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ABSTRACT 

             When the charged particles are moving in a magnetic field, the charged 

particles follow the right hand rule due to Newton-Lorentz force.  The pitch angle is 

defined as the angle between the particle velocity and the magnetic field.  In a 

uniform magnetic field, the charged particles released at a 90 degree pitch angle move 

around the magnetic field line in a circular orbit, while the charged particles released 

with a pitch angle less or more than 90 degrees have helical orbits around the 

magnetic field.  Magnetic fields are found not only on the earth, but also in 

interplanetary space.  The interplanetary magnetic field is turbulent and always comes 

out from the Sun.  In this work, we are interested to study the transport of charged 

particles in a turbulent magnetic field as in the interplanetary space by using computer 

simulations.  We use a 2D+slab model for the magnetic field.  We compare two cases 

which are a simple 2D field+slab turbulence case and a case where both 2D and slab 

components are turbulent.  Then we release the charged particles by varying the pitch 

angle for study of the separation of charged particles and magnetic field lines.  We 

solve the Newton-Lorentz and field line equations to find trajectories of charged 

particles and magnetic field lines by using the Runge-Kutta method with adaptive 
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time stepping regulated by a fifth-order error estimate.  We analyze the positions of 

guiding centers of the charged particle trajectories and compare them with the 

magnetic field lines that are released from the initial guiding centers of the charged 

particles at various times.  We present the effect of initial pitch angle on the 

separation between guiding centers and magnetic field lines when we set the initial 

pitch angle to 0, 30, 60 and 90 degrees.  From overall results, we found that the initial 

pitch angle has an effect on the separation of the charged particles and their 

corresponding magnetic field lines.  For the simple case, the separations of the 

charged particles are related to distance from the center of the Gaussian flux tube and 

intensity of 2D Gaussian field.  For the 2D+slab turbulent field, we can find that the 

separation of the charged particles is different at each initial pitch angle and the 

critical initial pitch angle that gives the most separation at any time is also 

computed.  Moreover, we found that in an intermediate range the particles released at 

a 90 degree pitch angle have more separation than the others.  In the long time limit, 

all initial pitch angles give similar results for the separation.  This work is useful to 

help us understand the mechanisms of the transport of the solar energetic particles in 

heliosphere and developing the theory of diffusion of charged particles in turbulent 

magnetic fields. 

Keywords: Charge particles/Magnetic field/Pitch angle/Turbulence/ 

        Newton-Lorentz force/Guiding center 
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CHAPTER 1  

INTRODUCTION 

1.1  Overview  

The solar wind is a turbulent ionized gas that is flow out from the outer layer 

of the Sun into the entire heliosphere.  The solar wind also drags the Sun’s magnetic 

field into interplanetary space.  Therefore, the magnetic field is also turbulent.  When 

the temperature on the surface of the Sun is very high, the Sun’s gravity cannot hold 

on to the high energy particles, called solar energetic particles or SEPs.  Since most 

SEPs are charged particles, thus they move along the magnetic field.  There are many 

researches to study transport of charged particles and magnetic field in interplanetary 

space, but it is not yet enough to completely understand about the mechanism, due to 

their complexity. 

In this work, we are interested in the transport of charged particles in 

interplanetary space, by studying the separation of guiding center of charged particles 

and their corresponding magnetic field lines.  In particular, we are interested in the 

relationship between the initial pitch angles of charged particles and their separation 

corresponding magnetic field lines.  It is easy to understand behavior of charged 

particles in space if the magnetic field is uniform and we know that the charged 

particles will spiral around the magnetic field lines.  When the magnetic field in space 

is non-uniform and more complicated we have to use new numerical techniques to set 

up in the simulations.  To succeed this work, we use the 2D+slab turbulence field to 

model the simulations of turbulent magnetic field in interplanetary space and 

numerical method to solve the Newton-Lorentz equation and field line equation to 
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obtain the trajectories of particles and field lines.  This work may help us to produce 

new idea and develop the theories and numerical simulation techniques for particle 

diffusion in space. 

1.2 Objectives  

1.  To study the separation and the effect of initial pitch angles of the charged 

particles and their initial magnetic field lines by performing the simulations in simple 

model (2D Gaussian field + slab turbulence).  

2.  To study the effect of initial pitch angle of the charged particles on their 

separation behavior of magnetic field lines and the charged particles in turbulent 

magnetic field model called two-component model or 2D+slab turbulence. 

1.3 Expected outcome 

We can understand the effect of the pitch angles on the separation of the 

charged particles and the magnetic field lines in two-component model (2D+slab) of 

the magnetic field turbulence.  Moreover, we develop the theory and numerical 

techniques in order to study separation between the charged particles and the 

magnetic field lines.  This study can help us to explain the transport of the charged 

particles in interplanetary space in our system. 

1.4 Scope of study 

To study the effect of initial pitch angles of the charged particles the 

separation of the charged particles and their initial magnetic field lines in 2D+slab 

model of the magnetic field turbulence which is an appropriate model for 

interplanetary magnetic field (Matthaeus, Goldstein & Roberts, 1990; Bieber, Wanner 

& Matthaeus, 1996). 
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1.5  Literature review 

Since we are interested in moving charged particles in interplanetary magnetic 

field, the trajectories of charged particles are described by the motion due to the 

Lorentz force in an irregular magnetic field which is the superposition of a uniform 

field and a smaller fluctuating.  Usually, the charged particles are followed the 

magnetic field.  Therefore, there are many papers assumed that the diffusion of 

charged particles along the magnetic field related to the diffusion of field lines and 

they study the behavior of field line random walk instead.  The classic field line 

random walk theory is presented and measured by the observed power spectrum of 

field fluctuations (Jokipii, 1966; Jokipii & Parker, 1968).  There is also evidence that 

the behavior of the particle distribution can be better understood if we know the 

separation rate of the random field line and it is found that the rate of separation is 

very sensitive to the precise form of the power spectrum (Jokipii, 1973).  For better 

understanding the interplanetary magnetic field, they describe the theory of quasi-

two-dimensional turbulence in terms of a perturbation expansion (Matthaeus et al., 

1990).  After that the two-component model is used to study solar wind and 

interplanetary magnetic field (Bieber et al., 1996).  The field line random walk in two-

component model is first introduced by Matthaeus, Gray, Pontius and Bieber (1995).  

Later the theory is modified and applied for various cases including the numerical 

confirmation in order to explain the behavior of diffusion of charged particles in space 

(Ruffolo, Matthaeus & Chuychai, 2004; Chuychai, Ruffolo, Matthaeus & Meechai, 

2007; Shalchi, 2010).  However, considering only the field line random walk is not 

enough to have complete explanation about the behavior of the charged particles. 

Although the magnetic field will be interested by a lot of scientists, but it is 

not enough to describe all transport behavior of charged particles in space.  The study 

about trajectories of charged particles in interplanetary is also developed by various 

group such as the transport of charged particles are examined by direct computational 

of a large number of charged test particles trajectories, these will be subdiffusive 

transport of charged particles perpendicular to the large scale magnetic field (Qin, 

Matthaeus & Bieber, 2002).  For high accuracy, the trajectory of charged particles are 
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traced by using Runge-Kutta method to solve Newton-Lorentz equation, transform 

particles position coordinates to guiding center coordinate and transform the 

kinematic momentum from Cartesian coordinate to spherical coordinate (Achara 

Seripienlert, 2006). Moreover, the motion of charged particles in interplanetary was 

described for more understanding is drift motion of energetic particles in an 

interplanetary magnetic cloud (Watcharawuth Krittinatham, 2010).  The transport of 

the charged particles is investigated in non-axisymmetric 2D+slab turbulence by 

numerical simulations (Ruffolo, Chuychai, Wongpan, Minnie, Bieber & Matthaeus, 

2008) and compare with the nonlinear guiding center (NLGC) theory (Mathaeus, Qin, 

Bieber & Zank, 2003).  The theory is not yet fully explained the results from the 

simulations.  The improvement of theory is still needed in order to understand the 

mechanism of the motion of the charged particles.  However, there are many ways are 

waiting to prove and learn about relationship between the magnetic field and charged 

particles. 

In this study, we consider both charged particles and magnetic field lines and 

find their separation.  We focus on the effect of the initial pitch angle of charged 

particles on the separation from the magnetic field lines.  Perhaps, this work could 

help us to understand behavior of the charged particles in interplanetary space. 

1.6 Thesis outline 

The dissertation is divided into six chapters.  In chapter 1, we explain the 

scope of study, objectives, and usefulness of this work.  After that we present the 

theoretical background such as the model of turbulent magnetic field and charged 

particle motion and related diffusion theories in chapter 2.  In the next chapter, the 

methodology that we use to generate magnetic field and to analyze the data is shown 

and we describe the numerical methods to setup initial parameters of charged particles 

and magnetic field.  Furthermore, we show all results from this work in the following 

two chapters.  Chapter 4 is presented the effect of initial pitch angles to the separation 

in Gaussian 2D field+slab turbulence and the results for 2D+slab turbulence are 

shown in chapter 5.  Finally, we discuss and conclude in the last chapter.   
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1.7  Usefulness of this work 

This work provides a better understanding the effect of initial pitch angles of 

the charged particles on their separation behavior of magnetic field lines.  Moreover, 

this research can be applied to produce new idea and numerical technique in order to 

describe the problems of particles diffusion in turbulent magnetic field or phenomena 

that occur in nature, and it is useful for scientific knowledge that motivate young 

blood scientist to study astrophysics.  

 



 

 

CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Background  

The Sun consists of plasma i.e., ionized gas such as helium, hydrogen, protons 

and electrons.  These charged particles covered by magnetic field of the Sun collide 

and exchange energy all the time.  If the magnetic field of the Sun has less energy, 

these charged particles flow out from the Sun to the interplanetary space with the 

velocity about 400 km/s and drag the magnetic field of the Sun into the space as well. 

We call these charged particles as “solar wind” as shown in Figure 1.  Because the 

Sun is turned around itself and solar wind comes out from the Sun in radial direction, 

the magnetic field that comes out from the Sun has spiral shape as illustrated in Figure 

2.1.  Since the solar wind is turbulent, the interplanetary magnetic field (IMF) is also 

turbulent.  
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Source  Piyanate Chuychai (2004). 

Figure 2.1  Illustration of the structure of interplanetary magnetic field and solar 

wind. 

