiliensis (Senwanna et al., 2021),
Magnolia grandiflora (Jayasiri et al., 2019), Mangifera indica (Yang et al., 2022b),
Musa sp. (Samarakoon et al., 2021a; Jayawardena et al., 2023), Olea europaea (Spies
et al., 2020), and Pandanus sp. (Tibpromma et al., 2018).

Notes: According to the phylogenetic analyses, our strain (ZHKUCC 23-0069)
clusters with Torula fici strains (CBS 595.96, KUMCC 16-0038, UESTCC 22.0123,
UESTCC 22.0124 and KUMCC 15-0428), with 73% ML bootstrap support (Figure
6.31). Our fungal collection shares similar morphology with 7. fici in macronematous
and mononematous conidiophores, monoblastic to polyblastic conidiogenous cells, and
acrogenous, phragmosporous, catenate, brown, verrucose conidia (Su et al., 2018,
Mapook et al., 2020). Based on morphology and phylogenetic analyses, we conclude

our collection as 7. fici found on Aquilaria sp., and it is a new host record.



Figure 6.30 Torula fici (MHZU 23-0033, a new host record)

Figure 6.30 a, b, Appearance of colonies on the natural substrate. c—f,
Conidiophores, conidiogenous cells and conidia. g, Conidia in chains. h—k, Conidia. 1,
A germinated conidium. m, Colonies on PDA from above and below (two weeks). Scale

bars: ¢ =20 pm, d—f=10 pm, g=20 pm, h=35 pm, i-1 =10 pm.
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Figure 6.31 Phylogenetic tree of Torula

Figure 6.31 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Sporidesmioides thailandica (MFLUCC 13-0840). The new isolate is indicated

in red, and the ex-type strains are in bold.
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Sordariomycetes
Xylariales Nannf. 1932
Diatrypaceae Nitschke 1869
Allocryptovalsa Senwanna, Phookamsak & K.D. Hyde 2017
Notes: Allocryptovalsa was introduced by Senwanna et al. (2017) with
Allocryptovalsa polyspora as the type species. Senwanna et al. (2017) transferred
Eutypella cryptovalsoidea and Cryptovalsa rabenhorstii to Allocryptovalsa based on
morphological and phylogenetic analyses. The general features of this genus are
immersed stromata, ostiolar with periphyses, unbranched, septate paraphyses,
polysporous asci and oblong to allantoid ascospores, while the asexual morph was
reported with hyaline, elongate-allantoid conidia (Senwanna et al., 2017; Zhu et al.,
2021). To date, 11 species have been recorded in Index Fungorum (2025).
A new species was published in the following co-authored article:
Chethana, K. W. T., Rathnayaka, A. R., Samarakoon, B. C., Wu, N.,
Wijesinghe, S. N., Yasanthika, W. A. E., . . . Hyde, K. D. (2023).
AJOM new records and collections of fungi: 151-200. 4Asian Journal
of Mycology, 6(2), 89-243. https://doi.org/10.5943/ajom/6/2/7
Allocryptovalsa aquilariae T. Y. Du & Tibpromma sp. nov.
MycoBank number: MB 846167; Facesoffungi number: FoF 12954; Figure 6.32
Etymology: Named after the host genus, Aquilaria from which it was collected.
Holotype: HKAS 124187
Saprobic on dead twigs of Aquilaria sinensis (Lour.) Spreng. Sexual morph:
Ascostromata gregarious with small black dots, immersed, the surrounding white host
tissue without bark, 1-12-loculate. 4scomata (excluding the neck) 320-550 pm high x
250-650 pm diam. (X = 380 x 410 pm, n = 10), perithecial, solitary to gregarious,
immersed in substrate, globose to ampuliform, dark brown to black, not wrapped in
white entostroma, the surrounding tissue is black after sectioning, ostiolate, papillate.
Ostiolar canal 150-330 pm high x 85-150 um diam. (X = 203 x 112 um, n = 10),
central, not protrude or protrude slightly to outside from the substrate, cylindrical or
irregular, straight, dark brown to black, periphysate. Peridium 35-95 pm wide,
composed of several layers of thick-walled, hyaline to brown cells of textura angularis

to textura prismatica, which are not fully fused with the host tissue. Hamathecium 29
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um wide, hyaline, with granulate, filamentous, unbranched, septate paraphyses, slightly
constricted at the septa. Asci 130—190 x 10-20 pm (X=167.8 x 15.4 pm, n = 30), spore-
bearing part length 65-100 um (X = 87 um, n = 30), unitunicate, thin-walled,
polysporous, clavate, J- apical ring, with 64—-102 pum, apically rounded, narrowing
towards lower region, with long and fragile pedicels, and some pedicels with
subglobose or irregular structure. Ascospores (8—)9.5-11.5 x 2-3.5 um (X =10.2 x 2.8
um, n = 30), crowded, oblong to allantoid, pale yellowish at maturity, aseptate, slightly
curved, smooth-walled. Asexual morph: Undetermined.

Culture characteristics: Colonies on PDA reaching 6 cm diam., after seven days
at 28°C, flattened, filiform margin, with white aerial mycelia, flossy, velvety, reverse
white, smooth.

