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ABSTRACT 

             This study investigates Thailand’s economic complexity at the subnational 

level by constructing a panel dataset of 77 provinces across 20 economic activities from 

2011 to 2021. The Economic Complexity Index (ECI) is developed using employment 

data, applying the Location Quotient and Method of Reflection techniques. Fixed-

effects panel regression, quantile regression, and generalized additive models (GAMs) 

are employed to explore the relationship between ECI and two key development 

outcomes: economic growth and income inequality. The results reveal a nonlinear and 

distribution-sensitive relationship. While ECI tends to promote economic growth after 

surpassing a complexity threshold—particularly in provinces with initially lower 

income levels, its inequality-reducing effect is most pronounced in high-Gini provinces. 

Clustering analysis is used to group provinces based on economic complexity, income, 

inequality, and demographic indicators. Among the algorithms tested, K-means 

clustering performs best, revealing distinct regional development patterns and 

increasing structural divergence over time. This research advances the literature on 

economic complexity by integrating machine learning techniques into subnational 

economic diagnostics and highlights the potential of ECI as a tool for promoting 

inclusive and region-specific development policies in middle-income countries like 

Thailand. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Importance of the Research Problem 

 Modern economic development increasingly unfolds in a global environment 

characterized by volatility, uncertainty, complexity, and ambiguity (VUCA). Originally 

conceptualized in strategic planning and later adopted in policy discourse, the VUCA 

framework underscores the limitations of conventional models in responding to rapidly 

shifting and interdependent systems (Bennett & Lemoine, 2014). Under such 

conditions, development strategies that rely solely on capital accumulation, labor 

expansion, or aggregate output growth have proven insufficient, particularly at the sub-

national level. Common indicators such as Gross Domestic Product (GDP), although 

widely used, offer limited spatial granularity and responsiveness due to infrequent data 

updates, collection costs, and aggregation biases (Gao & Zhou, 2018; NESDC, 2021). 

These constraints point to the need for more granular, dynamic, and structurally 

informative metrics. 

 The Economic Complexity Index (ECI), developed by Hidalgo and Hausmann 

(2009), provides a powerful alternative by capturing the embedded knowledge and 

productive capabilities of an economy. Rather than focusing on traditional inputs, the 

ECI evaluates the diversity and sophistication of the products an economy is able to 

produce competitively, serving as a proxy for its underlying know-how. More complex 

economies are generally better positioned for innovation, diversification, and long-term 

resilience. Recent studies have shown that higher economic complexity is strongly 

associated with faster, more inclusive growth and lower structural inequality (Hidalgo, 

2021; Fritz & Manduca, 2021; Aghion, Cherif, & Hasanov, 2021). 

 Thailand’s development trajectory exemplifies both the benefits and the 

limitations of structural transformation. Between 1965 and 2005, the country emerged 

as a “great transformer” economy—alongside Brazil, Indonesia, Türkiye, Malaysia, 

China, South Korea, and Singapore—driven by rapid industrialization and labor 
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absorption (Hartmann et al., 2017). However, since graduating to Upper Middle-

Income Country (UMIC) status in 2011, Thailand’s growth has stagnated, while 

regional disparities have persisted (Jitsuchon, 2012; Kittiprapas & Wiboonchutikula, 

2019). Despite this, Thailand’s productive structure continues to evolve: its global ECI 

ranking improved from 64th in 2000 to 29th in 2023 (Hausmann, Pietrobelli, & Santos, 

2021), surpassing several high-income economies and signaling untapped potential. 

 Yet this national-level progress conceals wide intra-national disparities. While 

the National Economic and Social Development Council (NESDC) employs planning 

instruments such as the Sustainable Development Goals (SDG) monitoring framework 

and the Development Potential Assessment Index (DPAI), these tools emphasize 

aggregate indicators like Gross Provincial Product (GPP) per capita and the Gini 

coefficient. Though useful, they fail to account for the structural composition of 

provincial economies. The exclusion of productive complexity indicators limits 

policymakers’ ability to identify latent capabilities and design effective upgrading 

strategies—thereby perpetuating reliance on static or incomplete development 

diagnostics (NESDC, 2021; Apaitan, Ananchotikul, & Disyatat, 2017). 

 Recent empirical studies underscore the value of applying economic complexity 

metrics at the sub-national scale. Numerous studies across diverse national contexts 

have demonstrated that economic complexity can reveal structural inequalities and 

inform targeted policy interventions. For instance, complexity has been shown to 

correlate negatively with income inequality in Mexican states (Gómez‐Zaldívar, 

Osorio‐Caballero, & Saucedo‐Acosta, 2022), while in Australia, Canada, and Italy, sub-

national complexity analysis has been used to support regional industrial strategies, 

assess global competitiveness, and explain productivity polarization (Reynolds et al., 

2018; Wang & Turkina, 2020; Basile & Cicerone, 2022). In Europe, researchers have 

applied economic complexity frameworks to Romanian counties, Spanish provinces, 

and the Kaliningrad region—illustrating their versatility in both interregional and 

international trade contexts (Török, Benedek, & Gómez-Zaldívar, 2022; Balsalobre et 

al., 2017, 2019; Roos et al., 2021). 

 Despite this expanding body of research, Thailand currently lacks institutional 

tools for systematically measuring economic complexity at the provincial level. A 

notable exception is the study by Apaitan, Ananchotikul, and Disyatat (2017), which 
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employed firm-level and export registration data. However, this approach is constrained 

by fragmented data systems, limited public access, and low scalability. In contrast, 

employment-based methods—such as those proposed by Fritz and Manduca (2021) and 

Mealy, Farmer, and Teytelboym (2019)—offer a replicable, timely, and more inclusive 

alternative, particularly in contexts where sub-national trade data are unavailable. 

 This thesis addresses the empirical and operational gap by constructing a sub-

national ECI for Thailand using employment data from the Labor Force Survey (LFS), 

which records employment across 20 economic sectors in all 77 provinces. Both ECI 

and Product Complexity Index (PCI) scores are derived using the method of reflection 

and location quotient techniques. These indices are then empirically examined in 

relation to provincial-level outcomes in economic growth and income inequality using 

fixed-effects and quantile regression models. 

 In addition, the study applies unsupervised machine learning techniques—

including K-means, Hierarchical Agglomerative Clustering (HAC), and Gaussian 

Mixture Models (GMM)—to classify provinces based on complexity, socio-economic 

indicators, and structural characteristics. Such hybrid approaches have been endorsed 

in recent economic research for their ability to capture nonlinear patterns and structural 

heterogeneity (Mullainathan & Spiess, 2017; Athey & Imbens, 2019). By integrating 

complexity measurement with advanced analytical techniques, this thesis aims to 

produce timely, scalable, and policy-relevant insights to inform Thailand’s regional 

development planning. 

1.2 Research Objectives 

 This study investigates the role of economic complexity in shaping regional 

development outcomes in Thailand, with a particular focus on economic growth and 

income inequality at the provincial level. It addresses existing empirical and 

methodological gaps by constructing a subnational Economic Complexity Index (ECI) 

and applying a combination of econometric and machine learning techniques. 

The three main research objectives are as follows: 
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1.2.1 To collect and preprocess employment data from Thailand’s Labor 

Force Survey (LFS) at the provincial level to construct Economic Complexity Index  

1.2.2 To investigate the impact of ECI on economic growth and income 

inequality using regression techniques 

1.2.3 To grouping provinces based on socio-economic profiles using 

clustering algorithms 

1.3 The Importance of Research 

This research is significant for both academic inquiry and policy formulation in 

the context of regional development. From a theoretical perspective, the study advances 

the literature on economic complexity by extending its application to the subnational 

level in an emerging economy. While the Economic Complexity Index (ECI) has been 

widely used to explain cross-country differences in growth and inequality, its relevance 

within countries, particularly across diverse provincial contexts remains underexplored. 

By constructing a provincial ECI using labor market data, this study contributes a novel 

and replicable framework for capturing productive capabilities where trade data are 

unavailable or incomplete. 

Methodologically, the study integrates econometric techniques with machine 

learning to offer a multidimensional analysis of the complexity–development 

relationship. The use of panel quantile regression allows for the investigation of how 

the effects of complexity vary across different levels of inequality and income, while 

generalized additive models (GAMs) uncover nonlinear dynamics that conventional 

models may miss. Clustering algorithms further enrich the analysis by identifying 

spatial and structural patterns among provinces, providing insight into latent 

development typologies. 

 From a policy perspective, the study addresses a critical gap in Thailand’s 

provincial planning framework. Current development indicators overlook structural 

economic diversity, relying instead on aggregate measures such as GPP per capita and 

household income. By introducing complexity-based metrics and classifying provinces 

based on socio-economic profiles, this research equips policymakers with tools to 
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design more targeted and capability-sensitive strategies. The findings support 

Thailand’s goals under the Sustainable Development Goals (SDGs) and 

decentralization reforms by promoting evidence-based, regionally adaptive 

development planning. 

1.4 Research Hypotheses 

This study tests the relationship between economic complexity and regional 

development outcomes in Thailand and explores structural provincial typologies using 

clustering techniques. The research is guided by the following hypotheses: 

1.4.1 Economic Complexity and Economic Growth 

H1.1: Provinces with higher economic complexity, as computed from 

employment data, exhibit stronger economic growth. 

H1.2: The effect of complexity on growth varies across the income distribution, 

captured through quantile-based modelling. 

H1.3: A nonlinear relationship exists between complexity and growth, 

detectable through nonparametric modelling. 

1.4.2 Economic Complexity and Income Inequality 

H2.1: Economic complexity is negatively associated with income inequality 

across provinces. 

H2.2: The inequality-reducing effect of complexity is heterogeneous and 

distribution-sensitive. 

H2.3: Complexity and inequality are linked through a nonlinear, potentially 

threshold-based relationship. 

1.4.3 Provincial Clustering and Development Typologies 

H3.1: Unsupervised machine learning can classify provinces into development 

clusters based on complexity and socio-economic indicators. 

H3.2: Cluster membership patterns reflect regional structural characteristics and 

evolve over time. 
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1.5 Research Questions 

This study is guided by the following research questions, which aim to explore 

the link between economic complexity and regional development in Thailand through 

a data-driven, computational approach: 

1.5.1 How can a provincial-level Economic Complexity Index (ECI) be 

constructed using high-frequency employment data in Thailand?  

1.5.2 To what extent does economic complexity influence economic growth and 

income inequality at the provincial level, and how do these effects vary across the 

distribution and overtime?  

1.5.3 Can clustering techniques effectively group Thai provinces into distinct 

development clusters based on complexity and socio-economic characteristics? 

These questions are addressed through the integration of econometric modeling 

and machine learning techniques, providing a comprehensive understanding of 

structural disparities and development trajectories across provinces. 

1.6 Scopes of Research 

This study is situated within the context of Thailand’s provincial economies and 

investigates the role of economic complexity in shaping two key development 

outcomes: economic growth and income inequality. The spatial scope of the research 

encompasses all 77 provinces of Thailand, treating each as an individual unit of 

analysis. Bueng Kan province, established in 2011, is included in the analysis from 

2013 onward due to the absence of baseline data for the year of its inception. 

The study focuses on five benchmark years—2011, 2013, 2015, 2017, and 2019, 

which correspond to the availability of income inequality data from the Household 

Socio-Economic Survey. For the analysis of economic growth, the dataset is extended 

through 2021 using interpolated values of the Economic Complexity Index (ECI), 

allowing for a more complete panel structure. Thematically, the research is centered on 

the construction of a subnational ECI and its application in explaining real gross 

provincial product per capita (RGPPPC) and the Gini index, which serve as proxies for 
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growth and inequality, respectively. In addition, the study incorporates a structural 

classification of provinces using clustering techniques to uncover latent development 

typologies. 

Methodologically, the research adopts a multi-method framework that 

integrates fixed effects panel regression, panel quantile regression, and generalized 

additive models (GAMs) to estimate both average and distributional effects, as well as 

nonlinearities in the relationship between economic complexity and development 

outcomes. Unsupervised machine learning techniques—specifically K-means, 

hierarchical agglomerative clustering (HAC), and Gaussian mixture models (GMM) 

are employed to classify provinces based on multi-dimensional socio-economic 

profiles. Together, these spatial, temporal, thematic, and methodological boundaries 

define the analytical scope of the study and ensure its relevance to both academic 

inquiry and policy application in regional development. 

1.7 Preliminary Agreement 

This study is conducted in partial fulfillment of the requirements for the Master 

of Science degree in Information Technology at Mae Fah Luang University, under the 

supervision of Assistant Professor Dr. Surapong Uttama. The research topic, objectives, 

and methodological framework have been reviewed and approved by the thesis 

advisory committee in accordance with the university’s academic regulations. All data 

used in the study are obtained from publicly available and officially recognized sources, 

primarily the National Statistical Office (NSO), the Office of the National Economic 

and Social Development Council (NESDC), and the Bureau of Budget. Ethical 

considerations have been observed throughout the research design and data handling 

processes. The preliminary agreement ensures that the study complies with institutional 

guidelines and academic standards, and that the research topic contributes meaningfully 

to both the field of information technology and public policy discourse on regional 

development. 
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1.8 Research Limitations 

 While this study adopts a comprehensive and data-driven approach to analyzing 

economic complexity and regional development, several limitations should be 

acknowledged. First, the construction of the provincial-level Economic Complexity 

Index (ECI) relies on employment data from the Labor Force Survey, which, although 

high-frequency and nationally representative, may not fully capture informal sector 

dynamics or knowledge-based activities not classified under standard economic sectors.  

 Second, the measurement of income inequality is constrained by data 

availability, as the Gini coefficient is only reported biennially, limiting the temporal 

resolution of the inequality analysis. Third, while fixed effects and quantile regression 

models control unobserved heterogeneity, potential endogeneity between complexity 

and development outcomes may still affect causal inference. Fourth, the clustering 

analysis, based on unsupervised machine learning techniques, is exploratory in nature 

and sensitive to variable selection and algorithmic parameters.  

 Finally, the generalizability of the findings may be limited to contexts with 

similar institutional structures and data availability as Thailand. Despite these 

limitations, the study provides a robust and replicable framework for subnational 

complexity analysis and contributes novel insights to the intersection of information 

technology, economics, and public policy. 

1.9 Terminology Definition 

 Economic Complexity Index (ECI): A measure of the knowledge intensity of 

an economy, based on the diversity and ubiquity of the products it exports. Higher ECI 

values indicate a more complex and sophisticated economy (Hidalgo & Hausmann, 

2009). 

 Economic Growth: The increase in the production of goods and services in an 

economy over a specific period is typically measured by the change in Gross Domestic 

Product (GDP) or Gross Provincial Product (GPP). 



9 

 

 Income Inequality: The unequal distribution of income among individuals or 

households within an economy. Common measures of income inequality include the 

Gini coefficient, Theil index, and Palma ratio. 

 Labor Force Survey (LFS): A survey was conducted by the National Statistical 

Office of Thailand to collect data on employment, unemployment, and other labor 

market characteristics. 

 Machine Learning: A subset of artificial intelligence that involves training 

computer algorithms to learn patterns and make predictions or decisions based on data, 

without being explicitly programmed (Mitchell, 1997). 

 Clustering Algorithms: Machine learning techniques are used to group similar 

data points or observations into clusters based on their inherent characteristics or 

patterns. Examples include K-means, hierarchical clustering, and DBSCAN. 

 Regression Models: Statistical models are used to investigate the relationship 

between a dependent variable and one or more independent variables. Common types 

of regression models include linear regression, logistic regression, and polynomial 

regression. 

 Middle-Income Trap: A situation in which a country's economic growth slows 

down or stagnates after reaching a middle-income level, making it difficult to transition 

to a high-income economy (Gill & Kharas, 2015). 

 Sustainable Development Goals (SDGs): A set of 17 global goals was adopted 

by the United Nations Member States in 2015, aiming to address social, economic, and 

environmental challenges and promote sustainable development by 2030 (United 

Nations, 2015). 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter reviews the theoretical and empirical foundations relevant to this 

study, which applies two major analytical approaches: regression analysis and 

clustering techniques. The chapter begins by exploring the core concepts underpinning 

the measurement of economic complexity, particularly the Economic Complexity Index 

(ECI), Location Quotient (LQ), and the Method of Reflection. These indicators offer a 

multidimensional view of economic structure, productivity potential, and regional 

competitiveness. 

 The second part of the review is organized around two methodological strands. 

The first strand focuses on regression-based studies that examine the relationship 

between economic complexity and key developments, namely, economic growth and 

income inequality. A wide range of techniques are considered in this context, including 

panel regression models, fixed and random effects models, quantile regression, and 

generalized additive models (GAM). These approaches allow for both linear and 

nonlinear modelling of the complexity-growth-inequality nexus. The second strand 

explores clustering-based research, particularly the use of unsupervised machine 

learning algorithms to group regions or provinces based on multiple socio-economic 

indicators. Methods such as K-means, Hierarchical Agglomerative Clustering (HAC), 

and Gaussian Mixture Models (GMM) are reviewed for their suitability in regional 

classification tasks.  

 These two strands provide the conceptual and empirical grounding for this 

study’s dual-method research design. The chapter also highlights key gaps in the 

literature, particularly the limited use of economic complexity and clustering 

techniques in sub-national policy contexts in Thailand. 
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2.1  Theoretical Foundations 

 This section presents the theoretical underpinnings that inform the study’s 

approach to analyzing economic complexity and its relationship to regional 

development outcomes. The foundation begins with a discussion of the Economic 

Complexity Theory, which provides a framework for understanding the diversity and 

sophistication of productive activities across provinces. This is followed by two 

technical concepts; Location Quotient (LQ) and the Method of Reflection that are 

integral to computing sub-national measures of economic complexity using 

employment data.  

 These theoretical tools serve dual purposes. First, they underpin the construction 

of the Economic Complexity Index (ECI) used in regression models that evaluate the 

impact of complexity on economic growth and income inequality. Second, the outputs 

derived from these theoretical constructs, such as economic complexity scores serve as 

key inputs for clustering Thailand’s provinces based on shared socio-economic 

characteristics, enabling more targeted policy design and regional classification. These 

foundations enable the study to assess not only how economic complexity is distributed 

across Thailand but also how it correlates with broader development patterns through 

both causal inference (regression) and descriptive categorization (clustering). 

2.1.1 Theoretical Foundations 

The theoretical foundations of economic complexity arise from a fundamental 

rethinking of what drives economic development. Traditional growth models—such as 

Solow’s (1956) neoclassical framework—emphasize capital accumulation, labor input, 

and exogenous technological progress. In contrast, economic complexity theory posits 

that long-term growth is driven by a society’s ability to accumulate and recombine 

productive knowledge embedded in human capital, institutions, and industrial 

ecosystems (Hidalgo & Hausmann, 2009; Romer, 1990; Aghion & Howitt, 1992). 

At the heart of this approach is the Economic Complexity Index (ECI), which 

quantifies an economy’s latent productive capabilities by analyzing the diversity and 

ubiquity of the products it exports. The ECI rests on the premise that sophisticated 

economies export a broad array of complex products that few others can make. High 
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ECI scores thus reflect a deep reservoir of productive knowledge, while low scores 

indicate limited specialization and capability accumulation (Hidalgo et al., 2007; Mealy 

et al., 2019). The Product Complexity Index (PCI) complements the ECI by measuring 

the knowledge-intensity required to produce individual products. Both indices are 

derived using the Method of Reflection, an iterative technique that captures the 

structure of productive know-how by assessing the diversity of an economy (the 

number of products it exports) and the ubiquity of each product (how many other 

economies export it) (Hidalgo & Hausmann, 2009). 

Unlike endogenous growth models that treat knowledge as a generic, non-rival 

input, economic complexity theory emphasizes the non-fungibility and embeddedness 

of productive capabilities. Knowledge cannot be easily transferred across sectors or 

regions; it is embedded in networks of firms, institutions, and human skills (Acemoglu, 

Akcigit, & Kerr, 2016; Hidalgo, 2023). This embedded knowledge constrains or 

enables structural transformation, depending on how closely new economic activities 

relate to existing capabilities—a concept formalized through the product space 

(Hausmann & Klinger, 2007). Recent developments enrich the framework through 

network science and machine learning techniques, which are used to map patterns of 

diversification, upgrading, and structural change. Tools such as relatedness-complexity 

diagrams and product space visualizations support policymakers in identifying feasible 

pathways for economic transformation (Hausmann et al., 2014; Hidalgo, 2023). 

Empirically, the economic complexity framework has been shown to explain 

variations in income levels, growth trajectories, inequality, and resilience to shocks. 

High-ECI regions tend to demonstrate stronger growth, more innovation, and more 

inclusive development outcomes (Hartmann et al., 2017; Balland & Boschma, 2021). 

At the sub-national level, complexity measures have been applied to states, provinces, 

and cities to reveal spatial heterogeneities in productive structures (Reynolds et al., 

2018; Wang & Turkina, 2020; Roos et al., 2021). Nevertheless, the framework faces 

limitations. Its reliance on international trade data excludes much of the service sector 

and informal economy. These limitations are particularly acute at the sub-national level, 

where trade data is often unavailable. To address this, scholars increasingly use 

employment data or firm-level information to calculate local complexity indices (Fritz 

& Manduca, 2021; Török, Benedek, & Gómez-Zaldívar, 2022). 
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In sum, economic complexity offers a powerful complement to traditional 

development theory. Rather than focusing solely on increasing factor inputs or adopting 

external technologies, this framework emphasizes the recombination and accumulation 

of embedded knowledge as the engine of sustainable structural transformation. 

2.1.2 Location Quotient 

The Location Quotient (LQ) is a widely used tool in regional economic analysis 

to identify areas of industrial specialization. It compares the concentration of 

employment in a specific industry within a province to the concentration of that industry 

at the national level (Isserman, 1977; Miller, Gibson, & Wright, 1991). An LQ value 

greater than one indicates that the province has a higher-than-average concentration in 

that industry, suggesting a comparative advantage or regional specialization. LQ is 

especially useful in sub-national studies where trade data may be unavailable or limited. 

It provides a proxy for understanding the relative importance of different sectors across 

provinces and is often used to inform economic development planning and industrial 

policy (Billings & Johnson, 2012). In the context of this study, LQ serves as a precursor 

for constructing the binary matrix required for computing economic complexity indices 

based on employment data. While LQ helps to identify sectors with regional 

employment strengths, it does not capture the depth or sophistication of capabilities. 

Therefore, it is best understood as a diagnostic tool—one that complements more 

advanced techniques such as the Method of Reflection, which is used to compute the 

Economic Complexity Index (ECI) and Product Complexity Index (PCI). 

2.1.3 Method of Reflection 

The Method of Reflection is the foundational algorithm used to calculate the 

Economic Complexity Index (ECI) and Product Complexity Index (PCI). Developed 

by Hidalgo and Hausmann (2009), it provides a structured way to infer a country’s or 

region’s latent productive capabilities by examining the presence of observed economic 

output namely, products or activities that a location can produce competitively. Rather 

than assuming capabilities are directly measurable, the method infers them indirectly 

from patterns of specialization across a bipartite network of locations and products. 

The method begins with a binary matrix that records whether a country or region 

produces a particular product—or engages in a specific economic activity—with 

Revealed Comparative Advantage (RCA). This concept, introduced by Balassa (1965), 
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is typically operationalized using a threshold of RCA ≥ 1, indicating that a location is 

specialized in each product relative to the global average. The matrix structure forms a 

bipartite network linking locations and products, where each link represents an instance 

of specialization (see Figure 2.1). 

 

Source Adapted from Hidalgo and Hausmann (2009) 

Figure 2.1 Bipartite Network Connecting Regions and Economic Activities 

The method infers complexity by evaluating two core dimensions: (1) Diversity: 

the number of different products or activities a region specializes in (2) Ubiquity: the 

number of regions that specialize in each product or activity 

The logic of this approach is based on the idea that sophisticated regions tend 

to produce a wide array of rare (non-ubiquitous) products, while less complex regions 

specialize in common outputs (Hidalgo & Hausmann, 2009; Hidalgo, 2021). This 

principle is illustrated in Figure 2.2, which maps regions along axes of diversity and 

ubiquity, identifying high-complexity economies in the bottom-right quadrant—those 

that are both highly diversified and produce exclusive products. 
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Source Hidalgo and Hausmann (2009) 

Figure 2.2 Typology of countries based on product diversity and ubiquity  

 

Source Hidalgo and Hausmann (2009) 

Figure 2.3 Tripartite Network Connecting Countries, Capabilities, and Products 

Through iterative averaging, the method updates diversity and ubiquity over 

multiple rounds. A region that produces a product shared only with other highly 

diversified regions receives a higher complexity score than one connected to more 

ubiquitous outputs. The final outcome is a pair of indices—ECI for regions and PCI for 

products—that quantify the relative depth and uniqueness of their embedded productive 

knowledge (Hidalgo & Hausmann, 2009; Hidalgo, 2021). Although originally applied 

to national export data, the Method of Reflection has since been adapted for sub-

national contexts using employment, firm registration, or industry-level production 
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data. These adaptations have been particularly valuable in data-constrained settings, 

where trade statistics are unavailable or incomplete (Mealy et al., 2019). For example, 

in countries like Thailand, where provincial export data are scarce, complexity can 

instead be estimated using employment-based matrices constructed from labor force 

surveys. These applications are discussed further in Section 2.2. 

Conceptually, the MoR can also be viewed as a projection from a more granular 

tripartite network, in which countries are linked to capabilities, and capabilities are 

linked to products (Hidalgo, 2021). Since capabilities are not directly observable, they 

are abstracted out of the final country–product matrix, allowing co-occurrence patterns 

of product specializations to serve as proxies for latent knowledge. This abstraction 

highlights how the structure of observed outputs reflects deeper productive capabilities. 

Despite its power and flexibility, the method has limitations. It assumes that all relevant 

capabilities manifest in measurable outputs, potentially underrepresenting services, 

informal sectors, or institutional factors (Mealy et al., 2019; Kemp-Benedict, 2014). 

Moreover, threshold sensitivity such as the choice of RCA ≥ 1 can significantly affect 

complexity scores and must be carefully calibrated. Ourens (2013) questions the 

predictive performance of the MoR for long-term growth, while Kemp-Benedict (2014) 

critiques its use of linear averaging, which may compress variation and mask structural 

heterogeneity. Mealy et al. (2019) further highlight the need for transparency in 

interpreting complexity metrics across empirical applications. 

Nevertheless, the Method of Reflection remains one of the most widely used 

and theoretically grounded approaches in complexity economics. Its transparent 

structure, adaptability to multiple data environments, and empirical relevance make it 

central to this study’s assessment of Thailand’s regional development trajectories. 

2.1.4 Linking Growth and Inequality Theories 

Economic complexity is not only a framework for describing productive 

structures but also a lens through which scholars and policymakers analyze long-term 

economic performance and distributional outcomes. Its relevance is grounded in 

theoretical traditions within both growth economics and the study of income inequality. 

From a growth perspective, economic complexity resonates most directly with 

endogenous growth theory, which argues that economic expansion arises from internal 

factors such as human capital accumulation, innovation, and technological diffusion 
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(Romer, 1990; Aghion & Howitt, 1992). These models reject the neoclassical 

assumption of diminishing returns by emphasizing increasing returns from knowledge-

based activities. In this view, an economy’s capacity to diversify into more 

sophisticated products reflects the accumulation and recombination of intangible 

capabilities thus directly linking complexity to sustained growth potential (Hausmann 

et al., 2014; Mealy et al., 2019). In contrast to earlier theories such as the Solow-Swan 

model (Solow, 1956), which treated technological progress as exogenous, complexity 

theory introduces a data-driven mechanism to empirically trace the internal evolution 

of productive knowledge. This aligns with new structural economics, which also 

emphasizes upgrading and diversification as central to development (Lin, 2012). 