When the eruption of magnetic energy occurs at the surface of the Sun, it will 

suddenly released highly energetic particles to interplanetary space.  We call “solar 

flare”.  Moreover, coronal mass ejections (or CMEs) (Schindler, 2007) are huge 

bubbles of ionized gas threaded with magnetic field lines that are ejected from the Sun 

over the course of several hours, and the energetic charged particles also come out 

from the shock in front of the CME.  These high energy charged particles are called 

solar energetic particles (SEPs).  They are diffusive because they orbit around the 

turbulent magnetic field in space.  
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Usually, when the charged particles are moving in the magnetic field lines, it 

orbit around the magnetic field as helical orbit due to the Lorentz force.  The angle 

between the velocity of the charged particle and the magnetic field called pitch angle 

determine the direction and the shape of helix.  For a constant magnetic field, the 

center of trajectories of charged particles called guiding center exactly follow their 

initial magnetic field lines.  In interplanetary space, the magnetic field is turbulent. 

The charged particles initially move along their initial magnetic field lines, scatter 

back and forth, and later they deviate from the initial field lines because of the effect 

of the drift (Ruffolo et al., 2008; Chuychai, Ruffolo, Wikee & Matthaeus, 2011).  In 

this work, we are interested in the angles that release charged particles called pitch 

angles and regard to the effect of those to separation between the magnetic field lines 

and the guiding center of charged particles. 

From previous work, the charged particle transport is described by the quasi-

linear approximation and assumed irregularities that it depended only on one 

coordinate such as slab turbulence.  The charged particles are scattered back and forth 

and move along the magnetic field lines.  After that the other studies of particle 

scattering in a fully three-dimensional turbulent magnetic field system show that the 

cross-field diffusion should be occurred (Giacalone & Jokipii, 1994) which the 

reduced dimensionality to the slab field model cannot give this characteristic.  

Whenever the charged particles are in electromagnetic field with at least one 

ignorable coordinate, they are tied forever to the magnetic field (Jones, Jokipii & 

Matthaeus, 1998). Moreover, the charged particles cannot be under any circumstances 

to stray more than about a gyro-radius normal to the field line on which it started and 

it is possible that due to drift or some other mechanism.  The particle is accelerated to 

a high energy, so that its gyro-radius becomes large (Jokipii, Kota & Giacalone, 

1993).  If the charged particles released at the turbulent magnetic field with a weak 

transverse structure, subdiffusion is a long-lived state and mostly likely permanent 

state.  For magnetic turbulence with strong transverse structure, a regime of second 

diffusion is recovered for a long time (Qin et al., 2002).  Furthermore, a strong two-

dimensional field can inhibit the random walk of field lines due to a slab field 

component.  The field lines are trapped near the center of the Gaussian and rapidly 

diffuse with the slab rate only at a radial distance r .  We explain the suppression 
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of the field line diffusion inside the two-dimensional island by a quasi-linear theory 

(Chuychai, Ruffolo, Matthaeus & Rowlands, 2005).   

The numerical experiments of the charged particles in simple turbulence 

magnetic field, the charged test particles can be temporarily trapped in flux tubes and 

escape due to random turbulent perturbations in the magnetic field.  The results are 

calculated in order to relationship of the charged particles in turbulent magnetic field  

by using the average of the squared perpendicular displacement and a running 

diffusion coefficient of the particles at time.  When they are plotted in log-log scale, 

the behaviors of the charged particles at each range are divided into 4 regimes.  

Firstly, the range has slope0 but1.0, this range is called as subdiffusion regime.  

Secondly, the range has slope1.0, this range is called as diffusion regime.  Thirdly, 

the range has slope 1.0 but2.0, this range is called as supperdiffusion regime.  

Finally, the range has slope 2.0, this range is called as free streaming regime 

(Tooprakai, Chuychai, Minnie, Ruffolo, Bieber & Matthaeus, 2007).             

2.2 Two-component magnetic field model   

 Two component model or 2D+slab model was developing by the observations 

that solar wind fluctuations are concentrated at nearly parallel and nearly 

perpendicular wave numbers (Matthaeus et al., 1990).  For two-dimensional (2D) 

turbulence, the fluctuation is perpendicular to the mean field and this component is 

motivated by laboratory experiments.  The slab component is motivated by Alfvénic 

wave (Bittencourt, 2004) in solar wind.  The two-component model provides a good 

explanation of the parallel transport of SEPs (Bieber et al., 1996). 

The magnetic field turbulence in 2D+slab model which is composed of the 

mean field and fluctuations can be written as 

                                       ,x,y,zbBB )(0


                                                (2.1)  

where 0B


 is a constant mean field in z direction  and b


 is the transverse fluctuation 

perpendicular to the mean field.  The transverse fluctuation can divided into two parts 

which are slab and 2D components.  The slab component )( slabb


depends only on z 
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coordinate as shown in Figure 2.2 and the 2D component )( 2Db


depends only on the x 

and y coordinates as shown in Figure 2.3.  Therefore, we can write the fluctuation as   

                                           ).(),()( 2 zbyxbx,y,zb slabD


                                        (2.2) 

For the 2D component, we can generally write 

                                                   ,ˆ),(),(2 zyxayxb D 


                                      (2.3) 

where zaˆ  is a vector potential for the 2D component and ),( yxa can be called the 

potential function (Ruffolo, Matthaeus & Chuychai, 2003).  The total magnetic field 

for the two-component model includes the mean field, slab and 2D field, so we write 

again the total magnetic field, 

                      .ˆ)(),(ˆ)(),(ˆ),,( 22

0 yzbyxbxzbyxbzBzyxB slab

y

D

y

slab

x

D

x 


            (2.4) 

 

Source  Piyanate Chuychai (2004).   

Figure 2.2  Illustration of the slab fluctuation and the arrows demonstrate the slab     

fluctuation slabb


. 
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Source Piyanate Chuychai (2004). 

Figure 2.3  Illustration of the 2D fluctuation.  The solid arrows show the 2D  

field )( 2Db


 and dashed arrows show examples of the directions of 

).,( yxa


  For a positive potential function, the 2D field is in a counter-

clockwise direction, while a 2D field having a negative potential 

function is in the clockwise direction. 

In this work, we explore the charged particles moving in two cases of 

magnetic field.  One is the 2D+slab turbulence which both of 2D and slab fields are 

turbulent.  In this case, we will specify the power spectrum for both 2D and slab 

magnetic field as Kolmogorov spectrum (see more explanation in subsection 2.3 and 
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2.4).  Another one is a simple case which is 2D Gaussian field + slab turbulence.  For 

the simple case, we model 2D field as a Gaussian function while the slab field is 

turbulent (Chuychai et al., 2005; Tooprakai et al., 2007).  That would provide us more 

understanding about the mechanism of the motion of the charged particles when we 

vary the initial pitch angles.  The potential function for simple 2D case can be written 

as  

                                        ,
2

exp)(
2

2

0 











r
Ara                                          (2.5) 

where 0A  is the maximum value at the center of the island,   represents the half-

width of the Gaussian, and  r is measured from the center of island.  The contours of 

),( yxa  in this model are circles as shown in Figure 2.4.    

 

Figure 2.4  Illustration of the contours of Gaussian potential function and the arrows 

demonstrate the 2D field. 

From AB


 , we can write  

                                                 ,ˆ
)(

)(
2

2 


rra
rb D 


                                         (2.6) 
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where ̂  is the unit vector associated with the angular coordinate in a cylindrical 

coordinate system defined by the flux tube axis and )(2 rb D  has a maximum value at 

r .  To find the location that has an extreme value of )(2 rb D , we compute the 

derivative of the component in equation (2.6) and set it equal to zero.  Then it 

becomes     

0
)()(

2

2













rra

dr

d

dr

rdb D

. 

We substitute 









2

2

0
2

exp)(


r
Ara  into the above equation to obtain 

0
2

2
0

2

2

















 





r

erA

dr

d
 

0
2

2
0

2

2
0

2

2 2

2

2

2









rr

eAeAr
 

01
2

2

2

2
0

2

2















 reA

r

.                                              (2.7) 

After that  

01
2

2












r
 

22 r  so r . 

We found that the )(2 rb D  have a maximum or minimum value at r , thus we find 

the derivative of equation (2.7) again:  

0
2

22

2

2
2

2
0

24

2
0

4

2
0

2

2

2

2

2

2

2

2
















 








rrr

eArerAeAr
r  

0
3

4

2
0

6

2
0

3 2

2

2

2









rr

erAeAr
,                                       (2.8) 

and we substitute r  into equation (2.8), 
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  0
3

4

2
0

6

2
0

3 2

2

2

2











 







eAeA
 

0
3

3

2

1

0

3

2

1

0 





eAeA
 

0
2

3

2

1

0 





eA
.                                                     (2.9) 

From equation (2.9), we know that the )(2 rb D  have a maximum value at r . 

2.3 Characteristics of turbulence and its power spectrum 

Turbulence is phenomena that it can occur in nature and we can see that such 

as the cloud in the sky, smoke from the car, as well as the plasma in the space.  The 

turbulence is one type of fluid flow.  The important for characteristic of turbulence is 

random walk and diffusivity, so we cannot predict the direction of turbulent flow. 

One important characteristic of turbulence is the shape of power spectrum in 

inertial range could obey Kolmogorov spectrum.  The theory about this comes from 

the largest scales to smallest scales in the turbulent flow.  The first introduced by 

Richardson (1922).  This idea of Richardson has been again considered and greatly 

developed by Kolmogorov (1941).  In the important hypothesis for turbulence given 

by Kolmogorov is that in every turbulent flow the statistics of the motion of scale   

in the range called "inertial range",  0  where 0  is a typical length scale of 

the large eddies and   is Kolmogorov microscale, have a universal form, which can 

be determined by the rate of energy transfer per unit mass )( .  We consider the 

spectrum in the inertial range.  We can write the average of energy per unit mass by 

,)(
0

2



dkkSu                                                      (2.10) 

where )(kS  is the wave number spectrum and k is the wave number.  Therefore, the 

power spectrum of turbulence flow is mention as "Kolmogorov spectrum" 

(Kolmogorov, 1941).  From dimensional analysis, it is found that in the inertial range 
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                                                  .)( 3/53/2  kkS                                                     (2.11) 

Then the shape of the spectrum of turbulence looks like Figure 2.5.  This is usually 

called Kolmogorov's  
3/5k  law which this theory is confirmed by many observations 

in the nature such as in ocean and solar wind observations (Grant, Stewart & Moilliet, 

1962; Tu & Marsch, 1995).  In our research, since the interplanetary magnetic field is 

frozen in the solar wind, the magnetic field also has the characteristic of turbulence 

(Goldstein, Roberts & Matthaeus, 1995).     