Material examined: China, Yunnan Province, Xishuangbanna, dead twigs of
Aquilaria sinensis, 13 September 2021, T. Y. Du, YNA27 (HKAS 124187, holotype),
ex-type cultures, KUNCC 22-10819 = KUNCC 22-123809.

GenBank accession numbers: KUNCC 22-10819: ITS: OP454035, TUB:
OP572197; KUNCC 22-12389: ITS: OP456373, TUB: OP572198.

Notes: In the phylogenetic tree (Figure 6.34), our isolates formed an
inconspicuous branch with no support similar to Allocryptovalsa cryptovalsoidea,
A. elaeidis, A. polyspora, and A. truncata. Allocryptovalsa cryptovalsoidea has ostioles
often perforated, emerging through the bark, while our species do not protrude or
protrude slightly to the outside from the substrate, mostly immersed (Trouillas et al.,
2011). The ascomata of our collection are 1-12-loculate, wrapped in white powder,
which differs from the ascomata of A. elaeidis which has 1-2-loculate ascomata,
delimited by a black zone in host tissues (Konta et al., 2020). Also, our species differs
from A. polyspora by having 1-12-loculate, larger ascomata (320-550 % 250-650 um
vs. 80—425 x 100400 um), whereas the ascomata of 4. polyspora are 1-3-loculate
(Senwanna et al., 2017). Allocryptovalsa truncata has superficial ascostromata and
individual ascomata, which differ from our collection by having 1-12-loculate,
immersed ascostromata (Hyde et al., 2020). Based on the multi-gene phylogenetic tree,
and its unique morphological characteristics, Allocryptovalsa aquilariae is identified as

a new species.
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Figure 6.32 Allocryptovalsa aquilariae (HKAS 124187, holotype)
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Figure 6.32 a, b, Appearance of ascostromata on the host. ¢, Ostiolar periphysate.
d, Section through an ascoma. e, f, i-k, Asci (arrows pointed towards subglobose
structures at the pedicel). g, Paraphyses. h, Peridium. 1-n, Ascospores. o, Germinated
ascospore. p, q, Culture characteristics on PDA after seven days (p, front view,
g, reverse view). Scale bars: ¢, f= 100 um, d = 200 pm, e, h—k =50 um, g, m,n =15
pm, I, 0 =10 pm.
A new record was published in the following co-authored article:
Hyde, K. D., Wijesinghe, S. N., Afshari, N., Aumentado, H. D., Bhunjun, C.
S., Boonmee, S., . .. Zhang, J. Y. (2024). Mycosphere Notes 469-520.
Mycosphere, 15(1), 1294—1454.
https://doi.org/10.5943/mycosphere/15/1/11
Allocryptovalsa rabenhorstii (Nitschke) Senwanna, Phookamsak & K.D. Hyde
2017
Index Fungorum number: IF553864; Facesoffungi number: FoF14962; Figure
6.33
Saprobic on a dead branch of Aquilaria sp. Sexual morph: Ascostromata
poorly developed, scattered or gregarious, 1-4-loculate, immersed through the substrate,
inconspicuous, only the ostioles exposed to the surface. Ascomata 250-500 um high x
300-600 um diam. (X =375 x 400 pm, n = 10) (excluding neck), perithecial, solitary or
gregarious, immersed, ampuliform, brown to dark brown, not wrapped in white
entostroma, the surrounding tissue is light yellow after section, ostiolate. Ostiolar canal
200-350 um high x 60-200 pum diam. (X = 280 x 140 pm, n = 10), central, slightly
cylindrical, straight, not protruding or protruding slightly from the substrate, the upper
part is wider than the lower part, dark brown to black, periphysate. Peridium 30—85 pm
wide, composed of several layers, from outer toward inner layers with thick-walled,
pale brown to thin-walled, hyaline to cells of textura angularis to textura prismatica.
Hamathecium comprising 3—9 pm wide, filamentous, unbranched, hyaline, granular,
septate paraphyses, slightly constricted at the septa, enlarged base, gradually tapers
towards the tip. Asci (150-)155-175(-180) x (12.5-)14-15.5(=17) pm (X = 165.5 x 15
pm, n = 30), spore-bearing part (60—)65-85(—90) um length (X = 75.5 um, n = 30),
unitunicate, thin-walled, polysporous, clavate, with Japical ring, 70-100 pm long

pedicellate, some pedicel with subglobose structure, apically rounded, narrowing
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towards lower region. Ascospores (9.5-)11-14(-16) x 3—4.5 ym (X=13 x 3.8 um, n =
30), crowded, sub-allantoid, initially hyaline, turning pale yellow at the maturity,
aseptate, curved, smooth-walled. Asexual morph: Undetermined.

Culture characteristics: Ascospores germinated on PDA within 24 h at 28°C and
germ tubes were produced from both ends. Colonies on PDA reached 6 cm diam. after
one week at 28°C. Colonies obverse: flat, circular, flossy, filiform margin, and white to
cream, smooth in reverse.