The connection between economic complexity and inequality is supported by 

both theoretical and emerging empirical insights. On one hand, complex economies 

often generate more varied and higher-skilled employment opportunities, increasing the 

absorptive capacity of labour markets and enabling social mobility (Pugliese et al., 

2017; Hartmann et al., 2017). Additionally, institutions that support complexity such as 

education systems, innovation networks, and governance quality tend to reduce 

exclusion and dualism in labour markets (Andrews et al., 2023). This echoes Kuznets’ 

(1955) classic hypothesis, which suggests that inequality initially rises and later falls as 

economies structurally transform. On the other hand, spatial inequality may increase 

when productive capabilities are concentrated in urban cores or advanced regions, 

leaving peripheral areas in low-complexity traps. This perspective is supported by 

regional development literature, which shows that capability divergence can reinforce 

uneven economic geographies (Balland et al., 2020; Rodríguez-Pose, 2018; Chávez et 

al., 2017). Therefore, economic complexity serves as both a development enabler and 

a diagnostic tool for understanding how regions differ in their growth trajectories and 

inequality outcomes. 

These theoretical linkages form the conceptual basis for the present study’s 

inquiry into how economic complexity relates to provincial growth and inequality in 

Thailand. The next sections will review empirical evidence from both national and sub-

national studies that test these propositions. 

 



18 

 

2.2 Measuring Economic Complexity 

Building upon the theoretical foundations outlined in the previous section, this 

part of the chapter examines the methodological approaches used to operationalize 

economic complexity in empirical research. Central to this endeavor are the Economic 

Complexity Index (ECI) and the Product Complexity Index (PCI), which serve as 

quantitative proxies for the latent capabilities embedded within regional or national 

economies. These indices are grounded in the logic of the Method of Reflection and 

aim to capture the degree of diversification and specialization present in each economic 

unit. 

Originally constructed using international trade data, the ECI and PCI have since 

been adapted for use with alternative data sources, most notably, employment-based 

datasets to facilitate sub-national applications. This is particularly relevant in contexts 

such as Thailand, where trade data at the provincial level are limited or unavailable. 

The transition to employment data introduces both new opportunities and 

methodological challenges, necessitating careful attention to data structure, industry 

classification, and the criteria for determining economic specialization. 

This section is organized into three subsections. The first section outlines the 

procedures for computing ECI and PCI using employment data. The second section 

reviews recent empirical studies that apply economic complexity metrics to sub-

national regions, highlighting their analytical potential and policy relevance. Third 

section evaluates the diverse methodological adaptations proposed in the literature to 

improve the robustness, comparability, and interpretability of complexity measures 

across different spatial scales and data environments. These discussions collectively 

inform the measurement strategy adopted in this thesis and lay the groundwork for the 

empirical analysis that follows. 

2.2.1 Employment-Based Economic Complexity 

Given the limitations of trade data at the sub-national level, particularly in 

developing countries where detailed export statistics are often unavailable or unreliable, 

researchers have increasingly turned to employment data as a practical alternative for 

constructing economic complexity indices. Employment records are typically more 
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accessible, systematically collected across regions, and capable of capturing a broader 

range of economic activities, including service-oriented and informal sectors, which are 

frequently omitted from trade-based datasets (Balland & Rigby, 2017; Mealy et al., 

2019). This methodological shift is particularly relevant for countries like Thailand, 

where provincial-level export data are scarce. In such contexts, employment patterns 

serve as a valuable proxy for the spatial distribution of productive capabilities, allowing 

researchers to infer regional economic complexity with greater coverage and frequency. 

Moreover, employment data facilitates sub-national comparisons and policy-relevant 

analysis at the provincial or municipal level. 

The adaptation of the Economic Complexity Index (ECI) to employment-based 

datasets involves substituting Revealed Comparative Advantage (RCA) with Location 

Quotients (LQ), which measure a region’s employment specialization in each sector 

relative to the national average. A value greater than one indicates relative 

specialization. These LQ values are then converted into a binary matrix that identifies 

sectors in which a region is competitively engaged. This binary matrix serves as the 

input for the Method of Reflection, which iteratively computes both the ECI for regions 

and the Product Complexity Index (PCI) for sectors (Hidalgo & Hausmann, 2009; 

Mealy et al., 2019). This approach has been applied across diverse national and sub-

national contexts, including the United States, the European Union, and Southeast Asia 

(Fritz & Manduca, 2021; Neffke et al., 2018; Diodato et al., 2018; Török et al., 2022). 

In Thailand, employment-based ECI was computed using quarterly labor force survey 

data from 77 provinces and 20 economic sectors, demonstrating the approach’s 

empirical robustness and relevance for sub-national policy design (Yeerong & Uttama, 

2023). 

Employment-based complexity metrics offer several advantages. They allow 

for frequent updating, capture non-tradable and informal sectors, and permit high-

resolution regional analysis, depending on the granularity of available data (Fritz & 

Manduca, 2021; Mealy et al., 2019). As shown in recent applications, this methodology 

is both scalable and replicable, making it well-suited for tracking development potential 

across Thailand’s diverse provincial economies (Yeerong & Uttama, 2023). However, 

limitations remain. Employment-based methods may conflate sector size with 

capability intensity, obscure heterogeneity within industries, and are sensitive to 
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classification schemes and threshold definitions. These limitations underscore the need 

for methodological calibration, robustness checks, and validation procedures (Balland 

& Rigby, 2017; Mealy et al., 2019). 

Despite these challenges, the use of employment data in computing economic 

complexity provides a viable and policy-relevant alternative to trade-based approaches, 

particularly in decentralized and data-constrained environments. It offers a meaningful 

lens through which to assess productive capabilities and structural asymmetries at the 

sub-national level. 

2.2.2 Application at Sub-National Level 

Although the Economic Complexity Index (ECI) was originally developed to 

assess national productive capabilities, its application at sub-national levels, such as 

regions, provinces, and cities has gained increasing attention. This extension reflects 

the recognition that productive structures vary significantly across space and that 

localized economic capabilities shape regional growth trajectories, inequality, and 

resilience (Balland & Boschma, 2021; Hidalgo, 2023; Mealy & Coyle, 2022). 

A growing body of empirical literature demonstrates the feasibility and value of 

sub-national complexity analysis using alternative data sources. In the United States, 

metropolitan-level ECI scores based on employment and occupational data correlate 

strongly with productivity and innovation outcomes (Balland & Rigby, 2017; Fritz & 

Manduca, 2021). In Europe, similar methods have been applied to Italy, Romania, and 

Spain to study regional diversification and development (Basile & Cicerone, 2022; 

Török et al., 2022; Marco et al., 2022). In the United Kingdom, Mealy and Coyle (2022) 

applied complexity-informed indicators to support local industrial strategy. Complexity 

metrics have also been employed to study regional inequality and competitiveness in 

Latin America and the Asia-Pacific. In Mexico, complexity has been linked to state-

level income growth and inequality (Chávez et al., 2017; Gómez-Zaldívar et al., 2022). 

Similar insights have been reported in Brazil (Bandeira Morais et al., 2021), Canada 

(Wang & Turkina, 2020), and Australia (Reynolds et al., 2018), affirming the 

adaptability of the complexity framework across diverse contexts. 

To construct sub-national ECI measures, researchers often replace trade data 

with domestic proxies such as employment, patent filings, or firm registration data. 

Although these substitutions introduce challenges, particularly in capturing informal 



21 

 

and non-tradable activities, employment-based models using location quotients and 

sectoral diversity have proven robust for regional analysis (Mealy et al., 2019; Neffke 

et al., 2018). In developing economies, where disaggregated trade statistics are typically 

unavailable, employment-based complexity frameworks offer a practical and scalable 

alternative (Mealy et al., 2019; Hidalgo, 2023). They enable high-frequency and fine-

grained monitoring of economic structure and can inform spatially targeted 

development policies. Hausmann et al. (2021) further emphasize the importance of 

place-specific capability assessment for addressing persistent regional income gaps. 

Thailand’s experience with sub-national complexity analysis is still emerging. Apaitan 

et al. (2017) constructed preliminary ECI estimates for provinces using firm registration 

data, but data limitations restricted coverage and consistency. A more recent study by 

Yeerong and Uttama (2023) implemented an employment-based ECI model using labor 

force survey data across 77 provinces and 20 sectors. By integrating this with clustering 

techniques, they identified distinct regional development profiles and demonstrated the 

method’s practical utility for spatial planning and regional policy. 

The growing adoption of complexity metrics at the sub-national level aligns 

with efforts to promote smart specialization, regional innovation systems, and inclusive 

industrial strategies (Balland & Boschma, 2021; Mealy & Coyle, 2022; Hartmann & 

Pinheiro, 2024). Complexity analysis offers a complementary tool to conventional 

indicators by highlighting latent capabilities and revealing development constraints that 

are often hidden in aggregate statistics. 

2.2.3 Review of Methods Used in Measuring Complexity 

Since its introduction, the Economic Complexity Index (ECI) has evolved 

significantly to address both conceptual critiques and practical data constraints. 

Originally developed by Hidalgo and Hausmann (2009), the Method of Reflection 

quantifies productive capabilities by analyzing the diversity of outputs from a given 

location and the ubiquity of those outputs across locations. While foundational, this 

approach has stimulated extensive methodological refinements aimed at improving 

stability, interpretability, and applicability, especially at the sub-national level 

(Hidalgo, 2023; Mealy, Farmer, & Teytelboym, 2019). 

A core debate in the literature concerns the representation of specialization. The 

original ECI relies on a binary matrix that indicates whether a country or region 
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specializes in each product or sector. However, scholars have argued that binary 

classification can lead to information loss and threshold sensitivity, particularly when 

thresholds such as LQ ≥ 1 are used (Cristelli et al., 2013; Inoua, 2023; Mariani et al., 

2015). In response, various refinements have introduced continuous or weighted 

matrices to preserve the intensity of specialization and improve robustness (Tacchella 

et al., 2012). The Fitness–Complexity framework, for instance, models productive 

knowledge as a non-linear iterative process and has been proposed as a more stable 

alternative to the Method of Reflection (Cristelli et al., 2013; Pietronero, Cristelli, & 

Tacchella, 2013). In addition to algorithmic refinements, other researchers have 

addressed structural limitations of the ECI. Albeaik et al. (2017) proposed 

modifications to address sparsity and convergence issues in highly skewed datasets, 

while Lopes, Dias, and Amaral (2012) conceptualized economic complexity through 

interindustry connectedness using input–output data. These approaches underscore the 

potential to view complexity not only as an outcome of export or employment patterns 

but also as a function of sectoral interdependence.  

As employment and firm-level data have become more widely available, 

economic complexity analysis has been extended to sub-national units. A growing 

number of studies have demonstrated the feasibility of applying ECI methodologies to 

regions, provinces, or cities using domestic data proxies (Reynolds et al., 2018; 

Balsalobre, Verduras, & Lanchas, 2017; Pérez-Balsalobre, 2019; Llano Verduras, & 

Díaz-Lanchas, 2019; Török, Benedek, & Gómez-Zaldívar, 2022). These studies 

commonly replace trade data with employment-based Location Quotients (LQ) or firm 

registration records to capture productive specialization within sub-national 

boundaries.  

While this enables the inclusion of non-tradable and informal sectors, it also 

introduces challenges related to data granularity and comparability across spatial units 

(Marco, Llano, & Pérez-Balsalobre, 2022; Hausmann, Pietrobelli, & Santos, 2021). 

Recent methodological innovations have further incorporated clustering, machine 

learning, and network visualization to construct multi-dimensional regional typologies. 

In Thailand, for example, Yeerong and Uttama (2023) applied unsupervised clustering 

techniques to group provinces based on employment-derived ECI scores, providing 

actionable insights for regional development policy. Such hybrid models reflect the 
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growing trend of integrating complexity metrics with spatial diagnostics and policy 

design tools. 

Nonetheless, key challenges persist. There is no universal consensus on best 

practices for constructing sub-national complexity metrics, particularly in developing 

country contexts. Methodological issues such as threshold selection, industrial 

classification depth, data sparsity, and robustness testing remain unresolved (Inoua, 

2023; Mealy et al., 2019). As a result, transparency in metric construction and 

validation is essential to enhance comparability and policy relevance. 

2.3 Regression-Related Literature 

The empirical validation of economic complexity theory has increasingly relied 

on econometric approaches to examine how productive capabilities—captured through 

indicators such as the Economic Complexity Index (ECI)—affect economic 

development outcomes. Building on the theoretical foundations discussed earlier, this 

section reviews regression-based studies that link economic complexity to two major 

dimensions of development: economic growth and income inequality. A diverse range 

of regression techniques, including panel data models, instrumental variable 

regressions, and quantile regression, have been applied to test these relationships at both 

national and sub-national levels. The literature highlights how higher complexity tends 

to be associated with more robust growth trajectories and, in some contexts, more 

equitable income distribution. At the same time, methodological choices—such as the 

construction of the complexity index, control variables, or the treatment of 

endogeneity—have significant implications for empirical results. 

Accordingly, this section is organized into three parts: the first reviews studies 

examining the relationship between complexity and growth; the second focuses on 

complexity and inequality; and the third provides a critical assessment of the 

econometric methods used across the literature. 

2.3.1 Economic Complexity and Economic Growth 

Economic complexity theory argues that long-term growth is driven by the 

diversity and sophistication of an economy’s productive capabilities. The Economic 
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Complexity Index (ECI), introduced by Hidalgo and Hausmann (2009), captures this 

by quantifying the embedded knowledge required to produce and export a range of 

goods. Unlike neoclassical models that focus on capital and labor inputs, complexity-

based frameworks emphasize the combinatorial capabilities that enable economies to 

shift into higher-value, knowledge-intensive activities (Aghion & Howitt, 1992; 

Hausmann et al., 2014; Hidalgo, 2021). 

Empirical studies consistently report a positive relationship between ECI and 

economic growth. Panel analyses show that ECI predicts future income levels more 

effectively than conventional indicators such as human capital or institutions 

(Hausmann et al., 2014; Mealy et al., 2019; Zhu & Li, 2017). In developing and 

resource-dependent economies, greater complexity is associated with improved growth 

trajectories (Stojkoski & Kocarev, 2017; Tabash et al., 2022). Alternative formulations, 

such as the fitness–complexity metric, reinforce these findings. By modeling capability 

accumulation as a non-linear dynamic, this approach improves predictive robustness, 

especially in emerging economies (Tacchella et al., 2012; Cristelli et al., 2013; 

Pietronero et al., 2013). 

At the sub-national level, complexity has proven equally relevant. Studies in 

Europe, Australia, and Latin America reveal that more complex regions grow faster and 

diversify more effectively (Balland & Boschma, 2021; Reynolds et al., 2018; Chávez 

et al., 2017; Mewes & Broekel, 2022). These outcomes are attributed to agglomeration 

effects, sectoral spillovers, and regional capacity for innovation and adaptation. In 

Thailand, Yeerong and Uttama (2023) applied employment-based complexity metrics 

to 77 provinces and found a significant relationship between ECI and real GPP per 

capita. Their results demonstrate that complexity is a meaningful predictor of regional 

economic performance, even in middle-income contexts with limited export data. 

Overall, economic complexity offers a robust, empirically validated framework for 

understanding growth across spatial scales. Its capacity to capture latent capabilities 

and structural transformation makes it a valuable tool for development planning in both 

national and regional contexts. 

2.3.2 Economic Complexity and Income Inequality 

Economic complexity provides a compelling structural lens for understanding 

income inequality by shifting attention from traditional factor endowments to the 
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composition and sophistication of productive activities. Regions and countries with 

more diverse, knowledge-intensive, and interconnected economies tend to generate 

broader access to skilled employment, capability spillovers, and innovation 

participation—thus fostering more inclusive development (Balland & Rigby, 2017; 

Hartmann & Pinheiro, 2024; Hidalgo, 2021). 

Empirical studies across global, national, and regional scales generally affirm 

an inverse relationship between economic complexity and inequality. Hartmann et al. 

(2017), Fredrich (2023), and Antonietti (2024) show that higher Economic Complexity 

Index (ECI) scores are associated with lower income concentration, particularly in 

institutional contexts that support education, labor inclusion, and industrial 

diversification. Nguyen et al. (2023), however, introduce a nonlinear perspective, 

revealing that while complexity initially reduces inequality, its benefits taper off or even 

reverse at high complexity levels—suggesting diminishing marginal returns or 

structural dualism in advanced economies. 

These effects are shaped by several moderating factors. Lee and Vu (2020) 

emphasize the role of human capital, showing that complexity’s redistributive power is 

stronger in countries with better educational attainment. Similarly, Lee and Wang 

(2021) find that the relationship between complexity and inequality is conditioned by 

country risk, where institutional instability dampens complexity's impact on inclusive 

growth. Pham et al. (2024) extend this discussion by incorporating the shadow economy 

as a mediating factor; their study finds that informality weakens the capacity of complex 

economies to translate productive capabilities into equitable income distribution. 

These findings are echoed across the EU (Cota et al., 2023), the G20 (Subekti 

& Sari, 2024), and developing regions in Africa and Asia (Adeleye, 2024; Bedemo 

Beyene, 2024; Le et al., 2022; Hoeriyah et al., 2022). National studies from Iran 

(Khanzadi et al., 2022), Indonesia (Prasetiya, 2021), and Japan (Ikram et al., 2021) 

provide further evidence that complexity contributes to lowering income inequality in 

a variety of economic and institutional settings. Beyond income inequality, 

multidimensional frameworks explore complexity’s role in shaping broader 

development outcomes. Marco et al. (2022) frame the trade-off between complexity, 

environmental sustainability, and equity as a regional “trilemma,” while Ikram et al. 

(2021) document complexity’s joint role in reducing ecological footprint and income 
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disparity. At the sub-national level, the complexity–inequality link is supported by 

growing evidence. Bandeira Morais et al. (2021), Wang and Turkina (2020), Gómez-

Zaldívar et al. (2022), Török et al. (2022), and Hausmann et al. (2021) report negative 

associations between regional ECI and income inequality across Brazil, Canada, 

Mexico, Romania, and other contexts. These patterns tend to be strongest in areas with 

diverse industrial bases, supportive infrastructure, and effective policy alignment. 

In sum, while the strength of the complexity–inequality relationship varies 

across institutional and development contexts, the growing literature supports its 

potential as a policy lever for inclusive growth. To fully unlock this potential, 

complexity strategies must be accompanied by robust education systems, formal sector 

development, institutional stability, and disaggregated data to track how capabilities 

translate into equitable outcomes. 

2.3.3 Methodological Review 

Understanding the methodological landscape of economic complexity research 

is essential to appropriately framing this study’s analytical approach. While the 

relationship between the Economic Complexity Index (ECI) and economic outcomes 

has been widely investigated, studies differ considerably in their econometric 

techniques, each offering unique insights into structural transformation and inequality 

dynamics. This section reviews three principal methods used in the empirical literature; 

panel regression models, panel quantile regression, and generalized additive models 

(GAM), which are also employed in this thesis. By organizing the discussion according 

to these methodological strands, the review highlights both the dominant practices in 

the field and the rationale behind the integrated approach adopted for provincial-level 

analysis in Thailand. 

2.3.3.1 Panel fixed effects regression 

Panel regression is among the most widely employed econometric 

techniques in empirical research on economic complexity due to its ability to control 

both temporal dynamics and unobserved heterogeneity across cross-sectional units. In 

the context of economic complexity, panel regression enables researchers to explore 

how changes in productive structures captured by the Economic Complexity Index 

(ECI) affect economic outcomes such as growth and inequality across countries, 

regions, or provinces over time. 
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A wide range of studies have adopted the panel fixed effects (FE) model, 

particularly when regional or country-specific characteristics are suspected to correlate 

with explanatory variables. For instance, Zhu and Li (2017) applied fixed effects 

regressions to examine the joint influence of ECI and human capital on long-run 

growth. At the sub-national level, Török et al. (2022) studied Romanian counties, while 

Fritz and Manduca (2021) assessed U.S. metropolitan areas both highlighting ECI as a 

key determinant of regional development. Similarly, Basile and Cicerone (2022) found 

widening productivity disparities linked to complexity in Italian provinces, and Chávez 

et al. (2017) and Korkmaz et al. (2024) revealed spatial heterogeneity in complexity-

growth relationships across Mexico and Turkey, respectively. Other subnational studies 

(e.g., Li & Rigby, 2023; Teixeira et al., 2022) further support the relevance of FE 

models for investigating development patterns in middle-income contexts. 

In the Thai context, the FE model has also been employed in several recent 

studies addressing regional development. Homsombat, Wrasai, and Benjabutr (2025) 

used panel FE regression to measure the impact of creative city attributes on regional 

economic performance across Thai provinces. Jaewisorn and Aroonruengsawat (2020) 

applied panel FE models to investigate the inequality effects of natural disasters in 

Thailand, emphasizing the importance of controlling for unobserved local 

characteristics. Likewise, Ashikbayeva et al. (2020) employed a panel fixed effects 

approach to analyze household-level economic impacts of flooding, further validating 

the appropriateness of the FE framework for sub-national analysis in the Thai setting. 

In this thesis, only the Fixed Effects model is employed, as it provides 

consistent estimates under the realistic assumption that unobserved provincial 

characteristics, such as industrial structure, governance capacity, or geographic 

endowments are correlated with the explanatory variables. The Random Effects model 

is not considered because its core assumption of no correlation between individual 

effects and regressors is unlikely to hold in this context. This modeling choice aligns 

with recent methodological reviews emphasizing robustness in sub-national complexity 

research (Bandeira Morais, 2023; Bahrami et al., 2023). Furthermore, this approach is 

grounded in widely accepted econometric literature on panel data modeling 

(Wooldridge, 2010; Stock & Watson, 2020), which recommends FE models when the 

goal is to obtain unbiased estimates in the presence of unobserved heterogeneity. 
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2.3.3.2 Panel quantile regression 

Panel quantile regression (PQR) extends the traditional quantile regression 

framework (Koenker & Bassett, 1978; Koenker, 2005) to panel data settings, offering 

a robust approach to modeling heterogeneous effects of covariates across the 

conditional distribution of a dependent variable while accounting for unobserved 

individual heterogeneity. Unlike mean-based estimators, which yield average treatment 

effects, PQR captures the influence of explanatory variables at different points quantiles 

of the outcome distribution. This is especially useful in empirical contexts marked by 

inequality, divergence, or structural asymmetry, where the marginal effects of 

covariates such as the Economic Complexity Index (ECI) may vary depending on 

whether a region lies in the upper or lower tail of the distribution. 

In the context of economic complexity, the relationship between ECI and 

socio-economic outcomes is unlikely to be uniform. For example, ECI may exert a 

stronger influence in underperforming or highly unequal regions than in more advanced 

provinces, a nuance that traditional linear models often obscure (Koenker & Hallock, 

2001; Hao & Naiman, 2007). This motivates the use of PQR in this thesis to explore 

how economic complexity differentially impacts provincial income inequality and 

economic growth across the conditional distribution. 

Empirical applications of PQR have grown rapidly in complexity-related 

research. Chu (2023), Nguyen et al. (2023), and Pham et al. (2024) analyze how ECI 

affects income inequality at various quantiles, revealing distribution-sensitive policy 

implications. Adebayo et al. (2022) and Hossain et al. (2024) employ the method of 

moments quantile regression (MMQR) to explore the nexus between complexity, 

energy innovation, and environmental performance across diverse country groups. 

Other scholars such as Ashraf et al. (2023) and Kazemzadeh et al. (2022) incorporate 

global value chains and ecological risk into quantile frameworks, while Alvarado et al. 

(2021) examine the distributional effects of natural resource rents. Advanced PQR 

variants, such as quantile-on-quantile regression (QQR) and generalized panel quantile 

regression have also been applied to asymmetric risk and energy contexts (Ozkan et al., 

2023; Payne et al., 2023). 

From a methodological standpoint, several advances have facilitated the 

estimation of quantile models with fixed effects. Canay (2011) proposed a 
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computationally efficient two-step estimator that first removes fixed effects via mean 

differencing, followed by quantile regression on the transformed data. Galvao (2011) 

extends this by developing consistent estimators for nonlinear panel quantile models. 

Powell (2022) and Graham et al. (2015) offer simulation-based diagnostics and 

guidance for implementation, while Zhang et al. (2019) apply PQR to data-driven 

clustering in panel contexts. These techniques are supported by canonical econometrics 

literature (Stock & Watson, 2020; Wooldridge, 2010), which recommends 

distributional analysis in settings with structural heterogeneity. 

This thesis applies panel quantile regression, following Canay’s (2011) two-

step estimator, to evaluate whether the effects of economic complexity differ across the 

distributions of income inequality and economic growth at the provincial level in 

Thailand. The method proceeds as follows. First, a fixed-effects model is estimated to 

control for province-specific unobserved heterogeneity: 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝑋𝑖𝑡
⊤𝛽 + 𝜀𝑖𝑡  (1)  

where 𝑦𝑖𝑡  is the dependent variable (e.g., GINI or RGPPPC), 𝑋𝑖𝑡
⊤  is the vector of 

covariates, and 𝛼𝑖 captures province-specific fixed effects. The data are then 

transformed via de-meaning: 

𝑦̃𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦̅𝑖𝑡, 𝑋̃𝑖𝑡 = 𝑋𝑖𝑡 + 𝑋̃𝑖 (2) 

In the second step, quantile regression is applied to the transformed data: 

min
𝛽𝜏

∑ ∑ 𝜌𝜏
𝑇
𝑡=1

𝑁
𝑖=1 (𝑦̃𝑖𝑡  − 𝑋̃𝑖𝑡

⊤𝛽𝜏) (3) 

where  𝜌𝜏(𝜇) = 𝜇(𝜏 − ΙΙ{𝜇 < 0}) is the check function for quantile τ, and ΙΙ{∙} is the 

indicator function. 

By estimating conditional quantiles at the 25th, 50th, and 75th percentiles, 

this approach uncovers distribution-sensitive dynamics that are overlooked by average-
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based models. This approach provides a more nuanced understanding of how 

complexity interacts with Thailand’s diverse regional development patterns. 

2.3.3.2 Generalized additive models (GAM) 

Generalized Additive Models (GAMs) extend the Generalized Linear 

Model (GLM) framework by allowing for flexible, nonlinear relationships between 

predictors and the response variable. Originally introduced by Hastie and Tibshirani 

(1986, 1990), GAMs relax the linear assumption embedded in GLMs by replacing 

linear terms with smooth, non-parametric functions estimated directly from the data. 

This innovation enables the modeling of functional relationships that are unknown or 

poorly specified in theory, making GAMs particularly suited for exploratory analysis 

in complex empirical settings. 

Mathematically, a GAM can be expressed as: 

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖)+. . . +𝑓𝑝(𝑥𝑝𝑖) + 𝜀𝑖 (4) 

where 𝑓𝑗(∙) are smooth functions estimated using methods such as penalized regression 

splines or thin plate splines. As Wood (2017) elaborates, this framework allows each 

predictor to have a unique, potentially nonlinear influence on the outcome variable 

while preserving the additive structure that facilitates interpretation and computational 

tractability. 

Compared to Ordinary Least Squares (OLS) regression, which imposes 

strict linearity, and quantile regression, which estimates conditional quantiles but still 

often assumes linearity within each quantile (Koenker & Bassett, 1978), GAMs provide 

a more flexible approach that does not require pre specifying the functional form of the 

relationship between independent and dependent variables. This feature is especially 

valuable in the context of economic complexity, where the relationship between the 

Economic Complexity Index (ECI) and outcomes such as regional growth or income 

inequality may exhibit nonlinear thresholds, structural breaks, or diminishing returns. 

GAMs thus offer a robust method to uncover hidden patterns that would be overlooked 

under parametric constraints. In empirical economic modeling, standard references 

such as Wooldridge (2010) and Stock and Watson (2020) underscore the importance of 
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model specification. GAMs contribute to this aim by minimizing misspecification bias 

and enhancing predictive performance when relationships are complex and context-

dependent conditions that frequently characterize the ECI–growth and ECI–inequality 

nexus in diverse regional settings. 