 

Source  Piyanate Chuychai (2004). 

Figure 2.5  The spectrum of turbulence from Kolmogorov’s theory. 
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2.4 Correlation functions and power spectrum 

To describe the random field of the magnetic field turbulence, in our model we 

set that 0b


,where  denotes the ensemble average, but it is not enough 

information to describe the random field.  Thus we use statistical quantity tell spatial 

structure that is the “two-point correlation” or “correlation function” (Piyanate 

Chuychai, 2004).  It is defined by 

                                           ,)()(),( rxbxbrxR jiij


                                  (2.12) 

where  i and  j are x, y and z components.  

The correlation function tells us how the magnetic field at two different points 

is correlated.  That is if we obtain a high value from the correlation function, it shows 

that these two points are still in the same direction while a low value or nearly zero of 

the correlation shows a little or no relation.  

Another quantities tell us about the relationship between the correlation 

function and power spectrum are the length scales in slab and 2D turbulence.  We first 

evaluate the slab correlation length c , defined by 

                                    
)0(

)(
0






zR

dzzR

slab

xx

slab

xx

c .                                                   (2.13) 

Thus model for the magnetic field turbulence be written as  

                                         ).(),(),,( 2 zbyxbzyxb slabD


                                      (2.14) 

Normally, the power spectrum is the Fourier transform of the correlation 

function.  For example, the power spectrum for slab field can be written as  

                 



 .)exp()(

2

1
)( dzzikzRkP z

slab

xxz

slab

xx


                             (2.15) 

Since we consider the magnetic field that is turbulent which the shape power 

spectrum in inertial range should be Kolmogorov spectrum.  Therefore, in numerical 

simulation, we model the shape of power spectrum as 

                              
  652

1

)(1
)(

zz

z

slab

xx

k

C
kP


 ,                                    (2.16) 
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where 1C  is constant that can be calculated if we know the turbulence energy, zk  is 

magnitude of the wave vector and z  is the coherence length which is associated with 

zzk /10  .  This function gives us the shape of -5/3 power law in inertial range.  For 

2D turbulence, we instead specify power spectrum ),( yx kkA , which is the Fourier 

transform of auto correlation ),()0,0( yxaa , we can see that the shape of the 

spectrum affects the contour plot of the 2D potential function from Figure 2.6, and it 

can be written as  

                                    
  3/72

2

)(1
)(








k

C
kA ,                                          (2.17) 

 ,ˆ),(2 zyxab D 


                                              (2.18) 

 where 22

yx kkk  , 2C is normalization constant,   is characteristic scale length 

(Piyanate Chuychai, 2004).  From equation (2.18), we can derive that the magnetic 

power spectrum for 2D component )( 2D

iiP is related to ),,( yx kkA as  

                                    ),(),( 22

yxyyx

D

xx kkAkkkP                                             (2.19) 

                                   ).,(),( 22

yxxyx

D

yy kkAkkkP                                            (2.20) 

Therefore, we have 

                                  
  3/72

2

2

2

)(1
),(




k

Ck
kkP

y

yx

D

xx                                        (2.21) 

                                   
  3/72

2

2

2

)(1
),(




k

Ck
kkP x

yx

D

yy                                        (2.22) 
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Source  Piyanate Chuychai (2004).  

Figure 2.6  Relationship between the autocorrelation ),( yx kkA and the potential 

function ),( yxa .  The scales of the ),( yx kkA  plot indicate the number 

of modes in ),( yx kk  space and the contour plots of ),( yxa  in the right 

panel are only small pieces cut from the large simulation area. 

2.5 Charged particles in uniform magnetic field 

 For the charged particle q and mass m, moving with velocity ( v


) a magnetic 

field )(B


, without electric field )(E


, we can write motion equation by Newton’s 

Lorentz force :)( BF  

                                        Bvq
dt

vd
mFB




 .                                      (2.23) 

For our work, we a bit adapt equation (2.23) for simulation (Tooprakai et al., 2007),    

                                         ),( Bv
td

vd 






                                          (2.24)  

where )/()( 000 mqB    and the quantities ,, Bv

  and t   are normalized 

quantities which have units as scale to the speed of light (c), the mean magnetic field 
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)( 0B , the time scale c/0   , respectively.  Note that z  which is the slab 

turbulence coherence length.  

 

Figure 2.7  The right-hand rule for determining the direction of magnetic force  BF .  

(a)If q is positive and (b) if q is negative. 

The direction of force is determined by the right-hand rule (see Figure 2.7).  

Usually, the velocity can be separated into two components as shown in Figure 2.8, 

with components parallel )( //v


 and perpendicular )( v


to the magnetic field, 

                                     .//  vvv


                                           (2.25) 
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Figure 2.8  Showing component parallel )( //v


 and perpendicular )( v


of the velocity  

of charged particle in the magnetic field. 

If the charged particle has velocity in component parallel )( //v


and is equal to 

zero )0( // v


the trajectory of the charged particle is a circular around the guiding 

center (GC) in the magnetic field B


 with the constant speed )( v  as illustrated in 

Figure 2.9.  If the charged particle has velocity in component parallel is not zero 

)0( // v


 and also component perpendicular, the trajectory of charged particle will be 

a helix or spiral around guiding center in the magnetic field, such as Figure 2.10. 
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Figure 2.9  The motion of positive charged particle in a uniform magnetic field (when 

0// v


). 

 

Figure 2.10  Showing the example of a trajectory of positive charged particle to the 

direction of magnetic field (when 0and// vv


). 
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2.6 Guiding center 

 When the charged particle moves in a magnetic field, it will spiral around a 

magnetic field line due to the magnetic force acts as a centrifugal force with 

gyrofrequency  .  Thus the center of particles orbit is called the “guiding center”.  

From Figure 2.11, determine ,r


 GCr


 and 


 as the particles vector position, guiding 

center’s vector position and gyration vector.  The equation for these three vectors is 

defined as 

                                                    .


 rrGC                                             (2.26) 

 

Figure 2.11  Illustration of a particle orbit, magnetic field line and guiding center. 

 If we consider centrifugal force of magnetic field to charged particle and 

Newton’s Lorentz force, the equation of the relation between these two forces is  
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mc FF


  

  Bvq
mv 








ˆ

2

,                                              (2.27) 

where v  and rest mass of proton m , it be written as 

Bvqm


 ˆ2 ,                                            (2.28) 

where )/( mBq    is gyrofrequency and vmP


 is the momentum of the particle. 

Thus we have 

2
ˆ

qB

BP



   or                                               (2.29) 

 
2

ˆ
qB

PB



 .                                                  (2.30) 

The radius of gyration is )/( Bqmv , when v is the velocity of charged particle 

perpendicular to the magnetic field.   

2.7 Pitch angles 

The angle between the magnetic field B


 and the direction of the charged 

particle velocity v


 is called the pitch angle   (Bittencourt, 2004) as shown in Figure 

2.8.  Since the velocity in parallel component to magnetic field is cos// vv   and the 

velocity in perpendicular component to magnetic field is sinvv  , the pitch angle 

is given by 

                                   .tan
//

1









 

v

v
                                                 (2.31) 

Figure 2.12 presents the examples of trajectories of the particles in different pitch 

angles. 
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Figure 2.12  The example of trajectory of charged particle at each pitch angle. 

Moreover, if the pitch angle is angle between charged particle and magnetic 

field, it written as   

.cosvBvB


                                                 (2.32) 

Then we define  cos , the equation becomes  

.vBvB


                                                   (2.33) 

The cosine of the pitch angle or   is important for this work and see the next chapter 

for more detail.   

2.8 Charged particles in non-uniform magnetic field 

 When the charged particle moves in constant magnetic field, we can 

analytically calculate trajectory of it and also find the radius of trajectory of charged 

particle by using Larmor radius method.  In our work, the magnetic field in 

interplanetary space is turbulent and it is difficult to solve and obtain the analytic 

solution of charged particle motion.  Thus, to analyze the charged particle motion in 

non-uniform magnetic field, we can approximate the trajectories of charged particles 
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in magnetic field by numerically solving Newton Lorentz equation and then find 

guiding center of them.  The guiding center is a great utility for studying the 

separation of charged particles and their corresponding magnetic field line.  So it is 

easy to study the separation between trajectory of charged particles and guiding 

center, if we focus on the guiding center motion.  We found that it drifts across 

magnetic field line due to the gradient drift and curvature drifts.  

 If the motion of the guiding center is perpendicular to a magnetic field line, it 

is called drift motion.  From Figure 2.11, define r


, GCr


, and 


 as the particle’s vector 

position, guiding center’s vector position, and gyration vector respectively.  Then the 

velocity of the guiding center ( GCv


) can be calculated by differentiating equation 

(2.26), 

dt

d

dt

rd

dt

rd GC
GC





v .                                        (2.34) 

 If there is an additional, non magnetic force addF


 acting on them, then the 

equation of motion should be   

addBvq
dt

Pd
F    




 .                                        (2.35) 

If 
dt

r


d
is the particle velocity ( v


), the formula for the guiding center velocity is  

  











 


2GCv
qB

BP

dt

d

dt

rd



 

 B
dt

Pd

qB
v







2GC

1
v .                                          (2.36) 

Replace 
dt

Pd


 from equation (2.35) into equation (2.36), we obtain 

,)F(
1

v
2GC BBvq

qB
v add


                                    (2.37) 

and substitute 2)( BvBBv 


and BBvvv ///


  in equation (2.37), the equation 

of the guiding center velocity is 

.
F

v
2//GC

qB

B

B

B
v add


 

                                            (2.38) 
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The upper equation shows that the additional force results in a drift velocity 

perpendicular to the magnetic field.  Thus if the charged particle travels in a uniform 

magnetic field, it does not has an additional force, the guiding center will move 

parallel to the magnetic field along with the parallel component of the particle 

velocity.    

        However, the magnetic field in interplanetary space is not uniform.  Since the 

characteristic of magnetic field lines are curvature and gradient, these give more 

effect to the drift motion of the guiding center and it will be explained in next 

subsection.    