Material examined: China, Yunnan Province, Xishuangbanna, Menghai City,
Agarwood plantation, on a dead branch of Aquilaria sp. (Thymeleaceae), 15 September
2021, T. Y. Du, YNA22 (MHZU 23-0030, living culture ZHKUCC 23-0066).

Known distribution: Australia (Trouillas et al., 2011; Jayawardena et al., 2018b),
China (this study), England (Mejia et al., 2011), Iran (Mehrabi et al., 2019), Japan
(Kobayashi, 2007), Pakistan (Ahmad, 1969), South Africa (Moyo et al., 2019), United
States of America (Trouillas et al., 2011), Ukraine (Dudka et al., 2004).

Known hosts: Acacia farnesiana (Ahmad, 1969), Aquilaria sp. (this study),
Betula sp. (Mejia et al., 2011), Citrus sp. (Mehrabi et al., 2019), Dalbergia sissoo
(Ahmad, 1969), Echinops echinatus (Ahmad, 1978), Morus alba (Ahmad, 1978),
Morus sp. (Kobayashi, 2007), Robinia pseudoacacia (Dudka et al., 2004), Sambuscus
nigra (Trouillas et al., 2011), Viburnum sp. (Ahmad, 1978), Vitis sp. (Jayawardena et
al., 2018b), Vitis vinifera (Trouillas et al., 2011).

Notes: According to the phylogenetic analyses, our strain (ZHKUCC 23-0066)
clustered with A. rabenhorstii (WAO8CB) with 100% ML and 1.00 BYPP bootstrap
support (Figure 6.34). Our fungal collection share similar morphology to A. rabenhorstii in
color, shape, and size of asci and ascospores (Trouillas et al., 2011). Our collection has
thinner (14-15.5 pum wide vs. 1822 um wide) pedicels of asci than A. rabenhorstii
(WAO07CO) (Trouillas et al., 2011). This might depend on different environmental factors
and host plants. Based on morphology and multi-gene phylogeny we identified our
collection as A. rabenhorstii. This is the first report of Allocryptovalsa species on Aquilaria
plants, and it is reported for the first time in China. Therefore, this study presents a new

host and geographical record of A. rabenhorstii.
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Figure 6.33 Allocryptovalsa rabenhorstii (MHZU 23-0030, a new host and a

geographical record)
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Figure 6.33 a, b, Appearance of ascostromata on the host. ¢, Transverse section
of an ascostroma. d, Section through an ascoma. e-h, Asci (f is an ascus stained with
Melzer’s reagent). i, Ostiole with periphyses. j, Paraphyses. k, Peridium. I-o,
Ascospores. p, A germinating ascospore. g, r, Colonies on PDA after two weeks (q,
obverse view; r, reverse view). Scale bars: d =300 um, e-h =50 pm, 1 =200 pm, j =

10 pm, k=50 pm, I-p = 10 um.
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Figure 6.34 Phylogenetic tree of Allocryptovalsa

Figure 6.34 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.95 are given near the nodes, respectively. The tree is
rooted with Cryptovalsa ampelina (A0O01 and DRO101). The new isolates are indicated in

red, and the ex-type strains are in bold.
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Ascomycota genera incertae sedis
Pseudoacrodictys W.A. Baker & Morgan-Jones 2003
Notes: Pseudoacrodictys was introduced by Baker and Morgan-Jones (2003) to
accommodate seven species of Acrodictys, including P. eickeri as the type species. The
genus is characterized by solitary, acrogenous, subglobose, broadly pyriform to
turbinate, brown conidia that are somewhat irregular, with brown undulate appendages
(Gao et al., 2016). Currently, 14 species belong to this genus (Wijayawardene et al.,
2022); however, molecular data in GenBank (https://www.ncbi.nlm.nih.gov/) is only
available for two species (P. balansae and P. deightonii).
A new record was published in the following co-authored article:
Hyde, K. D., Wijesinghe, S. N., Afshari, N., Aumentado, H. D., Bhunjun, C.
S., Boonmee, S., ... Zhang, J. Y. (2024). Mycosphere Notes 469—-520.
Mycosphere, 15(1), 1294—1454.
https://doi.org/10.5943/mycosphere/15/1/11
Pseudoacrodictys deightonii (M.B. Ellis) W.A. Baker & Morgan-Jones 2003
Index Fungorum number: 1F373226; Facesoffungi number: FoF15260; Figure
6.35
Saprobic on dead branch of Aquilaria sp. Sexual morph: Undetermined.
Asexual morph: Hyphomycetous. Colonies on natural substrate effuse, dark brown.
Mycelium partly superficial to immersed, composed of septate, branched, brown
hyphae. Conidiophores 150-250 x 7-14(-17.5) pm, macronematous, mononematous,
erect, straight or slightly curved, septate, thick-walled, dark brown. Conidiogenous
cells integrated, terminal, monoblastic, indeterminate, cylindrical, smooth, dark brown,
truncate at the apex after schizolytic conidial secession. Conidia 40—120 % 50—130 um,
acrogenous, solitary, subglobose or irregular, brown, dictyoseptate, with numerous
obscure oblique septa, thick-walled, dry, sometimes cracking.
Culture characteristics: Conidia germinated on PDA within 48 h at 28°C and
germ tubes were produced from each cell. Colonies on PDA reached 2 cm diam. after
two weeks at 28°C. Colonies obverse: flat, irregular, floccose, white to pale grey,

medium dense, irregular margin, and dark brown in reverse pale, edge is brown.
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Material examined: China, Yunnan Province, Xishuangbanna, Menghai City,
Agarwood plantation, on a dead branch of Aquilaria sp. (Thymeleaceae), 15 September
2021, T. Y. Du, YNAO1 (GZAAS 23-0616, living culture ZHKUCC 23-0989).