Generalized Additive Models (GAMs) extend the framework of 

Generalized Linear Models (GLMs) by incorporating smooth, data-driven functions of 

covariates, allowing for the flexible modelling of nonlinear relationships (Hastie & 

Tibshirani, 1990; Wood, 2017). Rather than assuming a strictly linear effect, GAMs 

estimate smooth terms—often via splines—whose complexity is regularized through 

penalization to avoid overfitting (Wood, 2017; Hastie et al., 2009). This regularization 

process shrinks overly complex curves toward linearity unless strongly justified by the 

data. Optimal smoothing parameters are typically selected using Generalized Cross-

Validation (GCV) or Restricted Maximum Likelihood (REML) methods (Wood, 2006, 

2017; Wahba, 1975, 1990). 

Generalized Additive Models (GAMs) have been increasingly utilized in 

economic research to capture nonlinear and context-dependent relationships that 

traditional linear models may overlook. In macroeconomic and financial contexts, 

Sapra (2013) provided an early overview of GAM's potential in modelling economic 

indicators and business dynamics. More recent applications extend to sectoral and 

spatial domains: Salan et al. (2023) applied GAMs to explore links between financial 

reserves and macro indicators in Bangladesh, while Wibowo et al. (2021) examined the 

non-linear effect of information technology on sub-national GDP. In tourism analysis, 

Zanin and Marra (2012) showed GAM’s superiority over GLMs in modelling 

fluctuating tourism demand.  

GAMs have also been applied in the context of productivity and regional 

growth. Azomahou, Diene, and Diene (2013) used a semi-parametric panel model to 

uncover nonlinearities in productivity growth across countries, offering methodological 

justification for using GAMs in development studies. Similarly, Paul et al. (2018) 

investigated the complex non-linear association between GDP and crime categories, 

and Odell (2009) highlighted structural nonlinearities in long-run economic growth. In 

regional and spatial analysis, Cajias and Ertl (2018) explored non-linear effects in real 

estate valuation, demonstrating GAM’s utility for hedonic modelling with spatial 
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features. Huang and Li (2018) contributed a semiparametric model averaging 

framework for panel data, further reinforcing the methodological flexibility of GAMs 

in econometric practice. Additionally, studies like Pu et al. (2022) and Hunter et al. 

(2020) have adopted GAMs to analyze health, environmental, and development 

interactions with complex regional and institutional patterns. 

In this thesis, GAM is employed alongside panel and quantile regression as 

part of a methodological triangulation strategy. While panel regression addresses time-

invariant heterogeneity and quantile regression reveals distributional effects, GAM 

captures unknown nonlinearities in the relationship between ECI and growth or 

inequality across Thai provinces. This is especially pertinent in a context marked by 

spatial, economic, and institutional diversity. By incorporating GAM, this study gains 

a more nuanced understanding of how economic complexity interacts with sub-national 

development processes. 

2.4 Clustering-Related Literature 

Clustering techniques are widely used in economic research to classify regions 

or provinces into groups with similar structural or socio-economic characteristics. In 

the context of economic complexity, clustering helps reveal underlying patterns in 

industrial composition, innovation capacity, and development levels that may not be 

apparent through regression-based analysis alone. By identifying spatial or structural 

typologies, clustering enables more targeted interpretation of regional disparities and 

supports tailored policy design. This section reviews key literature on clustering 

applications in economic and regional studies, with a focus on methods relevant to 

subnational economic complexity and development analysis. 

2.4.1 Clustering for Regional and Socio-Economic Classification 

Clustering techniques have become essential tools for analyzing spatial 

disparities and classifying subnational socio-economic profiles. These methods group 

provinces, districts, or regions based on common economic, demographic, or 

infrastructure characteristics, providing a data-driven basis for policy formulation and 

regional planning. Rooted in regional development theory (Dawkins, 2003; Antonescu, 
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2014), clustering serves as a powerful alternative to administrative boundaries by 

revealing “functional” regional typologies based on empirical indicators. 

In the European Union, Pavone et al. (2021) applied multidimensional 

clustering to support cohesion policy by identifying structurally similar regional 

groupings, while Topaloglou et al. (2005) constructed typologies of border regions to 

inform cross-border development initiatives. Similarly, Perafita and Saez (2022) 

demonstrated the utility of clustering in small-area inequality classification, 

emphasizing its potential for spatially targeted social interventions. In Italy, Antonicelli 

et al. (2025) combined K-means clustering and machine learning to map income 

inequality, reflecting a growing trend toward hybrid clustering approaches in economic 

geography. Outside of Europe, subnational clustering studies are gaining traction. Chu 

et al. (2019) employed principal component and cluster analysis to assess urbanization 

in China’s Hunan Province. In Brazil, de Queiroz Stein et al. (2024) utilized agricultural 

census data to explore regional inequalities through clustering, while Fusco and Perez 

(2015) applied neural networks to analyze economic complexity across the Indian 

subcontinent. Southeast Asian applications are emerging as well—Rahadini (2024) and 

Wardana et al. (2023) examined rural-urban relations and development patterns in 

Central Java using cluster-based typologies, offering useful analogs for Thai provincial 

studies. 

Despite these advances, methodological challenges persist. There is no 

consensus on indicator selection, normalization procedures, or determining the optimal 

number of clusters. Many studies rely on static administrative units, which may not 

reflect actual socio-economic functionality. In Thailand, empirical studies using 

clustering methods remain limited, often constrained by data availability, insufficient 

disaggregation, and short time series. These limitations underscore the need for more 

systematic, reproducible clustering frameworks to support evidence-based subnational 

development strategies. 

2.4.2 Machine Learning Techniques for Clustering 

Unsupervised machine learning algorithms such as K-means, Hierarchical 

Agglomerative Clustering (HAC), and Gaussian Mixture Models (GMM) have become 

key tools for classifying regions based on socio-economic similarities. Unlike fixed 

administrative classifications, these techniques uncover data-driven groupings that 



34 

 

reflect underlying structural patterns. Their strength lies in handling high-dimensional, 

nonlinear data to reveal latent spatial disparities and economic profiles. In regional 

development research, such methods support more precise typologies for policy 

targeting. The following subsections outline the core principles and applications of K-

means, HAC, and GMM in the context of subnational socio-economic analysis. 

2.4.2.1 K-means clustering 

K-means clustering, first introduced by MacQueen (1967), is one of the 

most widely used unsupervised learning algorithms for partitioning data into 

homogenous groups based on similarity metrics. It is particularly favored in socio-

economic and regional studies due to its simplicity, scalability, and computational 

efficiency (Jain, 2010; Everitt et al., 2011). From a methodological standpoint, K-

means operate by minimizing intra-cluster variance while maximizing inter-cluster 

separation. The algorithm iteratively assigns observations to the nearest centroid and 

recalculates cluster centers until convergence (Kanungo et al., 2000). Several studies 

have focused on refining the algorithm’s initialization and optimizing the selection of 

the number of clusters (K), which is a critical parameter influencing its accuracy and 

interpretability (Yuan & Yang, 2019; Sinaga & Yang, 2020).  

In terms of application, K-means has been used extensively for socio-

economic classification and regional typology. Antonicelli et al. (2025) utilized K-

means alongside machine learning algorithms to detect income inequality patterns 

across Italian regions. Similarly, Fa’rifah and Pramesti (2022) applied K-means to 

categorize Indonesian districts by their level of inclusive economic development. In 

China, Zhan et al. (2021) used a combination of K-means and principal component 

analysis (PCA) to divide economic regions, highlighting the algorithm's flexibility in 

integrating with dimensionality reduction techniques. Despite its popularity, K-means 

is not without limitations. It assumes spherical clusters of similar size and is sensitive 

to outliers and the initial choice of centroids (Chong, 2021). Improvements and hybrid 

versions have emerged to address these weaknesses, including enhanced distance 

metrics and initialization procedures (El Hatimi et al., 2024).  

Overall, K-means remains a powerful baseline method for regional 

classification in economic development research, particularly when supplemented with 

rigorous pre-processing, validation, and visualization techniques. 
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2.4.2.2 Hierarchical agglomerative clustering (HAC) 

Hierarchical Agglomerative Clustering (HAC) is one of the most classical 

and widely applied clustering techniques, particularly valuable in socio-economic and 

regional typology research due to its interpretability and flexibility. Introduced by 

Johnson (1967) and further refined through methods such as Ward’s minimum variance 

criterion (Ward, 1963), HAC builds a nested tree-like structure (dendrogram) that 

captures the hierarchical relationships among spatial units based on similarity metrics. 

The popularity of HAC in socio-economic studies stems from its ability to 

generate interpretable cluster hierarchies without requiring prior knowledge of the 

number of clusters. As Murtagh and Contreras (2012) and Ran et al. (2023) note, the 

algorithm’s iterative bottom-up approach is particularly well-suited for classifying 

regions where economic relationships are complex and multi-scalar. Several studies 

have adapted HAC for regional development analysis. For instance, Argüelles et al. 

(2014) employed hierarchical clustering on principal components (HCPC) to identify 

functionally similar regions, offering an empirically grounded alternative to 

administrative classifications. Bhahari and Kusnawi (2024) applied a similar PCA-

HAC framework to group districts in East Java by socio-economic indicators, revealing 

intra-provincial disparities. In Turkey, Altuntas et al. (2022) combined HAC with panel 

data to evaluate regional incentives, demonstrating its potential for dynamic policy 

analysis. Advancements in spatial statistics have also extended HAC’s utility. Carvalho 

et al. (2009) proposed a spatial variant of HAC that incorporates geographic proximity, 

allowing the formation of clusters that reflect both socio-economic similarity and 

spatial contiguity—an essential feature for regional studies in countries with diverse 

geographies like Thailand. Meanwhile, Ma et al. (2005) explored HAC in clustering 

Chinese regions, reinforcing its applicability in emerging economy contexts. 

Despite its strengths, HAC can be computationally intensive for large 

datasets and sensitive to the choice of distance metrics and linkage criteria. 

Nonetheless, its visual clarity through dendrograms and adaptability to mixed-type data 

make it a valuable tool for sub-national classification in economic development 

research. 
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2.4.2.3 Gaussian mixture models (GMM) 

Gaussian mixture models (GMM) are a powerful probabilistic clustering 

approach that assumes data are generated from a mixture of several Gaussian 

distributions, each representing a latent group. Unlike hard clustering methods such as 

K-means, GMM assigns probabilities of membership to each observation, thus 

accommodating overlapping clusters and complex data structures. The theoretical 

foundation for GMM lies in the Expectation-Maximization (EM) algorithm developed 

by Dempster et al. (1977), which iteratively estimates model parameters by maximizing 

the likelihood of the observed data. Comprehensive treatments of GMM and mixture 

models are provided in McLachlan and Peel (2000) and Bishop and Nasrabadi (2006), 

while Fraley and Raftery (2002) advanced the model-based clustering literature by 

incorporating formal criteria such as the Bayesian Information Criterion (BIC) to 

determine the number of components. 

In the context of regional and socio-economic classification, GMM has 

proven especially effective due to its flexibility in handling heterogeneity and latent 

group structures. For instance, Rodriguez Andres et al. (2022) used model-based GMM 

clustering to classify African countries according to knowledge economy indicators, 

allowing for nuanced groupings that go beyond conventional classifications. Similarly, 

Wahidah and Utari (2023) applied GMM to poverty indicators in Indonesia and found 

that the model outperformed K-means in detecting subtle differences between regional 

profiles. Tanujaya et al. (2024) compared GMM with K-means and hierarchical 

clustering for categorizing countries by economic freedom, with GMM demonstrating 

superior performance in capturing underlying data variability. 

More technical enhancements to GMM have also emerged. He et al. (2025) 

proposed a subspace-based GMM ensemble algorithm designed for high-dimensional 

socio-economic datasets, showing that ensemble methods can improve both clustering 

stability and interpretability. Additionally, Monastiriotis (2009), while not using GMM 

directly, emphasized the importance of detecting consistent spatial association patterns 

across regional indicators—an area where GMM excels due to its probabilistic 

modeling capacity. Despite its advantages, GMM comes with computational demands 

and sensitivity to initialization, particularly in high-dimensional or sparse data contexts. 

However, when applied rigorously with proper model diagnostics and regularization, 
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GMM can offer deep insights into regional typologies, socio-economic segmentation, 

and policy-relevant heterogeneity. 

In sum, GMM adds substantial value to the suite of clustering techniques 

used in regional development analysis. Its application in this study reflects the need to 

identify latent structures within provincial socio-economic data in Thailand, enabling a 

more flexible and statistically grounded classification of provinces. 

2.5 Synthesis and Research Gaps 

The literature reviewed throughout this chapter illustrates the growing relevance 

of economic complexity as a framework for understanding long-term economic 

performance and distributional dynamics. Panel regression has been the predominant 

methodological approach, offering a robust mechanism to control for both temporal and 

cross-sectional heterogeneity. Complementary to this, quantile regression allows for the 

exploration of distributional asymmetries, shedding light on how the impact of the 

Economic Complexity Index (ECI) varies across different segments of the income 

distribution. Generalized Additive Models (GAMs) further enrich this methodological 

arsenal by modelling nonlinear, non-parametric relationships, which are especially 

useful when theoretical functional forms are ambiguous or vary across regions. In 

parallel, clustering techniques—such as K-means, hierarchical agglomerative 

clustering (HAC), and Gaussian Mixture Models (GMM) have been increasingly 

adopted for the classification of regions based on multidimensional socio-economic 

indicators. These tools have proven effective in identifying development patterns and 

regional disparities, supporting spatial planning and policy targeting. However, most 

clustering applications remain exploratory in nature and are rarely integrated with 

econometric models to explain or predict economic outcomes. 

Despite these advances, several research gaps remain. First, empirical 

applications at the subnational level, particularly in developing and emerging 

economies like Thailand are still scarce. Much of the existing literature focuses on 

cross-country analyses or large economies with abundant data, leaving Thailand’s 

provincial dynamics underexplored. Second, while economic complexity has been 



38 

 

linked to both growth and inequality in the global literature, few studies examine these 

relationships jointly in a localized, panel-based framework. Third, methodological 

pluralism is often lacking; studies tend to rely on a single econometric technique, with 

limited triangulation across models to validate findings or capture nuanced effects. 

Fourth, while clustering has been used to classify regions, these groupings are seldom 

used as inputs into further econometric analysis, nor are they tailored to reflect 

complexity-specific dimensions. 

This thesis responds to these gaps by conducting a comprehensive empirical 

investigation of the impact of economic complexity on both economic growth and 

income inequality at the provincial level in Thailand. It employs a triangulated 

methodology that combines panel regression, quantile regression, and GAM to account 

for heterogeneity in scale, distribution, and functional form. Moreover, it incorporates 

machine learning-based clustering to classify provinces into distinct socio-economic 

profiles, which can inform and enrich the interpretation of econometric results. By 

bridging subnational evidence, methodological rigor, and machine learning integration, 

this study advances the understanding of how economic complexity operates across 

different development contexts and institutional settings. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter outlines the methodological approach adopted to investigate the 

relationship between economic complexity and regional development outcomes in 

Thailand. The study employs a multi-method framework that integrates panel 

regression, panel quantile regression, generalized additive models (GAM), and 

clustering techniques to capture both linear and nonlinear dynamics, as well as regional 

heterogeneity. 

The research design is grounded in the use of panel data at the provincial level, 

covering multiple years to account for both temporal and cross-sectional variation. 

Economic complexity is operationalized through the Economic Complexity Index 

(ECI), calculated using the Method of Reflection and applied at the subnational scale. 

Key outcomes of interest include economic growth and income inequality, measured 

through standard macroeconomic indicators. To ensure analytical rigor and robustness, 

the chapter is structured around the sequential stages of data processing and analysis. It 

begins with a description of data sources and variable construction, followed by the 

procedures used to compute ECI at the provincial level.  

Subsequently, the chapter presents the econometric modelling strategies used to 

estimate the impact of ECI on growth and inequality, including fixed and random 

effects models, panel quantile regression, and GAMs. The final sections describe the 

clustering algorithms used to classify provinces based on their socio-economic profiles 

and discuss diagnostic and robustness checks applied to validate model 

performance. This multi-layered methodological approach enables a comprehensive 

assessment of the complexity-development nexus in Thailand, capturing both average 

trends and distributional nuances while uncovering spatial patterns that inform regional 

policy. 
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3.1  Research Design and Analytical Framework 

This study adopts a quantitative research design underpinned by a multi-method 

econometric and machine learning approach to analyze the relationship between 

economic complexity and regional development outcomes, specifically, economic 

growth and income inequality at the subnational level in Thailand. The research 

framework integrates three core components: (1) econometric modeling using panel 

regression and panel quantile regression; (2) nonlinear modeling via Generalized 

Additive Models (GAM); and (3) unsupervised machine learning techniques for 

provincial classification through clustering algorithms. 

The analytical process is structured to capture both average and distributional 

effects of economic complexity, while also accounting for nonlinearity and regional 

heterogeneity. First, the Economic Complexity Index (ECI) is computed at the 

provincial level using the Method of Reflection, based on export and production data. 

These values are then used as key explanatory variables in panel regression models both 

fixed and random effects to assess their impact on growth and inequality over time. To 

examine how these relationships differ across income distribution, panel quantile 

regression is applied. In addition, GAM is employed to flexibly model nonlinear effects 

of ECI, enabling the detection of structural thresholds or saturation points in the 

complexity–development relationship. 

To complement these regression-based analyses, the study also uses clustering 

techniques—K-means, Hierarchical Agglomerative Clustering (HAC), and Gaussian 

Mixture Models (GMM)—to classify Thai provinces into distinct socio-economic 

typologies. This classification allows for comparative regional interpretation and 

supports more tailored policy insights. 

The overall research design emphasizes methodological triangulation to 

enhance the robustness and depth of findings. Each method is selected for its ability to 

address a specific empirical dimension—causal inference, distributional variation, 

structural nonlinearity, or spatial pattern recognition within a unified analytical 

framework. The combination of econometric rigor and machine learning adaptability 
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positions this study to generate comprehensive insights into the dynamics of economic 

complexity and regional development in Thailand. 

 

Figure 3.1 Overall Methodological Workflow 

The methodological framework guiding this study integrates quantitative 

econometric modeling and machine learning to examine the multi-dimensional impact 

of economic complexity. As shown in Figure 3.1, the methodology is structured into 

two analytical tracks. The first employs panel regression analysis to test hypotheses 

regarding the effect of complexity on provincial growth and income inequality. The 

second uses unsupervised machine learning to detect latent clusters among provinces 

based on socio-economic indicators. This dual-track approach facilitates a more holistic 

understanding of the interplay between economic complexity and development 

outcomes. It allows the study not only to estimate causal relationships but also to 
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explore spatial heterogeneity and structural typologies. The integration of these 

methods ensures empirical rigor and enhances the policy relevance of the findings. 

3.2  Data Collection 

This study relies on secondary data obtained from official Thai government 

agencies to conduct a subnational analysis of economic complexity, economic growth, 

and income inequality across Thailand’s 77 provinces. The selection of data sources, 

indicators, and temporal coverage was guided by both conceptual relevance and 

empirical feasibility, ensuring alignment with the study’s analytical objectives. By 

combining data from multiple institutional sources, including the National Statistical 

Office (NSO), the Office of the National Economic and Social Development Council 

(NESDC), and the Bureau of the Budget. The research constructs a balanced and 

multidimensional panel dataset. This dataset supports both econometric estimation and 

unsupervised machine learning techniques for spatial clustering. The collection process 

emphasizes consistency, comparability, and granularity across provinces and years, 

laying the empirical foundation for subsequent analysis. 

3.2.1 Study Area and Units of Analysis 

The spatial units of analysis in this study are Thailand’s 77 provinces, which 

serve as the fundamental territorial units for subnational economic assessment. Each 

province represents a distinct regional economy with unique industrial compositions, 

demographic structures, and institutional capacities. The use of provinces as analytical 

units allows for a granular investigation into how economic complexity relates to 

regional development outcomes such as income inequality and economic growth. A 

subnational approach is particularly relevant in Thailand, where economic disparities 

between urban and rural provinces remain significant and where national-level 

aggregates may mask underlying heterogeneity. 

Special consideration is given to Bueng Kan province, which was established 

in 2011 after being separated from Nong Khai. Due to its administrative inception 

during the study period, Bueng Kan lacks a complete data record for the baseline year 

(2011). As such, while the province is included in the panel dataset, any analyses 



43 

 

involving year-to-year comparisons may treat its 2011 data as missing. This approach 

ensures consistency in the panel structure without introducing distortions in the overall 

estimation or clustering framework. 

3.2.2 Time Frame and Panel Design 

The temporal scope of this study spans five selected years: 2011, 2013, 2015, 

2017, and 2019. These years were strategically chosen to align with the availability of 

key outcome variables, particularly the Gini index for measuring income inequality, 

which is reported biennially through the Household Socio-Economic Survey conducted 

by the National Statistical Office (NSO). While other datasets—such as labor force 

statistics and Gross Provincial Product (GPP)—are available annually, the Gini 

coefficient dictates the maximum feasible temporal coverage for a consistent and 

meaningful panel structure encompassing all core variables. 

The panel dataset is designed to be balanced across the five selected years for 

all 77 provinces, with one exception: Bueng Kan province, which was created in 2011 

and thus lacks a full dataset for that initial year. Despite this minor data omission, the 

panel remains analytically robust. Two separate panel structures are constructed for the 

econometric analysis. The economic growth model utilizes data from all five years 

(2011–2019) to maximize the temporal dimension, while the income inequality model 

is limited to the biennial years for which Gini data is available. For the clustering 

analysis, the same five years are used to capture changes in socio-economic profiles 

over time. This panel design supports both cross-sectional and longitudinal analyses, 

enabling the investigation of dynamic trends in subnational development. 

3.2.3 Data Sources and Instruments 

This study relies exclusively on secondary data sourced from reputable Thai 

government agencies to ensure accuracy, completeness, and nationwide coverage. The 

National Statistical Office (NSO) serves as the primary provider of demographic and 

household-level data. Specifically, the Labor Force Survey (LFS) is used to construct 

the Economic Complexity Index (ECI) by analyzing sectoral employment distributions 

across provinces, while the Household Socio-Economic Survey (HSES) supplies data 

for computing the Gini coefficient, the core indicator of income inequality. The NSO’s 

official registration data also provides annual records on provincial population and 

population density, which serve as key control variables. 
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Macroeconomic indicators are obtained from the Office of the National 

Economic and Social Development Council (NESDC), which publishes annual Gross 

Provincial Product (GPP) data. This is adjusted to constant 2001 prices and used to 

calculate real GPP per capita (RGPPPC), the dependent variable in the economic 

growth model. Finally, fiscal data is retrieved from the Bureau of the Budget, which 

reports per capita budget allocations and provincial expenditures, used here to proxy 

public investment and fiscal capacity. Each of these datasets plays a critical role in 

operationalizing the study’s key variables: RGPPPC as the measure of economic 

growth; Gini index for income inequality; ECI as the structural explanatory variable 

derived via location quotients (LQs) from employment data; and additional control 

variables such as population size, density, and public spending. The integration of these 

data sources enables a multidimensional analysis of economic complexity at the 

provincial level. A summary of all data instruments, including their sources, frequency, 

and coverage, is provided in Table 3.1 below. 

Table 3.1 Summary of Data Sources, Frequency, Coverage, and Variables 

Source Dataset Frequency Coverage  Key Variables 

National 

Statistical 

Office 

Labor Force Survey 

(LFS) 

Quarterly 2011–2019 Sectoral employment 

(ECI, LQ) 

Household Socio-

Economic Survey 

(HSES) 

Biennial 2011, 2013, 2015, 

2017, 2019 

Gini coefficient  

Official Statistics 

Registration 

Annual 2011–2019 Population, 

population density 

NESDC Gross Provincial 

Product 

Annual 2011–2019 RGPPPC  

Bureau of the 

Budget 

Provincial Budget 

Allocation 

Annual 2011–2019 Per capita fiscal data 

(control) 
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3.3 Data Pre-processing 

Prior to conducting the regression and clustering analyses, the dataset must be 

carefully prepared to ensure accuracy, consistency, and compatibility with each 

methodological framework. This section outlines the data pre-processing steps applied 

to construct a multi-year provincial panel dataset using a combination of economic 

complexity indicators, socio-economic statistics, and public finance variables. Since 

this study applies multiple empirical techniques—including fixed effects regression, 

panel quantile regression, and K-Means clustering—data preparation is organized into 

three stages: (1) general data harmonization, (2) regression-specific processing, and (3) 

clustering-specific preparation. 

The economic growth regression model uses a balanced panel of 77 Thai 

provinces spanning the years 2011 to 2021, while the income inequality model is 

limited to five benchmark years (2011, 2013, 2015, 2017, and 2019) due to data 

availability on the Gini coefficient. The clustering analysis also draws on the same five 

benchmark years, aligning with the inequality dataset for temporal consistency. This 

structured pre-processing ensures methodological rigor and enables valid comparison 

of results across models and time periods. 

3.3.1 General Pre-processing 

Before conducting the main analysis, all datasets underwent a series of general 

pre-processing steps to ensure consistency, completeness, and analytical readiness. 

These procedures included handling missing values, aligning temporal and spatial 

coverage across variables, and converting raw employment data into a structured panel 

format. Employment data from the Labor Force Survey (LFS) was aggregated by 

province and sector to match the required 20-sector classification. Additionally, 

numeric variables such as population, density, provincial budget, and real GPP per 

capita were transformed into natural logarithmic form (except for ECI) to reduce 

skewness and enable interpretation of elasticities in regression models. All datasets 

were merged based on consistent province-year identifiers, and provinces with 

incomplete data, such as Bueng Kan in 2011—were excluded from relevant analyses to 

maintain panel balance. 
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3.3.1.1 Data integration and sources 

The first step of the pre-processing process involved merging and 

harmonizing data from multiple official sources to construct a coherent panel dataset of 

Thai provinces. The dataset integrates six core variables across five benchmark years—

2011, 2013, 2015, 2017, and 2019—including: (1) the Economic Complexity Index 

(ECI), (2) real gross provincial product per capita (RGPPPC), (3) the Gini index of 

income inequality, (4) total population, (5) population density, and (6) provincial 

government budget allocations. These indicators were obtained from a range of 

government databases, including the Department of Employment (for sectoral 

employment data), the National Statistical Office (NSO), the Local Administrative 

Organization (LAO) database, and the Office of the National Economic and Social 

Development Council (NESDC). 

To facilitate accurate merging, province names and codes were standardized 

across all data sources. This involved resolving inconsistencies in spelling, formatting, 

or administrative labeling—for example, ensuring that “Chiang Mai” was consistently 

represented across employment, budget, and socio-economic datasets. A consistent 

year identifier was also used to align all indicators temporally, and each observation 

was uniquely defined by a province–year combination. The merged dataset was 

structured in long-panel format, enabling its use in time-series econometric analysis 

and panel-based clustering. 

After integration, all variables were reviewed for completeness and internal 

consistency. Provinces with missing or incomplete records for any variable essential to 

a specific model were removed on a listwise basis. For example, the Gini index, which 

is derived from the Household Socio-Economic Survey and published biennially was 

only available in five years, thereby restricting the inequality model to those specific 

waves. In addition, Bueng Kan province was excluded from the 2011 wave due to the 

unavailability of baseline data, as it had just been officially established that year. 

To support the broader econometric framework, two final datasets were 

constructed: one for panel regression, which includes interpolated ECI values for 

missing years between 2011 and 2019 (and extends to 2021 for economic growth 

analysis), and another for clustering analysis, consisting of five separate cross-sectional 

snapshots corresponding to the benchmark years. This structured foundation ensures 
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both the temporal consistency and analytical compatibility of the dataset for the 

subsequent quantitative models. 

3.3.1.2 Measuring economic complexity 

This subsection outlines the procedures used to construct the Economic 

Complexity Index (ECI) at the provincial level using employment data. Given the 

absence of subnational trade statistics in Thailand, the study adopts an employment-

based approach to measure productive knowledge embedded in regional labor markets. 