2.8.1 Gradient drift 

When the charged particle gyrates around a magnetic field line and the 

position of the guiding center of charged particle is at its magnetic field line for 

uniform magnetic field.  The positive charges spiral in the clockwise direction when 

magnetic field line pointing toward the observer while the electrons spiral in the 

counterclockwise direction, as shown in Figure 2.13.  When the particle is in non-

uniform magnetic field, it experiences the difference of intensity magnetic field.  For 

the stronger magnetic field, the radius of particle’s trajectory is small, while the 

weaker field gives a larger radius.  Due to the change of magnetic field intensity, the 

guiding center of the charged particle drifts from their magnetic field line which we 

call “gradient drift” )v( G


.  Moreover, it is perpendicular to B


 and to the magnetic 

field gradient ( B ) and its direction depends on the charged sign.   
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Source  Bittencourt (2004). 

Figure 2.13  Charged particle drift due to magnetic field gradient. 

 Consider the magnetic field intensity at the particle’s position can be expanded 

by using a Taylor expansion, to find the equation of the gradient drift, 

...,)()( 0  BBrB


                                      (2.39) 

where 0B


is the magnetic field at the guiding center and 


 is gyration vector or the 

Larmor vector from the guiding center to the position of the particle.  From Newton’s 

Lorentz force will be ...)(( 0  BBvq


 ), we will consider the first order term 

B


)(  , there is additional force that corresponds to the term Bvq


)(   .  

Because Larmor vector is rotating, so the force is not constant, the additional force is 

considered by using average over a gyration orbit, 

 BvqFadd


)( .                                         (2.40) 

In general term, it be written as 

  B
qv

F
c

add


 

2

2

,                                            (2.41) 
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the relativistic gyrofrequency is )/( mqBc   (Watcharawuth Krittinatham, 2010).  

Thus the drift velocity of guiding center due to the gradient of the magnetic field is     

2

2

G
2

v
B

BBv

c


 

 


.                                         (2.42) 

2.8.2 Curvature drift 

In the interplanetary space, the magnetic field lines have both gradient and 

curvature.  When a charged particles spiral around the magnetic field line, they will 

move along the field line with a constant angular velocity (  vc  ), the guiding 

center have a centrifugal acceleration due to the field curvature as 22

// / cc RRv


, where cR  

is the field line’s radius of curvature, as shown in Figure 2.14.  Due to the curvature of 

magnetic field, the moving charged particle has acceleration relate to the field line 

curvature, so equation of motion is     

22

// / cccurv RRmvF


 .                                        (2.43) 

This can be applied from an effective electric field, and it can be rewritten as 

2

2

//

c

c
eff

R

R

q

mv
E




 .                                          (2.44) 

In uniform electric and magnetic fields, the charged particle will experience an 

electric force effEq


, so the drift velocity is  

2B

BE
v

eff

E


 
 .                                           (2.45) 

If we combine the effect of the effective electric field and the magnetic field and 

substitute equation (2.44) into equation (2.45), finally, we obtained the curvature drift 

cv


 as 

22

2

//

c

c
c

R

BR

qB

mv
v


 
 .                                         (2.46) 

For relativistic particles, 

.
22

2

//

c

c
c

R

BR

qB

mv
v


 



                                        (2.47) 
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Source  Watcharawuth Krittinatham (2010). 

Figure 2.14  Illustration of direction of the particle guiding center drift velocity Cv


 

and Gv


due to the curvature and gradient of the magnetic field line.  



CHAPTER 3  

METHODOLOGY 

 We generate magnetic field, which is static and homogeneous by using 

2D+slab model of magnetic field turbulence.  To study the separation between 

magnetic field line and charged particle trajectories, we simulate magnetic field lines  

corresponding to the initial guiding centers of the charged particles by numerically  

solving field line equation while the trajectories of particles is traced by solving 

equation of motion.  The initial data and parameters are setup and various cases of 

pitch angles are defined in order to see the effect of angles to the separation.  After 

that the data are collected and analyzed by using new statistical approach. 

3.1 Generation of magnetic field 

The magnetic field in interplanetary is turbulence, thus we will simulate 

magnetic field that is turbulent by setting up magnetic field parameters and specify 

power spectrum. 

In our simulations, we generate the magnetic field in the simulation box.  We 

need to consider the effects of the simulation box, representations of turbulent field, 

and suitable length scale for simulated field lines.  The magnetic field is generated in 

wave number space (k-space) before conversion to real space.  We instead define the 

power spectrum as a function in k-space, which is the Fourier transform of the 

magnetic correlation function.  
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                                         )()0()( rbbrR jiij


 .                                            (3.1) 

The spectrum that we usually use for the magnetic turbulence is a Komolgorov 

spectrum over a wide range of wave numbers.  The magnetic fluctuation in 

),,(and),,( zyxbzyxb yx are composed of slab and 2D turbulence as in equation 

(2.4). Because the slab turbulence depends only on z and the 2D turbulence depends 

on x and y positions, we separately generate them in zk  and ),( yx kk  spaces, 

respectively.  After that, the magnetic field in Fourier space is converted to position 

space by using an inverse fast Fourier transform as illustrated in Figure 3.1.  

 

Figure 3.1  Generation of slab magnetic field. 

For slab turbulence field, we set the power spectrum for simulation as 

         
  6/52)(1

)()(

zz

slab

z

slab

yyz

slab

xx

k

C
kPkP


 ,                       (3.2) 

where 
slabC  is a normalization constant that depends on the slab energy and z is the 

parallel coherence length.  The function of the slab spectrum, it can written in zk  

space are 
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 )(exp)()( zxz

slab

xxz

slab

x kikPkb                              (3.3) 

 )(exp)()( zyz

slab

yyz

slab

y kikPkb  ,                           (3.4) 

where zk  is a discrete number which is zz Ljk /2 , for 12/,...,3,2,1  zNj , 

i  is a random phase number.  Equations (3.3) and (3.4) are used only for zk >0.  For 

slab turbulence, we use only one representation but we random by start initial 

positions along z in a large simulation box and trace the field lines or particles only 

less than 10% of the box size.    

For 2D turbulence field, we determine the power spectrum for simulation as  

),(),( 22

yxyyx

D

xx kkAkkkP                                      (3.5) 

),(),( 22

yxxyx

D

yy kkAkkkP  ,                                    (3.6) 

where )2/(),(),(
2

VkkakkA yxyx  , V  is the total volume and we specify the 

power spectrum instead of the correlation function.  Thus the power spectra of the 2D 

turbulence can written in terms of  ),( yx kkA  space as  

 ),(exp)(),(2

yxyyx

D

x kkikAikkkb                    (3.7) 

 ),(exp)(),(2

yxxyx

D

y kkikAikkkb  ,                   (3.8) 

when the Fourier transform of the autocorrelation function of the vector potential as 

  3/72

2
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k

C
kA

D

,  
DC2

 is a normalization constant,   is perpendicular 

coherence lengths, 
22

yx kkk  , ),( yx kk  is a random phase and yx kk ,  are 

discrete numbers.  For 2D turbulence, we change representation of the magnetic field 

every 10 particles.         

We obtain the magnitude of the magnetic field at any grid point from the 

simulations as in Figure 3.2.  To obtain the magnetic field at any location, we use the 

linear interpolation for slab turbulence and bi-linear interpolation for 2D turbulence 

from the nearby grid points (see Appendix A for more detail). 
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Figure 3.2  The positions of the magnetic field obtained at each grid point. 

3.2 Particle simulations 

We choose protons as the charged particles in this work.  They are released 

from initial random positions and different pitch angles (see Figure 3.3).  The particle 

positions are initially random (x,y,z) positions for the ensemble average statistics of 

perpendicular displacement. 
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Figure 3.3  The sketch of the positions of releasing the charged particles. 

We can find trajectories of the charged particles, when we know the equation 

of motion of the charged particles.  In this work, we use Newton’s Lorentz force 

equation to find positions of the charged particles by using fourth-order Runge-Kutta 

method with adaptive time stepping regulated by a fifth-order error estimate step 

(Press, Teukolsky, Vetterling &  Flannery, 1992; Dalena, Chuychai, Mace, Greco, 

Qin & Matthaeus, 2012).  From equation (2.24) of motion we can imply it to be 

 )( yzzy
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
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                                         (3.9)  
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where )/()( 00 mqB   ,  00 /,/,/ ttBBBcvv 


and 2

2

1/1
c

v
  

(Tooprakai et al., 2007). 

3.3 Field line simulation  

When we know the value of the magnetic field at each grid point, we can trace 

the magnetic field line that is tangent everywhere to the magnetic field )(B


.  The 

differential equation of the magnetic field line is  

                                  .0Bld


                                                         (3.15)   

In Cartesian coordinates, ld


 is ),,( dzdydx and )(B


is ),,( zyx BBB .  From equation 

(3.15), it can be written as 

                                             .
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B
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B
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                                                      (3.16)  

In our model, we use ybxbzBB yx
ˆˆˆ

0 


 so we obtain  
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Finally, we can write the differential equation for the magnetic field line as 
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After that the differential equation of the magnetic field line is solved by using fourth-

order Runge Kutta method with adaptive step size as same as we use in particle 

simulation to find positions of the magnetic field lines FLFLFL zyx ,,  as shown in 

Figure 3.4. 
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Figure 3.4  Showing the example of trajectory of the magnetic field line. 

 

3.4 Pitch angle setup    

 The pitch angle is angle between magnetic vector and velocity vector.  For 

setting initial pitch angles we use two methods to generate the initial pitch angle. 

 3.4.1 Setting ranges for initial pitch angle 

 For some case, we set ranges for initial pitch angle as 0-30 degrees, 30-60 

degrees and 60-90 degrees.  When the positions and velocity of the charged particles 

are set in simulation box by using random method, we can compute the magnetic field 

at any position.  Then the initial pitch angles are computed by using equation (2.32), 
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we choose the positions and velocity of the charged particles to have initial pitch 

angle follow our ranges condition.  

          

 3.4.2 Fix initial pitch angle               

We want to set a velocity vector with the desired pitch angle.  After the 

positions of the charged particles are set in simulation box by using random position, 

we compute the magnetic field at any position of the charged particles, we convert the 

magnetic field vector from Cartesian coordinate to Spherical coordinate as shown in 

Figure 3.5.  

 

Figure 3.5  Illustration the change of magnetic field vector from Cartesian coordinate 

to Spherical coordinate at each position. 
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Figure 3.6  Illustration of setting a velocity vector. 