Known distribution: China (Zhao et al., 2011; this study), Sierra Leone (Ellis,
1961).

Known hosts: Aquilaria sp. (this study), Cassia fruticosa (Ellis, 1961),
Gardenia nitida (Ellis, 1961), Rauwolfia vomitoria (Ellis, 1961).

Notes: According to the phylogenetic analyses, our fungal strain (ZHKUCC 23-
0989) clustered with P. deightonii strains (HMAS 42892, HMAS 43152, HMAS 44636,
HSAUP myr4732, and HSAUP myr4737) with 100% ML and 1.00 BYPP bootstrap
support (Figure 6.36). Our fungal collection shares morphology with P. deightonii in
having similar conidiophores, conidiogenous cells and conidial characteristics (Zhao et
al. 2011). This collection has longer conidiophores and larger conidia (conidiophores:
150-250 pm; conidia: 40—120 x 50—130 pm) than those of P. deightonii (HMAS 90312)
(conidiophores: 40—120 um; conidia: 30—61 x 25-55 pm) (Zhao et al., 2011). This may
depend on different environmental factors and host plants. This study is the first
Pseudoacrodictys species found on Aquilaria species. Therefore, our fungal collection
is identified as P. deightonii and we introduced a new host record based on

morphological and phylogenetic analyses.
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Figure 6.35 Pseudoacrodictys deightonii (GZAAS 23-0616, a new host record)
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Figure 6.35 a, b, Colonies on natural host substrate. c—i, Conidiophores,
conidiogenous cells and developing conidia. j, A germinating conidium. 1—o, Conidia.

k, p, Colonies on PDA after two weeks (k, above; p, below). Scale bars: c—h = 100 um,

1, ], -0 =50 um.

— - i la + 45047 Hutgraay
e

Figure 6.36 Phylogenetic tree of Pseudoacrodictys

Figure 6.36 Bootstrap support values for ML greater than 60% and Bayesian
posterior probabilities greater than 0.90 are given near the nodes, respectively. The tree is
rooted with Anungitopsis lauri (CBS:145067). The new isolate is indicated in red, and the

ex-type strains are in bold.
6.4 Discussion

This study reports 22 taxa of saprobic fungi associated with dead branches of
Agquilaria spp. (Thymelaeaceae) from Guangdong and Yunnan provinces, China. One new
genus, 17 new species, and five known species that belong to four orders of Ascomycota
(Dyfrolomycetales, Pleosporales, Sordariales, and Xylariales) are described based on
morphological studies and phylogenetic analyses. These 22 taxa belong to 14 different
genera, viz.,, Allocryptovalsa, Aquilariomyces, Camarographium, Corynespora,

Mangifericomes,  Melomastia, — Montagnula,  Nigrograna, Parathyridariella,
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Peroneutypa, Phaeoseptum, Pseudothyridariella, Torula, and Triangularia.

In this study, one new genus Aquilariomyces is introduced. Aquilariomyces is
established in Thyridariaceae (Pleosporales) to accommodate Aqu. aquilariae, and it differs
from the closely related taxa in phylogeny by its one-transverse septate ascospores. In
addition, two new species (Parathyridariella aquilariae and Pseudothyridariella
aquilariae) with asexual morphs in Thyridariaceae are also introduced. Interestingly, the
ascomata of these three species are immersed in the bark and surrounded by fluff.
Pseudothyridariella aquilariae is found as an asexual Pseudothyridariella morph, while
Pseudothyridariella has been reported only as a sexual morph (Mapook et al., 2020).
Therefore, due to the lack of comparison of morphological characteristics, more research
is needed to determine the placement of Pse. aquilariae. This is the first report of a member
of Thyridariaceae on Aquilaria.

Camarographium was placed in the Didymosphaeriaceae by Crous et al. (2022),
based on the phylogenetic analyses of Cam. stephensii. In this study, we provided the
sequences of Cam. clematidis, but Cam. clematidis, and Cam. stephensii grouped far apart
in the phylogenetic tree. Therefore, due to limited molecular data, in this study, Cam.
clematidis 1s temporarily classified in Didymosphaeriaceae sensu lato. In previous studies
(Crous et al., 2011; Wanasinghe et al., 2016), Camarographium species were mainly
classified using the key to Camarographium. The main classification criteria are the shape
(linear or pycnidial) of stromata, the size of conidia, and different hosts. This study suggests
adding more morphological features, such as shape and color of conidia and number and
type of separations, for distinguishing species in this genus. With very few molecular
sequences in Camarographium, detailed descriptions of its species can help with better
classification. More fresh collections of Camarographium in different geographical regions
should be collected and sequenced in the future to understand the phylogenetic placement
of the genus better.