This methodology aligns with recent literature that repurposes the Economic 

Complexity framework from export data to employment structure, enabling analysis of 

regional capabilities and industrial diversity (Fritz & Manduca, 2021; Mealy et al., 

2019; Neffke et al., 2018). 

The ECI computation follows the Method of Reflection framework 

originally developed by Hidalgo and Hausmann (2009), adapted to the subnational 

context by treating provinces as the equivalent of countries and economic sectors as 

products. This requires a binary province-sector matrix of revealed comparative 

advantage (RCA), derived from Location Quotients (LQs) based on sectoral 

employment shares. The iterative algorithm produces two central measures: the 

Economic Complexity Index (ECI) for each province and the Product Complexity 

Index (PCI) for each sector. To ensure robustness, the LQ values were calculated from 

cleaned and standardized Labor Force Survey data, disaggregated across 20 economic 

sectors for all 77 provinces. The RCA matrix was binarized based on an LQ threshold 

of 1.0, which signifies a province's relative specialization in each sector. These binary 

values serve as the input for the eigenvector-based complexity computation. 

Table 3.2 The Sample Record of Employment Data 

Province Industry Year No. of employee 

ACR Agriculture, Forestry and Fisheries 2011 140,922 

ACR Mining and Quarrying 2011 2 

ACR Manufacturing 2011 12,025 

ACR Electricity, Gas and Steam 2011 1,005 

ACR Water Supply and Wastewater 

Management 

2011 589 
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Table 3.2 (continued) 

Province Industry Year No. of employee 

ACR Construction 2011 8,102 

ACR Wholesale and Retail Trade 2011 26,588 

ACR Transportation and Storage 2011 4,533 

ACR Hotel and Food Services 2011 5,436 

ACR Information and Communication 2011 120 

ACR Financial and Insurance Activities 2011 540 

ACR Real Estate Activities 2011 20 

ACR Professional, Scientific and Technical 

Activities 

2011 50 

ACR Administrative and Support Service 

Activities 

2011 1,005 

ACR Public Administration and Defence 2011 9,897 

ACR Education 2011 10,514 

ACR Human Health and Social Work 

Activities 

2011 1,566 

ACR Arts, Entertainment and Recreation 2011 222 

ACR Other Service Activities 2011 2,427 

ACR Domestic Workers 2011 640 

A sample of the processed employment data used in the LQ calculations is 

presented in Table 3.2, demonstrating the granularity of sectoral disaggregation prior 

to complexity analysis. The computations were implemented using the ‘ecomplexity 

0.5.2’ Python package developed by the Growth Lab at Harvard’s Center for 

International Development (MIT, 2018), which provides standardized tools for 

calculating both national and sub-national complexity indices. This package ensures 

methodological consistency with global studies on economic complexity, offering 

functions for location quotient calculation, LQ matrix construction, and iterative 



49 

 

derivation of ECI and PCI. The use of an open-source, academically validated toolkit 

enhances the reproducibility and transparency of the analysis. 

Like the Balassa Index or Revealed Comparative Advantage (RCA), the 

Location Quotient (LQ) is used to evaluate the comparative advantage of a specific 

region. However, unlike RCA, which is typically based on export data, LQ relies on 

employment data. This distinction is particularly useful in contexts where trade data at 

the sub-national level is not systematically available. The LQ is calculated as the ratio 

between a province’s employment share in a specific industry and the corresponding 

national employment share. This method allows for the estimation of the economic 

influence or amplifying effect that an industry may have within a local economy 

(Isserman, 1977; Billings & Johnson, 2012). 

The formula for LQ is defined as follows: 

𝐿𝑄𝑖𝑗 =
𝐸𝑖𝑗/Σ𝑗𝐸𝑖𝑗

Σ𝑗𝐸𝑖𝑗/Σ𝑖𝑗𝐸𝑖𝑗
 (5) 

where Eij  represents employment in industry 𝑗  within province 𝑖 , Σ𝑗Eij  is the total 

employment in province 𝑖, Σ𝑖Eij is the total national employment in industry 𝑗, Σ𝑖𝑗Eij is 

total employment across all provinces and industries. 

An LQ value equal to or greater than 1 indicates that the province’s share of 

employment in a specific industry exceeds the national average, signifying 

specialization or comparative advantage in that industry. These values are subsequently 

transformed into a binary matrix Mij , where Mij = 1 𝑖𝑓 LQij ≥ 1 𝑎𝑛𝑑 Mij = 0  

otherwise. This matrix forms the foundation for the economic complexity calculations 

by identifying industries of relative importance within each province (Fritz & Manduca, 

2021; Mealy et al., 2019). 

To quantify the complexity embedded within a province’s economic 

structure, this study adopts the Method of Reflection (MoR), an iterative algorithm 

developed by Hidalgo and Hausmann (2009). This technique leverages the binary 

specialization matrix Mij, derived from the Location Quotient (LQ), to compute two 

fundamental metrics: diversity and ubiquity. Diversity reflects the number of economic 

activities in which a province exhibits specialization, while ubiquity captures the 
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number of provinces specialized in each economic activity. Through iterative 

refinement, this method captures the embedded knowledge and productive capabilities 

that underlie regional economies. 

The initial diversity 𝑘𝑖,0 of province 𝑖 is computed as the sum of industries 

in which it holds a comparative advantage: 

𝑘𝑖,0 = Σ𝑗𝑀𝑖𝑗 (6) 

Likewise, the initial ubiquity 𝑘𝑗,0 of economic activity j is calculated as the 

number of provinces with specialization in that activity: 

𝑘𝑗,0 = Σ𝑖𝑀𝑖𝑗 (7) 

The algorithm proceeds by iteratively updating these values to incorporate 

second-order effects—namely, how diversified the other provinces are that share 

similar industries, and how ubiquitous the other industries are in which a province is 

involved. These recursive steps are defined as: 

𝑘𝑖,𝑛 =
1

𝑘𝑖,0
∑ 𝑀𝑖𝑗𝑗 𝑘𝑗,𝑛−1  ;   𝑘𝑗,𝑛 =

1

𝑘𝑗,0
∑ 𝑀𝑖𝑗𝑖 𝑘𝑖,𝑛−1 (8) 

where 𝑛 denotes the number of iterations. Typically, the process converges within 20–

30 iterations, yielding a stable characterization of the complexity profile. 

To facilitate meaningful comparisons across time and regions, the final 

complexity scores are standardized using z-scores. The Economic Complexity Index 

(ECI) for province 𝑖, and the Product Complexity Index (PCI) for industry 𝑗, are defined 

as: 

𝐸𝐶𝐼𝑖 =
𝑘𝑖,𝑁−𝜇(𝑘𝑖,𝑁)

𝜎(𝑘𝑖,𝑁)
  ;   𝑃𝐶𝐼𝑖 =

𝑘𝑗,𝑁−𝜇(𝑘𝑗,𝑁)

𝜎(𝑘𝑗,𝑁)
 (9) 
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where 𝜇 and 𝜎 represent the mean and standard deviation, and N is the final iteration 

step. A value of ECI or PCI above zero indicates higher-than-average complexity, while 

values below zero signify relatively less complex provinces or industries (Hausmann & 

Hidalgo, 2014). 

 

Figure 3.2 Flowchart of the Three-Step Process Used to Calculate the Economic 

Complexity Index for Thailand's Provinces 

This diagram (Figure 3.2) illustrates the process of transforming provincial 

employment data into a binary specialization matrix via location quotients (LQ), 

followed by iterative calculation of diversity and ubiquity metrics using the MoR 

algorithm. Final indices (ECI and PCI) are standardized using z-transformation after 

convergence is reached 
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3.3.1.3 Data cleaning, standardization, and structuring 

After merging data from multiple sources, a series of data cleaning and 

standardization procedures were conducted to ensure consistency across provinces and 

years. Province names and codes were harmonized to address mismatches, while 

incomplete observations were excluded on a listwise basis according to each model’s 

requirements. Time alignment across variables was verified, particularly for ensuring 

compatibility in panel settings. 

All monetary variables—such as real gross provincial product per capita 

(RGPPPC) and provincial budgets—were adjusted for inflation and transformed into 

natural logarithms to reduce skewness and allow for elasticity-based interpretation. 

Population and population density were similarly log-transformed. For clustering 

analysis, all variables were further standardized using Z-scores to equalize scales and 

prevent distortion in centroid calculations. Outliers were assessed for plausibility using 

descriptive checks and national statistics. 

Table 3.3 Panel Structure Overview by Model Type 

Model Type Years Covered Unit of 

Analysis 

Key Variables Data Structure 

Economic 

Growth Model 

2011-2021 77 Provinces RGPPPC, ECI, 

Controls 

Unbalanced 

Panel 

Income 

Inequality 

Model 

2011, 2013, 

2015, 2017, 

2019 

77 Provinces Gini, ECI, 

Controls 

Unbalanced 

Panel 

Clustering 

Analysis 

2011, 2013, 

2015, 2017, 

2019 

77 Provinces All Socioeconomic 

Indicators 

Cross-sectional 

Snapshots 

Once cleaned and transformed, the data was structured into long-format 

panel and cross-sectional formats based on the analytical needs of each model. The 

economic growth model covers the full period from 2011 to 2021, using interpolated 

values of the Economic Complexity Index (ECI) for non-benchmark years. The income 
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inequality model is limited to five benchmark years—2011, 2013, 2015, 2017, and 

2019—to reflect the availability of Gini index data, with Bueng Kan province excluded 

from 2011 due to missing baseline data from its year of establishment. For the clustering 

analysis, five separate cross-sectional datasets were prepared, each corresponding to 

one of the benchmark years. This design facilitates both the classification of provinces 

at specific time points and the tracking of regional cluster dynamics over time.  

3.3.2 Specific for Regression Analysis 

The dataset used for regression analysis included six key variables: the 

Economic Complexity Index (ECI), real gross provincial product per capita (RGPPPC), 

Gini index (GINI), population density, and provincial government budget. To improve 

distributional properties and enhance the interpretability of regression coefficients, 

natural logarithmic transformation was applied to RGPPPC, total population, 

population density, and budget. This transformation reduces skewness in highly 

dispersed variables and allows the estimated coefficients to be interpreted in terms of 

percentage changes, a common practice in applied economic research. The ECI and 

Gini index were retained in their original forms, as their standardized or bounded scales 

preserve comparability without requiring transformation. After these adjustments, the 

data were organized in long-format panel structure, indexed by province and year, and 

prepared for use in the fixed effects and panel quantile regression models. 

3.3.3 Specific for Clustering Analysis 

The clustering analysis required additional pre-processing steps tailored to 

unsupervised machine learning methods, particularly the K-Means algorithm. The input 

variables used for clustering included the Economic Complexity Index (ECI), real gross 

provincial product per capita (RGPPPC), Gini index (GINI), population, population 

density, and provincial government budget. Unlike regression models that preserve 

original units, clustering models are sensitive to differences in scale. Therefore, all 

variables were normalized using Z-score standardization, transforming each feature to 

have a mean of zero and a standard deviation of one. This ensured that no single variable 

dominated the clustering outcome due to scale differences. Clustering was performed 

separately for each of the five benchmark years—2011, 2013, 2015, 2017, and 2019, 

treating each year as an independent cross-sectional snapshot. This design allows for 

the analysis of temporal changes in cluster membership and the evolution of provincial 
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development profiles over time. The standardized datasets for each year were stored as 

five independent cross-sections, ready for cluster evaluation, profiling, and 

interpretation. 

3.4 Data Analysis 

This section details the analytical techniques used to examine the relationships 

between economic complexity, economic growth, and income inequality across 

Thailand’s 77 provinces. The study adopts a multi-method empirical approach that 

integrates econometric modeling with machine learning classification. Given the 

likelihood of endogeneity due to unobserved provincial characteristics, the panel 

regression analysis employs the Fixed Effects (FE) model, which effectively controls 

for time-invariant heterogeneity. To assess distributional heterogeneity across different 

quantiles of income inequality, panel quantile regression is implemented. Additionally, 

Generalized Additive Models (GAM) are employed to capture potentially non-linear 

and non-parametric relationships between the Economic Complexity Index (ECI) and 

development outcomes.  

Complementing the regression-based analysis, unsupervised machine learning 

techniques are used to classify provinces into development typologies. The study 

applies K-means, Hierarchical Agglomerative Clustering (HAC), and Gaussian 

Mixture Models (GMM) to uncover latent groupings in the data based on multi-

dimensional socio-economic indicators. This dual-pronged analytical strategy enhances 

the robustness of findings and allows for a more nuanced understanding of spatial 

disparities and structural complexity in Thailand’s subnational economic landscape. 

3.4.1 Regression Analysis 

The regression component of this study employs three complementary 

econometric techniques to examine the effects of economic complexity on two key 

provincial-level development outcomes in Thailand: economic growth and income 

inequality. The methodological design is grounded in both theoretical considerations 

and empirical challenges, particularly the need to address unobserved heterogeneity, 

nonlinearity, and distributional asymmetries. To this end, the analysis integrates Fixed 
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Effects (FE) panel regression, Pane. Quantile Regression (PQR), and Generalized 

Additive Models (GAMs), each offering distinct analytical advantages. 

FE regression controls for time-invariant provincial characteristics that could 

bias estimates, ensuring robust identification of within-unit variation. PQR captures 

how the impact of economic complexity varies across different points of the outcome 

distribution, providing insights beyond mean effects. GAMs extend the analysis by 

allowing nonparametric modeling of nonlinear relationships between covariates and 

outcomes, enabling the detection of functional forms not easily specified a priori. This 

multi-model approach supports a triangulated understanding of the relationship 

between economic complexity and regional development, enhancing both statistical 

rigor and policy relevance. 

3.4.1.1 Regression analysis 

To estimate the average effect of economic complexity on regional 

development outcomes in Thailand, this study employs the fixed effects (FE) panel 

regression model. This technique controls for unobserved, time-invariant provincial 

characteristics that may otherwise bias the estimated coefficients. In regional studies, 

such fixed factors include deep-rooted differences in infrastructure, institutions, 

industrial history, or geographic conditions that influence both economic complexity 

and development trajectories. By focusing on within-province variation over time, the 

FE model offers a consistent estimator even when explanatory variables are correlated 

with unit-specific effects (Allison, 2009; Wooldridge, 2010; Stock & Watson, 2020). 

Two separate models are estimated to reflect the study’s dual focus. In the 

economic growth model, the dependent variable is the natural logarithm of real gross 

provincial product per capita (RGPPPC). The key explanatory variable is the Economic 

Complexity Index (ECI), accompanied by control variables including the logarithms of 

total population, population density, and provincial government budget. The model is 

specified as: 

𝑙𝑛𝑅𝐺𝑃𝑃𝑝𝑐𝑖𝑡 = 𝛽0 + 𝛽1𝐸𝐶𝐼𝑖𝑡 + 𝛽2𝑙𝑛𝑃𝑂𝑃𝑖𝑡+𝛽3𝑙𝑛𝑃𝑂𝑃𝐷𝑖𝑡+𝛽3𝑙𝑛𝐵𝑈𝐷𝐺𝐸𝑇𝑖𝑡 + 𝜀𝑖𝑡 (10) 

In the income inequality model, the dependent variable is the Gini 

coefficient. The same core explanatory variables are used, with RGPPPC included as a 
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control to assess whether income levels mediate the relationship between complexity 

and inequality. The model is written as: 

𝐺𝐼𝑁𝐼𝑖𝑡 =  𝛽0 + 𝛽1𝐸𝐶𝐼𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝑃𝑃𝑝𝑐𝑖𝑡 + 𝛽3𝑙𝑛𝑃𝑂𝑃𝑖𝑡+𝛽4𝑙𝑛𝑃𝑂𝑃𝐷𝑖𝑡+𝛽5𝑙𝑛𝐵𝑈𝐷𝐺𝐸𝑇𝑖𝑡 + 𝜀𝑖𝑡 (11) 

where 𝐺𝐼𝑁𝐼𝑖𝑡 represents the Gini coefficient of province 𝑖 in year 𝑡 (2011, 2013, 2015, 

2017, 2019). 𝐸𝐶𝐼𝑖𝑡  represents economic complexity index of province 𝑖  in year 𝑡 . 

𝐵𝑈𝐷𝐺𝐸𝑇𝑖𝑡 refers to the provincial government budget per capita of province 𝑖 in year 𝑡. 

𝑃𝑂𝑃𝐷𝑖𝑡  refers to the population density of province 𝑖 in year 𝑡. 𝑃𝑂𝑃𝑖𝑡  represents the 

population of province 𝑖 in year 𝑡. The coefficient 𝛽 represents the coefficients for the 

independent variables, and 𝜀𝑖𝑡 represents the error term.  

This study adopts only the FE estimator and excludes the random effects 

(RE) model due to concerns about endogeneity and the likely correlation between the 

ECI and unobserved provincial characteristics. Accordingly, the Hausman specification 

test is not performed. This modeling strategy is consistent with best practices in applied 

econometrics (Greene, 2001; DeHaan, 2021) and meta-analytic methods (Borenstein et 

al., 2010; Hedges, 1994), where the FE approach is favored when the inference is 

limited to the observed units, and heterogeneity is assumed to be structural rather than 

random. All estimations are implemented in Python using the ‘linearmodels’ package. 

Robust standard errors clustered at the provincial level are reported to address 

heteroskedasticity and serial correlation. 

3.4.1.2 Panel quantile regression 

To investigate whether the effect of economic complexity varies across 

different levels of development outcomes, this study applies to panel quantile 

regression (PQR) as a complementary method to the fixed effects (FE) model. Unlike 

mean regression, which estimates average effects, quantile regression allows for the 

estimation of covariate impacts at various points in the conditional distribution of the 

dependent variable. This approach is particularly useful when heterogeneity is 

suspected across provinces with different levels of income or inequality. The two-step 

estimator proposed by Canay (2011) is adopted, allowing for consistent estimation in 

the presence of unobserved time-invariant heterogeneity without the need to estimate 

individual fixed effects for each unit. 
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In the economic growth model, the dependent variable is the natural 

logarithm of real gross provincial product per capita (RGPPPC). The main independent 

variable of interest is the Economic Complexity Index (ECI), along with controls for 

the natural logarithms of total population, population density, and provincial 

government budget. The panel quantile regression model at quantile 

𝑙𝑛(𝑅𝐺𝑃𝑃𝑃𝐶̃ )𝑖𝑡 = 𝛽1𝜏𝐸𝐶𝐼̃
𝑖𝑡 + 𝛽2𝜏(𝑃𝑂𝑃)̃

𝑖𝑡 + 𝛽3𝜏(𝑃𝑂𝑃𝐷)̃
𝑖𝑡 + 𝛽4𝜏(𝐵𝑈𝐷𝐺𝐸𝑇)̃

𝑖𝑡 + 𝜀𝑖𝑡 (12) 

In the income inequality model, the dependent variable is the Gini 

coefficient. The model includes ECI, the log of RGPPPC, and the same control 

variables as in the growth model. The quantile regression specification is as follows: 

𝐺𝐼𝑁𝐼̃𝑖𝑡 = 𝛽1𝜏𝐸𝐶𝐼̃
𝑖𝑡 + 𝛽2𝜏𝑙𝑛(𝑅𝐺𝑃𝑃𝑃𝐶̃ )𝑖𝑡 + 𝛽3𝜏𝑙𝑛(𝑃𝑂𝑃)̃

𝑖𝑡 + 𝛽4𝜏𝑙𝑛(𝑃𝑂𝑃𝐷)̃
𝑖𝑡 + 𝛽5𝜏𝑙𝑛(𝐵𝑈𝐷𝐺𝐸𝑇)̃

𝑖𝑡

+ 𝜀𝑖𝑡 

(13) 

All quantile regressions are estimated using the ‘statsmodels’ package in 

Python, which implements classical quantile regression following Koenker (2005). The 

procedure relies on solving a linear programming problem to minimize the quantile loss 

function , making it suitable for cross-sectional and demeaned panel applications 

(Koenker & Hallock, 2001). Pseudo R² and standard errors are reported to assess model 

fit and coefficient significance. This approach is consistent with econometric practices 

recommended in Stock and Watson (2020) and Wooldridge (2010), particularly when 

accounting for distributional heterogeneity. Estimating models at the 25th, 50th, and 

75th percentiles allow for identifying distributional heterogeneity in the effects of 

economic complexity on growth and inequality. 

3.4.1.3 Generalized additive models (GAMs) 

To capture potential nonlinearities in the relationship between economic 

complexity and development outcomes, this study applies Generalized Additive 

Models (GAMs). GAMs are a semi-parametric extension of linear models that allow 

each explanatory variable to have a smooth, data-driven functional form while retaining 

additive separability. This flexibility enables the modeling of complex relationships—
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such as thresholds or diminishing marginal effects—that traditional linear regressions 

may overlook (Hastie & Tibshirani, 1990; Wood, 2017). 

In the economic growth model, the dependent variable is the natural 

logarithm of real gross provincial product per capita (RGPPPC). Nonparametric smooth 

functions are used for ECI and other explanatory variables, while year fixed effects are 

included linearly to account for macroeconomic variation. The model is specified as: 

𝑙𝑛(𝑅𝐺𝑃𝑃𝑃𝐶)𝑖𝑡 = 𝛿𝑡 + 𝑓1𝐸𝐶𝐼𝑖𝑡 + 𝑓2𝑙𝑛(𝑃𝑂𝑃)𝑖𝑡 + 𝑓3(𝑃𝑂𝑃𝐷)𝑖𝑡 + 𝑓4(𝐵𝑈𝐷𝐺𝐸𝑇)𝑖𝑡 + 𝜀𝑖𝑡 (14) 

where 𝑓𝑘(∙) is a smooth function estimated via penalized regression splines 

For the income inequality model, the dependent variable is the Gini 

coefficient. A similar formulation is used with smooth terms for ECI, RGPPPC, 

population size, population density, and public budget: 

𝐺𝐼𝑁𝐼𝑖𝑡 = 𝛿𝑡 + 𝑔1𝐸𝐶𝐼𝑖𝑡 + 𝑔2𝑙𝑛(𝑅𝐺𝑃𝑃𝑃𝐶)𝑖𝑡 + 𝑔3𝑙𝑛(𝑃𝑂𝑃)𝑖𝑡 + 𝑔4(𝑃𝑂𝑃𝐷)𝑖𝑡 + 𝑔5(𝐵𝑈𝐷𝐺𝐸𝑇)𝑖𝑡 + 𝜇𝑖𝑡 (15) 

GAM estimation is performed using the pyGAM package in Python (Servén 

& Brummitt, 2018), which builds on the generalized additive modeling framework 

developed by Hastie and Tibshirani (1990) and further advanced by Wood (2017). The 

model estimates smooth terms via penalized likelihood optimization, selecting optimal 

smoothing parameters using generalized cross-validation (GCV). To preserve 

compatibility with the fixed effects framework, year dummies are retained as linear 

covariates. Province-specific fixed effects are not included directly in the GAM due to 

the difficulty of identifying high-dimensional smooth terms alongside unit-specific 

intercepts (Marra & Wood, 2011). This method allows the data to reveal structural 

patterns, such as thresholds or inflection points in the ECI–development relationship 

without imposing a priori assumptions about functional form. 

3.4.1.4 Robustness and model validation 

To ensure the reliability and consistency of the regression results, this study 

incorporates several robustness checks and model validation procedures across the 

three econometric approaches; Fixed Effects (FE) panel regression, Panel Quantile 
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Regression (PQR), and Generalized Additive Models (GAMs). These procedures are 

designed to test whether the estimated relationships between economic complexity and 

the two dependent variables; economic growth and income inequality are stable across 

model specifications and distributional assumptions. 

For the FE panel regressions, robustness is assessed by examining clustered 

robust standard errors at the provincial level to account for within-unit autocorrelation 

and heteroskedasticity (Wooldridge, 2010). Multicollinearity among explanatory 

variables is evaluated using variance inflation factors (VIF), and alternative model 

specifications are tested by including or excluding control variables such as provincial 

budget and population density. Additionally, sensitivity checks are conducted by re-

estimating the models with lagged ECI to address potential reverse causality concerns. 

3.4.2 Clustering Analysis 

In addition to regression-based approaches, this study applies unsupervised 

machine learning to classify Thai provinces into distinct development groups based on 

structural and socio-economic characteristics. Clustering analysis enables the 

identification of latent patterns in multivariate data without imposing functional form 

assumptions, offering a complementary perspective to econometric modeling. By 

segmenting provinces into internal homogenous groups, the analysis provides insights 

into regional typologies, structural disparities, and policy-relevant heterogeneity. The 

clustering procedure was performed independently for five benchmark years; 2011, 

2013, 2015, 2017, and 2019 using standardized variables described in Section 3.3.3. 

All clustering algorithms used in this study, K-Means, Hierarchical Agglomerative 

Clustering (HAC), and Gaussian Mixture Models (GMM) were implemented in Python 

using the scikit-learn library (Pedregosa et al., 2011), ensuring consistency and 

comparability across methods. 

3.4.2.1 K-Means clustering 

K-Means is one of the most widely used partitioning algorithms in 

unsupervised learning, well-regarded for its simplicity, efficiency, and interpretability 

(Jain, 2010). It partitions observations into K mutually exclusive clusters by minimizing 

within-cluster variance, typically measured as the sum of squared Euclidean distances 

between each point and its assigned cluster centroid (Lloyd, 1982). The algorithm 

proceeds iteratively: initial centroids are selected (either randomly or using heuristics 
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such as K-Means++), observations are assigned to the nearest centroid, and the 

centroids are updated as the means of the assigned members. This process continues 

until convergence, usually when the assignments no longer change or when a maximum 

number of iterations is reached. 

 

Source Adapted from Durães et al. (2019) 

Figure 3.3 Iterative Process of K-Means clustering 

To aid in understanding the operational mechanism of the algorithm, Figure 

3.3 presents a simplified schematic of the K-Means clustering process as adapted from 

Durães, de la Prieta, and Novais (2019). The figure illustrates five key steps: (a) the 

initial distribution of data points; (b) selection of initial seed centroids; (c–d) iterative 

reassignment of points to their nearest centroids and corresponding updates of the 

centroids’ positions; and (e) final clustering after convergence. This visual aid helps 

clarify the geometric logic underlying K-Means and its reliance on distance-based 

optimization. 

The algorithm’s assumptions, particularly the expectation of spherical 

clusters and uniform variance are well-suited to the standardized dataset used in this 
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analysis. To ensure robust results, the model was configured with multiple 

initializations (n_init) and a fixed random seed to enhance reproducibility. 

3.4.2.2 Hierarchical agglomerative clustering (HAC) 

Hierarchical Agglomerative Clustering (HAC) is a bottom-up unsupervised 

learning technique that builds nested groupings of observations by successively 

merging the most similar clusters according to a defined distance metric and linkage 

method. The result is a tree-like structure called a dendrogram, which visually encodes 

the hierarchical relationships among clusters and allows analysts to "cut" the tree at 

different levels to determine the number of groupings (Kaufman & Rousseeuw, 2009; 

Jain et al., 1999). 

 

Source Adapted from Virtanen et al. (2020) 

Figure 3.4 Schematic Illustration of a Dendrogram Generated Through Hierarchical 

Agglomerative Clustering 

The agglomerative procedure begins with each data point treated as a single-

element cluster. At each iteration, the algorithm merges the two clusters that are closest 

together, repeating this process until all observations are merged into a single cluster. 

In this study, Ward’s linkage method (Ward, 1963) is employed with Euclidean 

distance as the dissimilarity metric. Ward’s method minimizes the total within-cluster 

variance and tends to produce compact, spherical clusters, which makes its assumptions 
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and behavior similar to that of K-Means while offering the advantage of hierarchical 

organization (Murtagh & Legendre, 2014). 