Next, we add initial pitch angle such as 0, 30, 60 and 90 degrees at   component and 

after that we convert magnetic field vector from Spherical coordinate to Cartesian 

coordinate again as shown in Figure 3.6.  When we obtained new magnetic field 

vector )( newB


, it is changed to be velocity vector by using the equation 

v
B

v
B

new

new





 ,                                            (3.20) 

where vector v


 now make pitch angles witch B


 as we want and v


 corresponds to 

the particle energy.   

To make the general method, we rotate velocity vector by method random   

angle from 0-360 degrees around the magnetic field )(B


.  From the Figure 3.7 and 

Figure 3.8, let v


 to be a rotating vector and OQv


.  It can be written as  

RQNRONOQ  ,                                        (3.21) 

when )ˆ(ˆON vnn

 , cos)]ˆ(ˆ[NR vnnv


  and sin)ˆ(RQ nv


.  Thus the 

equation (3.21) it become to be  
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if we instead unit vector )ˆ(n in term magnetic field )(B


, the formula as 
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Figure 3.7  Illustration of  rotating of a new velocity vector ( v


) by method random 

  angle around the magnetic field. 
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Figure 3.8  The cross section from rotation of velocity vector around the magnetic 

field. 

The equation (3.23) is corrected if NPˆ nv


, when sinˆˆ nvnv


 , 1ˆ n (see 

Appendix B).  Finally, we obtained velocity vector )(v


and magnetic field vector 

)(B


in the same direction and there are initial pitch angles which are follow the setting 

conditions.   

3.5 Parameter setup 

This subsection shows the parameters and initial condition for the magnetic 

field and the charged particles that we use in the simulations.  

 3.5.1 Magnetic field setup 

  We set these following parameters for the magnetic field. 
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1. 0B = 5 nT 

2. z  = 0.02 AU = 9103 m  

3. 1.0  

4. seconds10/0  c  

5. The ratio of Gaussian 2D and slab magnetic energy in simple case as 

20)/( 2max

2 slabD bb  . 

6. The ratio of 2D and slab magnetic energy in (2D+Slab) turbulence case 

as 4)/( 2

2 slabD bb  .  

3.5.2 Initial setup for charged particles 

3.5.2.1 Particle energy 

We perform of particle energies as 100 MeV by specifying the magnitude 

of particle velocities. 

3.5.2.2 Positions of protons. 

1. The positions are set randomly in simulation box for 2D+slab 

turbulence cases. 

2. For a simple case, Gaussian 2D field + slab turbulence, x and y will 

be randomly on a given contour of potential function and,7.0,5.0,3.0,1.0( 0 r  

)9.0   while z is random in simulation box.   

3.5.3 Simulation box setup         

The box length and the number of grid points are                                                                

1.  000,100and100  zyx LLL . 

2. 304,194,42and4096 22  zyx NNN .  

3.6 Procedure of simulations 

3.6.1 The charged particles are released at initial positions and velocities in the 

magnetic field that we model with the parameter setup as we describe in above 
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sections.  After that the program will compute trajectories of charged particles and 

their velocities by solving Newton Lorentz-force in equation (2.23) and then compute 

of the radius of curvature ( 


) of charged particles for all trajectories from  

                                    ,
2qB

pB


 
                                                (3.24) 

where vmp


0  is the particle momentum.  Next we find guiding centers from the 

radius of curvature of the particle orbits from 


 rrGC  (Chuychai et al., 2011, see 

also in Figure 3.9).  

 

Figure 3.9  Showing radius of curvature, particle position and guiding center position. 

3.6.2 In the case that the charged particles are released at all directions by 

using random method, so we do not know pitch angles between the charged particles 

and magnetic field lines.  Thus we will find pitch angle )(  before to analyze data by 

using equation (2.32) it can written as   
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3.6.3 We bring the initial guiding center of each charged particle to be the 

initial position of magnetic field line.  We find solution of magnetic field line by 

solving magnetic field line equation.  The output will be the position 

FLFL yx , and FLz of the field line trajectories that correspond to the initial guiding 

center of particles. 

 3.6.4 We analyze position of magnetic field lines and guiding centers of 

charged particles by finding the separation of magnetic field lines and guiding centers 

of charged particles at anytime for various cases of the pitch angles. 

3.7 Data analysis 

3.7.1 From data the pitch angle will divided into several cases before calculate 

separation of guiding centers and magnetic field lines such as 

1. The cases that we set pitch angles range as 0-30 degree, 30-60 degree 

and 60-90 degree in simple 2D field+slab turbulence and 2D+slab turbulence. 

2. The cases that we fix initial pitch angles as 0, 30, 60 and 90 degrees in 

simple 2D field+slab turbulence and 2D+slab turbulence. 

3. The cases that we set pitch angle range as 0-90 degree in simple 

(2D+Slab) turbulence. 

 3.7.2 From the positions of magnetic field lines, which come from initial of 

the guiding centers of each charged particle, we can plot the samples of the picture 

between trajectories of magnetic field lines and guiding centers of charged particles 

similar as in the diagram.  We show in Figure 3.10 from the output of simulations.     
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Figure 3.10  The diagram of separation between the guiding center and magnetic field 

line.   

3.7.3 We calculate the mean squared displacement perpendicular to the mean 

field between guiding centers of charged particles )( GCx  and their corresponding 

magnetic field lines )( FLx  at anytime (Chuychai et al., 2011).  

                               ,)()(
2

tzxtx FLGC                                    (3.26) 

where )(tz  is the z-coordinate of the particle guiding center at time t. 

3.7.4 We find the theories or principles that can explain the results about the 

effects of pitch angles on the separation between charged particles and magnetic field 

lines. 
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3.8 Research tools 

 3.8.1 The high performance of computer processing (parallel connected) has 

been used in this work, because it computes quickly and has high efficiency. 

3.8.2 We use Streamline program which is first developed by Prof. William H. 

Matthaeus’s group at the University of Delaware.  This program is modified and used 

in our research.  The program is written in C and FORTRAN languages.  It is used to 

simulate the model of magnetic field and compute the trajectories of charged particles 

and magnetic field lines.  The program is run on Linux operating system (Dalena et 

al., 2012). 

3.8.3 When we obtain the output from Streamline program the data is analyzed 

by using serial code written in FORTRAN or C languages in order to see the statistics 

of the separation. 

3.8.4 We use IDL to plot the graphs of magnetic field lines and trajectories of 

charged particles, and statistics of the charged particle separation from their magnetic 

field line and trajectories of charged particles.     

 

 



 

 

 

CHAPTER 4 

RESULTS FOR THE CHARGED PARTICLES IN 

SIMPLE 2D FIELD+SLAB TURBULENCE 

In this chapter, we present the results of the effect of initial released radii and 

initial pitch angles to the separation when the particles are in Gaussian 2D field plus 

slab turbulence.  

4.1 The effect of initial released position to the separation  

The 1000 charged particles are released at random initial pitch angles from 0 

to 180 degrees by using the method in section 3.2 and on various distances from the 

center of the 2D Gaussian island ( 0r ) as 0.1, 0.3, 0.5, 0.7 and 0.9.  For 

Gaussian function of potential function, we give the width of the Gaussian   as 

5.0 .  We define max

2 0/ 1.0Db B   and  
2

max

2 / 20D slabb b   that means the 2D flux tube 

is very strong compared with slab turbulence.  The test particles are designed to 

represent protons that have energy 100 MeV.  In our simulations, all units of lengths 

are scaled with  and the unit of the time is scaled by /c.   
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Results & discussion  

The Figure 4.1 shows the example of the trajectory of the test charged particle 

and magnetic field line.  In our work, the simulation results for 1,000 particles show 

that the separation behaviors between the charged particles and the corresponding 

field lines can be divided into several regimes as we can see in Figure 4.2.  We can 

explain the mechanism of separation in each regime by relating to the structure of the 

2D Gaussian and slab turbulent magnetic field. 

 

Figure 4.1  Example of the trajectory of a charged particle in our model; red line 

demonstrates trajectory of magnetic field line, black line and blue line 

demonstrate trajectories of charged particle and its guiding centers, 

respectively. 
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Figure 4.2  The results of the separation of charged particles and their corresponding 

field lines in the log-log scale. 

I. At the initial times (when / 1tc   ) 

We found that the separation of the charged particles in initial time which are 

started at the radius of 0.1 is highest one following by the ones started at 0.3 and 

0.5, respectively.  For the particles started at 0.7 and 0.9, the separations are very 

close to each other and lower than the particles started r0=0.5.  It seems that the 

separation of charged particles during this time depend on the structure of 2D field 

which has radius of curvature of the magnetic field and the gradient of magnetic field.   

The positions of 0.1 from center of Gaussian function have the lower radius of 
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curvature of the magnetic field lines than the radii as 0.3, 0.5, 0.7 and 0.9.  The 

curvature is larger when the distance is far from the center.  For the gradient of 

magnetic field, we can see from the profile of the intensity of 2D Gaussian flux can be 

seen in Figure 4.3.  The gradient depends on the radius from the center of Gaussian 

2D field.  The maximum of 2D magnetic field is at the width of Gaussian function 

( ) and the decrease when the radius towards to the center as well as when they go 

outside.  Next, we compute the effect of curvature and gradient drifts due to 2D 

Gaussian field in order to explain the results during the beginning time.  From 

equation (2.42) and (2.47), we plugin the Gaussian 2D magnetic field and compute 

the drift velocity.  Then we can find that the magnitude of drift velocity of the guiding 

center due to the gradient and the curvature drift of the magnetic field are  
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Then when we consider both effects, the equation for these is 
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After that, we insert all magnetic field parameters in our simulation into equations 

(4.1), (4.2), and (4.3) and make a map to see the effect of the drift for each radius 

from the center of Gaussian.  We found that they give the shapes of drift speed like 

Figure 4.4.  From the drift speed profile, we can see that the curvature drift has more 

effect than the gradient drift and it is dominated at the small radius from the center of 

the Gaussian function.  When we combine these two effects as in equation (4.3), the 

particles started near the center of the Gaussian have more drift speed due to 2D field.  

That is why we can see the charged particles have high separation of the charged 

particles when they are released at the small radius as shown in Figure 4.2.  Moreover, 

from the profile in Figure 4.4, the effect of the drift for the particles started at 0.7 

and 0.9 is slightly different which we can also see this effect in Figure 4.2.            
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Figure 4.3  The profile of the 2D Gaussian magnetic field along the distance from the 

center of the flux tube. 
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Figure 4.4  Showing shape of drift speed of guiding center due to the gradient of the 

magnetic field, radius of curvature of the magnetic field line and the 

summation of the gradient drift and curvature drift in arbitrary units.   