The other new species are introduced based on morphological comparisons and
molecular phylogenetic studies. The phylogenetic trees of this study were constructed
multiple times, and the topological structure of the trees is consistent with previous studies.

Agarwood is an important economic wood, and the endophytic fungi and
pathogenic fungi of agarwood-producing trees (Aquilaria spp.) have been extensively

studied. Based on the literature, more than 170 strains of endophytic fungi have been



241

reported, and some of them have been further studied for their biological activity, induction
ability, and secondary metabolites (Wang et al., 2018, 2019b; Du et al., 2022a, 2022b;
Li et al., 2022c¢). Pathogenic fungi mainly infect the seedling stage of Aquilaria spp., and
sometimes they also cause branch blight and leaf spot disease. More than 15 species of
pathogenic fungi have been reported in literature, and these pathogenic strains have been
investigated, isolated, identified, and studied for disease prevention and control (Borah et
al., 2012; Pandey et al., 2019; Sun et al., 2021). However, the saprobic fungi of species of
Agquilaria have been poorly studied. Punithalingam & Gibson (1978) were the first to report
a saprobic fungus on Aquilaria malaccensis Lam. Subsequently, Subansenee et al. (1985)
recorded seven saprobic fungi collected from Aquilaria spp. To date, only 30 taxa of
saprobic fungi (including this study) were found on Aquilaria plants. Undoubtedly, this is
a knowledge gap in the research on saprobic fungi associated with Aquilaria plants. In
addition, since 96% taxa belong to Ascomycota, it can be considered that the members of
Ascomycota are the primary saprobic fungi found on Aquilaria. Furthermore, among the
14 genera considered in this study, it is reported that most of these fungal genera are
common taxa such as Melomastia, Corynespora, Nigrograna, and Peroneutypa. Therefore,
the saprobic fungi reported on Aquilaria may not be host-specific. This hypothesis requires
more relevant research on saprobic fungi. Additional research is necessary to complete the
research gap regarding saprobic fungi associated with Aquilaria and understand the fungal
diversity associated with Aquilaria plants in their natural habitats.

This work collected saprobic fungi associated with Aquilaria and classified and
identified them using morphology and multigene phylogenetic analyses. Seventeen new
fungal taxa were identified, enriching the diversity of saprobic fungi in Aquilaria. This
article’s research methods can be applied to the classification and identification of saprobic
fungi associated with any plant, and the cultures generated in this study can be used for
further research in secondary metabolite analysis.

As mentioned above, this work was planned based on the research gap that the
saprobic fungi associated with Aquilaria need to be better studied. From an ecological
perspective, saprobic fungi, as decomposers, play an essential role in decomposing plant
materials and recycling them (Alexopolous & Mims, 1979; Sudharsan et al., 2023; Boswell,
2024). Research on saprobic fungi requires a rich and solid accumulation of biological

knowledge, combining traditional morphology with modern molecular phylogenetics to
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classify and identify them. This challenge is common in other disciplines, such as botany
and zoology.

Fungi associated with economically important crops such as apples, coffee, corn,
mangoes, rice, and other plants, including Aquilaria, help to understand the potential fungal
pathogens, industrially important fungi, plant growth promoting and disease controlling
fungi and improve economic benefits, which is of great significance to people's lives
(Doehlemann et al., 2017; Peng et al., 2021; Akram et al., 2023; Deresa & Diriba, 2023;
Singh & Kumar, 2023; Qin et al., 2024). Not only in plants, studying fungi associated with
humans and animals also provides many benefits, especially in controlling fungal diseases
and understanding the importance of beneficial fungi (Guégan et al., 2023; Lionakis et al.,
2023; Macias-Paz et al., 2023).
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CHAPTER 7

CONCLUSIONS

7.1 Overall Conclusion

This study explores the fungal communities associated with agarwood and
agarwood-producing trees (Aquilaria spp.) from Guangdong and Yunnan provinces. It
collects and isolates fungi and analyzes them with functional screening and taxonomic
identification. In addition, this study reports the composition of fungal genera and
identifies strains with potential agarwood-inducing and antimicrobial properties.
Overall, this study is divided into four parts, followed by a conclusion.