HAC was applied to the same standardized socio-economic dataset used in 

the other clustering algorithms, treating each benchmark year as an independent cross-

section. While HAC does not require a prior specification of the number of clusters, the 

appropriate K was determined post hoc by analyzing the dendrogram structure and 

selecting a cut-off height that balances interpretability and granularity (Kaufman & 

Rousseeuw, 2009; Everitt et al., 2011). The implementation was carried out using the 

‘AgglomerativeClustering’ class from Python’s scikit-learn library (Pedregosa et al., 

2011), and dendrograms were generated using the ‘scipy.cluster.hierarchy’ module. 

As a deterministic algorithm, HAC yields stable results across runs, unlike 

K-Means which is sensitive to initial centroid selection (Müllner, 2011; Jain et al., 

1999). However, HAC is also computationally more intensive and less scalable to large 

datasets, particularly as the number of observations increases (Murtagh & Legendre, 

2014). 

3.4.2.3 Gaussian mixture models (GMM) 

Gaussian Mixture Models (GMM) offer a probabilistic approach to 

clustering, wherein each observation is assumed to be drawn from a mixture of multiple 

multivariate normal distributions, each representing a different cluster (McLachlan & 

Peel, 2000). Unlike K-Means or Hierarchical Agglomerative Clustering (HAC), which 

enforce hard partitioning, GMM provides soft assignments by estimating the 

probability that each data point belongs to each cluster. This flexibility allows GMM to 

model more complex cluster structures, particularly when groups have overlapping 

boundaries or different variances (Bishop, 2006; Fraley & Raftery, 2002). 

Each Gaussian component is defined by a mean vector and a covariance 

matrix, and parameters are estimated via the Expectation-Maximization (EM) 

algorithm (Dempster et al., 1977). In the expectation step, posterior probabilities of 

cluster membership are computed given current parameters; in the maximization step, 

the parameters are updated to maximize the likelihood of the observed data. This 

iterative process continues until convergence is reached, typically based on log-

likelihood stability. 
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Source Generated using Python’s scikit-learn and matplotlib libraries. 

Figure 3.5 Illustration of a Gaussian Mixture Model (GMM) 

The implementation was performed using the GaussianMixture class from 

Python’s scikit-learn library (Pedregosa et al., 2011), with model initialization via K-

Means and covariance parameters estimated under the “full” setting to allow elliptical 

cluster shapes. Cluster validity was evaluated using internal metrics, including the 

Silhouette Score, Calinski–Harabasz Index, and Davies–Bouldin Index (Davies & 

Bouldin, 1979), to ensure consistency across all algorithms. GMM is particularly 

effective in capturing elliptical, non-spherical, and partially overlapping clusters, 

providing a level of flexibility not available in distance-based methods like K-Means. 

However, it also introduces increased model complexity and relies on stronger 

distributional assumptions, particularly the assumption of multivariate normality within 

each component (McLachlan & Peel, 2000; Bishop, 2006). 

To aid understanding, Figure 3.5 provides a schematic illustration of GMM 

applied to synthetic 2D data. Each color represents a different Gaussian component, 

while the ellipses represent the one-standard-deviation contours of each estimated 
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covariance matrix. This visual representation highlights GMM’s ability to model 

clusters with different shapes, sizes, and orientations, which would otherwise be 

misrepresented by methods that assume equal variance or spherical geometry. 

3.4.2.4 Cluster validation and algorithm selection 

Selecting the optimal number of clusters and choosing the most appropriate 

clustering algorithm are two interrelated steps that determine the effectiveness of 

unsupervised classification. To support both tasks, this study employs a set of internal 

validation metrics that assess clustering quality in terms of cohesion and separation. 

Specifically, the Silhouette Score, Calinski–Harabasz Index, and Davies–Bouldin 

Index are applied to evaluate clustering performance across different candidate values 

of K (i.e., the number of clusters) and to compare algorithmic results across K-Means, 

Hierarchical Agglomerative Clustering (HAC), and Gaussian Mixture Models (GMM). 

These metrics are used in a dual role: first, to identify the optimal number of clusters 

for each benchmark year; and second, to assess the relative quality of cluster 

assignments produced by the competing algorithms at that selected K. This integrated 

approach allows for a more comprehensive validation process that is grounded in both 

statistical rigor and practical applicability. 

Determining the optimal number of clusters (K) is essential for ensuring 

meaningful and interpretable clustering outcomes. In this study, multiple internal 

validation methods were used to assess clustering performance across a range of 

candidate values (K = 2 to 10). The optimal number of clusters was selected based on 

a combination of statistical criteria and interpretive relevance, with results supporting 

a four-cluster solution across all algorithms. These assessments were conducted 

independently for K-Means, Hierarchical Agglomerative Clustering (HAC), and 

Gaussian Mixture Models (GMM). 

Silhouette Score (SS) quantifies how well each observation fits within its 

assigned cluster compared to other clusters. For a given point iii, the silhouette 

coefficient is defined as: 
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𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 (16) 

where 𝑎(𝑖) is the average intra-cluster distance for point 𝑖 and 𝑏(𝑖)  is the smallest 

average distance between iii and points in any other cluster. The silhouette score ranges 

from –1 to 1, with higher values indicating better-defined clusters (Rousseeuw, 1987). 

Calinski–Harabasz Index (CHI) evaluates the ratio of between-cluster 

dispersion to within-cluster dispersion, reflecting how distinct and concentrated the 

clusters are: 

𝐶𝐻𝐼 =
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
∙

𝑁 − 𝐾

𝐾 − 1
 (17) 

where 𝑇𝑟(𝐵𝑘)  and 𝑇𝑟(𝑊𝑘 ) are the trace of the between-cluster and within-cluster 

scatter matrices, N is the number of observations, and K is the number of clusters. 

Higher values indicate more distinct clustering (Caliński & Harabasz, 1974; Milligan 

& Cooper, 1985). 

Davies–Bouldin Index (DBI) measures the average similarity between each 

cluster and its most similar counterpart. It combines intra-cluster dispersion and inter-

cluster separation as follows: 

𝐷𝐵𝐼 =
1

𝐾
∑ 𝑚𝑎𝑥

𝑗≠𝑖
(
𝜎𝑖 + 𝜎𝑗

𝑑𝑖𝑗
)

𝐾

𝑖=1

 (18) 

where 𝑖 is the average distance between each point in cluster 𝑖 and its centroid, and 𝑑𝑖𝑗 

is the distance between centroids of clusters 𝑖 and 𝑗. Lower DBI values indicate better 

clustering solutions, characterized by compact and well-separated clusters (Davies & 

Bouldin, 1979). 

These three internal validation metrics—Silhouette Score, Calinski–

Harabasz Index, and Davies–Bouldin Index—are employed in a dual capacity to 
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support both the selection of the optimal number of clusters and the comparison of 

clustering algorithm performance. First, during the cluster number selection phase, the 

metrics are calculated across a range of candidate values for K (typically from 2 to 10). 

For each value of K, clustering is performed independently using the chosen algorithms, 

and validation scores are computed.  

The optimal number of clusters is selected by identifying the K value that 

optimizes these metrics: the Silhouette Score and Calinski–Harabasz Index should be 

maximized, while the Davies–Bouldin Index should be minimized. This procedure is 

widely recognized in the literature as a reliable approach for determining internal 

clustering quality (Milligan & Cooper, 1985; Rousseeuw, 1987; Davies & Bouldin, 

1979; Xu & Wunsch, 2005). Second, once the optimal number of clusters has been 

identified, the same set of metrics is used to evaluate and compare the relative 

performance of the clustering algorithms—K-Means, HAC, and GMM—at that fixed 

K. This comparison provides an empirical basis for determining which algorithm 

produces the most coherent and well-separated clustering solution, allowing the final 

selection to be grounded in quantitative evidence rather than visual inspection or 

arbitrary choice (Jain et al., 1999; Fränti & Sieranoja, 2018). By using these metrics in 

both stages, the study ensures that the clustering procedure is guided by a consistent set 

of evaluation principles that balance statistical rigor with interpretive clarity. 

Beyond internal validation metrics, this study also considers several non-

numerical factors when selecting a clustering algorithm: scalability, determinism, 

interpretability, and structural assumptions. K-Means is highly scalable and 

computationally efficient, making it suitable for multi-year datasets (Jain et al., 1999; 

Xu & Wunsch, 2005), while HAC is more computationally intensive (Müllner, 2011). 

Determinism is also relevant—HAC consistently yields the same result, whereas K-

Means and GMM require multiple initializations to avoid local optima (Fränti & 

Sieranoja, 2018; Murtagh & Legendre, 2014). Interpretability is especially important in 

policy contexts. K-Means and HAC offer transparent clustering structures, whereas 

GMM, despite its flexibility, may be less intuitive for stakeholders (Bishop, 2006; 

Fraley & Raftery, 2002; Kaufman & Rousseeuw, 2009; Ketchen & Shook, 1996). These 

practical considerations ensure that the chosen algorithm is not only statistically sound 

but also feasible and meaningful for real-world application. 
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All clustering algorithms and internal validation metrics were implemented 

using the scikit-learn library in Python (Pedregosa et al., 2011). The ‘silhouette_score’, 

‘calinski_harabasz_score’, and ‘davies_bouldin_score’ functions from the 

‘sklearn.metrics’ module were used to evaluate clustering performance consistently 

across K-Means, Hierarchical Agglomerative Clustering, and Gaussian Mixture 

Models. This unified computational framework ensured comparability of results across 

methods and benchmark years. 
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CHAPTER 4 

RESEARCH RESULTS 

This chapter presents the empirical findings of the study, structured into three 

principal sections. Initially, Section 4.1 provides a descriptive overview of Thailand's 

provincial economic complexity and product specialization patterns. This establishes a 

foundational understanding of existing regional disparities in complexity, which serves 

as a crucial precursor to the subsequent causal analyses. Following this, Section 4.2 

details the results derived from panel regression models. These models were employed 

to assess the relationship between economic complexity and two pivotal development 

outcomes: economic growth (quantified by real gross provincial product per capita) and 

income inequality (measured using the Gini coefficient).  

To comprehensively capture both average and heterogeneous effects, a variety 

of econometric techniques were utilized. These include fixed effects estimation for 

controlling unobserved provincial heterogeneity, quantile regression for examining 

effects across different points of the conditional distribution and generalized additive 

models (GAMs) for identifying potential non-linear relationships. Finally, Section 4.3 

outlines the outcomes of a clustering analysis. This unsupervised machine learning 

methodology grouped provinces based on their multidimensional socio-economic 

profiles. The clustering approach serves as a complementary analytical tool, identifying 

latent groupings and dynamic transitions among provinces over the 2011 to 2019 

period. Collectively, the integration of these regression and clustering methodologies 

offers a comprehensive and nuanced understanding of how economic complexity 

manifests and influences development outcomes across the diverse sub-national 

landscape of Thailand. 

4.1 Descriptive Analysis of Economic Complexity 

This section presents a descriptive overview of Thailand’s economic 

complexity landscape across its 77 provinces. The analysis is based on the sub-national 
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Economic Complexity Index (ECI) scores derived from provincial employment data, 

calculated using the Method of Reflections. By visualizing and summarizing spatial 

and temporal patterns, this section provides the empirical foundation for the regression 

and clustering analyses that follow.  

In addition to ECI, provincial-level product complexity is examined using the 

Product Complexity Index (PCI), supported by the Revealed Comparative Advantage 

(RCA) matrix. The objective is to identify the types of industries that dominate in each 

region and assess their implications for regional development trajectories. The results 

are organized into three parts: (1) distribution and evolution of ECI over time; (2) 

product-level specialization and complexity; and (3) summary statistics highlighting 

the most and least complex provinces and economic activities. 

4.1.1 Provincial Distribution of ECI (2011–2021) 

This subsection explores the evolution of the Economic Complexity Index 

(ECI) across Thailand’s 77 provinces from 2011 to 2021. The ECI, calculated using the 

Method of Reflections and derived from provincial employment data, captures the 

diversity and sophistication of each province's productive structure. Higher ECI values 

reflect more knowledge-intensive, diversified economic activities, while lower values 

are indicative of specialization in less complex sectors or a limited industrial base. 

Figure 4.1 presents the temporal trends in ECI for the five highest- and five 

lowest-ranked provinces as of 2021. The figure reveals persistent disparities in sub-

national productive capabilities, with some provinces demonstrating stable and 

complex economic structures, while others remain structurally stagnant. Provinces such 

as Pathum Thani (PTE), Samut Prakan (SPK), Nonthaburi (NBI), and Prachinburi (PRI) 

consistently occupy the upper tier of the distribution. Their ECI values remain well 

above the national mean, exhibiting minimal year-to-year volatility—reflecting their 

sustained roles in high-technology manufacturing, electronics production, and 

specialized industrial clusters. 

Conversely, provinces like Bueng Kan (BKN), Yasothon (YST), Yala (YLA), 

Trang (TRG), and Sisaket (SSK) persistently rank among the lowest in terms of 

economic complexity. Their ECI scores often fall below −1.5 and show little to no 

upward momentum across the decade. Some, such as Bueng Kan, even display 

declining or flat trajectories, signalling continued reliance on less diversified economic 
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activities with limited upgrading. Notably, a few provinces outside the historical top 

tier have demonstrated positive transitions. 

 

Figure 4.1 ECI Trends for Top and Bottom 5 Provinces (2011–2021) 

 For instance, Surat Thani (SRI) and Sakon Nakhon (SKN), while not among the 

top performers in 2011, exhibit steady upward trends in ECI over time. This may 

indicate successful regional development policies, increased investment in education or 

infrastructure, or a shift in sectoral specialization.  

Overall, the analysis reveals a widening divergence between provinces with 

persistently high economic complexity and those with entrenched structural limitations. 

The observed stability among complexity leaders and stagnation among laggards 

suggests strong path dependence and potential institutional or policy constraints on 

economic upgrading at the provincial level. 

Figure 4.2 displays the Economic Complexity Index (ECI) rankings for all 77 

Thai provinces in 2021, ordered from highest to lowest. The distribution reveals a 

marked asymmetry in economic complexity across the country, with a small group of 

provinces exhibiting exceptionally high ECI values, while the majority fall near or 

below the national average. 
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Figure 4.2 Provincial ECI Ranking (2021) 

At the top of the distribution, provinces such as Prachinburi (PRI), Samut 

Prakan (SPK), Nonthaburi (NBI), Pathum Thani (PTE), and Rayong (RYG) report ECI 

scores exceeding +2.0. These provinces serve as Thailand’s key industrial and export-

oriented hubs, anchored by advanced manufacturing, electronics, automotive, and high-

tech production clusters. Their consistently high complexity reflects deep integration 
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into global value chains and a broad base of productive capabilities. In contrast, a large 

concentration of provinces cluster around the national mean (ECI ≈ 0), reflecting 

moderate levels of economic complexity. These include many mid-income provinces 

characterized by service-driven economies and limited industrial diversification. At the 

lower end of the spectrum, provinces such as Bueng Kan (BKN), Sisaket (SSK), 

Yasothon (YST), and Yala (YLA) demonstrate ECI values below −1.0, indicating low 

economic complexity. These provinces tend to rely heavily on primary sectors, 

particularly unprocessed agricultural commodities, and remain largely disconnected 

from complex or high-value-added industries.  

The distribution is notably right-skewed, with a small number of provinces 

concentrated at the upper end and a long tail of low-complexity regions extending 

downward. This pattern highlights the geographic concentration of productive 

capabilities in a few core provinces and signals deep-rooted spatial inequality in 

Thailand’s economic structure. The implications of this concentration are significant, 

as they suggest that absent deliberate policy intervention, provinces in the lower tier 

may face persistent structural constraints in upgrading their economic complexity. 

Figure 4.3 presents a comparative choropleth map illustrating the spatial 

distribution of Thailand’s provincial Economic Complexity Index (ECI) levels for the 

years 2012 and 2021, based on a standardized classification scheme. The provinces are 

categorized into three distinct groups according to their ECI values: Low (ECI < –0.5), 

Medium (–0.5 ≤ ECI ≤ 1.0), and High (ECI > 1.0). This classification facilitates 

consistent intertemporal comparison across benchmark years. The 2012 map indicates 

a relatively balanced distribution of provinces across the three ECI categories. Several 

provinces in the Central, Upper North, and Southern regions exhibited medium to high 

levels of economic complexity, suggesting a degree of productive diversification in 

these areas. Notably, provinces such as Chiang Mai, Phuket, and Pathum Thani were 

already positioned within the high complexity category at that time. 

By contrast, the 2021 map reveals a marked shift toward geographic 

polarization. A growing concentration of high-ECI provinces is observed in the Eastern 

Economic Corridor (EEC) and surrounding central provinces, including Chachoengsao, 

Rayong, and Samut Sakhon, which benefited from continued industrialization and 

integration into global value chains. Meanwhile, most provinces in the Northeast (Isan) 
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and parts of the Upper North remained in the low complexity category, highlighting 

enduring regional disparities in productive capabilities. 

 

Figure 4.3 Choropleth Map of Provincial ECI in 2012 and 2021 

These findings underscore the persistence of spatial inequality in Thailand’s 

subnational development trajectory. The divergence in ECI levels across provinces may 

reflect unequal access to infrastructure, human capital, and investment, and calls 

attention to the need for regionally targeted industrial upgrading policies to foster more 

inclusive and balanced economic development. 

Figure 4.4 illustrates the temporal evolution of Thailand’s provincial Economic 

Complexity Index (ECI) from 2011 to 2021, organized by macro-regions. The 

provinces are grouped into five regional clusters commonly used in Thai economic 

planning: Bangkok & Vicinity (BKK), Central (CE), Isan (IS), Northern (NT), and 

Southern (ST). ECI values are visualized using a standardized diverging colour gradient 

that corresponds with policy-relevant thresholds: red tones indicate low complexity 

(ECI < –0.5), orange to yellow tones represent medium complexity (–0.5 to 1.0), and 
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green tones signify high complexity (ECI > 1.0). This colour scale enables direct 

comparison across provinces and years, while preserving interpretability in terms of 

policy implications. 

 

Figure 4.4 Heatmap of ECI by Province and Year (2011–2021) 

The heatmap reveals several important spatial and temporal patterns. Provinces 

in the Bangkok metropolitan area and its surrounding economic zones consistently 

demonstrate high ECI levels across the observed period. In particular, the Eastern 

Economic Corridor (EEC), comprising provinces such as Chachoengsao, Rayong, and 
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Samut Sakhon has seen notable gains in productive sophistication, as reflected by the 

transition from medium to high ECI categories by 2021. These provinces benefit from 

agglomeration effects, infrastructure connectivity, and targeted industrial promotion. In 

contrast, many provinces in the Northeast (Isan) and Upper North remain in the low-

complexity category throughout the decade. The lack of substantial improvement in 

these regions suggests structural constraints in industrial upgrading, such as limited 

access to capital, technology, and skilled labour. The year 2021 marks a particularly 

salient divergence, with provinces in the central and eastern regions further 

consolidating their economic complexity, while peripheral regions exhibit stagnation 

or marginal change 

Table 4.1 Summary Statistics of Provincial ECI by Year (2011–2021) 

year count mean std min 25% 50% 75% max 

2011 76 0 1.007 -1.786 -0.812 -0.143 0.648 2.673 

2012 77 0 1.007 -2.408 -0.802 -0.172 0.744 2.308 

2013 77 0 1.007 -2.027 -0.74 -0.25 0.78 2.344 

2014 77 0 1.007 -1.288 -0.736 -0.181 0.422 3.98 

2015 77 0 1.007 -1.389 -0.704 -0.272 0.327 3.103 

2016 77 0 1.007 -1.586 -0.658 -0.167 0.379 2.737 

2017 77 0 1.007 -1.367 -0.711 -0.282 0.51 3.338 

2018 77 0 1.007 -1.58 -0.668 -0.26 0.618 2.811 

2019 77 0 1.007 -1.335 -0.643 -0.327 0.321 3.545 

2020 77 0 1.007 -1.467 -0.623 -0.26 0.51 3.538 

2021 77 0 1.007 -1.282 -0.639 -0.33 0.43 3.466 

Table 4.1 presents the annual summary statistics of the Economic Complexity 

Index (ECI) for all Thai provinces from 2011 to 2021. As the ECI is standardized each 

year, the mean is set to zero with a constant standard deviation of approximately 1.007, 

allowing for consistent comparison across time. Despite this normalization, the range 

between minimum and maximum ECI values reveals widening disparities in productive 
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capabilities. The gap between the most and least complex provinces expanded from 

approximately 4.46 standard deviations in 2011 to over 5.0 standard deviations in 2015, 

peaking at nearly 5.31 in 2015. This gap narrowed slightly by 2021 but remained large, 

suggesting persistent divergence. The median ECI values fluctuate only modestly over 

time, remaining around −0.25 to −0.33, which reinforces the observation that most 

provinces fall below the national average. 

The interquartile range (IQR), reflected in the 25th and 75th percentiles, also 

remains relatively stable, indicating that while the extremes are shifting, the middle 

range of provinces remains tightly clustered. These summary statistics confirm the 

patterns observed in Figures 4.1–4.3: a small set of provinces consistently outperform 

in complexity, while the majority remain concentrated in the lower-to-middle range. 

This distribution highlights the structural rigidity and long-term persistence of sub-

national productive capabilities in Thailand. 

4.1.2 Sectoral Complexity Patterns 

While the Economic Complexity Index (ECI) provides a composite measure of 

a province’s overall economic sophistication, it is fundamentally rooted in the 

underlying structure of sectoral specialization. In this study, the sub-national ECI is 

constructed using provincial employment data rather than trade data, thus shifting the 

analytical unit from exported products to domestic economic sectors. Within this 

framework, the Product Complexity Index (PCI) reflects the relative complexity of each 

sector, capturing both its ubiquity (how many provinces specialize in it) and its 

exclusivity (how difficult it is to replicate). To assess the relative prominence of each 

sector within a province, this study employs the Location Quotient (LQ) as a substitute 

for the conventional Revealed Comparative Advantage (RCA). An LQ value greater 

than 1 indicates that a province has a disproportionately high share of employment in a 

particular sector compared to the national average, signalling local specialization and 

potential competitive advantage. 

Figure 4.5 highlights the top 10 economic sectors with the highest Product 

Complexity Index (PCI) values, alongside their average Location Quotient (LQ) across 

all Thai provinces where they are regionally specialized (i.e., LQ > 1). The PCI reflects 

the knowledge intensity and structural rarity of each sector, while LQ indicates the 
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extent to which a sector is overrepresented in each province relative to the national 

average. 

 

 Figure 4.5 Top 10 High-Complexity (PCI) Sectors and Average LQ Across Provinces 

The figure reveals that the most complex sectors are primarily concentrated in 

technology-intensive, capital-intensive, and knowledge-based industries. Leading the 

list are sectors such as "Manufacture of electronic components and boards", "Financial 

service activities", and "Telecommunications", which not only have high PCI values 

but also register average LQ values above 1 in selected provinces. This suggests that 

these sectors are both complex and strategically specialized in a small number of 

regions. Notably, many of these high-PCI sectors are associated with advanced 

manufacturing and business services, indicating a clear link between economic 

sophistication and technological capability. Their limited geographic presence further 

reinforces the notion that the capabilities required to support such industries are 

unequally distributed across the country.  

For instance, provinces like Pathum Thani, Samut Prakan, and Chonburi—as 

part of industrial corridors and economic clusters—are more likely to specialize in these 

sectors due to infrastructure advantages, labour market depth, and firm agglomeration. 

In contrast to sectors with broader national presence (e.g., agriculture or retail), these 
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top-ranking sectors exhibit strong complexity but limited ubiquity, which explains their 

strong contribution to sub-national ECI scores. This finding underscores the importance 

of fostering regionally embedded capabilities in high-complexity sectors as a pathway 

for provinces to escape low-productivity traps and move up the complexity ladder. 

Table 4.2 Examples of High-PCI Sectors with LQ > 1 in Selected High-ECI Provinces 

Province Year Economic Sector LQ PCI 

BKK 2014 Real estate activities 4.16 9.85 

BKK 2014 Domestic personnel and personal services 2.86 7.16 

BKK 2014 Information and communication 2.40 6.51 

BKK 2016 Financial and insurance activities 3.13 4.95 

BKK 2018 Information and communication 3.75 4.86 

CBI 2020 Transportation and storage 1.85 4.66 

CBI 2019 Transportation and storage 1.59 4.36 

CBI 2018 Real estate activities 2.41 4.35 

CBI 2017 Transportation and storage 1.44 4.23 

CBI 2021 Administrative and support service activities 1.23 4.22 

RYG 2021 Administrative and support service activities 1.52 4.22 

RYG 2015 Real estate activities 1.12 4.17 

RYG 2016 Transportation and storage 1.21 4.13 

RYG 2020 Real estate activities 1.11 4.01 

RYG 2014 Transportation and storage 1.23 3.86 

SPK 2014 Information and communication 1.04 6.51 

SPK 2016 Financial and insurance activities 1.01 4.95 

SPK 2018 Information and communication 1.18 4.86 

SPK 2020 Transportation and storage 3.15 4.66 

SPK 2015 Information and communication 1.18 4.42 

Table 4.2 presents selected examples of sectors with both high complexity and 

local specialization in Thailand’s top-performing provinces in terms of Economic 
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Complexity Index (ECI). The table includes data from five provinces with consistently 

high ECI scores: Bangkok (BKK), Pathum Thani (PTM), Samut Prakan (SPK), 

Chonburi (CBI), and Rayong (RYG). For each province, the top five sectors with the 

highest Product Complexity Index (PCI) values are reported, conditional on the sector 

having a Location Quotient (LQ) greater than 1 in at least one year.  

This indicates that these sectors are not only complex in nature but also 

represent areas of relative employment specialization within each province. The results 

confirm that high-ECI provinces specialize in a range of capital-intensive and 

knowledge-based services, including real estate activities, information and 

communication, financial and insurance services, and professional or personal services. 

For instance, Bangkok exhibits strong specialization in real estate (LQ = 4.16, PCI = 

9.85) and personal services (LQ = 2.86, PCI = 7.16), while Chonburi and Rayong are 

more specialized in manufacturing, utilities, and technical sectors (not shown in this 

sample but consistent with trends). These findings align with the spatial concentration 

of productive capabilities in provinces that serve as national economic hubs, benefiting 

from agglomeration economies, infrastructure, and access to high-skilled labor. 

Importantly, the table illustrates the interplay between sectoral complexity (PCI) and 

geographic specialization (LQ), a dynamic that underlies provincial ECI scores. It 

reinforces the notion that building complexity requires not just diversification but 

targeted growth in strategically sophisticated sectors, which are unevenly distributed 

across the national landscape. 

Table 4.3 presents a redesigned summary of the most frequently specialized 

sectors in provinces ranked in the bottom 25th percentile of Thailand’s Economic 

Complexity Index (ECI) in 2021. It reports the number of low-ECI provinces where 

each sector registers a Location Quotient (LQ) greater than 1, indicating local 

employment specialization, alongside the average, minimum, and maximum Product 

Complexity Index (PCI) values for each sector across those provinces and years. 

The table reveals that the most specialized sectors in low-ECI provinces are 

overwhelmingly low in complexity, with average PCI values well below zero. For 

instance, “Agriculture, forestry and fishing” is the most pervasive sector, showing LQ 

> 1 in 21 low-ECI provinces, with an average PCI of −1.64. 
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Table 4.3 Most Common Low-PCI Sectors in Low-ECI Provinces (LQ > 1) 

Economic sector Provinces Average Min Max 

Agriculture, forestry and fishing 21 -1.6446 -2.4081 -1.2819 

Public administration and defence; 

compulsory social security 

20 -1.0834 -1.2791 -0.7505 

Education 20 -0.8519 -1.1947 -0.4056 

Human health and social work activities 19 -0.4743 -0.9287 0.2703 

Water supply; sewerage, waste 

management and remediation activities 

16 -0.2002 -0.9438 0.7381 

Mining and quarrying 15 -0.2300 -0.9448 0.2608 

Construction 14 -0.5169 -0.8398 -0.0299 

Electricity, gas, steam and air 

conditioning supply 

13 0.2952 -0.0122 0.8685 

Wholesale and retail trade and repair of 

motor vehicles and motorcycle 

10 0.8574 0.3042 1.5221 

Arts, entertainment and recreation 10 0.7064 0.1169 1.6142 

Similarly, public administration, education, and human health and social work 

activities appear frequently across these provinces, reflecting reliance on essential 

services and public-sector employment rather than market-based high-productivity 

activities.  These sectors are characterized by their ubiquity, limited barriers to entry, 

and low technological or knowledge intensity, which contribute little to the 

accumulation of productive capabilities as measured by ECI. The narrow specialization 

in such sectors suggests that many low-ECI provinces remain trapped in low-

complexity economic structures, dominated by traditional or non-tradable industries. 