II. At intermediate time (when 100/1  tc ) 

In this regime, the charged particles follow their corresponding field lines for a 

while and start to escape from the influence of the 2D flux tube.  There are interesting 

features in this regime.  The particles started deeper inside the 2D island have lower 

separation during this time and the particles started outside 2D island have almost the 

same slope of the separation.  The particles start at  3.0and1.00 r , at inside 2D 

islands, have lower separation rate than the others as shown in Figure 4.5a).  Here, we 

can recognize the separation rate by the slope of the graph.  The particles started deep 
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inside the 2D island slowly drift out from the field lines because both field lines and 

the charged particles are trapped inside 2D island.  For the behaviors of the particles 

released outside the 2D island such as at 0r   0.5, 0.7 and 0.9, they have almost 

the same separation rate and there is more the separation rate than the particles started 

at inside 2D island as shown in Figure 4.5b).  That is because these particles quickly 

move outside and are not trapped due to the strong 2D field.  This corresponds with 

the suppression of field line and particle diffusion when there is a strong 2D magnetic 

field as found in previous work (Chuychai et al., 2005, 2007; Tooprakai et al., 2007).  

 

a)                                                                 b)      

Figure 4.5  Showing the separation of the charged particles at a) inside the 2D island 

and b) outside the 2D island. 

III. At final time (when 100/ tc ) 

From the final range in Figure 4.6, we can see that the charged particles 

released at radius as 0.1, 0.3 and 0.5 separate faster than the other radii.  It seems 

the separation is related to the radius of releasing the charged particles.  If the charged 

particles are released inside the center of Gaussian function, they separate from their 

initial field lines more than the other positions.  In this range, the transition of the 

charged particles and their corresponding magnetic field lines are uncorrelated.  Note 



 

53 

 

that the corresponding length scale of the uncorrelation between particles and field 

lines is in the order of coherence length scale () which, within this length scale, the 

slab field are still correlated.  The charged particles are mainly influenced by slab 

turbulence and undergo subdiffusive as we can see from the slope = 0.5 in Figure 4.2.  

We normally find subdiffusive process when charged particles transport in pure slab 

magnetic field (Tooprakai et al., 2007).   

 

Figure 4.6  The mean squared perpendicular displacement and time in the final range. 
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Conclusion 

From the results, the separation of the charged particles are related with the 

distance from the center of the Gaussian flux tube 0( )r  and where they experience the 

different structure of the magnetic field.  When the charged particles are released at 

low curvature of the magnetic field line, the separation is more than the others at the 

initial times.  In our results, we show that the separation at the beginning depend on 

the gradient and curvature drift due to the 2D field.  Then, in intermediate time, they 

slowly drift to outside the 2D flux tube.  The sharp gradient of 2D field can be distinct 

behavior of the particles inside and outside the island in this regime.  It corresponds 

with the suppressed diffusive regime in the previous work (Chuychai et al., 2007; 

Tooprakai et al., 2007).  In addition, for final time the separation of the charged 

particles is uncorrected with the starting point to release the charged particles.  The 

separation of the charged particles depends on distance from the center of the 

Gaussian function and becomes subdiffusive, the charged particles are released at 

outside of 2D Gaussian field ( 0r 0.7 and 0.9), the separation is lower than the 

others radius.  Finally, this work can help us to understand more about the relation of 

the separation between guiding centers of charged particles and magnetic field lines.  

In the next section, we will study more about theory and simulations in order to 

describe the mechanism or characteristic of the separation including the effect of pitch 

angle between charged particles and magnetic field lines.   

4.2 The effect of fixed initial pitch angles to the separation 

Here, instead of randomly generating the initial pitch angle over 0 to 180 

degrees which consists of many value of pitch angles, we release the pitch angle at 

fixed value by using the method we show in the section 3.4, the 1000 charged 

particles are fixed initial pitch angles as 0, 30, 60 and 90 degrees, and released in 

every radius by using random positions.  Moreover, we use the same condition of 

magnetic field and particle energy as in section 4.1 for studying the effect of initial 

pitch angle to the separation of charged particles.   
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a)                                                       b) 

Figure 4.7  Example of the trajectories of a charged particles are released at radius as 

0.1  when the initial pitch angle as a) 0 degree and b) 90 degrees; the red 

line demonstrates trajectory of magnetic field line, the black line and the 

blue line demonstrate trajectories of charged particle and its guiding 

centers, respectively. 

Results & discussion  

In this section, we increase the condition to the experiment by using method 

which can specify the value of the initial pitch angle for the charged particles.  This 

method gives us more understand about the effect of initial pitch angles to the 

separation.  Figure 4.7 shows the examples of trajectories of magnetic field lines and 

particles with the guiding center when they are released at different of the pitch angles 

in the pure 2D Gaussian field.  Here we can see the particle started at 0 degree drift 

faster than the one started at 90 degrees.  When we have the simple 2D field + slab 

field and release the particles with various pitch angles, we found that the separation 

of the charged particles are released at every radius is highest when initial pitch angle 

as 0 degree [see also Figure 4.8a) to 4.8e)].  For the charged particles have the least 

separation when the initial pitch angle as 90 degrees. 
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Figure 4.8  Showing the separation of the charged particles at the radii as 0.1, 0.3,  

0.5, 0.7, 0.9  in the figure 4.8a)-e) respectively. 
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Moreover, for better understand about the separation of charged particle we 

eject one particle in the simple pure 2D field at initial pitch angles as 0 and 90 degrees 

and vary radii as 0.1, 0.5 and 0.9 , we found that the radius of curvature of the 

magnetic field line has affect to the separation of the charged particle.  From Figure 

4.9a) and b), the charged particle is released at radius as 0.1  has least separation 

because here it has a little the radius of curvature of the magnetic field line.  The 

particle is confined and drift along z direction with the flux tube at its radius (see also 

in Figure 4.7).  The charged particle released at radius as 0.9  has highest separation 

because maximum the radius of curvature of the magnetic field line.  In addition, the 

charged particle is released at deep inside the island, it is trapped by the effect of 2D 

flux tube, has a smaller period than other radii (see in Figure 4.9a) which is because of 

the size of the 2D flux tube.   

Next, let’s compare of pitch angle to the separation at the beginning.  From the 

drift velocity in equation (2.42) and (2.47), we can see that the gradient drift depends 

on the velocity in perpendicular component and the curvature drift depends on 

velocity in parallel component.  That means the curvature drift plays most important 

role for the particles with the pitch angle near 0 degree and has less effect to the ones 

with the pitch angle near 90 degrees while the gradient drift has more effect to the 

pitch angle near 90 degrees but not for 0 degree.  As we discuss in Section 4.1, the 

curvature drift is dominated more than the gradient, so we can see the separation in 

for 0 degree pitch angle higher than the pitch angle at 90 degrees (see also in Figure 

4.10).  Also from Figure 4.8a) to 4.8e), the charged particles are released at initial 

pitch angle as 0 degree have more separation than initial pitch angles as 30, 60 and 90 

degrees in every radii.            
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Figure 4.9  Showing the separation of the charged particles at the radius as 0.1 , 

0.3  and 0.9  by using fix initial pitch angles as a) 0 degree and b) 90 

degrees in the simple pure 2D field. 

 

Figure 4.10 Showing the separation of the charged particles in log-log scale at the 

radius as 0.1 , 0.3  and 0.9  by using fix initial pitch angles as a) 0 

degree and b) 90 degrees in simple pure 2D field. 
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Conclusions 

 When the results are plotted graph in the same scale, the charged particles 

have the least separation when initial pitch angle as 90 degree in every radius, no 

matter that the magnetic field is strong or not.  The separations of the charged 

particles are highest when they are released at initial pitch angle as 0 degree and 

lowest at initial pitch angle as 90 degree.  That is because the charged particles have 

more effect from gradient drift and curvature drift of the magnetic field line.  

Furthermore, the charged particles released at the initial pitch angle as 0 degree have 

more drift velocity of guiding center due to the curvature of the magnetic field line 

due to the factor of 2cos  so it leads to highest the separation.     

 

  



 

 

 

CHAPTER 5 

RESULTS FOR THE CHARGED PARTICLES IN 

2D+SLAB TURBULENCE 

This chapter presents the results for the effect of the pitch angles to the 

separation when the charged particles are in 2D+slab turbulent magnetic field.  We 

preform 2 cases here.  The first case is that the particles are released at various pitch 

angle ranges.  For the second one, the particles are released at specific initial pitch 

angles.   

5.1 The effect of various initial pitch angle ranges on the separation          

We generate magnetic field which is static and homogeneous by using 

2D+slab model of magnetic field turbulence.  The magnetic field is generated in 

simulation box, the ratio of 2D and slab magnetic energy 20:80:2 slabD EE .  In this 

numerical experiment, 1,000 100-MeV charged particles are released at various pitch 

angle ranges from 0-30, 30-60, 60-90 degrees in simulation box that we model with 

random positions (see section 3.4).    

Results & discussion  

For better understand about the motion of charged particles in turbulent 

magnetic field, we release a sample of charged particles at initial pitch angles near 0 

and near 90 degrees to observe trajectories of charged particles and to see the 

difference between guiding center of them with magnetic field lines that are traced 
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from initial guiding centers of charged particles.  We found the trend that the charged 

particle released at pitch angle near 0 degree has more separation better than the one 

near 90 degrees in the initial time.  For nearly 90 degrees, the particle stays around the 

released position at the beginning time before it leaves the field line while, the particle 

quickly travel along the field line for the one released nearly 0 degree (see Figure 

5.1).  However, this is just only a few examples of particle trajectories in turbulent 

field which the particle trajectories are very sensitive with the turbulent magnetic field 

at each location.  Therefore, we need to explore the statistics of the separation of 1000 

charged particles and their corresponding magnetic field lines. 