The first part of this study isolated 960 fungal strains from Aquilaria sinensis
samples collected in Guangdong and Yunnan provinces from four parts (agarwood
resins, dead branches, healthy branches, and healthy leaves), representing 64 genera
across 44 families. Among them, 818 strains of 14 genera was first recorded on
Aquilaria spp. Five new species were introduced based on morphology and
phylogenetics, viz., Banksiophoma endophytica, Deniquelata aquilariae, Montagnula
sinensis, M. yunnanensis, and Fomitiporia aquilariae. Community analysis showed
that Ascomycota dominated the fungal assemblage (99.06%), followed by
Basidiomycota and Mucoromycota (Figure 7.1). The most frequently isolated genera
were Fusarium and Lasiodiplodia. A total of 645 strains from 48 genera were isolated
from agarwood resins, with 12 genera previously reported to induce agarwood
formation, viz., Aspergillus, Botryosphaeria, Chaetomium, Cladosporium,
Colletotrichum, Diaporthe, Fusarium, Lasiodiplodia, Penicillium, Phaeoacremonium,
Trichoderma, and Xylaria. Thirty-six genera were also reported from Aquilaria spp. in
earlier studies, and six genera were newly recorded, viz., Exophiala, Fomitiporia,
Loculosulcatispora, Neodeightonia, Paradictyoarthrinium, and Phanerochaetella.
Samples from different plant parts (agarwood resins, dead branches, healthy branches,
and healthy leaves) revealed overlapping genera, of which Aspergillus, Diaporthe,

Lasiodiplodia, and Neopestalotiopsis were found in all four parts. In terms of
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geographical location, the composition of fungal communities did not show significant
differences. In addition, all 64 genera were annotated with ecological notes, including
habitat, lifestyle, and host information. This work expands the known fungal diversity
of Aquilaria sinensis and provides a strain dataset for further functional and applied

research.

Saf &t

Figure 7.1 Multi-level doughnut chart showing the taxonomic distribution of fungal

strains by phylum, class, and genus

Second part, among the isolated fungal strains, 12 strains were selected based
on literature reports to evaluate their potential in inducing agarwood formation.
Through systematic screening and comparative analysis, Fusarium solani (GDA-HCO1)
was identified as a highly efficient fungus for agarwood induction. In the preliminary
experiment, this strain successfully induced distinct agarwood resin formation on small
branches within 12 months, without causing wound healing or tissue necrosis—
significantly outperforming other strains. In the extended experiment on tree trunks, it
also exhibited excellent inducing capacity, with the agarotetrol content reaching 1.4
times the pharmacopeial standard. This highlights its considerable potential as a
microbial inducer for commercial agarwood production. In contrast, other strains such

as Lasiodiplodia pseudotheobromae also demonstrated resin-inducing ability but
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caused notable tissue necrosis, indicating a need for optimization of application method
or inoculum dosage. Regarding inoculation methods, the study found that the Agar-Wit
technique, which involves injecting a larger volume of fungal fermentation broth and
enables sustained infection, facilitated better colonization and induction in tree trunks.
However, it also revealed issues such as higher fermentation liquid volume and
associated costs, suggesting that future research should focus on optimizing inoculum
volume and concentration for a balance between efficacy and cost-efficiency.
Additionally, certain strains like Fusarium proliferatum and Trichoderma koningiopsis
failed to colonize the host, indicating distinct ecological adaptability among different
fungal species. In summary, this study not only identified promising fungal strains for
agarwood induction but also provided empirical data on inoculation techniques and host
responses, offering a solid foundation and theoretical support for further research on
fungal induction mechanisms, microbial agent development, and the green
industrialization of agarwood production. In this study, an invention patent was
published due to the outstanding performance of Fusarium solani (GDA-HCO1).

In the third part of this study, 47 strains were preliminarily screened and used
for testing their antagonistic ability and belonging to 18 genera. Thirteen of these genera
are reported for the first time to have antimicrobial activity in agarwood, viz., Alternaria,
Annulohypoxylon, Aspergillus, Corynespora, Curvularia, Daldinia, Neofusicoccum,
Neopestalotiopsis, Nigrospora, Paracamarosporium, Pseudopithomyces, Trichoderma,
and Trichosporon. And nine genera are newly recorded in Aquilaria sinensis, viz.,
Alternaria, Annulohypoxylon, Corynespora, Daldinia, Neofusicoccum, Neopestalotiopsis,
Paracamarosporium, Pseudopithomyces, and Trichosporon. Among them, Lasiodiplodia
sp. (YNA-D3) showed strong inhibitory effects against all six tested pathogens and was
the most effective strain. Additionally, fungal strains from five genera (Curvularia,
Lasiodiplodia, Neofusicoccum, Nigrospora, and Trichoderma) exhibited over 90%
inhibition rates against Botrytis cinerea, a major plant pathogen, highlighting their
potential for development as biocontrol agents. These findings significantly enrich the
antimicrobial resources of agarwood-associated fungi and provide candidate strains and
theoretical support for future pharmaceutical development and the creation of eco-