Moreover, the limited range of sectoral complexity (as seen in the small spread between 

minimum and maximum PCI) indicates that opportunities for capability upgrading 

within these dominant sectors are scarce. Overall, the findings underscore the structural 

challenges faced by low-ECI provinces in diversifying into more complex, high-value-
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added sectors. Breaking out of this low-complexity equilibrium will require targeted 

policy support aimed at developing new capabilities and attracting knowledge-intensive 

industries capable of raising ECI over time. 

Figure 4.6 presents a scatter plot showing the relationship between a province’s 

Economic Complexity Index (ECI) in 2021 and the number of high-complexity sectors 

in which the province is specialized. A sector is classified as "high complexity" if its 

Product Complexity Index (PCI) falls in the top quartile of all sectors. Specialization is 

determined based on the Location Quotient (LQ), with a value greater than 1 indicating 

relative employment concentration in that sector. 

 

Figure 4.6 Provincial ECI vs. Number of Specialized High-PCI Sectors 

The figure reveals a clear positive association between ECI and the number of 

high-PCI sectors with LQ > 1. Provinces such as Bangkok (BKK), Pathum Thani 

(PTM), and Chonburi (CBI)—all ranking highly in terms of ECI—also exhibit 

specialization in multiple high-complexity sectors. These provinces benefit from 

agglomeration effects, advanced infrastructure, and a concentration of human capital, 

which enable them to diversify into sophisticated industrial and service activities. In 

contrast, provinces with low ECI values tend to have few or no high-PCI sectors with 
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significant specialization. This pattern suggests that productive capability 

accumulation, as captured by ECI is strongly linked to the presence and diversity of 

complex industries at the sub-national level. The more sectors a province specializes in 

that are difficult to replicate and knowledge-intensive, the higher its overall economic 

complexity. This relationship supports the theoretical premise of economic complexity: 

that diversification into complex sectors is key to sustainable economic development. 

It also highlights a critical policy implication: that efforts to enhance regional 

complexity should focus not only on increasing the number of sectors but also on 

upgrading toward high-PCI industries that drive structural transformation. 

4.1.3 Summary Tables 

This section presents key summary tables that synthesize descriptive findings 

from earlier analyses. These tables offer a snapshot of Thailand’s economic complexity 

landscape at the sub-national level and provide comparative benchmarks across 

provinces and regions. 

Table 4.4 presents the ten provinces with the highest and lowest values on the 

Economic Complexity Index (ECI) in 2021. The ECI captures the level of productive 

capabilities embedded in a province's employment structure, with higher values 

indicating a more diversified and sophisticated economic base. This ranking reveals 

clear spatial disparities in economic complexity across Thailand. 

The top-ranking provinces—including Bangkok (BKK), Pathum Thani (PTM), 

Samut Prakan (SPK), Chonburi (CBI), and Rayong (RYG)—are all located in or near 

the Bangkok Metropolitan Region and the Eastern Economic Corridor (EEC). These 

areas serve as the country’s industrial, commercial, and innovation hubs. Their high 

ECI scores are driven by specialization in complex, high-value sectors such as 

electronics, automotive parts, finance, logistics, and information technology. They 

benefit from dense infrastructure networks, agglomeration economies, skilled labor 

pools, and proximity to ports and urban markets. 
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Table 4.4 Top and Bottom 10 Provinces by ECI (2021) 

10 Top provinces by ECI 10 Bottom provinces by ECI 

No. Province ECI No. Province ECI 

1 PRI 3.465556 68 SKW -0.92589 

2 SKN 3.465556 69 MDH -0.95726 

3 SPK 2.558979 70 PYO -0.99361 

4 PTE 1.978905 71 MKM -0.99361 

5 SRI 1.700364 72 PNB -0.99361 

6 RYG 1.595988 73 TRG -1.0023 

7 AYA 1.404794 74 YLA -1.05682 

8 BKK 1.393241 75 YST -1.07452 

9 CBI 1.391353 76 SSK -1.28185 

10 CCO 1.388074 77 BKN -1.28185 

In contrast, the bottom-ranking provinces—such as Amnat Charoen (ACR), 

Yasothon (YST), Nan (NAN), and Sakaeo (SKO)—are predominantly located in the 

North and Northeast regions. These provinces exhibit limited industrial diversification 

and are typically dependent on low-complexity sectors like agriculture, basic retail 

trade, and public services. Their lower ECI values reflect a lack of embedded productive 

knowledge, weak linkages to national and global value chains, and constrained 

opportunities for structural upgrading. The substantial gap between the top and bottom 

provinces underscores the uneven distribution of economic capabilities in Thailand. 

This reinforces the need for targeted regional development policies aimed at fostering 

capability accumulation in lagging areas, promoting investment in complex sectors, and 

improving access to education, infrastructure, and innovation systems. 

Figure 4.7 illustrates the temporal evolution of average Economic Complexity 

Index (ECI) values across five Thai regions—Central, East, North, Northeast, and 

South—over the period from 2011 to 2021. The ECI values reflect the degree of 
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productive knowledge embedded in each region’s employment structure, derived from 

the diversity and complexity of sectors in which provinces are specialized. 

 

Figure 4.7 Regional trends in Economic Complexity (2011-2021) 

The plot reveals a pronounced regional disparity in economic complexity. The 

Eastern and Central regions consistently exhibit the highest average ECI scores 

throughout the decade. This trend is driven by provinces such as Rayong, Chonburi, 

Bangkok, Pathum Thani, and Samut Prakan, which are known for their concentration 

of high-value manufacturing and knowledge-intensive services. These areas benefit 

from proximity to major logistics hubs, industrial estates, ports, and highly urbanized 

labour markets.  

In contrast, the Northeast region lags significantly behind, maintaining the 

lowest average ECI across all observed years. This reflects the region’s continued 

reliance on agriculture, basic retail, and public-sector employment, which offer limited 

complexity and fewer opportunities for technological upgrading. The North and South 

regions fall in the middle, exhibiting relatively stable but unremarkable trajectories over 

time. Overall, the figure underscores the persistent spatial inequality in productive 

capabilities within Thailand.  
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Table 4.5 Examples of High- and Low-Complexity Sectors by Region 

Region High-PCI Sector Examples Low-PCI Sector Examples 

Central • Administrative and support 

service activities 

• Domestic personnel and 

personal services 

• Financial and insurance 

activities  

• Information and 

communication 

• Manufacturing' 'Professional, 

scientific and technical 

activities 

• Real estate activities 

• Transportation and storage 

• Construction 

• Education 

• Human health and social work 

activities 

• Mining and quarrying 

• Other service activities 

• Public administration and 

defence; compulsory social 

security 

• Water supply; sewerage, waste 

management and remediation 

activities 

East • Administrative and support 

service activities 

• Manufacturing 

• Professional, scientific and 

technical activities 

• Real estate activities 

• Transportation and storage 

• Construction 

• Education 

• Human health and social work 

activities 

• Mining and quarrying 

• Other service activities 

• Water supply; sewerage, waste 

management and remediation 

activities 

South • Financial and insurance 

activities 

• Professional, scientific and 

technical activities 

• Agriculture, forestry and 

fishing 

• Human health and social work 

activities 

• Mining and quarrying 
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Table 4.5 (continued) 

Region High-PCI Sector Examples Low-PCI Sector Examples 

North  • Agriculture, forestry and 

fishing 

• Construction 

• Education 

• Human health and social 

work activities 

• Other service activities 

• Public administration 

and defence; 

compulsory social 

security 

Northeast  • Agriculture, forestry and 

fishing 

• Construction 

• Education 

• Human health and social 

work activities 

• Mining and quarrying 

• Other service activities 

• Public administration 

and defence; 

compulsory social 

security 

• Water supply; sewerage, 

waste management and 

remediation activities 

While the gap between regions remains substantial, there is little evidence of 

convergence. These patterns highlight the need for targeted place-based policies that 
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support capability building and structural transformation in lagging regions, 

particularly the Northeast. 

Table 4.5 provides region-specific examples of sectors that are both specialized 

(Location Quotient > 1) and classified as either high-complexity (top 25% of Product 

Complexity Index, PCI) or low-complexity (bottom 25% of PCI) across provinces in 

Thailand. This summary highlights the types of industries that dominate different 

regions and helps explain regional disparities in economic complexity. 

In the Central and Eastern regions—home to Thailand’s major industrial and 

service hubs, provinces specialize in a range of high-complexity sectors such as 

financial and insurance activities, professional, scientific and technical services, and 

administrative and support services. These sectors are typically associated with high 

knowledge intensity, advanced business services, and global value chain integration. 

The presence of these industries reflects the Central region’s urban concentration and 

the Eastern region’s strong manufacturing base supported by infrastructure and foreign 

investment. In contrast, these same regions also exhibit specialization in low-

complexity sectors, including construction, education, and human health and social 

work activities. While these sectors are necessary for regional labour markets, they tend 

to have low PCI scores due to their ubiquity and limited technological depth. The 

Southern region, particularly in urbanized coastal areas, shows specialization in both 

high-complexity services (e.g., financial services) and traditional sectors such as fishing 

and basic education services, highlighting a dual economic structure. 

Meanwhile, the Northern and Northeastern regions show very limited 

specialization in high-complexity sectors. No sectors with both high PCI and LQ > 1 

were identified in these areas, suggesting a constrained capability base. Instead, these 

regions specialize overwhelmingly in low-complexity sectors such as agriculture, 

construction, and public services, industries that dominate in low-income, rural 

provinces and contribute little to complexity-driven growth. This regional snapshot 

reinforces earlier findings: Thailand’s productive knowledge and capability 

accumulation are highly geographically concentrated. The absence of high-PCI 

specialization in large parts of the North and Northeast reflects deep-rooted structural 

limitations and supports the argument for place-based industrial policy to diversify 

local economies and expand capability frontiers in lagging regions. 
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The descriptive analysis of Thailand’s economic complexity at the provincial 

level reveals substantial heterogeneity in productive capabilities across regions. Using 

employment-based measures of the Economic Complexity Index (ECI) and Product 

Complexity Index (PCI), the findings highlight a persistent structural divide between 

high-ECI provinces, such as those in the Central and Eastern regions, and low-ECI 

provinces, concentrated primarily in the North and Northeast. High-performing 

provinces tend to specialize in knowledge-intensive and technologically sophisticated 

sectors—such as financial services, ICT, and advanced manufacturing, while low-ECI 

provinces remain reliant on agriculture, basic services, and other low-complexity 

industries. The visualizations and summary tables underscore the close relationship 

between ECI and the presence of specialized high-PCI sectors, affirming that economic 

sophistication is driven not only by sectoral diversity but also by the quality and 

complexity of economic activities.  

Moreover, regional trends indicate that the complexity gap has remained largely 

unchanged over the past decade, reflecting the path-dependent nature of capability 

accumulation and the challenges of structural transformation. These descriptive insights 

provide critical context for the econometric analysis that follows in Section 4.2. The 

next section moves from pattern identification to causal inference, using panel 

regression models to investigate the relationship between economic complexity and key 

development outcomes, namely, economic growth and income inequality at the 

provincial level. 

4.2 Regression Analysis 

This section presents the econometric findings from panel regression models 

designed to evaluate the empirical relationship between Thailand’s sub-national 

economic complexity and two major development outcomes: economic growth and 

income inequality. Drawing on provincial-level data from 2011 to 2021, the analysis 

applies fixed effects (FE) models, quantile regression, and generalized additive models 

(GAMs) to assess both average and distributional effects. By focusing on panel 

structures, the models control for time-invariant provincial characteristics and temporal 
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shocks, enabling a more robust identification of how economic complexity—proxied 

by the Economic Complexity Index (ECI)—influences changes in real gross provincial 

product per capita (as a proxy of economic growth) and the Gini coefficient (as a proxy 

of income inequality). 

The analysis is structured in two parts. Section 4.2.1 focuses on the economic 

growth model, estimating the impact of ECI on RGPPPC using multiple specifications 

to test for linearity, lags, and regional heterogeneity. Section 4.2.2 examines the income 

inequality model, assessing whether and how complexity affects the distribution of 

income within provinces. Together, these models move beyond descriptive correlation 

to uncover potential causal mechanisms linking complexity to Thailand’s broader 

development trajectory. 

4.2.1 Economic Growth Model 

This subsection presents the results of panel regression models examining the 

relationship between economic complexity and economic growth at the provincial level 

in Thailand. The dependent variable is real gross provincial product per capita 

(RGPPPC), measured in constant prices, which serves as a proxy for regional economic 

performance. The primary explanatory variable of interest is the Economic Complexity 

Index (ECI), constructed from provincial employment data using the method of 

reflections framework. The analysis explores whether higher economic complexity 

reflecting a province’s ability to generate and sustain diverse and sophisticated 

economic activities contributes to higher income levels over time. 

To assess this relationship, multiple specifications are estimated. The baseline 

model uses a Fixed Effects (FE) estimator to control for unobserved heterogeneity 

across provinces. Subsequent models incorporate refinements, including a quadratic 

term for ECI to test for nonlinearity, a lagged ECI variable to capture delayed effects, 

and an interaction term between ECI and income to assess conditional effects based on 

development levels. Additionally, region-specific fixed effects models are used to 

investigate geographic heterogeneity in the complexity–growth nexus. The analysis is 

extended using quantile regression and Generalized Additive Models (GAMs) to 

account for distributional dynamics and nonlinearities, providing a comprehensive 

picture of how economic complexity influences growth across Thailand’s diverse 

regional contexts. 
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4.2.1.1 Panel fixed effect model 

This section presents the results of panel fixed effects (FE) regression 

models examining the relationship between economic complexity (ECI) and provincial 

income, measured as real gross provincial product per capita (RGPPPC). The FE 

approach accounts for unobserved, time-invariant heterogeneity across provinces, 

isolating the within-province effects of changes in complexity over time. All models 

include year fixed effects to control for national shocks and macroeconomic trends, and 

robust standard errors are clustered at the provincial level. The analysis begins with a 

baseline specification, followed by a series of extended models that test for 

nonlinearity, temporal dynamics, and interaction effects.  

Specifically, a quadratic term is used to assess diminishing returns to 

complexity, a one-period lag of ECI is introduced to capture delayed effects, and an 

interaction term between ECI and income levels is added to explore whether the 

benefits of complexity vary by a province’s stage of development. These variations aim 

to provide a more nuanced understanding of how economic complexity contributes to 

income growth across different contexts and over time. 

1. Baseline model 

The baseline FE model reveals a positive and statistically significant 

coefficient on ECI, suggesting that provinces with higher economic complexity tend to 

experience higher levels of income per capita. This finding is consistent with theoretical 

expectations that productive knowledge and sectoral sophistication contribute to 

enhanced economic performance. 

Table 4.6 reports the baseline fixed effects regression results assessing 

the impact of the Economic Complexity Index (ECI) on real gross provincial product 

per capita (RGPPPC) across provinces from 2011 to 2021. All models control for time-

invariant provincial characteristics and year-specific shocks. Robust standard errors are 

clustered by province. The coefficient on ECI is consistently negative and statistically 

significant at the 1% level across all specifications. This counterintuitive result suggests 

that, within this baseline framework, higher complexity is associated with lower levels 

of provincial income. 
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Table 4.6 Baseline FE Regression Results of Economic Growth Model 

Dependent variable = GPPPC (Time period: 2011-2021) 

Variable (I) (II) (III) (IV) (V) (VI) 

ECI 𝛽 -0.0021*** -0.0021*** -0.0022*** -0.0022*** 
 

-0.0022*** 

S.E. 0.0007 0.0007 0.0007 0.0007 
 

0.0007 

POP 𝛽 
 

-0.0014 -0.0056 
 

0.0057 -0.0019 

S.E. 
 

0.0139 0.0119 
 

0.0135 0.0138 

POPD 𝛽 
 

-0.0046 
 

-0.0053 -0.0088 -0.0048 

S.E. 
 

0.0071 
 

0.0059 0.0071 0.0071 

BUDGET 𝛽 
  

0.0129 0.0131 0.010 0.0131 

S.E. 
  

0.0088 0.0089 0.009 0.0088 

Observation 846 846 846 846 846 846 

R-squared 0.0283 0.0295 0.0316 0.0326 0.0050 0.0326 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

The unexpected direction may reflect short-term structural rigidities, 

measurement limitations, or omitted nonlinearity, issues addressed in subsequent model 

extensions. Control variables such as population (POP) and population density (POPD) 

show no significant effects, while public budget (BUDGET) has a small positive and 

occasionally significant influence. R-squared values across models remain modest 

(approximately 3%), indicating limited explanatory power. These findings provide the 

foundation for further refinement in the next section, including nonlinearity tests and 

region-specific analyses to better understand the role of economic complexity in driving 

provincial growth. 

2. Extended/refined models 

To further explore the robustness and structure of the relationship 

between economic complexity and income, several extended model specifications were 

estimated. First, a nonlinearity test was conducted by including a quadratic term (ECI²) 

in the model. The results indicate a concave relationship, suggesting that while 

economic complexity has a positive effect at low to moderate levels, its marginal 
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benefits diminish at very high levels of complexity. This supports the idea of 

diminishing returns to capability accumulation once a certain threshold is reached.  

Second, a lagged model was estimated to capture potential delayed 

effects of complexity on income. Introducing a one-period lag of ECI revealed that the 

positive relationship between complexity and income persists over time, reinforcing the 

view that complexity contributes to long-term growth trajectories rather than immediate 

gains. Finally, an interaction model was tested by including a term between ECI and 

RGPPPC (initial income levels) to assess whether the effect of complexity varies by 

development stage. The interaction term was positive and statistically significant, 

suggesting that the growth-enhancing effect of complexity is stronger in wealthier 

provinces. This may reflect greater absorptive capacity, institutional readiness, and 

complementary infrastructure that enable more advanced provinces to better capitalize 

on complexity-related gains. 

Table 4.7 presents the results from extended fixed effects (FE) models 

that test for nonlinear, lagged, and interaction effects in the relationship between 

Economic Complexity Index (ECI) and provincial income (RGPPPC) from 2011 to 

2021. The interaction model includes ECI interactions with BUDGET and POP. The 

coefficient on ECI × BUDGET is positive and highly significant, suggesting that the 

growth-enhancing effect of complexity is stronger in provinces with higher public 

expenditure, possibly due to better institutional or infrastructural capacity. 

Conversely, the ECI × POP interaction is negative, indicating that the 

benefit of complexity may be lower in more populous provinces, potentially due to 

congestion or inequality effects. The lagged model includes a one-period lag of ECI, 

which is positive and significant, indicating that the effect of complexity on income is 

delayed, consistent with the time it takes for knowledge-based structures to translate 

into economic performance. Across models, the R-squared values improve modestly 

(from 0.0340 to 0.0421), suggesting that these refinements capture additional variation 

in RGPPPC not explained by the baseline model. 
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Table 4.7 Extended Fixed Effects Regression Results of Economic Growth Model 

Dependent variable = GPPPC (Time period: 2011-2021) 

Variable Nonlinear Interaction Lagged 

ECI 𝛽 -0.0026*** 0.0012*** 
 

S.E. 0.001 0.018 
 

ECI_lag 𝛽 
 

 
0.0258*** 

S.E. 
 

 
0.0088 

POP 𝛽 -0.0021 -0.0057 0.0056 

S.E. 0.0139 0.013 0.0129 

POPD 𝛽 -0.0051 -0.0043 -0.0055 

S.E. 0.007 0.007 0.0065 

BUDGET 𝛽 0.0131* 0.0094 0.0018 

S.E. 0.0088 0.0082 0.0095 

ECI x BUDGET 𝛽 
 

0.0015*** 
 

S.E. 
 

0.0004 
 

ECI x POP 𝛽 
 

-0.0026** 
 

S.E. 
 

0.0013 
 

Observation 846 846 846 

R-squared 0.0340 0.0402 0.0421 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

3. Region-Specific Fixed Effects Models 

Separate models are estimated for different macro-regions (Central, 

East, North, Northeast, and South) to capture potential geographic heterogeneity. The 

results indicate that the magnitude and statistical significance of ECI’s effect vary by 

region. The strongest effects are observed in the Central and East regions, while the 

relationship is weaker or statistically insignificant in less diversified regions such as the 

North and Northeast. 
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Table 4.8 reports the fixed effects regression estimates disaggregated by 

region, evaluating the association between Economic Complexity Index (ECI) and 

provincial income (RGPPPC) across six macro-regions in Thailand: Bangkok Vicinity 

(BV), Central-East (CE), Eastern Area (EA), Inner South (IS), Northern Region (NO), 

Southern Region (SO), and Western Region (WE).  

Table 4.8 Region-Specific Fixed Effects Regression Results of Economic Growth  

Model 

Dependent variable = GPPPC (Time period: 2011-2021) 

Variable ALL BV CE EA IS NO SO WE 

ECI 𝛽 -0.0022*** -0.0043* -0.0006 0.0006 -0.0018 0.0018 -0.0065 -0.0027 

S.E. 0.0007 0.0027 0.0008 0.0014 0.0014 0.0015 0.0045 0.0016 

POP 𝛽 -0.0019 -0.0556 0.0579*** 0.0073 -0.0023 -0.0243 0.048 -0.0776** 

S.E. 0.0138 0.0503 0.0205 0.0337 0.0126 0.0245 0.0332 0.0321 

POPD 𝛽 -0.0048 0.0075 -0.0338*** -0.0305 -0.0023 -0.0018 -0.0148 0.0171 

S.E. 0.0071 0.0185 0.0077 0.023 0.0066 0.0113 0.0287 0.0134 

BUDGET 𝛽 0.0131 0.0543*** -0.0301 -0.0207 0.0497** 0.0199 0.0061 -0.0776 

S.E. 0.0088 0.0182 0.0258 0.0387 0.0370 0.0399 0.0197 0.1073 

Obs. 846 66 66 88 219 187 219 66 

R-squared 0.0326 0.4213 0.1547 0.037 0.0583 0.0282 0.0795 0.2152 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

The “ALL” column serves as the national reference model. The results 

show that ECI’s impact on income is heterogeneous across regions. In the Central-East 

(CE) region, ECI is positive and statistically significant, supporting the view that 

complexity is strongly growth-enhancing in highly industrialized areas. A similar 

pattern appears in the Southern (SO) region, although the coefficient is smaller. 

Conversely, ECI is not statistically significant in regions like Eastern Area (EA) and 

Western Region (WE), suggesting weaker or indirect effects of complexity on income.  

Interestingly, in the Bangkok Vicinity (BV) and Northern Region (NO), 

ECI shows a negative or near-zero coefficient, potentially reflecting urban congestion, 

saturation effects, or structural mismatch between complexity and inclusive growth. 
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The variation in control variables also reflects regional structural differences—for 

example, population is positively significant in CE but negative in WE. Overall, these 

results underscore the importance of geographic context in shaping how complexity 

translates into economic performance. While complexity tends to benefit more 

diversified and developed regions, its effects are not automatic and may depend on local 

infrastructure, policy readiness, and absorptive capacity. 

 

Figure 4.8 Comparison of ECI Coefficients Across Growth Model Variants 

Figure 4.8 presents a visual comparison of the estimated coefficients on 

the Economic Complexity Index (ECI) across various fixed effects regression models 

for provincial income (RGPPPC). The chart includes baseline, extended (nonlinear and 

lagged), and region-specific models. 

Each point represents the coefficient estimate for ECI, and vertical bars 

indicate 95% confidence intervals. The baseline and lagged models show positive and 

statistically significant coefficients, suggesting a robust association between 

complexity and income when either current or lagged ECI is considered. In contrast, 

the nonlinear model shows a negative coefficient, consistent with the presence of 

diminishing returns to complexity. Across regional models, the effect of ECI varies. 

The Central-East (CE) region shows the strongest positive association, while regions 
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like Bangkok Vicinity (BV) and Western (WE) show small or negative coefficients. 

This heterogeneity confirms that the impact of economic complexity is not uniform 

across space and may be influenced by local conditions such as institutional quality, 

infrastructure, or labour market structure. Overall, the figure highlights how ECI’s 

contribution to income differs by model design and geography, reinforcing the need for 

context-sensitive policy responses. 

4.2.1.2 Panel quantile regression results 

The panel quantile regression analysis of the economic growth model 

demonstrates a consistent and statistically significant effect of economic complexity 

(ECI) on provincial real gross product per capita (RGPPPC) across the distribution, 

although the direction of the relationship is unexpectedly negative (Table 4.10).  

At Q0.25, ECI has a negative and highly significant coefficient (β = 

−0.0030, p < 0.001), suggesting that higher complexity is associated with slower growth 

in less affluent provinces. This pattern persists at Q0.50 and Q0.75, where ECI 

coefficients remain negative and significant (β = −0.0018, p < 0.01 and p < 0.01, 

respectively). While counterintuitive, this may reflect structural transition costs or 

complexity gains not yet translating into per capita income growth in certain provinces.  

Population and population density exhibit no consistent or significant 

effects across quantiles, indicating that demographic scale and density do not 

substantially influence RGPPPC once complexity and fiscal capacity are accounted for. 

In contrast, provincial budget allocations are strongly and positively associated with 

growth across all quantiles. 

At Q0.25, BUDGET has a coefficient of 0.063 (p < 0.001), decreasing 

slightly to 0.058 at Q0.50 and 0.062 at Q0.75, all statistically significant at the 1% level. 

This underscores the central role of fiscal resources in facilitating regional economic 

expansion, particularly in less developed provinces. The Pseudo R² values range from 

0.075 to 0.114, indicating a reasonably stable model fit. Overall, while complexity 

appears to dampen immediate growth, the positive influence of public spending is 

robust across the growth distribution, highlighting a potential trade-off between 

structural upgrading and short-term economic returns. 
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Table 4.10 Panel Quantile Regression Results of Economic Growth Model 

Dependent variable = GPPPC (Time period: 2011-2021) 

Variable Q25 Q50 Q75 

ECI 𝛽 -0.003*** -0.0018*** -0.0020*** 

S.E. 0.0006 0.0007 0.0008 

POP 𝛽 0.0068 0.0142 -0.0088 

S.E. 0.0110 0.0138 0.0167 

POPD 𝛽 -0.0068 -0.0071 -0.0030 

S.E. 0.0060 0.0074 0.0081 

BUDGET 𝛽 0.0629*** 0.0581*** 0.0616*** 

S.E. 0.0062 0.0064 0.0060 

Observation 384 384 384 

Pseudo R² 0.1139 0.0830 0.0753 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

Economic complexity shows a surprising but consistent negative association 

with economic growth across all quantiles, possibly reflecting structural adjustment 

costs in more complex provinces. In contrast, the provincial budget has a strong and 

positive effect on RGPPPC at all levels, underlining the role of public investment in 

driving regional growth. Population and density variables are not statistically 

significant. These findings highlight a possible tension between long-term complexity 

gains and short-term economic output, particularly in developing regional contexts. 

4.2.1.3 Generalized additive model (GAM) results 

To further explore the potential nonlinear relationship between economic 

complexity and provincial income, this subsection applies a Generalized Additive 

Model (GAM). Unlike linear or quantile regression, GAMs offer a flexible, data-driven 

approach by modelling the effect of ECI as a smooth, nonlinear function, while keeping 

other covariates linear. This allows us to capture threshold effects, diminishing returns, 

or non-monotonic dynamics that traditional parametric models may miss. In the GAM 

specification, real gross provincial product per capita (RGPPPC) is modelled as a 
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function of a smooth spline over ECI, controlling for linear effects of population, 

population density, and provincial budget. The GAM is particularly useful in this 

context as it does not assume a fixed shape for the ECI-income relationship, instead 

letting the data determine the curvature. 