  

                               (5.1a)                                                          (5.1b) 

Figure 5.1  Illustration of the examples of charged particles and their corresponding 

magnetic field line trajectories.  a) The charged particle is released at 

initial pitch angle near 0 degree.  b) The charged particle is released at 

initial pitch angle near 90 degrees.  They are released at the same 

position where the green arrow indicates.  The red line shows trajectory 

of magnetic field line, the blue line shows trajectory of guiding center, 

and dark line show trajectory of charged particle.   
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In the simulations, we choose bins for initial pitch angles as 0-30, 30-60, and 

60-90 degrees and release 1000 charged particles for each bin.  Then we compute the 

mean squared displacement as in equation (10).  The results from the experiment at 

the initial time are shown in Figure 5.2.  For the charged particles released at the pitch 

angle as 0-30 degrees, the separation is larger than at the pitch angle as 30-60, and 60-

90 degrees (Wikee, Chuychai, Ruffolo & Matthaeus, 2012).  If the pitch angles are 

60-90 degrees, the charged particles have a little separation at the beginning time.  In 

initial range, the different of separation of charged particles due to the effect of initial 

pitch angle is clearly seen. 

 

Figure 5.2  Displacement mean squared perpendicular to the mean field between 

guiding centers of charged particles ( GCx , GCy ) and their corresponding 

magnetic field lines ( FLx , FLy ) at initial in linear-linear scale. 
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Figure 5.3  Showing relation between mean squared displacement perpendicular to 

the mean field between guiding centers of charged particles ( GCx , GCy ) 

and their corresponding magnetic field lines ( FLx , FLy ) and time in log-

log scale. 

After that we plot the data in the log-log scale to see the separation process at 

each range as presented in Figure 5.3.  We found that trajectory of the charged 

particles can be divided into two characteristics.  At the very short time and long time 

limit, the slope is 1 that means in this regime the separations are diffusive and for long 

time limit the field line random walk is dominated by 2D-dimensional component of 

turbulence (Ruffolo et al., 2004).  For the intermediate regime the separation grows as 

free streaming process.  It seems that the particles still depend on the initial field lines 
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in intermediate range before they undergo diffusive and are uncorrelated with their 

initial field lines.  Note that we also did the initial pitch angle between 90-180 

degrees.  The results are similar to 0-90 degrees.  The initial pitch angles near 180 

degrees have the separation more than the one nearby 90 degrees. 

Conclusions  

We have found that there is the effect of the initial pitch angles of charged 

particles to the separation on the turbulent magnetic field lines.  If the initial pitch 

angle is close to 0 degree, the separation is more than the one that is close to 90 

degrees at the initial time before the separation are diffusive and the trajectories of the 

particles are uncorrelated with their initial magnetic field lines.  Finally, this study 

helps us to know the effect of the initial pitch angles on the separation between 

guiding center of charged particles and magnetic field line.  In the next section, we 

released the initial pitch angles at specific values in order to study in more detail for 

better understanding about the mechanism of separation between charged particles 

and magnetic field.  

5.2 The effect of fixed initial pitch angles on the separation 

 The 1000 charged particles are released at random position in (2D+slab) 

turbulence magnetic field by using fixed initial pitch angles as 0, 30, 60, 90 degrees 

(see section 3.4 for procedure to fixed initial pitch angle).  We generate magnetic field 

which is static and homogeneous by using 2D+slab model of magnetic field 

turbulence.  The magnetic field is generated in simulation box, the ratio of 2D and 

slab magnetic energy 20:80:2 slabD EE , in this numerical experiment, 1,000 100-

MeV.  

When we plot the graph of the results of the separation of the charged particles 

between guiding centers of charged particles ( GCx , GCy ) and their corresponding 

magnetic field lines ( FLx , FLy ) at any each time on linear-linear scale, we found that 

the separation of them is not clear, we cannot describe that which the initial pitch 
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angle has the effect to the separation of the charged particles or has more separation 

than other initial pitch angles [see Figure 5.4a].  Thus we instead plot the graph, on 

log-log scale for the separation and linear scale for times as shown in Figure 5.4b).  

We found that the initial pitch angle as 90 degrees has effect to the separation of 

charged particles in time as ~/tc 0.1 to 900 because the charged particles have least 

separation when the initial pitch angles of them are 90 degrees.  However, it is only 

initial time to the separation of the charged particles are dominated, when long 

distance the charged particles and their corresponding magnetic field lines are 

uncorrelated, so their initial pitch angles do not effect to the separation. 

Results & discussion  

 

                                      a)                                                                 b) 

Figure 5.4  Showing the separation of the charged particles between guiding centers 

of charged particles ( GCx , GCy ) and their corresponding magnetic field 

lines ( FLx , FLy ) at any each time in a) linear-linear scale and b) log-log 

scale(5.4b). 
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 1. At the initial range, when 1/ tc  

When we take log-log scale to the results, we can describe behavior of the 

charged particles in various ranges.  We found that the separation of the charged 

particles in initial time at every initial pitch angles has slope = 1.0.  In this range, the 

particles have begun influence from 2D+slab turbulence magnetic field and also start 

separation.  Moreover, we note that the charged particles are released at initial pitch 

angle as 30 degree has more separation than the other initial pitch angles, the charged 

particles are released at initial pitch angle as 90 degrees has least separation.  If we 

estimate gyrofrequency of the charged particles in this range, we found that their 

transition have almost a 1 period, so the charged particles are released at initial pitch 

angle as 90 degree has less distance in z direction than 0, 30 and 60 degrees, but the 

charged particles are released at initial pitch angle as 0, 30 degrees have long distance 

until they move complete 1 period.  Thus, the charged particles are released in parallel 

direction to their corresponding magnetic field lines such as at initial pitch angle as 0 

and 30 degrees, they have separation more than other initial pitch angles.  

2. At intermediate range, when 100/1  tc  

From the Figure 5.5, we found that the slope has highest gradient, which is 2.0 

here.  The particles orbit around the field lines which are mainly affected by the 2D 

turbulence magnetic field and the effects of the slab turbulence on these trajectories 

are small at this range (Tooprakai et al., 2007).  The guiding center charged particles 

in this range are quickly diffusive from their corresponding magnetic field lines.   

For this range the charged particles pass through the different intensity 

magnetic field.  If they are in the stronger magnetic field, the radius of particle’s 

trajectory is small while the weaker field gives the larger radius.  Because the change 

of magnetic field intensity, the guiding centers of the charged particles drift from their 

initial magnetic field lines and perpendicular to B


 and to the magnetic field gradient 

( B ) follow Figure 2.13, we call this effect as “gradient drift”.  Moreover, the 

magnetic field line also has curvature.  Due to the curvature of magnetic field, the 

moving charged particle has acceleration relate to the field line curvature follow 

equation (2.46) and their directions follow Figure 2.14.  Because the magnetic field 

lines have both gradient and curvature, this range the charged particles have different 
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separation suddenly, and have slope as 2.0.  In the other view, for slope = 2.0, it tells 

us that the particles behave as free-streaming which means they are not diffusive or 

follow the field lines but they are freely moving from their initial field lines.                

3. At final time, when 100/ tc  

For long time limit, the displacement between the guiding centers of the 

charged particles and their corresponding magnetic field lines are very large and 

transition of the charged particles are increasingly not related to their corresponding 

magnetic field lines.  Moreover, the charged particles are diffusive due to 2D+Slab 

turbulence and they are uncorrelated with their initial field lines that why we obtained 

the slope from this range as 1.0.  Thus, we call this range as diffusion regime (Ruffolo 

et al., 2008).  

 

Figure 5.5  The results of the separation of charged particles and their corresponding 

field lines in the log-log scale. 
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In addition, when we plot the graph of the results between the initial pitch 

angles and the separation of the charged particles in log scale on the same picture, we 

found that at the initial pitch angles at 90 degrees has least separation at each time.  

For long time, the separations of the charged particles are not different as shown that 

the separation does not depend on the initial pitch angles (see Figures 5.6 and 5.7).  

 

Figure 5.6  Showing the results between the initial pitch angles and the separation of 

the charged particles in log scale on the same picture at the time as 

/tc = 0.1, 1.0, 10.0, 100.0 and 1000.0.  
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Figure 5.7 Showing the results between the cosine initial pitch angles and the 

separation of the charged particles in log scale on the same picture at the 

time as /tc = 0.1, 1.0, 10.0, 100.0 and 1000.0. 

Since the plots in Figures 5.6 and 5.7 have not yet provided quantitative 

explanation, we find the new method to explain the results here.  When the results are 

plotted between the initial pitch angles and the separation at the time as /tc  =0.1, 

1.0, 10.0, 100.0, and 1000.0, we found that at the time as /tc =0.1, 1.0, 10.0, and 

100.0 have decrease separation of the charged particles when the initial pitch angles 

closely 90 degrees, but there are not much different for the separation of the charged 

particles at the time as /tc =1000.0 in any initial pitch angles (see Figure 5.8) which 

shown that the initial pitch angles are not affect to the separation of the charged 
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particles for long time.  Note that at the time as /tc = 0.1, 1.0 and 10.0 have high 

separation of the charged particles in the range of initial pitch angles as 20-40 

degrees.  Then we find the critical point of initial pitch angles which is the angle that 

the separation of the charged particles have maximum at each time as shown in Figure 

5.9.  To compute the critical point of the initial pitch angles, we use linear least square 

fitting in the left and right sides of where maximum point occurs and find intercept 

point of them which is the critical points.  From the results, we found that the critical 

points of the initial pitch angles at any time are decreased when the time increases 

(see Figure 5.9).  The critical points of initial pitch angles at the time as /tc = 0.1, 

1.0, 10.0 and 100.0 are 35.59, 27.24, 22.73 and 10.32 degrees respectively.  For the 

time as /tc = 1000.0, we cannot find the critical points.  The trends of critical points 

have decreased and the initial pitch angles are not effect to the separation of the 

charged particles for long time. 
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Figure 5.8  These figures show the separation of a charged particles in turbulence 

magnetic field model when initial pitch angle and time are different.  
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Figure 5.9  These figures show the critical points of initial pitch angles at the time as 

/tc = 0.1, 1.0, 10.0, 100.0, and 1000.0 by using linear least square 

fitting. 
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Moreover, when we plot the graph of differential pitch angle at each time for a 

selected particle, we found that the pitch angle of the charged particle will slowly 

change on decreasing or increasing in range as 0-180 degrees, as shown in Figure 5.10 

a).  If we plot the graph of the average pitch angle at each time of 1000 charged 

particles at each time as 2000/0  tc  for the initial pitch angles as 0, 30, 60 

degrees, they have differential increasing of the pitch angles and later converge to 90 

degrees.  The charged particles that released at initial pitch angle as 90 degrees, there 

are a little difference of the pitch angles and nearly always 90 degrees (see Figure 

5.10 b).  Finally, the charged particles are released at every initial pitch angles, there 

are pitch angles almost 90 degrees.  That is because the pitch angles of each particle 

are distributed over the range 0 to 180 degrees.  Then the mean values of them are 

about 90 degrees.  