friendly microbial pesticides.
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The last part of this study introduced 17 new and five known saprobic fungal
collections associated with dead branches of Aquilaria spp. from Guangdong and Yunnan
provinces, China. These include one new genus, 14 new species, and two new records, all
classified within four orders of Ascomycota: Dyfrolomycetales, Pleosporales, Sordariales,
and Xylariales (Figure 7.2). The 22 taxa belong to 14 different genera, viz., Allocryptovalsa,
Aquilariomyces, Camarographium, Corynespora, Mangifericomes, Melomastia,
Montagnula, Nigrograna, Parathyridariella, Peroneutypa, Phaeoseptum,
Pseudothyridariella, Torula, and Triangularia, all recorded on Aquilaria genus for the first
time. The new genus Aquilariomyces, placed in the family Thyridariaceae, is established
based on phylogenetic analysis and its distinct ascospore morphology; two additional new
species, Parathyridariella aquilariae and Pseudothyridariella aquilariae, are also
described in Thyridariaceae, with unique asexual morphs. Several species show distinctive
features such as ascomata immersed in bark and surrounded by fluff. The study also
provides sequence and addresses the provisional placement of Camarographium
clematidis. This research employs detailed morphological and multigene phylogenetic
analyses to fill the knowledge gap in saprobic fungi on Aquilaria spp. Prior to this study,
there were only eight records and a lack of complete morphological descriptions and
molecular data, therefore, this study alone contributes 17 new taxa, significantly enriching

the understanding of fungal diversity associated with this economically important plant.
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There is compelling evidence that endophytic fungi can adapt their lifestyle to
become pathogenic or saprobic under specific conditions (Bhunjun et al., 2024). In this
study, we identified four genera, Corynespora, Montagnula, Nigrograna, and
Rhytidhysteron, as saprobic fungi on Aquilaria spp. These fungi were also found to be
endophytic or agarwood resin fungi in the fresh tissues of Aquilaria spp. This
transformation in lifestyle could be a key factor in agarwood production. The unclear
mechanism of agarwood production has long puzzled researchers, but our findings
provide valuable data that could significantly advance our understanding of this process.
The future holds promise for further isolation, identification, and analysis of endophytic,
pathogenic, and saprobic fungi associated with agarwood-producing trees, which will
undoubtedly deepen our understanding of the intricate interaction mechanisms between
fungi and plants.

Together, these findings establish a foundational reference for understanding
the fungal communities associated with Aquilaria. They contribute novel taxa, identify
promising microbial inducers for agarwood production, and reveal antagonistic strains
with potential for eco-friendly plant protection-laying a solid groundwork for

sustainable, fungi-assisted agarwood industry development.

7.2 Research Advantages

7.2.1 Systematic Exploration of Agarwood-Associated Fungi Expands the
Foundation of Fungal Diversity

This study conducted extensive sampling across major agarwood-producing
regions in Guangdong and Yunnan provinces, resulting in the isolation of 960 fungal
strains belonging to 64 genera. Among them, 14 genera were reported for the first time
from Aquilaria spp., and five novel species were identified. In addition, detailed notes
were compiled for each genus. These findings significantly enhance the understanding
of fungal diversity within the agarwood ecosystem and provide a solid foundation for
the establishment of a comprehensive microbial database related to agarwood. More
importantly, these isolates represent a rich microbial resource pool for future functional

screening, bioinducer development, and natural product discovery. This work bridges
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the gap between ecological identification and applied microbial utilization, offering
valuable materials for the sustainable development of the agarwood industry.

7.2.2 Biodiversity Insight: Classification of Saprobic Fungi

This study is the first to systematically focus on saprobic fungal communities
inhabiting decaying Aquilaria spp. branches, resulting in the discovery and description
of 14 novel species and 2 new records. These findings substantially broaden the
taxonomic scope and diversity knowledge of fungi associated with agarwood. By
integrating morphological characteristics with multilocus phylogenetic analyses, a
more comprehensive classification framework was established. These discoveries
provide not only scientific support for fungal taxonomy and biodiversity conservation,
but also a foundational basis for understanding the ecological roles of saprobic fungi
within the agarwood microecosystem.

7.2.3 Screening of Antagonistic Fungi Supports the Development of Green
Biocontrol Agents

Through antagonism assays on 47 representative strains, several fungal strains
were identified with strong potential for plant disease suppression. These strains can be
further explored for the extraction of antimicrobial secondary metabolites and
developed into biopesticides with high inhibitory activity. When combined with
modern fermentation and formulation technologies, such biocontrol agents may
partially replace chemical pesticides in agricultural settings, thereby reducing
environmental pollution and phytotoxicity. For agarwood plantations, these microbial
agents not only offer disease control but may also be co-applied with resin inducers,
facilitating an integrated “induction + protection” management strategy.

7.2.4 Discovery of High-Efficiency Induction Strains Promotes Sustainable
Agarwood Production

Among the strains tested, Fusarium solani (GDA-HCO01) was able to induce the
formation of pharmacologically active compounds in agarwood that meet Chinese
Pharmacopoeia standards within just six months—significantly reducing the production
cycle. This strain exhibits stable induction performance and simple application, making
it a promising solution to the long-standing challenges of low yield, high labor demand,
and destructive practices in artificial agarwood production. It has strong potential to be

developed into a microbial formulation for commercial use, enabling low-injury, rapid
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resin formation. With further optimization of fermentation processes and the
development of user-friendly products (e.g., powders, granules, or sustained-release
pellets), this research paves the way for a scalable, low-cost, and environmentally
friendly induction system, contributing to the green and standardized upgrading of the

agarwood value chain.