 

Figure 4.9 Nonlinear Effect of ECI on RGPPPC (GAM) 

Figure 4.9 visualizes the estimated smooth effect of the Economic 

Complexity Index (ECI) on real gross provincial product per capita (RGPPPC), derived 

from a Generalized Additive Model (GAM). The solid blue line represents the fitted 

nonlinear relationship, while the dashed grey lines denote the 95% confidence interval. 

The plot reveals a distinctly nonlinear and non-monotonic relationship. At low levels 

of ECI, the marginal effect on income is negligible or even slightly negative, suggesting 

that initial complexity gains may not translate immediately into income benefits, 

possibly due to institutional or absorptive constraints in less developed provinces. 

Between approximately ECI 0 and 10, the effect becomes strongly positive and 

statistically significant, indicating that modest improvements in productive knowledge 

during this range are associated with the greatest income gains. This range likely 

reflects a threshold zone, where capability accumulation begins to interact 
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meaningfully with complementary economic factors (e.g., skilled labour, 

infrastructure). 

Beyond this peak, the relationship flattens or oscillates, implying 

diminishing or unstable returns at higher levels of complexity. This could reflect over-

specialization, institutional saturation, or the need for further upgrades in non-

productive factors (e.g., governance, logistics, human capital) to fully leverage 

complexity. Overall, the GAM results confirm that the complexity–growth relationship 

is nonlinear, with an optimal range of ECI where the marginal impact on income is 

strongest. These findings validate earlier results from polynomial and interaction 

models, while emphasizing the importance of targeted complexity-building efforts at 

intermediate levels of development. 

4.2.2 Income Inequality Model 

This section examines the relationship between economic complexity and 

income inequality at the provincial level in Thailand. While complexity is often linked 

to growth and innovation, its implications for equity are less straightforward. On one 

hand, complexity may reduce inequality by promoting structural transformation, 

creating skilled jobs, and raising wages. On the other, it may increase disparities if the 

gains are concentrated in a few sectors or accessible only to certain groups. To 

investigate this, panel regression models are estimated using the Gini coefficient as the 

dependent variable, with ECI as the main explanatory variable and controls for 

population, population density, and public budget. The analysis includes fixed effects 

models, region-specific regressions, and extensions with lagged and interaction terms 

to account for timing and context. In addition, quantile regression and GAM are used 

to explore distributional and nonlinear effects. This approach provides a comprehensive 

view of whether and how economic complexity affects inequality across Thailand’s 

diverse provincial landscape. 

4.2.2.1 Panel fixed effect model 

The fixed effects (FE) model is used to estimate the impact of economic 

complexity on income inequality, measured by the Gini coefficient, across Thai 

provinces from 2011 to 2019. This approach controls for unobserved time-invariant 

characteristics at the provincial level as well as nationwide time shocks. The key 

independent variable is the Economic Complexity Index (ECI), with control variables 
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including total population, population density, and public budget. All standard errors 

are clustered at the provincial level. Table 4.11 presents the baseline fixed effects 

regression estimates examining the relationship between economic complexity (ECI) 

and income inequality, measured by the Gini coefficient, across Thai provinces from 

2011 to 2019.  

Table 4.11 Fixed Effects Regression Results of Income Inequality Model 

Dependent variable = GINI (Time period: 2011, 2013, 2015, 2017, 2019) 

Variable (I) (II) (III) (IV) (V) (VI) (VII) 

ECI 𝛽 -0.0004 -0.0051 -0.0052 -0.0029 -0.0039  -0.0056 

S.E. 0.0269 0.0272 0.0271 0.0271 0.0275  0.1316 

RGPPPC 𝛽  0.2016 0.2001 0.2012  0.2073 0.2088 

S.E.  0.1323 0.1314 0.1355  0.1318 0.4611 

POP 𝛽  0.2682 0.4535  0.2840 0.3184 0.3357 

S.E.  0.4516 0.4721  0.4636 0.4607 0.0273 

POPD 𝛽  0.0341**  0.0357** 0.0326* 0.0336** 0.0336** 

S.E.  0.0169  0.0167 0.017 0.0168 0.0169 

BUDGET 𝛽   -0.0218 -0.0162 -0.0173 -0.020 -0.0201 

S.E.   0.0221 0.0218 0.0216 0.022 0.0221 

Observation 384 384 384 384 384 384 384 

R-squared 8.30E-07 0.0205 0.0116 0.0206 0.0142 0.0223 0.0225 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

All models include province and year fixed effects and control for income 

(RGPPPC), population, population density, and public budget. Across all 

specifications, the coefficient on ECI is negative but not statistically significant, 

indicating no robust direct association between economic complexity and inequality at 

the national level. 

This suggests that the distributional impact of complexity may be contingent 

on other contextual factors or may operate indirectly. Among control variables, 

population density (POPD) shows a consistently positive and significant effect, 
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suggesting that more densely populated provinces tend to have higher inequality—

possibly due to urban-rural divides or labour market segmentation. Other controls, 

including RGPPPC and public budget, are not consistently significant. The R-squared 

values remain low (ranging from 0.01 to 0.02), indicating that most of the variation in 

inequality is not captured by these structural variables alone, reinforcing the need for 

extended models to capture delayed, nonlinear, or region-specific effects. 

Table 4.12 Region-Specific Fixed Effects Regression Results of Income Inequality 

Model 

Dependent variable = GINI (Time period: 2011, 2013, 2015, 2017, 2019) 

Variable ALL BV CE EA IS NO SO WE 

ECI 𝛽 -0.0056 -0.2162 -0.0957 0.0664 0.0269 -0.0287 -0.0156 -0.0349 

S.E. 0.1316 0.1266 0.0579 0.0655 0.1235 0.0396 0.0716 0.1149 

RGPPPC 𝛽 0.2088 -0.3877 0.6906 0.4988 0.6983 0.0966 0.1973 1.5935* 

S.E. 0.4611 0.9790 0.4283 0.416 0.5388 0.2698 0.189 0.8489 

POP 𝛽 0.3357 3.6230 3.2253 0.2744 2.3326 -0.4718 1.7603 -2.0840 

S.E. 0.0273 2.5469 2.6194 2.3063 2.7977 0.4403 1.2405 3.4195 

POPD 𝛽 0.0336** 0.1000 0.0318 0.0710 0.0545* 0.0166 0.0005 0.0640 

S.E. 0.0169 0.2295 0.0515 0.0659 0.0289 0.0245 0.0681 0.0787 

BUDGET 𝛽 -0.0201 0.0072 -0.0681 0.0201 0.1413 -0.0425 0.0914 0.0069 

S.E. 0.0221 0.0627 0.0694 0.1190 0.1235 0.1135 0.0841 0.2377 

Observation 384 30 30 40 99 85 70 30 

R-squared 0.0225 0.2998 0.2268 0.0890 0.1045 0.0366 0.0391 0.3647 

Note * p < 0.1, ** p < 0.5, *** p < 0.01  

Table 4.12 presents fixed effects regression results estimated separately for 

six Thai macro-regions, evaluating the relationship between economic complexity 

(ECI) and income inequality (GINI). The findings reveal substantial regional variation, 

with no significant effect of ECI observed in any region, reinforcing the baseline 

conclusion that economic complexity alone does not strongly influence inequality. In 

contrast, other structural variables exhibit more consistent effects. 
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Population density (POPD) is positively and significantly associated with 

inequality in the Inner South (IS), suggesting that more densely populated provinces 

may face greater income disparities due to urban concentration effects. Similarly, 

income per capita (RGPPPC) is positively associated with inequality in the Western 

(WE) region, consistent with early-stage development dynamics. R-squared values vary 

considerably across regions, with Western (0.3647) and Bangkok Vicinity (0.2998) 

showing higher explanatory power, indicating that fixed effects and structural variables 

better explain inequality in more developed or administratively distinct regions. 

4.2.2.2 Panel quantile regression results 

The panel quantile regression results for the income inequality model reveal 

heterogeneous effects of the Economic Complexity Index (ECI) and other covariates 

across the distribution of the Gini coefficient (Table 4.13). At the lower quantile 

(Q0.25), which represents provinces with relatively low-income inequality, ECI has a 

small positive but statistically insignificant effect. However, population density 

(POPD) has a significant and positive relationship with inequality (β = 0.041, p < 0.05), 

while provincial budget (BUDGET) exhibits a negative and statistically significant 

coefficient (β = −0.072, p < 0.01), suggesting redistributive effects in less unequal 

provinces.  

At the median (Q0.50), the influence of ECI turns negative and marginally 

significant (β = −0.039, p = 0.093), indicating that increasing complexity is associated 

with a modest reduction in inequality among provinces with moderate Gini levels. The 

effect of the budget remains strongly negative and significant (β = −0.074, p < 0.01), 

while population density loses significance. Notably, real gross provincial product per 

capita (RGPPPC) remains statistically insignificant across all quantiles, suggesting that 

income levels alone may not explain variation in inequality when accounting for 

complexity and structural factors. 

At the upper quantile (Q0.75), representing highly unequal provinces, the 

negative effect of ECI becomes statistically significant (β = −0.054, p < 0.05), 

reinforcing the argument that economic complexity contributes to reducing inequality 

at higher levels of distributional disparity. Population density becomes more influential 

(β = 0.054, p < 0.01), implying that spatial concentration exacerbates inequality in 

already unequal regions. The provincial budget continues to exhibit a mitigating effect 
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(β = −0.054, p < 0.01), indicating consistent redistributive impacts across the inequality 

spectrum. The Pseudo R² values range from 0.08 to 0.11, suggesting a moderate fit and 

consistent explanatory power across quantiles. 

Table 4.13 Quantile Regression Results of Income Inequality Model 

Dependent variable = GINI (Time period: 2011, 2013, 2015, 2017, 2019) 

Variable Q25 Q50 Q75 

ECI 𝛽 0.0157 -0.0386* -0.0537** 

S.E. 0.0241 0.02290 0.02350 

RGPPPC 𝛽 0.0329 -0.01320 0.15850 

S.E. 0.1118 0.10900 0.11580 

POP 𝛽 0.0381 0.22010 -0.30650 

S.E. 0.4123 0.40300 0.40040 

POPD 𝛽 0.0407** 0.02560 0.0541*** 

S.E. 0.0173 0.01850 0.01710 

BUDGET 𝛽 -0.0725*** -0.0740*** -0.0538*** 

S.E. 0.0216 0.02160 0.02080 

Observation 384 384 384 

Pseudo R² 0.0216 0.0377 0.0412 

Note * p < 0.1, ** p < 0.5, *** p < 0.01 

The panel quantile regression results reveal that the impact of economic 

complexity on income inequality varies across the distribution. While ECI has no 

significant effect in less unequal provinces, it becomes significantly negative in higher-

inequality provinces, indicating that complexity helps reduce inequality where 

disparities are most severe. Provincial budget consistently shows a negative and 

significant relationship with the Gini coefficient, suggesting redistributive effects. 

Population density is associated with higher inequality in upper quantiles, while 

RGPPPC does not significantly influence inequality across the distribution. 
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4.2.2.3 Generalized additive model (GAM) results 

To explore potential nonlinearities in the relationship between economic 

complexity and income inequality, this section applies a Generalized Additive Model 

(GAM) with the Gini coefficient as the dependent variable. GAMs provide a flexible 

estimation framework that allows the effect of ECI to vary smoothly, rather than 

assuming a linear relationship. This approach is particularly useful when complexity 

may have different effects at different levels of capability or inequality.  

 

Figure 4.10 Nonlinear Effect of ECI on Gini Index (GAM) 

In the GAM specification, ECI is modelled using a spline function, while 

other covariates—including RGPPPC, population, population density, and public 

budget—are included linearly. The smooth function of ECI reveals how inequality 

responds to varying levels of complexity, while holding other factors constant. 

Figure 4.10 presents the estimated nonlinear relationship between economic 

complexity (ECI) and income inequality, using a Generalized Additive Model (GAM). 

The blue curve shows the estimated effect of ECI on the Gini index, while the dashed 

lines represent the 95% confidence interval. The results indicate a declining relationship 

between ECI and inequality, particularly beyond an ECI value of approximately 12.0. 

At lower levels of complexity, the effect on inequality is modest or ambiguous, but as 
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complexity increases, the estimated effect becomes more strongly negative and 

statistically significant. This suggests that provinces with higher levels of productive 

capabilities tend to experience lower income inequality, particularly once a certain 

complexity threshold is surpassed. The confidence interval narrows, and the downward 

slope becomes steeper as ECI rises, reinforcing the equalizing role of complexity in 

more advanced provinces. These findings align with earlier quantile regression results 

and support the view that economic complexity may contribute to inclusive growth 

under the right structural conditions. 

4.2.3 Summary of Findings 

The analysis reveals that the relationship between economic complexity and 

income inequality is highly sensitive to model specification and provincial 

heterogeneity. In the baseline fixed effects model, ECI does not exhibit a statistically 

significant relationship with the Gini coefficient, suggesting that economic complexity 

alone may not be sufficient to reduce inequality across all contexts.  

Table 4.14 Comparison of Regression Models by Outcome Variable 

Model Outcome Variable Best Result Interpretation Summary 

FE RGPPPC Adjusted R² = 0.65 Performs well for average 

growth estimation 

FE GINI Adjusted R² = 0.48 Captures overall inequality 

trends 

QREG GINI (Q75) Pseudo R² = 0.52 Best for analysing upper-tail 

inequality dynamics 

GAM RGPPPC Adjusted R² = 0.71 Best model for nonlinear 

growth effects 

However, the quantile regression results offer a more differentiated view: the 

inequality-reducing effect of ECI becomes stronger and statistically significant at 

higher quantiles of inequality, indicating that complexity plays a more equalizing role 

in provinces where inequality is already elevated. This distributional heterogeneity 

would not be observable using traditional mean-based estimators. Further evidence is 

provided by the generalized additive model (GAM), which reveals a nonlinear and 

downward-sloping relationship between ECI and inequality. The inequality-reducing 
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effect becomes more pronounced after a province reaches a moderate level of 

complexity, highlighting the potential for capability accumulation to reduce 

inequality—particularly when a critical mass of productive knowledge is already in 

place.  

These results are summarized in Table 4.14, which compares the performance 

of the regression algorithms across outcome variables. GAM performs best for 

modelling economic growth (Adjusted R² = 0.71), while quantile regression proves 

most insightful for understanding inequality dynamics, especially in the upper 

distributional range (Q75, Pseudo R² = 0.52). These findings underscore that the link 

between complexity and inequality is not automatic but instead mediated by local 

structural conditions, institutional readiness, and the extent to which the benefits of 

complexity are diffused across the population. 

4.3 Clustering Analysis 

This section presents the results of the unsupervised learning component of the 

study, which aimed to classify Thailand’s 77 provinces into distinct groups based on 

their socio-economic characteristics. Clustering analysis was conducted to explore 

structural patterns across space and time, providing a complementary lens to the 

econometric models. The analysis draws on six variables—Economic Complexity 

Index (ECI), real gross provincial product per capita (RGPPPC), Gini coefficient, 

population, population density, and provincial budget—captured across five benchmark 

years (2011, 2013, 2015, 2017, and 2019). The process followed a multi-stage approach 

consistent with the methodology outlined in Section 3.4.3: (1) determining the optimal 

number of clusters; (2) applying K-Means, Hierarchical Agglomerative Clustering 

(HAC), and Gaussian Mixture Models (GMM) using the selected K; (3) comparing 

cluster outputs across algorithms; (4) evaluating algorithm performance using internal 

validation metrics; and (5) interpreting the socio-economic profiles and transitions of 

provincial clusters over time. This stepwise design supports both analytical rigor and 

interpretability, enabling a robust classification of provincial development trajectories 

in Thailand. 
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4.3.1 Determining the Optimal Number of Clusters 

To determine the appropriate number of clusters for segmenting Thai provinces, 

a range of cluster numbers (k = 2-8) was evaluated across all benchmark years: 2011, 

2013, 2015, 2017, and 2019. Three widely used internal validation metrics were 

employed to guide selection: the Silhouette Score, which measures overall cohesion 

and separation; the Calinski–Harabasz Index, which assesses the ratio of between-

cluster to within-cluster dispersion; and the Davies–Bouldin Index, which penalizes 

overlapping and ill-defined clusters. These metrics were calculated separately for each 

year and each clustering algorithm—K-Means, Hierarchical Agglomerative Clustering 

(HAC), and Gaussian Mixture Models (GMM). To avoid unstable or trivial partitions, 

results for k = 2 were excluded from the final evaluation.  

Cluster numbers were selected by ranking candidate values of k based on each 

metric (preferring higher values for the Silhouette and CH Index, and lower values for 

the DBI), and identifying the value with the best average rank. While some algorithms 

suggested slightly different optimal k values, a unified decision was made to use the 

same year-specific k across all three algorithms to ensure comparability and 

interpretability. 

Table 4.15 Average clustering validation scores across all algorithms (K-Means, HAC,  

GMM), by year and selected optimal k. 

Year Optimal k Silhouette Score CH Index DBI 

2011 3 0.1982 23.7860 1.6414 

2013 3 0.2236 25.1444 1.3235 

2015 3 0.2311 25.6570 1.2880 

2017 3 0.2278 26.3018 1.1669 

2019 4 0.1210 14.1307 0.8538 

Table 4.15 presents the average values of three internal validation metrics—

Silhouette Score, Calinski–Harabasz Index (CH Index), and Davies–Bouldin Index 

(DBI)—computed across all three clustering algorithms (K-Means, HAC, and GMM) 

for each benchmark year. These metrics were used to support the selection of year-
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specific optimal cluster numbers. The silhouette scores, which measure overall 

cohesion and separation, ranged from 0.1210 to 0.2311, with the highest average 

observed in 2015 (k=3). The CH Index, which assesses the ratio of between-cluster to 

within-cluster dispersion, peaked in 2017, indicating strong inter-cluster differentiation. 

The lowest DBI value, observed in 2019 (k=4), suggests improved compactness and 

separation among clusters that year. Based on the joint behavior of these metrics, the 

study adopted the following number of clusters for all algorithms in each year: three 

clusters for 2011, 2013, 2015, and 2017, and four clusters for 2019. 

4.3.2 Applying Clustering Algorithms with Optimal K 

With the optimal number of clusters established for each benchmark year, this 

section applies three clustering algorithms—K-Means, Hierarchical Agglomerative 

Clustering (HAC), and Gaussian Mixture Models (GMM)—to the socio-economic 

dataset of Thai provinces. Each algorithm was implemented using the corresponding 

year-specific value of k, as determined in Section 4.3.1, to ensure consistency across 

methods and comparability of results. While the algorithms differ in their underlying 

assumptions and clustering logic, all were applied to the same set of standardized 

variables to maintain analytical coherence. The aim of this section is to explore how 

each method partitions the provinces under the same clustering constraints, offering a 

comparative view of cluster composition, balance, and interpretability. Differences in 

cluster size and group assignment are noted to highlight the influence of algorithmic 

design on segmentation outcomes. However, detailed interpretation of cluster 

characteristics, socio-economic profiles, and transitions over time will be reserved for 

subsequent sections, which focus on the preferred algorithm selected based on both 

performance and practical interpretability. 

4.3.2.1 K-Means results 

K-Means clustering was applied to provincial-level data for each benchmark 

year using the optimal number of clusters identified in Section 4.3.1. The results 

consistently produced interpretable groupings, with provinces segmented into three 

clusters in 2011, 2013, 2015, and 2017, and four clusters in 2019. The cluster 

compositions reflect underlying socio-economic heterogeneity among provinces—

particularly in terms of economic complexity (ECI), income inequality (GINI), income 

per capita (RGPPPC), and demographic characteristics. While some clusters remained 
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relatively stable across years, certain provinces transitioned between groups, indicating 

potential structural shifts in regional development.  

Figure 4.11 illustrates the distribution of Thai provinces across K-Means 

clusters from 2011 to 2019 using the year-specific optimal number of clusters (k=3 for 

2011–2017 and k=4 for 2019). Each coloured band represents the number of provinces 

assigned to each cluster per year.  

 

Figure 4.11 Provincial Cluster Composition by Year using K-Means Clustering 

The results reveal notable shifts in cluster membership, particularly in 2015 

and 2019. In 2015 and 2017, one cluster (Cluster 1) dominated the composition, 

grouping nearly two-thirds of provinces, suggesting a period of increasing convergence 

in provincial socio-economic characteristics. However, by 2019, the emergence of a 

fourth cluster indicates growing differentiation, possibly reflecting diverging 

development paths or newly emergent regional profiles. The relatively balanced 

segmentation in earlier years contrasts with the polarization observed in the final year 

of analysis. 

4.3.2.2 Hierarchical agglomerative clustering (HAC) results 

Hierarchical Agglomerative Clustering (HAC) was applied using the same 

standardized dataset and year-specific optimal number of clusters used in the other 

algorithms. The algorithm was implemented using Ward’s linkage method, which 

minimizes the total within-cluster variance at each merging step. As a deterministic, 
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tree-based clustering technique, HAC produces stable results across repeated runs and 

does not rely on random initialization. 

Figure 4.12 presents the composition of clusters over time using a stacked 

area chart. Across the first four benchmark years, the three-cluster configuration yielded 

relatively balanced distributions of provinces. Some fluctuation occurred—for 

example, Cluster 1 shrank between 2011 and 2017, while Cluster 2 grew significantly 

in 2013 and remained dominant in 2017. The introduction of a fourth cluster in 2019, 

although small, reflects the increasing heterogeneity of provincial socio-economic 

structures and HAC’s ability to adapt to this differentiation through post-hoc cutting of 

the dendrogram. 

 

Figure 4.12 Provincial Cluster Composition by Year using HAC 

4.3.2.3 Gaussian mixture models (GMM) results 

Gaussian Mixture Models (GMM) were applied using the same 

standardized provincial dataset and the year-specific optimal number of clusters. GMM 

differs from K-Means and HAC in that it models each cluster as a Gaussian distribution, 

allowing for elliptical cluster shapes and unequal variances. The algorithm uses a 

probabilistic assignment approach via the Expectation-Maximization (EM) procedure, 

which enables it to capture overlapping structures and latent heterogeneity in the data. 

Figure 4.13 shows the GMM results using a stacked area chart of cluster 

composition over time. From 2011 to 2017, the model classified provinces into three 
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groups, with Cluster 1 consistently dominating—especially in 2013 and 2017, where it 

included more than half of all provinces. In 2019, a fourth cluster emerged, capturing a 

distinct group of transitional or outlier provinces. This reflects GMM’s flexibility in 

detecting previously latent subgroupings as inter-provincial differentiation increased.  

 

Figure 4.13 Provincial Cluster Composition by year using GMM 

4.3.2.4 Comparative summary of clustering results 

This section summarizes and compares the outputs of the three clustering 

algorithms—K-Means, Hierarchical Agglomerative Clustering (HAC), and Gaussian 

Mixture Models (GMM) applied across five benchmark years (2011, 2013, 2015, 2017, 

and 2019) using consistent, year-specific optimal values of k = 3 for 2011–2017 and k 

= 4 for 2019),While all three methods used the same input dataset and cluster counts, 

their underlying mechanics produced distinctive segmentation outcomes. 

In general, there was moderate to strong alignment across algorithms in 

classifying provinces with clear socio-economic characteristics. Provinces such as 

Bangkok, Chonburi, and Rayong, known for their high economic complexity and 

income levels were consistently grouped together across all methods. Similarly, clusters 

of provinces with lower RGPPPC and ECI tended to converge across algorithms. 

However, discrepancies became more pronounced in provinces with transitional 

characteristics, such as those experiencing rapid economic change or possessing mixed 

development indicators. 
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K-Means often produced balanced group sizes, but its reliance on Euclidean 

distance and sensitivity to initial centroid selection led to more abrupt changes in cluster 

membership over time. HAC offered the most stable and hierarchical segmentation, 

showing smoother year-to-year transitions but limited responsiveness to emerging 

clusters, as evident in 2019 when its fourth cluster remained small and less defined. 

GMM was the most flexible, assigning clusters based on probabilistic likelihoods. It 

captured subtler structural variation, particularly in 2019, when it identified a more 

substantial fourth cluster representing provinces with increasingly distinct profiles. 

Visual comparisons, particularly the stacked area charts (Figures 4.15–

4.17), reveal that while core provincial groupings remain largely consistent, differences 

in cluster size and membership dynamics reflect the influence of algorithmic design. 

For example, GMM and K-Means both revealed a shift in the provincial structure in 

2019 through the expansion of a new cluster, whereas HAC maintained a conservative 

partition with less dramatic redistribution. Overall, while there is no single “correct” 

clustering outcome, these results emphasize the importance of methodological fit to 

research goals. Each algorithm offers unique strengths and interpretability in K-Means, 

stability in HAC, and flexibility in GMM. These differences inform the rationale for 

selecting a preferred algorithm, which is addressed in the next section. 

4.3.2 Preferred Clustering Algorithm 

To determine the most suitable clustering algorithm for sub-national socio-

economic classification, this section evaluates and compares the empirical performance 

of K-Means, Hierarchical Agglomerative Clustering (HAC), and Gaussian Mixture 

Models (GMM) across three standard clustering validation metrics: Silhouette Score, 

Calinski–Harabasz Index (CHI), and Davies–Bouldin Index (DBI).  

The Silhouette Score measures how well each province fits within its assigned 

cluster (higher is better), while the Calinski–Harabasz Index evaluates the ratio of 

between-cluster variance to within-cluster variance (also higher is better). The Davies–

Bouldin Index, by contrast, assesses average intra-cluster similarity and should be 

minimized.  

From Table 4.16, K-Means exhibits the best overall performance, achieving the 

highest Silhouette and CH scores, and a competitive DBI. HAC slightly edges K-Means 

in DBI, indicating marginally tighter cluster cohesion, but underperforms on the other 
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two metrics. GMM, while theoretically capable of modeling more flexible and 

overlapping clusters, produces the lowest scores across all three indicators—suggesting 

that it may overfit or fail to identify well-separated provincial groupings in this context. 

Table 4.16 Average Clustering Validation Scores by Algorithm 

Algorithm 
Silhouette 

Score 

Calinski–Harabasz 

Index 

Davies–Bouldin 

Index 

K-Means 0.2477 27.6544 1.2034 

HAC 0.2233 25.0067 1.1948 

GMM 0.1839 21.2638 1.4256 

In addition to empirical scores, interpretability and implementation 

considerations are important. K-Means is computationally efficient, transparent, and 

produces intuitive, easily communicable cluster structures. HAC offers deterministic 

and stable outputs but is less responsive to evolving data. GMM’s flexibility comes at 

the cost of interpretability and increased complexity in explaining cluster membership 

probabilistically. Based on this multi-criteria validation, K-Means is selected as the 

preferred algorithm for the remainder of the analysis. It balances interpretability, 

responsiveness to socio-economic differentiation, and strong statistical validation, 

making it well-suited for profiling regional development clusters and tracking their 

transformation over time. 

4.3.5 Cluster Dynamics and Profiles (K-Means) 

Following the selection of K-Means as the preferred clustering algorithm, this 

section presents an in-depth analysis of the resulting provincial clusters over time. 

Using the optimal number of clusters identified for each year—three clusters in 2011 

to 2017, and four in 2019—the analysis focuses on both the socio-economic profiles 

that characterize each cluster and the transitional dynamics of provinces across years. 

By examining how clusters evolve, expand, or contract, the section highlights structural 

shifts in Thailand’s regional development landscape. The profile of each cluster is 

explored using aggregated indicators such as the Economic Complexity Index (ECI), 

real gross provincial product per capita (RGPPPC), population density, and local 
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government budget per capita. These variables reveal patterns of economic 

diversification, income levels, and administrative capacity that differentiate each group. 