 

a)           b)   

Figure 5.10  These figures show the changing of pitch angles and time in a) a selected 

particle  at initial pitch angle as 0 degree and b) the average pitch angle 

of 1000 particles at initial pitch angles as 0, 30, 60 and 90 degrees.  
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Conclusions  

 When we see the results from Figure 5.4b, we know that the charged particles 

have least separation when the initial pitch angles of them are 90 degrees and if we 

find slope of graph in log-log scale at each range, we know the behavior of the 

charged particles and effect of the magnetic field to separation.  At the initial range 

the charged particles have begun effect from 2D+slab turbulence magnetic field, the 

charged particles are released at initial pitch angle as 30 degrees has more separation 

than the other initial pitch angles and the charged particles are released at initial pitch 

angle as 90 degrees has least separation.  In the intermediate range, the charged 

particles are quickly separated away of guiding center of them from their 

corresponding magnetic field lines due to the drift effect and the charged particles 

have diffusion due to effect of 2D+slab turbulence magnetic field at the final time.  

Moreover, we can find the critical point of initial pitch angles at various time, we 

found that the trend of the critical points of initial pitch angles have decreased and the 

initial pitch angles are not effect to the separation of the charged particles for long 

time.  The averages of pitch angles at each time are also presented.  The values of 

them approximately approach to 90 degrees at long time limit.   

 



CHAPTER 6 

CONCLUSIONS 

We study the effect of initial pitch angles of the charged particles to their 

corresponding magnetic field lines in interplanetary space.  In our research, we 

consider solar energetic particles (SEPs) as charged particles for case study.  We 

assume that the charged particles orbit around their corresponding magnetic field 

lines.  We determine the guiding centers of the charged particles for starting points of 

magnetic field lines when particles are released at different pitch angles and after that 

we will compute the separation of the guiding center of the charged particle and their 

corresponding magnetic field lines.  We find the trajectory of the charged particles 

and magnetic field lines by using fourth-order Runge-Kutta method with adaptive 

time stepping regulated by a fifth-order error estimate step to solve Newton Lorentz 

force and magnetic field line equation.  For the magnetic field, we use 2D+slab 

model.  The first case is a simple case which is 2D Gaussian field + slab turbulence 

and another one is (2D+slab) turbulence field model we will specify the power 

spectrum for both 2D and slab magnetic field as Kolmogorov spectrum.  

For the effect of the initial pitch angles of the charged particles and their 

corresponding magnetic field lines in simple case as we presented in Chapter 4, the 

results from this case is divided into 2 cases.  For the first, the 1000 charged particles 

are released at random initial pitch angles from 0 to 180 degrees and on various 

distances from the center of the 2D Gaussian island ( 0r ) as 0.1, 0.3, 0.5, 0.7 and 

0.9.  We found that the separation of the charged particles are related to the distance 

from the center of the Gaussian flux tube 0( )r , where they experience the different 
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structure of the magnetic field.  When the charged particles are released at low 

curvature of the magnetic field line, the separation is more than the others at the initial 

times.  They try to follow the field line and slowly drift to outside the 2D flux tube.  

Figure 4.4 shows that the influence of drift velocity of guiding center due to the 

gradient and curvature of the magnetic field has more effect to the separation of the 

charged particles at the beginning.  Especially, when the charged particles are released 

at radius as 0.1, the curvature drift has more effect to the separation of the charged 

particles than other radius.  At intermediate time, the particles start at 

 3.0and1.00 r , at inside 2D islands, have lower separation than the others radius.  

The particles slowly drift out from the field lines.  There are low the separation rates 

here because the charged particles are trapped inside 2D island.  The different 

behaviors of the particles are found for the particles started outside 2D islands, the 

particles are started at 0r   0.5, 0.7 and 0.9 have almost the same separation rate 

and there is more the separation rate than the particles start at inside 2D island.  It is 

because the particles outside the sharp gradient are not suppressed due to strong 2D 

field.  In addition, for the final time the separation of the charged particles is 

uncorrected with the starting point to release the charged particles.  The separation of 

the charged particles depends on distance from the center of the Gaussian function 

and become subdiffusive, the charged particles are released at outside of 2D Gaussian 

field ( 0r 0.7 and 0.9), the separation is lower than the others radius.  For the second 

case, the 1000 charged particles are fixed initial pitch angles as 0, 30, 60 and 90 

degrees and released in various radii 0( )r .  The charged particles have least separation 

when initial pitch angle as 90 degrees in every radius and initial pitch angle as 0 

degree has highest separation.  From the result, we found that the drift velocity of 

guiding center has more influence to the separation of the charged particle due to the 

curvature of the magnetic field line, that depends on 2cos .  So the initial pitch angle 

as 0 degree gives the highest drift velocity of guiding center, we can see from Figure 

4.4 and that confirm our results in section 4.2. 

The results for 2D+slab turbulence are presented in Chapter 5.  Two cases are 

performed here.  First, 1,000 charged particles are released at various pitch angles 

range from 0-30, 30-60, 60-90 degrees in simulation box that we model with random 
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positions.  We found the trend of the charged particle released at initial pitch angle 

near 0 degree have more separation better than the one near 90 degrees in the initial 

time.  In the second case, 1000 charged particles are released at random position in 

(2D+slab) turbulence magnetic field by fixing initial pitch angles as 0, 30, 60, 90 

degrees.  The initial pitch angle as 90 degree has less separation than the other angles. 

We know the behavior of the charged particles and effect of the magnetic field to 

separation of the charged particles at any time.  In addition, we can find the critical 

point of initial pitch angles at any time. 

From all results, we know that the magnetic field has effect to the separation 

of the charged particles supported by using simple case (2D Gaussian field + slab 

turbulence) and they give us a new idea about initial pitch angle to make least 

separation from (2D+slab) turbulence, that is 90 degree which is shown that if the 

charged particles are released perpendicular to their magnetic field lines, they have a 

little drift from effect of magnetic field but if they are released along their magnetic 

field lines they have a lot of drift.  We can also conclude about the influence of drift 

motion of the charged particles.  The curvature drift is dominated and has affect to the 

separation of the charged particle (see Figure 4.4) at the initial time.  The separation 

of the charged particle is mostly depended on radius of curvature of the magnetic field 

line.  The second is the gradient drift, it has a little effect to the separation of the 

charged particle and it is dominate when the charged particles are released at initial 

pitch angle as 90 degree (see from Figure 4.4).  Moreover, for pure simple 2D field 

case, when the charged particles are released inside Gaussian island, they are confined 

within along 2D flux tube that they are started.  So the period of the separation has 

smaller than outside one [see from Figures 4.9a) and 4.9b)].  This research is very 

useful to help us understanding about mechanisms of the transport of the solar 

energetic particles in heliosphere and developing the theory of diffusion of charged 

particles in turbulent magnetic field. 
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APPENDIX A 

THE LINEAR INTERPOLATION AND BI-LINEAR 

INTERPOLATION FOR 2D+SLAB TURBULENT  

FIELD 

From the section 3.2, we have the 2D and slab magnetic fields only on each 

grid point in the simulation box.  From Figure A.1, we want the magnetic field at red 

point, we can compute the magnetic field by using linear interpolation from nearest 

known grid points for slab turbulence or z direction and bi-linear interpolation for 2D 

field, it shown in Figure A.2a) and A.2b) respectively.     

 

Figure A1  shows a position between grid points for finding magnetic field by using 

interpolation method.  
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For slab turbulence, if we want to find the magnetic field at any point in z 

direction, we can find the magnetic field by using linear interpolation.  Here the 

magnetic field is not different on the same plane in z direction but in the different 

plane the magnetic field is not the same.   

From the Figure A.2a), we know the magnetic field on grid points at 

),(and),,( 111211 zyxzyx which correspond to the magnetic field values of 2b  and 

1b respectively.  Suppose we want to find the magnetic field b  at ).,,( 11 zyx   The 

linear interpolation method is applied to find magnetic field.  Then we obtained the 

linear equation as 

z
zz

bb
b 














12

12 .                                               (A.1) 

Finally, we can find the magnetic field at ).,,( 11 zyx  as .b  

 

Figure A2  Illustrates the magnetic field at any position between grid points by using 

a) linear interpolation in z direction and b) bi-linear interpolation in x,y 

direction.  

For 2D field, when we use simple model for 2D field, we can directly find the 

magnetic field on the same x,y plane by using Gaussian function.  For 2D turbulence, 
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we compute the magnetic field by using bi-linear interpolation, it shown that in Figure 

A.2b).  We can find the magnetic field at ),,( 1zyx  if we known the magnetic field on 

grid points at ),,(and),,(),,,(),,,( 122121112111 zyxzyxzyxzyx  which are corresponds to 

magnetic field value of 543 ,, bbb  and 6b , respectively.  From equation A.1, we 

obtained the magnetic field at a and b points as 

x
xx

bb
ba 














12

34  and                                             (A.2) 

x
xx

bb
bb 














12

56 .                                                  (A.3) 

After that we use linear interpolation at ),,( 1zyx  again, finally we obtain the equation 

as   

y
yy

bb
b ab

zyx 













12

,, 1
.                                              (A.4) 
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APPENDIX B 

THE CORRECTION OF UNIT VECTOR OF CROSS 

PRODUCT BETWEEN VELOCITY AND UNIT  

VECTOR FOR GENERATING A NEW 

 VELOCITY VECTOR 

The equation (3.22) is corrected if NPˆ nv


, when sinˆˆ nvnv


 , .1ˆ n   

So the magnitude of vector NP  as 

cosNP v
B

B
v






                                         (B.1) 

                                                      














 cosNP
2

v
B

B
v







    

                               

     coscos2cosNP

2

22

v
B

B
vv

B

B
v



























 . 

Since 1
B

B




, it is written as   

        
        222222

cos2cosNP vvv


  

         
     2222

cosNP vv


  

           
    )cos1(NP 222

 v


. 

Since )cos1(sin 22   , then 
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    222

sinNP v


 , 

                                                         sinNP v


 . 

Therefore, NPˆ nv


. 
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