7.3 Future Work

7.3.1 Exploring Fungal Diversity Associated with Aquilaria spp. Using
High-Throughput Sequencing

Current studies on fungi associated with Aquilaria spp. mainly focus on
culturable strains, which limits our understanding of the true diversity of its fungal
communities. In the future, culture-independent approaches such as high-throughput
sequencing should be employed to systematically investigate the fungal communities
in different tissues (e.g., healthy bark, resinous wood, rhizosphere soil). This approach
will help identify dominant unculturable taxa, key functional groups, and novel fungal
species, providing a more comprehensive view of the symbiotic interactions between
Agquilaria spp. and its associated microbes. Furthermore, predictive functional profiling
and ecological network analysis can be used to evaluate the potential roles of different
fungal taxa in resin induction and plant health, thereby enhancing our ecological and
applied understanding of these fungal resources.

7.3.2 Collection and Characterization of Saprobic Fungi: Taxonomy,
Induction Ability, and Bioactivity

Research on saprobic fungi associated with Aquilaria spp. is still in its infancy,
with very few species reported and limited taxonomic data. Future work should focus
on the systematic collection and isolation of saprobic fungi from decaying tissues of
Agquilaria spp. These strains should be identified and described using multi-locus
phylogenetic analyses and morphological observations. In addition to increasing known
fungal diversity, the functional potential of these saprobes should be explored,
especially their ability to induce agarwood formation under simulated wound

conditions. Furthermore, their secondary metabolites should be evaluated for biological
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activities such as antimicrobial or antioxidant effects. Such efforts would not only
uncover new taxa but also contribute to the biotechnological exploitation of these fungi
in medicine and agriculture.

7.3.3 Investigation of Antagonistic Strains for Secondary Metabolites and
Biocontrol Applications

Several strains in this study showed strong antagonistic effects against common
plant pathogens, indicating their potential use in sustainable plant disease management.
Future research should focus on the extraction, purification, and structural
characterization of their secondary metabolites to identify active compounds and clarify
their mechanisms of action. Metabolomics and genomic analyses could be employed to
unravel biosynthetic pathways, enabling pathway engineering and optimized
production. In addition, bioassays should be extended to greenhouse or field trials to
evaluate efficacy in real-world conditions. These efforts will support the development
of eco-friendly alternatives to chemical pesticides and advance the application of
fungal-based biocontrol agents in agriculture.

7.3.4 Functional Optimization of Induction Strains and Innovation in
Artificial Agarwood Induction

The high-performance agarwood-inducing strains identified in this study offer
promising application prospects. Future research should investigate the optimal
conditions (e.g., carbon source, temperature, pH, oxygen levels) for maximizing their
resin-inducing efficiency. Further development of artificial induction technologies is
also necessary, including reducing induction time, improving yield and quality of active
compounds, and enhancing aroma profiles. In terms of the application form, efforts
should focus on transforming liquid fermentation products into more stable and user-
friendly formulations, such as pellets, powders, or controlled-release granules, thereby
enabling large-scale, efficient, and environmentally friendly applications in agarwood
plantations. To improve the efficiency of agarwood induction, future research can
investigate the combined effects of fungal and bacterial inoculation. For example, high-
performing fungal strains (e.g., Lasiodiplodia spp., Fusarium spp., Trichoderma spp.)
can be combined with endophytic bacteria known to promote plant growth, suppress
pathogens, or activate host defense responses (e.g., Bacillus subtilis, Pseudomonas

fluorescens, Streptomyces spp.). These microbial agents can be co-cultured in liquid
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fermentation or formulated into mixed preparations for application, using methods such
as sequential inoculation, co-encapsulation, or multi-point injection to maximize
effectiveness. This strategy is expected to shorten the induction period, increase resin
yield and bioactive compound content, improve aroma quality, and enhance
consistency across treated trees. All microbial strains should undergo safety evaluation
and non-pathogenicity verification to ensure ecological safety and controllability in

field applications.
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APPENDIX A

MEDIA

1. Malt Extract Broth (MEB) fungal liquid culture and fermentation

Malt extract 30 g

Peptone 5.0 g

Suspend 20 g of malt extract agar in distilled water and mix thoroughly to completely
dissolve the power and bring volume to 1000 mL. Autoclave at 121°C for 20 min.

2. Potato dextrose agar (PDA) used for fungal cultivation

Potato starch (from the infusion) 4 g

Dextrose 20 g

Agar 15 g

Suspend 39 g of Potato dextrose agar in distilled water and mix thoroughly. Heat with
frequent agitation and boil for 1 min to completely dissolve the powder and bring
volume to 1000 mL. Autoclave at 121 °C for 20 min.

3. Water Agar (WA) Used for Fungal Isolation

Agar20 g

Suspend 20 g of agar in distilled water and mix thoroughly. Heat with frequent agitation
and boil for 1 min to completely dissolve the powder and bring volume to 1000 mL.
Autoclave at 121 °C for 20 min.

4. Indian ink used for observing gelatinous appendages of ascospores in some
species

5. Cotton blue used to make hyaline structures appear colored in some species

6. Melzer reagent used to detect amyloid or amyloid like reactions in some species
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