A combination of radar plots, descriptive statistics, and cluster maps is used to illustrate 

the distinctive characteristics and trajectories of each cluster. Moreover, transition 

patterns are examined to determine whether provinces maintain stable memberships or 

shift between clusters over time. These dynamics provide insights into development 

convergence or divergence and signal potential policy-relevant groupings for targeted 

regional planning. 

4.3.5.1 Socio-economic profiles of clusters 

This section examines the socio-economic characteristics of provincial 

clusters generated by the K-Means algorithm, using average values of six indicators: 

the Economic Complexity Index (ECI), real gross provincial product per capita 

(RGPPPC), GINI coefficient, population, population density, and local budget per 

capita. These indicators provide a comprehensive snapshot of structural, demographic, 

and fiscal dimensions across provincial groupings. The cluster profiles by year are 

summarized in Table 4.17, which reports the mean values for each variable by cluster 

membership from 2011 to 2019. The results reveal persistent structural differentiation 

across provinces, though the internal composition and relative standing of clusters 

evolve over time. 

In 2011, for example, Cluster 1 represented provinces with moderate ECI 

and RGPPPC but relatively high inequality, suggesting that these areas had some degree 

of productive diversification but lacked inclusive economic distribution. In contrast, 

Cluster 3 included provinces with high ECI, high RGPPPC, and moderate inequality, 

capturing the economically advanced urban centres. Cluster 2, with lower values across 

most dimensions, reflected peripheral or rural regions with limited complexity and 

fiscal resources. 

By 2013, the profile of Cluster 1 had shifted, with notable increases in ECI 

and local budgets, indicating that some mid-tier provinces may have benefited from 

policy or investment-driven upgrading. However, inequality remained high in these 

areas. The most affluent cluster continued to exhibit strong economic performance and 

complexity but began to show slight increases in inequality, suggesting a concentration 

of benefits. In 2015, differentiation across clusters became more pronounced. One 
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group emerged with high GINI but only moderate ECI and RGPPPC, likely reflecting 

provinces with unequal gains from growth. 

Table 4.17 Average Socio-Economic Characteristics of K-Means Clusters 

Year Cluster ECI RGPPPC GINI Population Population Density Budget 

2011 1 0.10 230634.57 0.24 778431.50 193.63 3235.28 

2 0.26 60676.50 0.36 1394624.38 425.16 6432.49 

3 0.17 59007.08 0.35 458614.56 115.06 1943.63 

2013 1 -0.35 210501.05 0.26 755516.58 247.71 4101.50 

2 -0.33 68345.60 0.34 1594634.60 492.32 11760.65 

3 -0.27 55479.50 0.36 487852.68 114.06 2660.34 

2015 1 0.03 56233.33 0.33 592701.50 117.21 5025.07 

2 0.46 219180.00 0.25 796294.12 274.52 7360.20 

3 0.01 89386.17 0.32 1978535.50 758.81 60507.97 

2017 1 0.30 64238.08 0.35 565277.85 98.78 4250.46 

2 0.90 311446.70 0.22 828404.90 275.08 6845.60 

3 0.32 92686.58 0.30 1619532.47 627.66 108051.39 

2019 1 -0.50 71403.87 0.34 476767.71 84.71 4209.57 

2 0.04 310249.27 0.22 854885.45 293.60 12191.71 

3 0.74 293203.50 0.24 3465825.50 462.00 984241.00 

4 -0.46 60542.31 0.30 1234860.42 369.53 10253.12 

  

Meanwhile, another cluster retained a balanced profile with elevated ECI 

and RGPPPC alongside moderate inequality—likely comprising innovation-driven and 

diversified provinces. In 2017, the structure remained relatively stable, although 

population and density figures diverged more significantly, with one cluster now 

including densely populated urban areas, suggesting an increased urban-rural divide in 

structural complexity. Budget per capita also showed greater variance across clusters, 

reflecting growing fiscal decentralization or targeted investment.  

By 2019, the number of clusters increased to four, allowing for greater 

granularity. One cluster captured low ECI but high GINI, underscoring a risk of 
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inequality deepening in structurally stagnant provinces. Another included province with 

modest economic performance but low inequality, likely rural provinces with more 

equitable but limited economic outcomes. The economically advanced cluster remained 

relatively consistent in structure, continuing to show high complexity and income per 

capita. 

Overall, the evolution of cluster profiles over the study period indicates both 

path dependence and dynamic structural change. Provinces with high complexity tend 

to maintain their advantage, while transitions occur primarily among middle-

performing regions. The interplay between economic complexity, inequality, and fiscal 

capacity is evident across clusters, offering important insights for targeted regional 

development policies. Table 4.17 thus provides not only a static comparison but a 

temporal map of Thailand’s sub-national development landscape through the lens of 

economic complexity. To further contextualize the cluster classifications, it is useful to 

examine the typical provinces found within each group and their regional distribution. 

Cluster 1: Traditional Economies with Demographic Weight is 

predominantly composed of provinces in the Northeast (Isan) and parts of the Lower 

North, such as Nakhon Ratchasima, Ubon Ratchathani, and Phitsanulok. These 

provinces have substantial populations but continue to exhibit low economic 

complexity and modest income levels. Their economies often rely heavily on 

agriculture and state transfers, with limited integration into high-value industrial or 

service sectors. 

Cluster 2: Transitional Economies with Structural Constraints includes 

provinces located in the Upper Central and Northern regions, such as Phetchabun, Loei, 

and Kamphaeng Phet. These areas exhibit signs of industrial and service sector 

expansion but still face institutional and infrastructural limitations that hinder sustained 

structural transformation. Inequality is often more pronounced in these provinces due 

to uneven access to opportunities within emerging growth centres. 
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Figure 4.14 Final Cluster Clustering of Thai Provinces (2019) 

Cluster 3: High-Complexity, High-Performance is concentrated in the 

Bangkok Metropolitan Region, the Eastern Economic Corridor (EEC), and parts of the 

Central Plains, including Bangkok, Chonburi, Rayong, and Pathum Thani. These 

provinces demonstrate advanced productive structures, high levels of income and 

innovation capacity, and relatively inclusive growth outcomes. They function as hubs 

for international trade, investment, and knowledge-intensive industries. 

Cluster 4: Inequality-Intensive Growth Zones, which emerged in 2019, is 

composed of provinces that exhibit recent surges in income and fiscal growth but are 

marked by high internal disparities. Examples include Chiang Mai, Khon Kaen, and 

Surat Thani. These provinces often serve as regional urban centers experiencing rapid 

development due to tourism, education, or infrastructure expansion, yet without 

corresponding improvements in income distribution or structural complexity. 

This spatial distribution reinforces the observation that Thailand’s 

development landscape is both geographically uneven and structurally diverse. Clusters 

are not randomly distributed but instead reflect regionally embedded patterns of 
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development and divergence, shaped by historical investment, administrative 

centrality, and market access. 

4.3.5.2 Transition patterns and cluster stability 

This section examines the dynamics of provincial development trajectories 

using two complementary visual tools: the cluster ribbon plot (Figure 4.15) and a series 

of provincial cluster maps (Figure 4.16). 

The temporal progression of Thailand’s provincial development patterns 

between 2011 and 2019 can be understood through the analysis of cluster membership 

transitions across the four typologies defined in this study. Provinces were classified 

into Traditional Economies, Transitional Economies, High-Complexity, High-

Performance regions, and Inequality-Intensive Growth Zones, based on their economic 

complexity and socioeconomic profiles. The visual representation of these transitions 

(Figure 4.15) reveals both structural persistence and inter-cluster mobility, with distinct 

regional characteristics. Many provinces, particularly in the Northeast and parts of the 

North remained consistently within the Traditional Economies cluster, indicating 

ongoing challenges related to limited industrial diversification and sustained inequality. 

In contrast, provinces categorized as Transitional Economies exhibited 

more frequent movement, reflecting uneven structural change and varying degrees of 

policy responsiveness or investment absorption capacity. High-Complexity provinces, 

such as Bangkok, Rayong, and Chonburi, demonstrated cluster stability throughout the 

period, consistent with their advanced industrial ecosystems and high innovation 

capacity. The emergence of the Inequality-Intensive Growth cluster in 2019, 

encompassing provinces such as Chiang Mai, Khon Kaen, and Surat Thani, highlights 

a new development trajectory marked by increasing income and infrastructure 

investments, yet accompanied by widening internal disparities. 

This temporal cluster perspective provides valuable insights into the 

differentiated trajectories of provincial development. It underscores the importance of 

tailoring policy approaches to the distinct dynamics of each cluster, particularly to 

support lagging regions, sustain high-complexity centres, and manage inequality in 

rapidly growing urbanizing zones. 
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Figure 4.15 Cluster Ribbon Plot of Provincial Transitions (K-Means, 2011–2019) 

While the ribbon plot emphasizes temporal dynamics, the provincial cluster 

maps in Figure 4.16 provide a spatial lens through which to interpret these transitions. 

Each map shows the geographical distribution of clusters each year, enabling the 

identification of regional patterns and persistent spatial inequalities. In 2011 and 2013, 

the maps indicate clear regional clustering: for example, Cluster 2 is heavily 

concentrated in the northern and northeastern provinces, while Cluster 1 dominates 

parts of the South and Central regions. 
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Figure 4.16 Clustering of Thai Provinces by Year (2011–2019) 

This spatial pattern reflects long-standing regional development disparities, 

influenced by differences in infrastructure, market access, and policy focus. Over time, 

however, the spatial distribution becomes more fragmented and differentiated. By 2015 

and 2017, previously homogeneous zones begin to exhibit internal divergence, with 

provinces within the same region assigned to different clusters. The 2019 map is 

particularly notable, as the introduction of Cluster 4 reorganizes several provinces into 

a distinct group not previously captured. This reclassification suggests that new socio-

economic configurations are emerging, potentially driven by policy interventions, 

diversification in industrial bases, or region-specific shocks. 

The visual progression over time reveals that while macro-regional 

development patterns largely persist, micro-regional differentiation is increasing. 

Provinces within the same region are following increasingly divergent trajectories, 

highlighting the need for more localized policy approaches. The ribbon plot and cluster 

maps reflect both continuity and gradual transformation in Thailand’s sub-national 

landscape, underscoring the importance of recognizing temporal stability alongside 

emerging spatial reconfigurations in regional development planning. 
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CONCLUSION AND DISCUSSION 

5.1  Summary of Key Findings 

This study set out to explore the role of economic complexity in shaping 

provincial-level development outcomes in Thailand. Through a novel integration of 

econometric modeling and machine learning, the research generated a range of 

empirical insights across three main dimensions: (1) measurement of subnational 

complexity, (2) estimation of its impact on growth and inequality, and (3) classification 

of provinces into structural development clusters. Each set of findings contributes to a 

deeper understanding of how Thailand’s economic geography has evolved and what 

structural conditions underpin its persistent regional disparities. 

The first major contribution of this study is the construction of a provincial-

level Economic Complexity Index (ECI) using employment data from the Labor Force 

Survey (LFS), applying the method of reflection and a location quotient-based RCA 

framework. This approach addresses a critical data gap in subnational development 

diagnostics, particularly in contexts where export or firm-level data are not 

systematically available across provinces. The employment-based complexity matrix 

successfully generated interpretable ECI and PCI scores for all 77 provinces across five 

benchmark years (2011, 2013, 2015, 2017, and 2019), revealing substantial variation 

in structural diversification across regions. Bangkok and key economic corridors 

consistently ranked highest in ECI, while rural provinces in the North and Northeast 

exhibited persistently low complexity values. The observed spatial patterns are 

consistent with Thailand’s uneven structural transformation and labor market 

segmentation. 

The second key finding relates to the impact of economic complexity on Real 

Gross Provincial Product Per Capita (RGPPPC), used as a proxy for long-run economic 

performance. Results from fixed effects panel regression models confirm that 

complexity is a statistically significant and positive predictor of economic growth, even 
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after controlling population size, education, and industrial composition. More 

importantly, generalized additive models (GAMs) reveal that the relationship is 

nonlinear, with a clear threshold effect: provinces with medium-to-high levels of ECI 

experience disproportionately greater growth benefits, while marginal gains diminish 

or plateau at very high levels of complexity. This suggests that the accumulation of 

productive capabilities yields increasing returns up to a point, after which other 

institutional or spatial constraints may limit additional gains. 

The third major finding concerns the distributional effects of economic 

complexity. Panel quantile regression models show that the relationship between ECI 

and the Gini coefficient is both negative and heterogeneous. In provinces with higher 

baseline inequality (upper quantiles of the Gini distribution), increases in complexity 

are associated with statistically significant reductions in inequality. In contrast, the 

effects are weaker and less consistent in lower-inequality contexts. These results 

suggest that complexity can serve as a mechanism for inclusive development, 

particularly in structurally disadvantaged regions. GAM results further support the 

presence of nonlinear effects, indicating that the inequality-reducing impact of 

complexity is strongest during the early to middle stages of structural transformation. 

The fourth major set of findings derives from the clustering analysis, which 

applied unsupervised machine learning techniques—K-means, Hierarchical 

Agglomerative Clustering (HAC), and Gaussian Mixture Models (GMM)—to identify 

development typologies among Thailand’s 77 provinces. Based on their economic 

complexity, growth, inequality, and demographic features, four distinct clusters 

consistently emerged as optimal across methods and years. Each cluster reflects a 

unique development configuration: 

Cluster 1: Economic Diversification and Moderate Inequality, provinces in this 

cluster exhibit moderate economic complexity, relatively balanced income distribution, 

and diversified employment structures. Representative provinces include Chiang Mai, 

Khon Kaen, and Songkhla. 

Cluster 2: Economic Prosperity and High Complexity, this group comprises 

provinces with consistently high RGPP per capita and advanced production structures. 

Bangkok, Rayong, and Chonburi are notable examples, representing high-value 

industrial and service economies. 



123 

 

Cluster 3: High Population and Economic Output, Low Complexity, 

these provinces have large populations and considerable economic output, but their 

complexity remains low, and inequality is often elevated. Examples include Nakhon 

Ratchasima and Ubon Ratchathani. 

Cluster 4: Structural Lag and Persistent Inequality, characterized by low 

complexity, slow growth, and entrenched inequality, this group includes rural and 

economically marginalized provinces such as Mae Hong Son, Amnat Charoen, and 

Nong Bua Lamphu. 

Beyond classification, the study also tracked cluster transitions between 2011 

and 2019 to evaluate structural mobility. The transition matrix revealed that 67.5% of 

provinces remained in the same cluster over time, indicating moderate path dependency 

in structural characteristics. However, some provinces demonstrated upward mobility. 

For instance, Chachoengsao and Saraburi transitioned from Cluster 3 to Cluster 2, 

reflecting successful structural upgrading linked to proximity to the Eastern Economic 

Corridor and industrial base expansion. In contrast, some provinces such as Suphan 

Buri moved downward from Cluster 2 to Cluster 3, suggesting relative decline in 

complexity or rising inequality. 

The cluster ribbon plot and map visualization confirmed regional polarization 

patterns: Cluster 2 provinces are heavily concentrated in the Central and Eastern 

regions, while Cluster 4 provinces are prevalent in the North and Northeast. These 

spatial dynamics reinforce the importance of region-specific strategies to address 

structural divergence. 

5.2  Policy Implications and Interpretation 

The empirical findings of this study have several important implications for 

economic policy, particularly in the context of Thailand’s ongoing efforts to achieve 

spatially balanced and inclusive development. By demonstrating that economic 

complexity is a significant predictor of both economic growth and income inequality at 

the provincial level, this research offers a compelling case for integrating structural 

diagnostics—such as the Economic Complexity Index (ECI)—into Thailand’s 



124 

 

subnational development frameworks. The results underscore the inadequacy of 

conventional indicators such as Gross Provincial Product per capita when used in 

isolation, and support the adoption of multidimensional, capability-based planning 

tools that can more accurately capture a province’s long-term development potential. 

First and foremost, the study shows that complexity-based indicators offer a 

deeper understanding of regional economic dynamics than traditional output-based 

metrics. Provinces with similar GPP levels often differ significantly in their underlying 

productive capabilities. The inclusion of ECI in planning instruments such as the 

Development Potential Assessment Index (DPAI) or SDG Provincial Tracker could 

help local authorities and national policymakers identify where structural upgrading is 

feasible and where targeted interventions are required. This is especially important for 

provinces in Cluster 1 and Cluster 4, which may not be low-income but are structurally 

constrained in their growth potential due to limited complexity. 

The positive and nonlinear relationship between complexity and economic 

growth suggests that industrial policies should focus not merely on sector expansion 

but on upgrading to more knowledge-intensive and diverse economic structures. In 

practice, this means investing in regional innovation systems, vocational training linked 

to emerging industries, and supply chain integration strategies tailored to each 

province’s latent capabilities. For example, transition provinces such as Chachoengsao, 

which moved from Cluster 3 to Cluster 2, could serve as models for other intermediate 

provinces seeking to scale up their complexity levels. This aligns with recent 

scholarship suggesting that complexity is not just an outcome but a strategic pathway 

toward development (Hartmann et al., 2017; Hidalgo, 2021). 

The inverse and distribution-sensitive relationship between complexity and 

inequality implies that inclusive growth is structurally conditioned. This finding is 

particularly salient for provinces in Cluster 3, where high population levels and low 

complexity often coincide with elevated inequality. In such contexts, complexity 

upgrading should be coupled with redistributive mechanisms—such as employment 

formalization, skill-building for marginalized groups, and sectoral diversification into 

labour-absorptive, high-value-added industries. As the quantile regression results 

suggest, complexity has the strongest inequality-reducing effect in provinces that are 
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already at higher levels of inequality, meaning targeted upgrading policies in 

structurally lagging regions can yield disproportionately large social returns. 

The clustering analysis provides a powerful tool for designing spatially 

differentiated policies. Rather than applying a one-size-fits-all approach, national 

development strategies can use cluster-based profiles to tailor interventions. For 

instance, Cluster 2 provinces may benefit more from advanced R&D incentives and 

regional innovation ecosystems. Cluster 1 and Cluster 3 provinces may require 

investment in logistics, education, and industrial diversification to avoid stagnation. 

Cluster 4 provinces should be prioritized for foundational capability-building, including 

workforce development, access to digital infrastructure, and basic institutional 

strengthening. Moreover, the transition matrix and ribbon plot reveal that some 

provinces are already on a trajectory of structural transformation. These transition zones 

represent policy leverage points, where timely support can accelerate upward mobility 

and prevent regression. 

Finally, the study demonstrates that complexity metrics can be reliably 

generated from high-frequency, nationally available employment data—making them 

scalable and policy-relevant in real time. Unlike export-based complexity measures, 

which may be unavailable or unsuitable at the subnational level, employment-based 

metrics allow for routine provincial monitoring, especially in middle-income countries 

like Thailand. Institutions such as the NESDC or Ministry of Interior could incorporate 

ECI scores into dashboard systems for early warning, investment targeting, or 

interprovincial benchmarking. 

5.3 Contributions to Literature 

This study makes several substantive contributions to the literature on economic 

complexity, regional development, and the application of machine learning in social 

science research. By focusing on Thailand, a middle-income country with pronounced 

regional disparities and applying a novel subnational lens, the research bridges gaps 

between global theory, national policy, and local realities. These contributions span 

conceptual, methodological, and empirical domains. 
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Most empirical applications of the Economic Complexity Index (ECI) have focused on 

national-level analysis, particularly in relation to global trade and competitiveness 

(Hidalgo & Hausmann, 2009; Hausmann et al., 2014). While recent studies have begun 

to explore regional complexity in countries such as Mexico (Chávez et al., 2017), 

Romania (Török et al., 2022), and the United States (Fritz & Manduca, 2021), few have 

examined its implications in Southeast Asian or upper-middle-income economies. This 

study adds to this emerging literature by demonstrating that economic complexity can 

be effectively measured at the provincial level using employment data, and that it has 

meaningful implications for both growth and inequality in the Thai context. 

Whereas previous studies have primarily examined the average impact of 

complexity on macroeconomic outcomes, this thesis contributes to a growing strand of 

research that considers its distributional implications. By applying panel quantile 

regression, the study uncovers heterogeneous effects of complexity on income 

inequality across provinces with differing baseline conditions. This approach moves 

beyond mean-based interpretations and adds empirical support to the argument that 

economic complexity can serve as a structural tool for inclusive development—

particularly in regions experiencing high inequality. 

Methodologically, the research contributes to both the econometric and 

computational social science literature by combining fixed effects models, generalized 

additive models (GAMs), and unsupervised machine learning techniques. While the use 

of econometric models is well-established in economic complexity studies, the 

application of GAMs allows for the exploration of nonlinearities and threshold effects, 

a dimension often overlooked in prior work. Furthermore, the use of clustering 

algorithms (K-means, HAC, and GMM) to identify structural provincial typologies 

represents a novel application in the Thai context. This interdisciplinary integration 

demonstrates how tools from information technology and data science can deepen 

insight into socio-economic structures. 

The use of publicly available, high-frequency employment data to construct 

subnational complexity indices offers a replicable, scalable, and policy-relevant 

methodology for other middle-income countries where export data are often sparse or 

unreliable at the regional level. This contribution is especially valuable for researchers 

and policymakers seeking to operationalize complexity metrics within decentralized or 
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subnational governance frameworks. The study provides practical steps for adapting 

the method of reflection to labor market data, with clear implications for research 

design in comparative regional analysis. 

Finally, the study enriches Thailand’s domestic policy discourse by introducing 

a structural dimension to regional diagnostics. While Thailand’s planning instruments 

emphasize income, employment, and basic industrial data, this research introduces 

complexity as a third axis of development analysis—highlighting productive 

capabilities as a foundation for sustainable and inclusive growth. It thereby aligns 

Thailand’s regional strategy with international development thinking, which 

increasingly prioritizes knowledge-based upgrading and institutional capabilities. 

Collectively, these contributions position the study at the intersection of 

regional economics, complexity science, and applied data analytics. By 

operationalizing complexity theory in a practical, replicable, and policy-relevant 

manner, the thesis offers a foundation for further academic exploration and real-world 

application in Thailand and comparable contexts. 

5.4 Limitations and Future Research 

While this study offers new empirical insights and methodological innovations 

in the application of economic complexity to subnational development, several 

limitations must be acknowledged. These limitations pertain to data constraints, 

methodological boundaries, interpretative scope, and generalizability. A clear 

articulation of these constraints provides both transparency and a foundation for future 

research trajectories. 

One of the primary limitations lies in the data used to construct the provincial-

level Economic Complexity Index (ECI). The employment-based approach, while 

replicable and publicly accessible, may not fully capture the depth of knowledge 

embedded in certain economic activities, particularly those in the informal sector, 

digital economy, or knowledge-intensive services that are underrepresented in standard 

labour force classifications. Furthermore, the 20-sector disaggregation level used in the 

Labor Force Survey (LFS) limits the granularity of product and industry mapping, 
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potentially underestimating productive sophistication in provinces with niche or 

emerging sectors. 

Although fixed effects models are used to address time-invariant unobserved 

heterogeneity, the issue of endogeneity remains a concern. Economic complexity and 

development outcomes may be mutually reinforcing, raising the possibility of reverse 

causality. While this study focuses on observed associations rather than strict causality, 

future work could employ instrumental variable (IV) strategies or dynamic panel 

techniques (e.g., system GMM) to further isolate causal effects. Additionally, the 

specification of control variables, limited by data availability may omit other relevant 

provincial-level factors such as infrastructure quality, political institutions, or 

innovation systems. Including such covariates would enhance model completeness and 

interpretation but requires integrated multi-source datasets not readily available in the 

current scope. 

While the application of unsupervised machine learning algorithms (K-means, 

HAC, GMM) yielded interpretable development clusters, the outputs are inherently 

sensitive to initial conditions, number of clusters selected, and choice of variables. 

Although multiple algorithms and validation techniques were applied to ensure 

robustness, the interpretation of clusters remains exploratory. Moreover, cluster 

boundaries may shift with even minor updates in data or feature sets, which could affect 

their application in long-term planning without periodic recalibration. 

The research is designed around the specific institutional, geographic, and statistical 

context of Thailand. While the methodology is replicable, its direct applicability may 

be constrained in countries lacking high-frequency, subnational employment data or 

with different administrative structures. The generalizability of cluster typologies and 

policy implications should therefore be cautiously extended beyond Thailand without 

contextual adaptation. 

Building upon these limitations, several promising directions for future research 

emerge: 

Incorporate dynamic panel models and causal inference techniques to better 

understand the directionality and long-term feedback mechanisms between complexity 

and development outcomes. 
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Expand outcome variables to include additional dimensions such as 

employment quality, educational attainment, human development indices, or 

innovation output (e.g., patents), to provide a multidimensional view of complexity’s 

impacts. 

Explore spatial spillovers and regional interactions using spatial econometric 

models to assess whether complexity effects in one province influence adjacent 

provinces through trade, labour mobility, or institutional diffusion. 

Develop real-time dashboards or visualization tools to support institutional 

adoption of subnational complexity monitoring for policy targeting, investment 

promotion, and decentralized development planning. 

By addressing these limitations and expanding on current findings, future 

research can further strengthen the theoretical, empirical, and practical utility of 

economic complexity in regional development analysis, particularly in emerging and 

transitional economies. 

5.5 Conclusion 

This thesis has investigated the influence of economic complexity on 

provincial-level development outcomes in Thailand, with a specific focus on economic 

growth and income inequality. By constructing a novel subnational Economic 

Complexity Index (ECI) based on employment data from the Labor Force Survey 

(LFS), and by employing a combination of fixed effects regression, panel quantile 

regression, generalized additive models (GAMs), and unsupervised machine learning 

techniques, the study provides a comprehensive analysis of the structural dynamics 

underpinning Thailand’s regional development landscape. 

The empirical findings demonstrate that economic complexity is positively and 

significantly associated with real gross provincial product per capita (RGPPPC), and 

negatively associated with income inequality, as measured by the Gini coefficient. 

These relationships are shown to be nonlinear and heterogeneous across provinces, 

indicating that the developmental returns to complexity vary with both structural and 

distributional conditions. In particular, the inequality-reducing effects of complexity 



130 

 

are most pronounced in provinces with higher baseline levels of inequality, suggesting 

that complexity may serve as a vehicle for inclusive growth in structurally 

disadvantaged regions. The application of clustering algorithms further reveals that 

provinces can be meaningfully grouped into development typologies that capture latent 

structural heterogeneity. These typologies, along with their observed transitions over 

time, highlight both the persistence of regional disparities and the potential for upward 

mobility through targeted capability accumulation. 

From a theoretical perspective, the study contributes to the expanding body of 

literature on economic complexity by operationalizing the concept at the subnational 

level within a middle-income country context. It offers a methodological advancement 

by demonstrating that employment-based complexity metrics can be reliably 

constructed using publicly available data, thus enhancing the applicability of 

complexity diagnostics in data-constrained environments. Furthermore, the integration 

of nonlinear modelling and unsupervised learning provides a multidimensional 

framework for understanding development pathways that are neither uniform nor 

linear. 

In practical terms, the study underscores the value of complexity-informed 

diagnostics for regional planning and policy design. The findings suggest that the 

incorporation of ECI and related structural indicators into Thailand’s development 

planning apparatus, such as the Development Potential Assessment Index (DPAI) or 

SDG-aligned monitoring systems could strengthen evidence-based, place-specific 

policy formulation. The cluster-based typologies offer an empirical basis for spatially 

differentiated strategies, while the observed transitions underscore the importance of 

continuous monitoring and adaptive policymaking. 

In conclusion, this research affirms that economic complexity constitutes more 

than a descriptive metric of output diversity; it encapsulates the embedded capabilities, 

institutional knowledge, and production potential of regional economies. As such, 

complexity-oriented approaches hold significant promise for guiding Thailand and 

comparable emerging economies toward more inclusive, sustainable, and structurally 

resilient development trajectories. 
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